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 2 

Summary 26 

 27 

Efforts are currently ongoing to map synaptic wiring diagrams or connectomes in order to understand 28 

the neural basis of brain function.  However, chemical synapses represent only one type of 29 

functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by 30 

neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-31 

cell anatomical and gene expression datasets with a biochemical analysis of receptor-ligand 32 

interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans 33 

nervous system. This connectome is characterized by a high connection density, extended signaling 34 

cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core 35 

containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, 36 

several of the most important nodes in this connectome are little-studied neurons that are specialized 37 

for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will 38 

serve as a prototype to understand basic organizational principles of neuroendocrine signaling 39 

networks. 40 

 41 

 42 

 43 

  44 
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 3 

Introduction  45 

 Understanding how behavior arises from neuronal interactions in the brain is one of the great 46 

challenges of modern neuroscience. In recent years, many projects have started to map the synaptic 47 

wiring diagrams (or synaptic connectomes) of simple and complex nervous systems to define their 48 

architecture at the cellular level1–4. Specifically, connectomics has aimed to identify all the individual 49 

units of the nervous system (i.e., its neurons) as well as all the connections between these units.  In 50 

practice this involves reconstructing volumes of brain tissue using electron microscopy (EM), and 51 

then analyzing these images to trace neuronal processes and identify pre- and post-synaptic hallmarks 52 

of chemical synapses between identified neurons. Currently there are several endeavors of this type 53 

that are compiling complete connectomes for organisms important for neuroscience research, 54 

including Drosophila, Platynereis, Ciona, zebrafish, and mouse2,3,5–7. 55 

 Although most connectomics research focuses on synaptic connectivity, chemical synapses 56 

are only one of several paths through which neurons communicate in the brain. For example, many 57 

important interactions between neurons involve volume transmission, by which secreted molecules 58 

are released extrasynaptically and activate receptors on neurons that are not wired through synapses or 59 

gap junctions to the releasing neuron. Unlike synaptic and gap junction transmission, where signaling 60 

is restricted to neurons on either side of the synapse, volume transmission can mediate signaling 61 

across distances of microns8–10. Such extrasynaptic signaling has been described for classical 62 

neurotransmitters as well as monoamines, and is particularly prevalent for neuropeptides, which are 63 

released from dense core vesicles outside the synaptic active zone and act on a longer temporal and 64 

spatial scale10,11.  Although these extrasynaptic interactions are largely independent from the synaptic 65 

wiring, they play key roles in neural circuits and are thus critical for understanding the neural basis of 66 

behavior12–18.  67 

 Neuropeptides carry out particularly complex and important functions in the brains of all 68 

organisms19–21. Neuropeptides are thought to be among the most ancient neuronal signaling molecules, 69 

and their origin may in fact predate the actual evolution of neurons22,23.  Biologically-active peptides 70 
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are usually formed from larger genetically-encoded precursors, which are enzymatically processed 71 

through proteolysis and/or chemical modification24. Although some neuropeptides have been shown 72 

to activate ion channels or transmembrane kinases, they typically bind to G protein-coupled receptors 73 

(GPCRs), which act through second messenger pathways to modulate diverse aspects of neuronal 74 

physiology25.  Neuropeptide-activated GPCRs fall into two main classes, the rhodopsin-like (Class A) 75 

and secretin-like (Class B) families, and within these groups many receptors (e.g. 76 

oxytocin/vasopressin, neuropeptide Y/F, neuromedin U, somatostatin) show significant conservation 77 

across widely divergent animal phyla26,27. Neuropeptide systems also play broadly conserved roles in 78 

the control of behavioral states, including those involved in feeding, sleep and arousal, reproductive 79 

behavior, and learning14,28–33. In humans, the role of neuropeptides as neuromodulators has made this 80 

signaling system a highly sought-after target for new neuropsychiatric treatments. Currently 50 drugs 81 

acting via GPCRs have been approved by the FDA34, including several neuropeptide-GPCRs such as: 82 

orexin antagonists for treatment of insomnia35, a substance P antagonist for treatment of 83 

chemotherapy-induced nausea36. Besides new treatments are being developed like a GIP agonist as 84 

treatment for Alzheimer and Parkinson’s37. These promising therapies and the large number of 85 

remaining neuropeptide-GPCRs in humans18,38 indicate the therapeutic potential of this molecular 86 

system.  87 

 The diversity and extent of neuropeptide signaling implies that the pathways for peptidergic 88 

communication can also be considered as a network.  The genomes of all animals encode many, in 89 

some cases hundreds of neuropeptides, along with a similarly large number of GPCRs18,39–41. 90 

