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Abstract

Cognitive impairment and especially memory disruption is a major complicating feature of the
epilepsies. In this review we begin with a focus on the problem of memory impairment in
temporal lobe epilepsy. We start with a brief overview of the early development of knowledge
regarding the anatomic substrates of memory disorder in temporal lobe epilepsy, followed by
discussion of the refinement of that knowledge over time as informed by the outcomes of epilepsy
surgery (anterior temporal lobectomy) and the clinical efforts to predict those patients at greatest
risk of adverse cognitive outcomes following epilepsy surgery. These efforts also yielded new
theoretical insights regarding the function of the human hippocampus and a few examples of these
insights are touched on briefly. Finally, the vastly changing view of temporal lobe epilepsy is
examined including findings demonstrating that anatomic abnormalities extend far outside the
temporal lobe, cognitive impairments extend beyond memory function, with linkage of these
distributed cognitive and anatomic abnormalities pointing to a new understanding of the anatomic
architecture of cognitive impairment in epilepsy. Challenges remain in understanding the origin of
these cognitive and anatomic abnormalities, their progression over time, and most importantly,
how to intervene to protect cognitive and brain health in epilepsy.

Introduction

Epilepsy is a prevalent neurological disorder affecting an estimated 50 million people
worldwide1. Although defined by the presence of recurrent seizures, epilepsy can exert an
adverse impact on important aspects of day-today function including cognition, emotional-
behavioral status, and social adaptive behaviors; these problems referred to as the
comorbidities of epilepsy. At the recent conference sponsored by the National Institutes of
Neurological Diseases and Stroke (Curing Epilepsy 2007: Translating Discoveries into
Therapies), the prevention and reversal of the comorbidities of epilepsy were identified as a
major new benchmark area for research and care. Here we will focus on arguably the most
problematic of these comorbidities—cognitive impairment, and we will do so focusing on
temporal lobe epilepsy (TLE), the most common form of focal epilepsy. The cognitive
complications of epilepsy can be heterogeneous, but especially problematic is episodic
memory impairment, a signature cognitive deficit in TLE. In this review we will first focus
on the development of knowledge regarding memory impairment in epilepsy, then overview
the effects of treatment including surgery on this cognitive system, and conclude with a
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review of recent insights into the underlying neurobiology of temporal lobe epilepsy and the
implications of these findings for cognition and future research.

Epilepsy, memory and the hippocampus: early insights

The first empirical studies of cognition in epilepsy began to appear in the early 1900s with a
focus on the relationship between intelligence and clinical characteristics of the patients’
epilepsy (e.g., age of onset, seizure frequency)2, 3. As methods of assessment and
understanding of human cognition developed, interest in specific abilities such as memory
ensued. Understanding of the neurobiology of disordered cognition and memory in epilepsy
was accelerated by the development of organized epilepsy surgery programs. Collaboration
with neuropsychology was key from the inception of these programs which involved Donald
Hebb and Brenda Milner at the Montreal Neurological Institute, Ward Halstead at the
University of Illinois in Chicago, and Victor Meyer at the Guy’s-Maudsley Hospital in
London 4–8.

The earliest surgeries for temporal lobe epilepsy performed by Penfield and Jasper in
Montreal and Bailey and Gibbs in Chicago largely avoided the hippocampal complex, in
part due to the animal experiments of Kluver and Bucy demonstrating the deleterious
behavioral consequences of bilateral temporal lobe resection. However, it became apparent
that that the mesial temporal structures were critically involved in the epileptogenic network
and in 1952 Penfield and Baldwin advised removal of the “deepest, most inferior and mesial
portion” of the temporal lobe 5, 9 which became the accepted approach beginning in the
1950s 10.

At the time the temporal lobe was said to be concerned with “many known functions,”
including hearing and sight, but the case of its mesial aspect involved “a host of
unknowns” 11. As resection of the mesial temporal structures became a standard practice,
the principal function of the hippocampus was elucidated8, 12, 13 due to two factors.