Moreover, in contrast to monoamines, which are typically expressed in only a small subset of neurons 91 

in the brain, neuropeptides are expressed extremely broadly; indeed, recent single-cell transcriptomic 92 

studies indicate that most if not all neurons in the mouse cerebral cortex express one or more 93 

neuropeptides as well as multiple neuropeptide-binding GPCRs39,42. These data imply that peptidergic 94 

signaling underpins a dense and pervasive interaction network involving most if not all neurons of an 95 

animal's nervous system43,44.  Since neuropeptide signaling is thought to be mostly extrasynaptic, the 96 

topology and structure of this wireless neuropeptide connectome is expected to be fundamentally 97 
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distinct from that of the wired synaptic connectome45. However, in most organisms there is 98 

insufficient gene expression data mapped with single-cell resolution to identified neurons to map the 99 

structure of these extrasynaptic networks.  100 

 The nematode C. elegans represents an attractive animal to investigate the structure and 101 

organization of neuropeptide signaling networks due to its small and well-characterized nervous 102 

system. C. elegans was the first and is currently still the only adult organism with a completely 103 

mapped synaptic neuronal connectome, with each of its 302 neurons and approximately 2300 synaptic 104 

connections identified through electron microscopy (EM) reconstructions46–48. Despite its small size, 105 

the C. elegans nervous system has been found to share several structural features with that of larger 106 

animals. For example, the C. elegans connectome, like those of larger nervous systems, exhibits a 107 

small-world topology, with relatively high clustering paired with relatively short average path 108 

lengths49,50. Likewise, the C. elegans nervous system is highly modular, with functionally segregated 109 

local clusters of high within-group connectivity51–54. Finally, the worm connectome contains a small 110 

number of highly connected hubs, which are interconnected in a core or rich club and facilitate 111 

communication between modules55; similar rich club topology has been observed in bigger brains, 112 

including the human cortex56,57.  Shared structural features are also apparent at the microcircuit level; 113 

for example, feed-forward motifs are significantly overrepresented in the nematode connectome, just 114 

as in the mammalian cortex58–60. Thus, insights gained from analysis of neuropeptide signaling 115 

networks in C. elegans may also reveal organizational principles that are conserved in larger brains. 116 

 Although the C. elegans nervous system is anatomically small, at the biochemical level its 117 

neuropeptide signaling pathways show similar complexity and remarkable conservation with humans 118 

and other larger-brained animals. Its genome contains 159 predicted neuropeptide precursor genes 119 

(NPP) (including 40 insulin-like peptides) that produce over 300 different neuropeptides24,61.  120 

Likewise, approximately 150 C. elegans genes encode GPCRs known or predicted to be activated by 121 

neuropeptides25,62. These numbers are of a similar order of magnitude to the numbers of neuropeptides 122 

and peptide activated GPCRs in the human genome18,63. Each C. elegans neuron not only expresses at 123 
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least one neuropeptide and at least one neuropeptide receptor, as do vertebrate neurons,18,39,40,42,43 but 124 

each C. elegans neuron class expresses a unique combination of neuropeptide-encoding genes40, a 125 

notion that illustrates the tremendous potential complexity of neuropeptide signaling. Many C. 126 

elegans neuropeptides and cognate receptors are phylogenetically conserved across animal phyla and 127 

have clear human homologues, with some families (such as the RFamide peptides) having undergone 128 

expansion in the nematode lineage64.  Thus, neuropeptide signaling in nematodes shows surprising 129 

conservation as well as similar diversity to neuropeptide signaling in the human brain, despite vast 130 

differences in neuron number and anatomical complexity. 131 

 Here we present a draft connectome of neuropeptidergic signaling in C. elegans, built by 132 

integrating gene expression, ligand-receptor interaction, and anatomical datasets. We identified 133 

predicted neuron-to-neuron signaling interactions mediated by 91 neuropeptide-receptor pairs, and by 134 

aggregating these individual neuropeptide-signaling networks generated a comprehensive network of 135 

peptidergic signaling in the C. elegans nervous system. This resulting neuropeptidergic connectome 136 

differs significantly in its structure from the previously-characterized wired connectome47; for example, 137 

it is denser, contains distinct hubs, high-weight edges, and autocrine signaling foci, and has a 138 

decentralized topology allowing direct communication among a large fraction of neurons. We expect 139 

this nematode neuropeptide connectome will serve as a prototype for understanding the organization of 140 

peptidergic signaling and how it interacts with the wired neural circuitry in other organisms, including 141 

those with much larger brains.  142 

Results  143 

 144 

Construction of a neuropeptidergic connectome 145 

To generate a draft neuropeptide connectome, we integrated information from three datasets to infer 146 

potential pathways for neuropeptide signaling between individual C. elegans neurons (Figure 1A). To 147 

identify biologically relevant molecular interactions between individual neuropeptides and receptors, 148 

we used data from a large-scale reverse pharmacology screen which tested 55,386 potential 149 
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neuropeptide-receptor interactions in vitro and identified 461 peptide-GPCR couples encoded by 55 150 

neuropeptide and 57 GPCR genes40. To determine which neurons express each neuropeptide and 151 

receptor, we used publicly available single-neuron transcriptome data from the CeNGEN project, which 152 

described single-cell RNA-sequencing transcription profiles of all predicted neuropeptide and peptide-153 

activated GPCR genes in C. elegans40. We validated these scRNA datasets with several CRISPR/Cas9-154 

engineered reporter alleles of ligands and receptors. Finally, we used previously published EM 155 

anatomical reconstructions to assess physical constraints on potential diffusion of neuropeptides to their 156 

target receptors48,65,66. In constructing the neuropeptide network, we consider that two neurons (nodes) 157 

are connected by a directed edge if the first neuron expresses a particular neuropeptide ligand and the 158 

second expresses a paired receptor, subject to spatial constraints on signaling (Figure 1B). 159 