First was the unanticipated global amnesia suffered by a small number of patients following
surgery. Milner and Penfield 14 described two cases that experienced a severe recent
memory impairment following unilateral temporal lobectomy. They hypothesized that these
patients had (undetected) contralateral (non-surgical) damage in the hippocampus, and the
effect of resection of the ipsilateral epileptogenic hippocampus was to produce bilateral
hippocampus damage. Consistent with this proposal, the serious memory consequences of
bilateral temporal lobectomy was reported a few years later. Scoville & Milner15 presented
the memory outcome findings for HM (and seven other patients) following bilateral
temporal lobe resection. An extensive anterograde memory loss ensued with concomitant
preservation of overall intellectual functioning and language ability. This profile became
regarded as the prototypical presentation of an amnesic syndrome produced by bilateral
temporal lobe damage. Extensive study of HM over the next 50 years produced important
insights into the role of the hippocampus and temporal lobe for memory and a conceptual
framework to understand the neural architecture of diverse memory systems16.

Second was the less severe but common problem of memory decline after anterior temporal
lobectomy (ATL)17, 18, changes that remain a continuing concern. Milner19 described
“material-specific” memory difficulties and the “clearest instance” (p. 175) was said to
occur in left TLE patients in whom verbal memory could be impaired before surgery and
became enduringly worse after left ATL, whereas so-called nonverbal memory was
expected to be intact. A corresponding, if less robust, selective vulnerability to nonverbal
memory impairment characterized patients with right TLE and temporal lobectomy. The
impact of this early work was profound. The material-specific model of memory served as a
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foundation of research and practice far outside the narrow field of epilepsy and epilepsy
surgery, influencing generations of investigators.

Refining understanding of memory change in epilepsy and epilepsy

surgery

It is now generally acknowledged that 30–60% of left ATL patients experience a significant
decline in verbal memory ability13, 20–24. But despite these robust trends before and
especially after epilepsy surgery, a persisting finding has been variability in memory
outcome following a standard surgical approach (Figure 125). While, on average, verbal
memory outcome is worse following left compared to right ATL, many left ATL patients
show no change or even postoperative improvement. In contrast, right ATL patients show
postoperative improvement on average, but some exhibit decline as well. Similar variability
in the context of a less robust effect for visual memory change following right ATL has been
demonstrated as well26. Determining the factors that underlie this variability has been a
critical issue in the role of ATL in treating patients with chronic TLE and the development
of presurgical protocols to assess the risk of adverse memory outcome following surgery.

How memory is assessed makes a difference

One source of outcome variability relates to the heterogeneity of memory tests employed.
As critically reviewed by Saling27, list learning, paragraph recall, and forming associations
between related and unrelated word pairs differ in their semantic demands and the associated
underlying neurobiology required for successful task performance and should not be
considered equivalent measures of “verbal memory.” Even within similar tasks such as list
learning, there are differences in semantic relationships among the words used as stimuli
that are thought to contribute to different sensitivities to left temporal lobe dysfunction28–30.

What is resected makes a difference

Another possible cause of variable memory outcome was suggested by studies of the
relationship between preoperative memory performance and the neuropathological status of
the resected hippocampus. Rausch et al.31 found that the degree of neuron loss in the left
hippocampus was associated with preoperative performance on an unrelated word paired-
associate learning task and similar findings were reported by others32–33. Given that
relationship, it was reasonable to expect that the integrity of the to-be-resected hippocampus
would predict the risk of postoperative memory change—the risk greatest in those with less
hippocampal cell loss and presumably a more functionally intact hippocampus, with less risk
in those with the most cell loss and the least functionally intact hippocampus. Those
assumptions were upheld. Findings from the early 1990’s confirmed that the risk of
postoperative memory decline was associated with the structural integrity (or lack thereof)
of the to-be-resected hippocampus34–37. The memory changes can be quite substantial.
Figure 2 depicts the degree of change in rote verbal list learning performance apparent
following resection of a left hippocampus with minimal or no sclerosis (top panel) compared
to a left hippocampus with moderate to severe sclerosis (bottom panel). This relationship
was diametrically opposed to the then conventional wisdom that the risk of postoperative
memory decline was associated with the functional integrity of the contralateral
hippocampus

A paradigm shift

In a major theoretical contribution, Chelune20 integrated the findings to date and contrasted
a new model of ipsilateral hippocampal adequacy versus the classic model of contralateral
functional reserve. The hippocampal adequacy model inferred that the functional status of
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the surgical hemisphere and hippocampus prior to surgery was critical to determining
memory outcome. Individuals with a more intact hippocampus were at greater risk for
memory decline because (relatively) functional tissue has been removed. In contrast, the
functional reserve model emphasized the status of the contralateral non-surgical
hippocampus. An intact contralateral hippocampus capable of subserving memory could
offset the impact of resection of the ipsilateral (surgical) hippocampus. A wide range of
findings have been found to be consistent with the hippocampal adequacy model.

Wada Test

In response to the concern about producing a severe global memory impairment following
unilateral ATL, Milner, Branch, & Rausmussen38 developed intracarotid amobarbitol testing
as a means of assessing the memory ability of the contralateral hemisphere. The test,
developed by Juhn Wada39, was already used to determine language dominance, and this
approach was extended to assessing memory ability before surgery. The Wada Test provides
an opportunity to assess the functional status of both the ipsilateral and contralateral
hippocampus independently by transient hemispheric anesthesia.

The presence or absence of a marked memory asymmetry score is a clear predictor of verbal
memory outcome after left ATL 40, 414243. Preoperative Wada Test memory asymmetry
(impaired ipsilateral and intact contralateral memory) has been found to be associated with
side of ictal EEG onset 44, hippocampal atrophy on MRI45, 46, and neuronal loss in resected
hippocampus33. However, there are factors that can affect this relationship including
atypical language representation 474849, the types of memory stimuli used50, and the type of
neuropsychological memory outcome measure [better for predicting list learning than prose
recall change51. The Wada Test has been less useful for predicting non-verbal memory
outcome following right ATL 52, in part a likely reflection of the difficulty finding memory
measures linked to a consistent right hemisphere effect 5354.

Age of onset of recurrent seizures

Several studies have identified age of recurrent seizure onset to be a predictor of ATL
memory outcome. Earlier age of seizure onset is associated with poorer memory before ATL
and less decline after ATL, while later onset of epilepsy is associated with better
preoperative memory and a greater postoperative decline 55. The reason for this relationship
is most likely due to the increased probability of hippocampal pathology with earlier onset
of epilepsy 56, which in turn is related to functional adequacy.

Preoperative memory performance

Patients with better preoperative memory performance show greater decline in memory
following ATL 5725, this is believed to reflect the association with the degree of
hippocampal sclerosis—less underlying sclerosis associated with better preoperative
performance and thus greater risk of postoperative decline. TLE subjects without
hippocampal sclerosis are more likely to have a functional hippocampus which subserves
stronger presurgical memory performance. Resection will remove functional tissue leading
to a significant memory decline.

Neuroimaging predictors

The advent and refinement of neuroimaging techniques over the past 20 years (MRI, PET,
fMRI) has provided a new opportunity to identify alternative approaches for predicting
memory outcome after ATL58.
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Hippocampal atrophy—The absence of hippocampal atrophy on MRI is significantly

associated with better pre-ATL verbal memory performance and poorer pre-post ATL verbal
memory outcome 59, 60.

FDG-PET hypometabolism—Only a few studies have examined pre to postoperative

memory outcome using FDG-PET. Griffith et al.61 found that absence of preoperative left
temporal lobe hypometabolism was associated with poorer verbal memory outcome
following left ATL. However a recent study failed to find a significant relationship between
preoperative FDG-PET hippocampus asymmetry and memory outcome 62.

fMRI—The rationale underlying the use of fMRI is that the degree of presurgical

hippocampal activation reflects the functional adequacy of the structure. Richardson et al.63

showed left TLE patients with hippocampal sclerosis to demonstrate less activation in the
region of the left hippocampus than controls during a verbal encoding task. Subsequent
studies showed that increased activation in the ipsilateral hippocampus before surgery or
asymmetry in activity between the left and right hippocampus was associated with a poorer
memory outcome64–67. Bonelli et al.68 recently reported that increased left hippocampal
activity in left TLE was associated with better pre-surgery memory performance and greater
decline following ATL on a word list learning task. For the right TLE group, increased right
hippocampal activity for a face encoding task was associated with better pre-surgical
memory performance on learning a set of designs and more decline following ATL.
However, hippocampal activation may not necessarily be the best verbal memory outcome
predictor, with language lateralization superior to scene encoding in a large and carefully
investigated series69, 70.

Multiple methodological issues remain to be resolved including the optimal activation tasks
to use, which fMRI activation measure is the best predictor, the impact of hippocampus
pathology, and the predictive incremental value of fMRI activity in relation to other
predictor variables.

Mutivariate prediction

Many studies examined the impact of a single predictor in relation to memory outcome.
Informative are investigations using a multivariate approach that makes use of multiple,
non-redundant sources of information71. Stroup et al.72 reported that a combination of
factors including side of resection, baseline memory performance, extent of hippocampal
sclerosis and Wada Test performance all provided independent information regarding
prediction of memory outcome. Lineweaver73 found that MRI volumes and baseline
memory performance, but not Wada Test performance, significantly predicted memory
outcome. Baxendale74 also found that preoperative memory level emerged as the most
reliable predictor of memory outcome when side of resection, amount of cortical dysgenesis,
chronological age, and IQ were also entered into a prediction model.