 For each dataset, it was necessary to threshold for biologically relevant interactions.  160 

For biochemical interactions, the raw dataset contained 461 neuropeptide-receptor pairs that showed 161 

dose-dependent activation with a half-maximal effective concentration (EC50) ranging between 0.1 pM 162 

to 22 µM64. At the gene level, these pairs were encoded by 55 neuropeptide and 56 GPCR genes, with 163 

148 unique gene-gene interactions. In assessing neuropeptide-receptor pairings we initially opted for a 164 

conservative EC50 threshold of 500 nM, as many neuropeptide-receptor couples with EC50 values in this 165 

range have been validated in vivo14,25,28,32,62. By this criterion, we defined 91 individual neuropeptide-166 

receptor gene couples, with a large number (51) of the predicted neuropeptide GPCRs having at least 167 

one identified ligand. The ligand-receptor interactions were complex, with several peptides activating 168 

more than one receptor (promiscuous receptors) and several receptors being activated by multiple 169 

peptides encoded by distinct precursor genes (versatile peptides)64. 170 

 We next sought to determine an appropriate threshold for the scRNA-based gene expression 171 

dataset. The transcriptomic data from the CeNGEN project has been differentially thresholded based 172 

on a ground-truth dataset of reliable gene expression from across the whole C. elegans nervous 173 

system using fosmid or receptor tagged reporters40. Each threshold was given a false discovery rate 174 

and a true positive rate depending on the number of correctly identified cells for a given gene by the 175 

scRNAseq analysis40. To determine the most appropriate threshold for our analysis, we obtained 176 

single-copy genomic knock-in reporters for 17 representative neuropeptide precursor genes and 9 177 
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representative genes for neuropeptide receptors and characterized their expression patterns 178 

comprehensively using the NeuroPAL marker strain (Figure 2A, B; Supplementary Figure 1). For 179 

both we found that threshold 4, although on some occasions overly stringent, was a good 180 

approximation of the expression pattern (Figure 2; Supplemental Table 1-3). Thus, although this 181 

stringent threshold has lower discovery power and thus may undercount the number of neurons 182 

expressing each gene, its stringency minimizes the likelihood that our resulting network will contain 183 

edges that do not represent authentic paths for potential neuropeptide signaling.  184 

 185 

Evaluating spatial constraints on neuropeptide signaling 186 

 These biochemical and gene expression datasets allowed us to infer which neurons express 187 

neuropeptide and receptor genes that could mediate a neuromodulatory interaction; however, the 188 

physics of diffusion and the neuroanatomy of the animal might potentially constrain some of these 189 

interactions in vivo. We therefore considered several possible models of the neuropeptidergic network 190 

based on different anatomical and spatial constraints (Figure 3B, C). We used EM reconstruction data 191 

for each individual neuron in the C. elegans nervous system to identify its anatomical location (Figure 192 

3A, Supplementary Table 4) and the neuropil bundles into which their axons and dendrites 193 

project48,65,66. In the first and most permissive model, long-range signaling is permitted and 194 

neuropeptidergic connections can take place between any neurons in the system. In the second ("mid-195 

range") model, neuropeptidergic connections can occur only between neuronal processes in the same 196 

anatomical area, such as the head (including pharynx), tail and midbody (Figure 3A). In the third 197 

("short-range") model, we only considered potential peptidergic connections between neurons in the 198 

same neuronal process bundle, that is, between neurons whose processes overlap in the nerve ring, 199 

ventral or dorsal cord, or an auxiliary nerve. Finally, it has recently been shown that the nerve ring, 200 

into which more than half the neurons (168) project, can be divided into four layers or strata based on 201 

patterns of physical contact67,68. We therefore also considered a fourth model in which neuropeptide 202 

signaling inside the nerve ring is constrained within individual strata and thus between neurons that 203 

make physical contact. 204 
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 9 

 To evaluate each model, we investigated whether the expression patterns of receptors and 205 

ligands were consistent with neuropeptide signaling being restricted as described above (Figure 3B, 206 

C). For example, if neuropeptide signaling occurred only between neurons in physical contact (as in 207 

model 4) we would expect neurons expressing a given receptor to project to the same nerve ring strata 208 

as neurons expressing its ligand. To simplify this analysis, we focused on the neuropeptide-receptor 209 

couples in which the receptor has only one ligand and the neuropeptide only binds to that receptor, 210 

assessing whether, under the constraints of each model, there would be receptor-expressing neurons 211 

that were unable to receive a signal from any neurons expressing its ligand. Conversely, we also 212 

analyzed couples where the ligand activated only one receptor, asking whether under a given model 213 

there were ligand-expressing neurons that could not communicate with cells expressing its receptor.  214 