Binder et al.66 examined 60 left ATL patients who underwent preoperative language
mapping with fMRI, preoperative intracarotid amobarbital (Wada) testing for language and
memory lateralization, and pre- and postoperative neuropsychological testing. Demographic,
historical, neuropsychological, and imaging variables were examined for their ability to
predict pre- to postoperative memory change. Verbal memory decline was observed in over
30% of patients. Predictive of memory decline were good preoperative performance, late
age at onset of epilepsy, left dominance on fMRI, and left dominance on the Wada test.
Preoperative performance and age at onset together accounted for roughly 50% of the
variance in memory outcome and fMRI explained an additional 10% of this variance.
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Neither Wada memory asymmetry nor Wada language asymmetry added additional
predictive power beyond these noninvasive measures.

Binder et al.66 also used an interesting multivariate approach to predict verbal memory
outcome following left ATL. Order of entry of prediction variables was based on risk and
cost. Age of onset and preoperative memory performance were entered first and predicted
about 50% of the variance for memory outcome, the fMRI language index (not memory)
was added next and added 10% of the variance in predicting outcome. The fMRI laterality
index still added significant predictive values after Wada Test language and memory scores
were considered.

These predictive models would have more utility if the surgical resection were standard
across centers. This of course is far from the case and the predictive models apply to surgery
as performed at the reporting center. Growing clinical evidence documents the impact of
various surgical approaches to ATL and the variable cognitive outcomes that may follow
(see 75 for review), although it should be appreciated that the number of randomized clinical
trials comparing different surgical approaches is extremely small. For example,
Helmstaedter 76 compared pre- and postoperative verbal learning and memory performance
in left temporal lobe epilepsy patients with hippocampal pathology who underwent anterior
temporal lobectomy (ATL) or selective amygdalohippocampectomy (SAH), as well as
patients with left lateral temporal lobe lesions who underwent cortical lesionectomy. All
three groups exhibited similarly impaired preoperative verbal learning and memory
performance compared to controls. Postoperatively, long term memory declines were similar
for the ATL and SAH groups, but the ATL group also exhibited decline in new verbal
learning efficiency, presumably due to resection of functional left lateral temporal
neocortex. The left cortical lesionectomy group showed minimal pre- to postoperative verbal
learning and memory change.

Insights into human hippocampal function

In addition to providing important information about the cognitive complications of epilepsy
surgery, careful pre to postoperative studies have provided unique information about the
function of the human hippocampus. Paradoxically, this information comes from those
persons who experienced the poorest cognitive outcomes, that is, those with resection of
hippocampus with minimal or no hippocampal sclerosis. The following lessons have been
learned.

Serial position curve

Classic learning studies demonstrated that when humans are presented with a supraspan list
of words to learn and remember, in free recall there is preferential recall of words from the
beginning (primacy) and end (recency) of the list compared to words from the middle—this
pattern referred to as the serial position curve. The primacy portion of the list, and to some
degree the middle portion, reflects the operation of so-called secondary or long term
memory, while the recency portion has been thought to reflect primary or immediate
memory. Examining patterns of free word list recall before and after ATL, resection of a
minimally sclerotic left hippocampus selectively affected the primacy and middle portions
of the list demonstrating reliance on hippocampus, while the recency portion of the list
remained unaffected, thus independent of the hippocampus (Figure 3). 77.

Semantic encoding

While there is decline in verbal list learning ability following resection of nonscleotic left
hippocampus, it is possible that the inability to freely recall words is due to retrieval
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difficulties. That is, there may be degraded access to newly learned information. If true,
recognition testing via yes-no or multiple choice testing might normalize performance. In
addition, by presenting both target words (words from the list) as well as foils (words not
from the list), error patterns would be informative. If patients misidentified words with
certain attributes (semantic, phonological, prototypical), then a specific encoding
contribution of hippocampus would be inferred. In point of fact, support for the retrieval
hypothesis was not obtained—recognition testing did not significantly facilitate
performance. Moreover, patients who underwent resection of nonsclerotic left hippocampus
showed a selectively increased error rate for semantically related words78.

Semantic knowledge

Classically the human hippocampus is viewed as having a time limited role in memory
encoding, with newly acquired episodic information eventually stored independent of the
hippocampus. However, recent findings show that at the hippocampus plays an ongoing role
in at least one class of semantic information—visual object naming. Significant declines in
confrontation naming ability are seen following resection of nonsclerotic left hippocampus
with a tendency for recall failures to affect words acquired comparatively later in life (yet
many years prior to surgery), suggesting a temporal gradient79, 80. Further, there appear to
be differences in the risk to semantic memory systems (both naming and recognition) based
upon different semantic categories. Existing studies highlight the importance of the temporal
lobes in recognition and naming of several object categories81–84 while deficits in
recognition and familiarity judgment are common occurrences following nondominant ATL
resection85.

The changing view of temporal lobe epilepsy

At the second Palm Desert International Conference on the Surgical treatment of the
Epilepsies, focus was placed on “surgically remediable syndromes”, among which mesial
temporal lobe epilepsy was prominent 86. This conceptualization facilitated increasingly
careful characterization of the syndromes of localization related temporal lobe epilepsy
(mesial TLE, lesional TLE, and so called MRI-negative, paradoxical or cryptogenic TLE).
The primary cognitive signature of mesial TLE (mTLE) was viewed to be material-specific
memory impairment demonstrated either through formal neuropsychological assessment or
the Wada Test. A stated contraindication to mTLE was the presence of generalized cognitive
compromise—all reasonable characterizations at the time86. However, later studies
examining the full range of cognitive abilities found that patients with neuropathologically
confirmed mesial TLE exhibited a pattern of generalized cognitive disruption—an
unanticipated finding 87. One possible cause was that structural abnormality may also extend
beyond the confines of the mesial temporal lobe and that these extratemporal abnormalities
may have additional cognitive consequences.

Widespread anatomic abnormalities beyond the epileptogenic

hippocampus

In the 1990s, the examination of structural abnormalities in people with mTLE was extended
beyond the epileptogenic hippocampus. Using quantitative MRI tools that focused on
manually delineated volumes to assess brain size, investigators first probed hippocampal
related structures and found atrophy in neocortical temporal lobes 59, entorhinal cortex 88, 89,
fornix 90, parahippocampal gyrus 89, and amygdala 89, 91. Quantitative volumetric studies
were also applied to other subcortical structures and yielded abnormalities in the basal
ganglia 92, 93, thalamus 92, 94, 95, and cerebellum 96, 97. Thus, these studies demonstrated that
anatomical abnormalities in mTLE were certainly not limited to the epileptogenic
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hippocampus. However, these early volumetric techniques only permitted examinations of
one, or a limited number of predetermined structures, rather than simultaneously
characterizing a broad range of deficits throughout the entire brain.

The first glimpse of the distributed nature of structural abnormalities in mTLE came from
Sisodiya and colleagues 98. Instead of manually tracing structures with defined borders, they
divided each hemisphere into blocks and quantified the amount of cortical gray matter and
white matter throughout the entire brain. Each anatomical block of a patient with mTLE was
compared to normal controls in order to assess for disproportional distribution of gray and
white matter. Indeed, a majority of patients with hippocampal sclerosis had diffuse
abnormalities throughout the cerebral cortex, but the exact location could not be elucidated
from this technique.

With the emergence of automated analysis tools such as voxel based morphometry (VBM),
the whole brain now can be scrutinized voxel by voxel in the same patient group to more
precisely localize brain regions that are affected in mTLE. This unbiased examination of the
entire brain facilitated appreciation of the distribution and relative degree of structural
burden carried by many patients. In that regard, a very helpful summary of the presence and
distribution of structural abnormalities associated with TLE is provided by Keller and
Roberts 99. They summarized 18 VBM studies and found 26 brain regions that showed
reduced volumes in TLE, compared to healthy controls. The distribution of abnormalities
was widespread, involving mesial, extramesial temporal lobe, subcortical and extratemporal
lobe cortical regions.