This analysis appeared to argue against the most restrictive model, in which ligands could not 215 

diffuse between nerve ring strata. Specifically, we observed many examples in which a neuropeptide 216 

receptor was expressed only in strata that did not express its specific ligand (Figure 3B, C, orange 217 

points). For instance, while the capa-1 neuropeptide precursor gene is expressed only in the ASG 218 

sensory neuron, which projects its axon into the fourth nerve ring stratum, the gene for its receptor 219 

NMUR-1 is expressed in all four strata32,69(Figure 3B, C). Thus, NMUR-1 receptors in strata 1-3 must 220 

be activated by CAPA-1 peptides that diffuse from their release site in stratum 4. Overall, 37 of the 41 221 

receptors analyzed were expressed in at least one neuron making no contact with a neuron expressing 222 

its ligand. Likewise, 32 of the neuropeptide precursor genes were expressed in at least one neuron 223 

making no contact with neurons expressing its receptor (Figure 3C, yellow points). Since the nerve 224 

ring strata are not separated by glial or other barriers, and experimental evidence14,32 indicates 225 

neuropeptides can indeed travel between strata, it is reasonable to infer that neuropeptides are not 226 

likely to be constrained by anatomical layers in the nerve ring or other neuronal bundles.  227 

 We likewise observed cases in which the expression of a neuropeptide or receptor gene 228 

implies mid-range signaling between distinct nerve bundles in the same body region (Figure 3B, C). 229 

For example, the frpr-7 receptor gene is expressed in multiple pharyngeal neurons, while its ligand 230 

FLP-1 is released exclusively from the AVK neuron whose processes lie in the nerve ring and ventral 231 

cord13. Thus, FRPR-7 receptors in the pharynx must be activated by peptides released by AVK in the 232 
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nerve ring, consistent with published evidence that neuropeptides can signal between head neurons 233 

and pharyngeal neurons13,70. Indeed, for a majority (14/22) of the receptors expressed in pharyngeal 234 

neurons, their ligand was expressed only outside the pharynx (Figure 3B, red points). Likewise, 235 

receptors such as NPR-3 and TRHR-1 are expressed in the CAN neurons, yet their ligands FLP-15 236 

and NLP-54 respectively are not expressed in any neurons projecting into the canal-associated nerve71 237 

(Figure 3B, C, CAN neurons labelled). Thus, we hypothesize that at least some neuropeptide 238 

signaling occurs between different nerve bundles, in particular between the pharynx and the nerve 239 

ring and between CAN and other nerves in the body. We therefore focused our subsequent analysis on 240 

model 2, consisting only of stringently selected short-range interactions, and model 3, which includes 241 

mid-range signaling between nerve bundles in the same body region.   242 

 243 

Neuropeptide networks exhibit diverse topologies  244 

 Based on these criteria, we first constructed network graphs between neuropeptide-expressing 245 

and receptor-expressing neurons for each of the 91 individual neuropeptide/receptor couples in our 246 

dataset (Supplementary Figure 2-3). These networks were filtered by removing edges between 247 

neurons that did not project an axon or dendrite into the same process bundle (for the short-range 248 

network) or into the same body region (for the mid-range network).  In their short-range version, 78 of 249 

these ligand-receptor couples formed a single connected network, whereas 13 formed networks with 250 

two or even three disconnected components (Figure 4B, Supplementary Figure 2). In their mid-range 251 

versions, all 91 couples formed a single connected network (Supplementary Figure 3).  252 

 We observed a diverse range of topologies in the networks for individual peptide-receptor 253 

couples. One topological measure in which the different networks varied was their assortativity, or the 254 

extent to which nodes are preferentially connected to nodes of similar degree. Using the conservative 255 

short-range model, we observed that most of the networks, including many of those highly conserved 256 

in evolution, were local networks, in which both ligand and receptor were expressed in relatively 257 

restricted sets of neurons (Figure 4A, Supplementary Figure 2). The neurons in these networks 258 

showed relatively low average degree and often encompassed only a subregion of the total nervous 259 

system. In addition, we found 8 highly disassortative integrative networks, with many low-degree 260 
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peptide-releasing neurons signaling to relatively few high-degree receptor-expressing neurons (Figure 261 

4A). We also observed 23 disassortative broadcasting networks that are characterized by a small 262 

number of high-degree peptide-releasing neurons that signal to many low-degree receiving neurons 263 

with broadly expressed receptors (Figure 4A, Supplementary Figure 2). Interestingly, both integrative 264 

and broadcasting networks involved promiscuous receptors with multiple ligands, specifically FRPR-265 

8, EGL-6, DMSR-7, and DMSR-1. DMSR-7 and DMSR-1 also figured prominently in a fourth 266 

category of more assortative, pervasive networks, in which both the ligand and receptor show broad 267 

expression and most neurons thus show relatively high degree (Figure 4A, B). Relaxing the spatial 268 

restrictions on our model had relatively modest impact on network topology, with four networks that 269 

are local in the short-range model becoming either integrative (one network) or broadcasting (3 270 

networks) in the mid-range model (Supplementary Figure 3). Thus, the topologies of neuropeptide 271 

networks appear relatively robust to our assumptions about the spatial scope of neuropeptidergic 272 

signaling. 273 

The neuropeptide connectome is a decentralized, dense network 274 

 By aggregating the networks from the individual neuropeptide-receptor couples, we next 275 

compiled complete neuropeptide connectome networks based on short-range or mid-range signaling 276 