Although VBM studies provide an anatomical profile of the extent of abnormalities, the
pathological nature of these changes was uncertain 99. Gray matter measurements in VBM
are sensitive to both losses in gray matter as well as increases in CSF volume, as well as
differences in cortical surface curvature, which cannot be distinguished from each other.
These limitations provided the impetus to examine changes in other brain features such as
indices of gyrification, cortical thickness, and surface area. Lin and colleagues examined
cortical thickness in a group of mTLE patients with pathologically confirmed hippocampal
sclerosis and found that these patients to have up to a 30% decrease in cortical thickness,
with significant thinning of frontal poles, frontal operculum, orbitofrontal, lateral temporal,
and occipital regions (Figure 4, a and b). Interestingly, reductions in cortical thickness were
evident in bilateral cerebral hemispheres, despite unilateral seizure onset 100. Other
investigators have also reported bilateral cortical mantel thinning in select regions
throughout the entire cerebral cortex, but most consistently in the frontal, central and
temporal regions101–103. Widespread abnormalities in gyrification patterns were found in
multiple cortical regions, both ipsilateral and contralateral

In addition to gray matter abnormalities, aberrant white matter tracts and connections are
present in chronic TLE. The advent of diffusion tensor imaging (DTI) techniques has
allowed investigators to measure white matter tract integrity by assessing magnetic
resonance signal of water diffusion and its directionality in three-dimensional space. Parallel
to early quantitative gray matter volumetric studies, initial DTI studies also focused on the
limbic system and found diffusion abnormalities in the bilateral of fornix and cingulum 104.
Postulating on a more diffuse epileptogenic network in TLE, other investigations extended
this initial finding to frontal-temporal (uncinate fasciculus and arcuate fasciculus) 105–107,
temporal-occipital (inferior longitudinal fasciculus)108, frontal-occipital (inferior frontal
occipital fasciculus)108 and interhemispheric connections (corpus callosum) 109–111. More
recently, whole brain voxelwise analysis techniques have mapped white matter profiles and
delineated systemic differences between TLE patients and healthy individuals, without a
priori bias for specific tracts or brain regions. Focke and colleagues (2008) used such a
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voxelwise technique to evaluate diffusion abnormalities in patients with mTLE and found
that reduced white matter integrity was present in mesial and lateral temporal lobe, limbic
system (thalamus, fornix and cingulum), and extratemporal regions (arcuate fasciculus,
external capsule and corpus collosum), The white matter changes were more pronounced
ipsilateral to side of seizure onset (Figure 4, c)112. Other studies have also showed
demonstrated extensive bilateral white matter diffusion abnormalities, particularly in the
temporal and frontal lobes ipsilateral to the side of seizure onset 113–115.

In summary, there is converging evidence that while the primary epileptic zone may be
contained within the confines of the hippocampus, considerable anatomic abnormality exists
outside this region, affecting a myriad of cortical, subcortical, and cerebellar regions and
their direct and indirect connectivity.

Widespread anatomic abnormalities are linked to distributed cognitive

impairments

In concert with the extensive anatomical abnormalities, mTLE patients also exhibited a
pattern of distributed cognitive impairments, affecting not only memory, but also a broad
array of cognitive areas including IQ, executive functions, language and sensorimotor
skills. 87, 116, 117. A cumulative literature has now emerged, linking structural changes with
cognitive performances. In the cortical regions, specific one-to-one structural-functional
association in TLE has been sparse and is primarily limited to the frontal and neocortical
temporal lobes. For example, reduced volumes in specific sub-regions of the prefrontal
cortex have been related to poor executive functioning 118 and impaired memory 119, while
left neocortical temporal lobe volume predicted confrontation naming ability 120. When
examining anatomical features of the entire cerebral cortex, only global indices of structural
integrity, such as overall gyrification 121, whole brain volumes 122–124, and disproportionate
distribution of white and gray matter volumes 125, have been related cognitive performances.
Indeed, a VBM study failed to associate localized gray matter changes with material-specific
neuropsychological deficits 124. Thus, structural-functional correlations in the cortical
regions are more evident at a global level than local level, implying that the distributed
nature of cognitive impairment in TLE involves a widespread network.

The link between subcortical atrophy and cognition in TLE further highlights the importance
of this integrated network. Subcortical structures such as the thalamus, basal ganglia, and
cerebellum are critical nodes in the cortico-subcortical circuits that are involved in the
transfer, convergence, and processing of cognitive information. To this end, thalamic
volumes have been correlated with IQ, memory 126 and executive function 127; basal ganglia
changes have been related to negative symptoms in TLE patients 128; and cerebellar
abnormalities have been associated with impaired procedural memory 129 as well as
executive function 115. When combining the degree of cortical thinning with volume loss in
these subcortical regions, the collective structural abnormality has been found to be closely
associated with patterns of cognitive impairment (or cognitive phenotypes) observed among
patients with temporal lobe epilepsy 130.