(Figure 5). Even for the more conservative short-range network, in which signaling was restricted to 277 

neurons with processes overlapping in the same bundle, the density of connections was remarkably 278 

high, with more than a third of all possible connections or edges (0.3437) present in the network. 279 

Allowing mid-range connections (0.4429) or long-range connections (0.5929) increased this density 280 

further (Supplementary Figure 4A, B). By comparison, the C. elegans synaptic (0.0251) and 281 

monoamine (0.0236) networks were far less dense, fourteen-fold lower than the short-range 282 

neuropeptide network. We also computed edge weights for the connections in the neuropeptide 283 

networks based to the number of neuropeptide-receptor pairs capable of signaling between two nodes. 284 

We observed that a large number (35% in the short-range network) of neuron pairs were connected by 285 

only a single neuropeptide-receptor interaction, but some (9%) were connected by 6 or more different 286 

peptide-receptor couples (Figure 5). In the most extreme case, we observed that two neurons, the 287 

AVD premotor interneurons and the PQR oxygen-sensing neurons, were linked by 18 different 288 
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neuropeptide-receptor pairs, suggesting extraordinarily complex patterns of signaling could exist 289 

between these cells (Figure 5, highlighted). Interestingly many other high-weight, biochemically 290 

complex connections occurred between neurons of the oxygen sensing circuit and were mediated by a 291 

common set of promiscuous receptors (DMSR-1, DMSR-7 and FRPR-8) and versatile neuropeptides 292 

(FLP-4, FLP-9, FLP-10 and FLP-13). These neurons are thus connected by multiple neuropeptidergic 293 

channels of communication, potentially allowing complex regulation by context and experience.  294 

 A striking feature of the midrange network in particular was its integration of neurons 295 

disconnected from the synaptic connectome. For example, the 14 neuron classes of the pharyngeal 296 

nervous system form a heavily synaptically interconnected, functionally autonomous network akin to 297 

vertebrate enteric nervous systems, which is topologically isolated from the rest of the nervous 298 

system65,72,73. We find that unlike the wired connectome, there are no neuropeptidergic networks that 299 

define circuitry exclusively in the pharynx; to the contrary, pharyngeal neurons are fully integrated 300 

into the somatic nervous system via strong reciprocal interconnectivity (Figure 5). All pharyngeal 301 

neuron classes receive 90% or more of their incoming connections from outside the pharynx. Some 302 

classes of pharyngeal neurons also broadcast extensively to the somatic nervous system, with several 303 

(I1, I3, I4, I5, M5 and NSM) having more than 100 outgoing connections (more than 90% of their 304 

total) to non-pharyngeal neurons. Likewise, it is notable that the CAN neurons, which completely lack 305 

chemical synapses, show strong and reciprocal neuropeptidergic connectivity with the rest of the 306 

nervous system, indicating that this unusual neuron class is well embedded in the neural network 307 

(Figure 5, CAN highlighted).  308 

 We next investigated topological features of the aggregate neuropeptide network.  In 309 

particular, we analyzed the degree nodes of the network, defined as the number of incoming (in-310 

degree) and outgoing (out-degree) connections made by each neuronal node. Degree is often an 311 

indicator of functional significance in networks, since high-degree nodes or hubs often play key 312 

functional roles in the brain and other complex systems.  As expected from the high density of 313 

neuropeptide signaling, the average degree of both the short-range (Figure 6A) and mid-range 314 

networks (Figure 6B) were significantly higher than for the previously characterized synaptic (Figure 315 

6C) and monoamine (Figure 6D) networks. Moreover, when we analyzed the distribution of degree 316 
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across the neuropeptide networks, we observed relatively flat curves with many high-degree nodes; 317 

more than half the neurons in the short-range network and nearly two thirds in the mid-range network 318 

had a degree higher than 200, indicating that they have in and out connections with more than a third 319 

of all other neurons (Figure 6A, B). In contrast, the synaptic network was much more centralized, 320 

with only 10 neurons having degree greater than 50 (Figure 6C); similarly, the monoamine network 321 

had only 18 high (>50) degree neurons (Figure 6D). The best-connected neurons in the neuropeptide 322 

network have exceptionally high in-degree as well as out-degree, indicating that their status as hubs 323 

depends as much on incoming connections as outgoing connections, and as much on their expression 324 

of broadly-signaling neuropeptides as on integrating GPCRs (Figure 6A, B); this contrasts with the 325 

monoamine network, where the hubs are exclusively monoamine-releasing neurons with a high out-326 

degree (Figure 6D).  327 

 328 

The neuropeptide connectome contains a highly connected core with unique peptidergic hubs 329 