Another facet of the coordinated network in TLE is derived from the link between white
matter tract integrity and cognitive ability. White matter fiber tracts that connect cortical to
cortical, cortical to subcortical, and interhemispheric regions have been associated with
specific cognitive deficits in memory and language (see Table 1). These studies have led to a
unifying hypothesis that disconnection between important cortical and subcortical regions
would impair information transfer and thus contribute to cognitive impairments in TLE.
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In summary, there is now substantial evidence that cognitive impairment in TLE is a result
of disrupted network rather than specific damage to a certain brain structure. Importantly,
the sum of these distributed structural abnormalities may result in a cumulative cognitive
and behavioral burden that may be substantial in TLE patients.

Focal epilepsy and abnormal organization of higher cognitive functions

A defining characteristic of mesial TLE is childhood/early adolescent onset, often with an
early initial precipitating injury. This hallmark characteristic is important as the timing and
nature of the initial precipitating injury and recurrent seizures could directly affect
organization of higher cognitive abilities—both within and between cerebral hemispheres.

Evidence of altered cerebral organization is now substantial. Increased rates of right
hemisphere or bilateral language dominance has been frequently observed among patients
with left TLE 134–136, and partial transfer of language dominance occurs more frequently in
the presence of early onset epilepsy and left hippocampal sclerosis137. Intrahemisphere
reorganization of language has been demonstrated by intra- and extraoperative speech
mapping where early onset epilepsy is associated with more relocation of visual and
auditory naming sites, especially more posteriorally 137–139,140

Functional neuroimaging studies demonstrate abnormal organization of memory. Using
fMRI, Powell et al.141 showed that compared to controls, both right and left TLE patients
showed less ipsilateral than contralateral hippocampal activation while viewing word,
pictures, and face stimuli. In addition, increased activation in the ipsilateral hippocampus
was negatively correlated with verbal memory in left TLE and non-verbal memory in right
TLE. In contrast, greater contralateral hippocampus activity was correlated with poorer
memory performance. They also suggested that reorganization of memory ability to
contralateral hippocampus and MTL structures may not lead to effective memory
performance.

This abnormal organization may also be responsible in part for the distributed cognitive
compromise that may be observed. In individuals with early-onset epilepsy, the degree of
language shift to the right hemisphere was correlated with poorer performance in language,
executive function and memory142. In addition, shifting of language to the right hemisphere
was associated with deficits in non-verbal cognitive tasks, suggesting that reorganization of
language may “crowd” out normal right hemisphere functions 143. Shifting of language to
the right hemisphere alters normal language networks, resulting in adverse cognitive
outcome. It should be remembered that most of these studies are cross-sectional in nature
and, as such, do not address the important question of when and how the cognitive deficits
develop or even whether they antedate the onset of temporal lobe epilepsy.

Conclusions and Future Directions

TLE is far more than a localization-related form of epilepsy with a primary and limited
impact on episodic memory. Depending on the specific syndrome and its associated
underlying characteristics, the impact of “temporal lobe epilepsy” on brain structure and
function can be widespread, impacting brain and cognitive development, invoking
compensatory processes including reorganization of function, and altering the landscape of
brain-behavior relationships. Despite the significant progress made regarding the broader
understanding of cognitive comorbidities in TLE, specific biomarkers that predict
development of cognitive deficits have not been identified and there are relatively few
strategies that identify individuals at risk for cognitive dysfunction. Thus the current state of
knowledge highlights the need for longitudinal studies across the life span in order to
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identify brain-based predictors of cognitive comorbidities and target candidates for effective
cognitive intervention.

While cognitive reorganization has a fortuitous benefit for those who undergo ATL by
adventitiously preserving language and memory function postoperatively, the broader
implications of these diverse impacts remain uncertain, including brain and cognitive health
in older age. While there are divergent views regarding the primary adverse influence on life
course (early neurodevelopmental impact vs. progressive decline vs. mixed
neurodevelopmental and degenerative) 144–147, all views agree in predicting worse cognitive
function in elder years compared to population based norms—an outcome that deserves
much closer scrutiny148.

While it is clear that much has been learned about memory and other cognitive processes in
persons with temporal lobe epilepsy over the years, much remains to be clarified. As can be
appreciated, the opportunity to carefully study persons with temporal lobe epilepsy who are
candidates for epilepsy surgery has provided investigators with unparalleled opportunities to
learn more about the effects of epilepsy on cognition and brain structure. However, these
patients are among the most intractable to medication treatment and therefore not
representative of the larger population of people with this form of epilepsy. Population
based investigations would inform a more representative picture of the consequences for
neurobehavioral status and brain structure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

Examination of patients following epilepsy surgery has contributed significantly to
understanding the neuroanatomy of human memory.

There is wide variability in the impact of anterior temporal lobectomy on
postoperative memory function.

The cause(s) of this variability is now better understood leading to improved ability
to identify patients at greatest risk of adverse cognitive outcomes.

Recent findings demonstrate that cognitive morbidity in temporal lobe epilepsy can
extend beyond memory function and that anatomical abnormalities can extend far
beyond the temporal lobe.

These distributed cognitive abnormalities are being linked to anatomic abnormalities
outside the temporal lobe, providing a new neurobiological understanding of the
neuropsychology of temporal lobe epilepsy.
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Figure 1.
Variability in verbal memory change following left and right anterior temporal lobectomy.
Preoperative to postoperative changes in verbal learning performance (total words recalled
on California Verbal Learning Test) in 100 patients who underwent left or right anterior
temporal lobectomy. The dependent variable is the number of words recalled from a 16-item
word list across five learning trials. Abbreviation: ATL, anterior temporal lobectomy.
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Figure 2.
Verbal memory change following left anterior temporal lobectomy in relation to
hippocampal pathology. Resection of left hippocampus with no or minimal sclerosis results
in significant preoperative to postoperative decline in trial-to-trial learning. Long-delay
recall is ≈35% lower compared with preoperative performance. Resection of left
hippocampus with significant hippocampal sclerosis has a minimal effect on postoperative
trial-to-trial learning compared to preoperative performance. All patients were confirmed to
be left hemisphere speech dominant by the Wada test. Abbreviation: CVLT, California
Verbal Learning Test.
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Figure 3.
Change in the serial position curve following left anterior temporal lobectomy as a function
of left hippocampal pathology. a | Resection of left hippocampus with no or minimal
sclerosis results in significant preoperative to postoperative alteration of the serial position
curve with decreased recall of primacy and middle portions of the list. b | Resection of left
hippocampus with notable hippocampal Sclerosis has no effect on the serial position curve.
The data are derived from the patient’s free recall of a supraspan word list.
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Figure 4.
Reduced gray matter thickness and white matter integrity in left MTLE. a | Mean percent
reduction in cortical thickness as a percentage of control average. Red areas in the bilateral
in the frontal poles, frontal operculum, orbitalfrontal, lateral temporal and occipital regions,
and the right angular gyrus and primary sensorimotor cortex surroundings the central sulcus
denote ≤30% decrease in thickness, on average, compared with corresponding areas in
controls. b | Significance of these changes shown as a map of P values. c | Reductions in
white matter integrity, measured by decreased fractional anisotropy, were evident in mesial
and lateral temporal lobe, limbic system and extratemporal lobe regions, particularly
ipsilateral to the side of seizure onset. Yellow and dark red regions indicate white matter
tracts with decreased fractional anisotropy. Green regions indicate areas not notably
different from controls. Only left MTLE patients are presented here, although similar gray
and white matter abnormalities—albeit to a lesser degree—were evident in right MTLE.
Parts a and b are modified, with permission from Oxford University Press © Lin, J. J. et al.
Cereb. Cortex 17, 2007–2018 (2007). Part c is modified with permission from Elsevier Ltd
© Focke, N. K. et al. Neuroimage 40, 728–737 (2008). Abbreviation: MTLE, mesial
temporal lobe epilepsy.
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Table 1

Abnormal white matter tract connections and associated cognitive deficits in TLE

Tracts Connections Cognitive deficits in TLE

Arcuate fasciculus Connects perisylvian frontal, parietal and temporal cortex Confrontational naming131

Inferior longitudinal fasciculus Connecting temporal lobe to the occipital lobe Delayed memory 115

Inferior fronto-occipital fasciculus Connecting frontal lobe to occipital lobe Delayed memory 131

Uncinate fasciculus Connections between the mesial temporal structures (uncus
and amygdala) and mesial frontal region.

Immediate memory, delayed memory and
confrontational naming115, 131, 132

Parahippocampal cingulum Connects the uncus and parahippocampal gyrus to subrostral
areas of the frontal region

Delayed memory 131

Fornix Connects hippocampus to other limbic regions Immediate memory 115

Corpus callosum Major connection between the two hemispheres Psychomotor speed and executive
function133
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