 A significant feature of many networks is the so-called rich club property. In such networks, 330 

the most highly connected hubs form more connections between themselves than expected based on 331 

their high degree alone; these hubs therefore comprise a rich club or core of the network that 332 

facilitates communication between more peripheral network nodes. The C. elegans synaptic 333 

connectome, for example, contains a rich club consisting of 11 premotor interneurons that appear to 334 

play important roles in driving global brain states55,74.  Remarkably, we found that the neuropeptide 335 

connectome also shows the rich club property, but its rich club consists of 156 neurons (166 in mid-336 

range network), more than half of the nervous system (Figure 6F). Within the rich club the density of 337 

connections is 0.6834 (p<0.00001), more than double the density of the overall network (0.3427). 338 

Interestingly, compared to the wired synaptic connectome, the neuropeptide connectome as a whole 339 

has significantly higher clustering and reciprocity (i.e. neurons are more likely to connect in both 340 

directions) but lower modularity and disassortativity.  This finding further supports the notion of a 341 

decentralized neuropeptide connectome, with a broad-based densely-connected core allowing direct 342 

communication between a large fraction of neuron pairs.  343 
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 To further investigate the relationship between neuropeptide and synaptic signaling, we 344 

looked at the correlation between synaptic and neuropeptidergic degree (Figure 6G). We observed 345 

that neuropeptide degree and synaptic degree were positively correlated (p < 0.0001, r = 0.53).  We 346 

further observed that neurons with a high synaptic degree were among the most important 347 

neuropeptidergic hubs; for example, all 11 members of the synaptic rich club (DVA, PVCL/R, 348 

AVAL/R, AVBL/R, AVDL/R, AVEL/R) were among the 25 highest-degree nodes in the short-range 349 

neuropeptide network (Figure 6G).  However, there were also several neurons of very high degree in 350 

the neuropeptide connectome but unexceptional synaptic degree (Figure 6G); these neurons can be 351 

described as specialized for neuropeptide signaling. Six neurons (AVKL/R, PVQL/R, PVT and PVR) 352 

had higher short-range neuropeptide degree than any of the synaptic rich club neurons (Figure 6A); if 353 

mid-range signaling is considered these same six neurons remain the highest-degree hubs (Figure 6B). 354 

Interestingly, the AVKL/R and PVT neurons are notable for expressing no classical neurotransmitters 355 

or monoamines75, while the PVQL/R neurons appear anatomically specialized for neuropeptide 356 

signaling due to a preponderance of dense core vesicles14,76. AVKL/R, and PVT have been previously 357 

linked to the control of global behavioral states related to sleep and arousal14,73, but the functions of 358 

the other neuropeptide hub neurons PVQ and PVR are not well-characterized.  359 

  360 

The neuropeptide connectome core has a defined mesoscale structure  361 

To further probe the structure of the neuropeptide connectome we investigated whether the 362 

network contained modules or other forms of mesoscale substructure. We first applied standard 363 

methods for modular decomposition, but the high density of the network precluded the identification 364 

of any discrete modules, unless we aggressively filtered out lower-weight edges where neurons were 365 

connected only by a small number of neuropeptide-receptor interactions. However, we hypothesized 366 

that other types of meso-scale structure may be present52,77. We wondered for example whether we 367 

could identify subgroups of neurons with similar patterns of incoming and outgoing neuropeptide 368 

connections. We therefore applied dimensionality reduction methods (Principal Component Analysis 369 

(PCA) and t-SNE) to the connectivity matrix of the aggregate neuropeptide networks to identify 370 

groups of neurons that share a connectivity pattern. This analysis highlighted 3 clearly defined groups 371 
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of neurons that receive similar incoming connections, along with a more diffuse cloud of neurons with 372 

more variable connectivity (Figure 7A, B). Interestingly the three clusters comprise most neurons of 373 

the neuropeptidergic network (155 of 302), 76% of which are also members of the neuropeptidergic 374 

rich club (112; Figure 7A, B). Interestingly, each group receives a characteristic range of incoming 375 

connections, and this alone is enough to significantly sort them into these groups (p<0.0001) (Figure 376 

7D):  group 1 neurons have indegree of 134-156 (mean rank 162.2), group 2 neurons have an indegree 377 

of 252-282 (mean rank 276.5), group 3 neurons have an indegree of 169-212 (mean rank 222.9), and 378 

neurons in the unclustered cloud have an indegree below 169 (mean rank 77) (Figure 7D).  379 

These groups also diverge in the neuron types that form them and to which they are connected 380 

(Figure 7C, E). Group 1 is mostly motorneurons (motor core), including those involved in locomotion 381 

(VA, DA, VB, and DB)78 and the grouping of these neurons is driven by inputs from the posterior 382 

touch mechanosensory neurons PVM and PLML/R79 and the interneuron PVWL/R (Figure 7C). 383 

Group 2 neurons are a mix of interneurons and motorneurons, including all top neuropeptidergic hubs 384 

(hubs core), that receive connections from every other neuron type, with the neuropeptidergic hubs 385 

(PQR, PVT and PVR) particularly important drivers for the grouping (Figure 7C). Finally, group 3 386 

neurons are a mix of pharyngeal neurons, interneurons, motorneurons and sensory neurons (sensory 387 

core) that receive connections from every other neuron type but motorneurons, with RIR and 388 

pharyngeal neurons I5 and I4 driving the cluster (Figure 7C). Interestingly, although the characteristic 389 

neural inputs of the groups differed substantially, the most important (highest indegree) neuropeptide-390 

receptor interactions for each group, involved versatile neuropeptides FLP-9, FLP-11 and FLP-16 and 391 

promiscuous receptors DMSR-7 and DMSR-1 (Figure 7C), leading to interconnections between 392 

groups (Figure 7E). For example, Group 1 forms connections with itself, Group 2 and with the 393 

unclustered cloud but not with Group 3; Group 3 forms connections with Group 2 and unclustered 394 

cloud neurons but not Group 1, and Group 2 forms connections with all other groups. Thus, Group 2 395 

serves as a link with Groups 1 and 3, which have few direct connections with each other.   396 

 397 

Co-expression of neuropeptides with their target receptors generates autocrine pathways 398 
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Signaling cascades, in which a neuropeptide receptor is specifically co-expressed with a non-399 

cognate peptide whose release it controls, are a classic hallmark of neuroendocrine pathways. To 400 

investigate whether the C. elegans neuropeptide connectome contains such cascades, we evaluated co-401 

expression between neuropeptide and receptor genes. We performed a Fisher’s test to look for 402 

neuropeptide genes and GPCR genes that are co-expressed in the C. elegans nervous system more 403 

often than expected from their individual expression frequencies. We identified 121 peptide-receptor 404 

pairs meeting this criterion (Supplementary Figure 5), only 5% of which corresponded to cognate 405 

neuropeptide-receptor pairs (autocrine connections). Using these peptide-receptor pairs as nodes and 406 

the neuropeptide-receptor interaction data to form edges between them, we built a network of 407 

overrepresented signaling cascades within the larger neuropeptide connectome (Supplementary Figure 408 

5B). This network is fully connected and provides a simplified view of how neuropeptide signaling 409 

pathways interact within the nervous system. 410 

Co-expression of a neuropeptide receptor with its own ligand will generate a self-loop or 411 

autocrine connection, in which release of the peptide can signal back onto the sending cell. If we 412 

consider all cases where a peptide and its receptor are co-expressed in a given neuron, we find that 58% 413 

of the C. elegans nervous system harbors putative autocrine peptide connections (Figure 8A and 8B). 414 

Autocrine signals appear most prevalent in neurons categorized as either interneuron or motorneuron 415 

(Figure 8B), although two of the three types with the largest number of autocrine connections (URX 416 

and PQR) are sensory neurons. Promiscuous receptors participate more in autocrine peptide signaling 417 

(Figure 8C, Suppl. Figure S6), the most prominent of which are DMSR-1 and DMSR-7 (Figure 8C).  418 

We observed a strong positive correlation between the number of different autocrine peptide 419 

connections that a neuron harbors to its degree within the neuropeptide network (Figure 8D, left panel), 420 

with some but not all neuropeptide hubs showing a high diversity of autocrine signaling. In contrast, 421 

weak to no correlations were observed between autocrine connection diversity and the synaptic, gap 422 

junction, or monoamine connectomes.  423 

Autocrine connections were especially prevalent in specific circuits in the C. elegans nervous 424 

system. For example, both URX and PQR, which have among the highest diversity of autocrine 425 

signaling, are key sensory neurons that mediate C. elegans’ responses to aversive O2  levels80–82; other 426 
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O2 sensory neurons (AQR and BAG) also co-express ligand-receptor pairs, though to a lesser degree 427 

(Figure 8E, bottom left). As O2 sensing neurons tonically signal ambient O2 concentrations83, autocrine 428 

signaling may play a stabilizing role in maintaining the homeostasis of neuronal activity. Autocrine 429 

neuropeptide signals are also prevalent in the neuromuscular circuit of the ventral nerve cord (VNC – 430 

Figure 8F, bottom right) which mediates locomotion84. These autocrine loops are primarily mediated 431 

by eight RFamide-related neuropeptides that activate two promiscuous receptors, DMSR-1 and DMSR-432 

7, although other receptors such as NPR-5 are also involved (Supplementary Figure 6F). Interestingly, 433 

autocrine signaling is restricted to the excitatory A- and B-class VNC motorneurons which drive 434 

backward and forward locomotion, respectively84; in contrast, both D-type inhibitory motor neurons 435 

and the excitatory AS motorneurons, which play modulatory roles in both forward and backward 436 

crawling85, do not co-express any neuropeptide-GPCR pairs. It should be noted that some autocrine 437 

peptidergic pathways are shared between neighboring excitatory motorneurons in the VNC, raising the 438 

possibility that they might coordinate activity and/or neurosecretion across excitatory motorneurons in 439 

a paracrine manner86–89. Heterogeneity in autocrine neuropeptide pathways within the A- and B-class 440 

motorneurons (Supplementary Figure 6F) hints at heterogeneity in the contribution of individual 441 

motorneurons in this process. 442 

 443 

Discussion 444 

Neuropeptide signaling forms a complex wireless network  445 

Neuropeptide signaling has long been recognized as critical to brain function, yet despite 446 

recent advances in connectomics, the structures of neuropeptidergic signaling networks are largely 447 

uncharacterized. We have generated a draft neuropeptide connectome by integrating information from 448 

three datasets: a biochemical deorphanization screen matching neuropeptidergic GPCRs with their 449 

ligands, a scRNAseq dataset characterizing the expression patterns of all peptide and receptor genes at 450 

the single neuron level, and an anatomical dataset defining the morphologies and neuron-neuron 451 

contacts of all C. elegans neurons. The resulting connectome is remarkably dense; even a short-range 452 

network with the most conservative assumptions about the spatial diffusion of neuropeptides was 453 
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more than ten-fold denser than the previously mapped synaptic connectome of C. elegans. As we have 454 

also used conservative assumptions regarding gene expression thresholds and ligand-receptor 455 

affinities, and since approximately half the putative neuropeptide-activated GPCRs remain to be 456 

deorphanized, the actual neuropeptide connectome is almost certainly even more dense than the draft 457 

network described here. However, based on sensitivity analysis it seems clear that the overall 458 

structure and topological features of the neuropeptide connectivity are likely to hold even when more 459 

connections are added to the network (Supplementary Figure 4A-B). 460 

 A particularly salient feature of the neuropeptide connectome is its decentralized topology, 461 

which contrasts sharply with the more centralized structure of wired neural connectomes. Synaptic 462 

connectomes from worms to humans are characterized by a core of high-degree hubs, which are 463 

interconnected to form a rich club. This rich club, which in C. elegans consists of 11 premotor 464 

interneurons, occupies a central position in the connectome, connecting local modules and 465 

coordinating their activity. Rich clubs have been previously linked to important functional properties; 466 

for example, in C. elegans the synaptic rich club has been shown to be involved in global brain states 467 

related to locomotion55,74, and in Drosophila melanogaster the synaptic rich club constitutes the 468 

sensorimotor integrative center of the organism90. The gap junction and monoamine connectomes of 469 

C. elegans likewise contain relatively small rich clubs of less than 20 neurons of relatively high 470 

degree. In contrast, the neuropeptide connectome contains a rich club of (in the short-range network) 471 

156 neurons, more than half the neurons in the entire nervous system. The neurons in this 472 

neuropeptidergic rich club are extremely well-connected to each other as well as to the rest of the 473 

nervous system; all have a degree greater than 203 (in the mid-range network degree of 251), meaning 474 

they both send and receive direct connections from at least 40% of all neurons. This remarkable 475 

decentralization may be a feature of neuropeptide signaling networks in other organisms43,44,91. 476 

Implications of neuropeptide network structure for neuronal computation 477 

 The decentralized structure of the neuropeptidergic connectome implies that the strategies it 478 

uses for computation and information flow may differ significantly from those employed by the more 479 

centrally-organized synaptic network. Intriguingly, both nematode and mammalian neuronal types 480 

appear to express nearly unique combinations of neuropeptides and receptors, serving as a molecular 481 
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bar code for neural identity40,43. Thus, the source of a signal may be encoded by the precise 482 

combination of peptides released by the sending neuron. The dynamics of neuropeptide release are 483 

also likely to be critical to the information conveyed by peptidergic signals. For example, acute 484 

release of FLP-20 peptides by mechanosensory neurons has been shown to trigger short-term sensory 485 

locomotor arousal in response to touch stimulation, while chronic release of FLP-20 peptides from the 486 

same neurons mediates long-term cross-modal plasticity in olfactory circuits when the sense of touch 487 

is lost14. Future studies of such mechanisms are likely to provide general insights into how 488 

neuropeptide networks encode information in the brain. 489 

Despite its highly dense connectivity, the core of the neuropeptide connectome exhibited a 490 

clear substructure. When input patterns were analyzed using dimensionality reduction methods, the 491 

neurons in the network core could be divided into three clear groups, one containing mainly 492 

pharyngeal and sensory neurons, a second containing the highest degree interneurons, and a third 493 

containing many motorneurons. These three groups are themselves connected in a defined pattern, 494 

with the second group linking the first and third groups which show few direct links with each other. 495 

This organization contrasts in interesting ways with the organization of many synaptic networks, in 496 

which peripheral neurons form modules with high internal connectivity that connect to each other 497 

through the hubs of the rich club core. In the neuropeptide connectome the core itself exhibits a clear 498 

meso-scale organization, forming 3 distinct groups of neurons defined not by unusually high intra-499 

group connectivity, but by intra-group similarity of incoming and outgoing connections patterns. This 500 

is in line with recent work showing the existence of different types of meso-scale organization77 and is 501 

also reminiscent of stochastic block modelling approaches previously applied to the C. elegans 502 

synaptic connectome52. It will be interesting to see if neuromodulatory and synaptic networks from 503 

other nervous systems show a similar diversity on meso-scale structure. We expect that looking 504 

beyond classical modules is likely to become increasingly important as we begin to look at cellular-505 

scale connectomes of larger organisms, with classes of sensory neurons that are not interconnected but 506 

have similar connectivity profiles and perform similar functions.  507 

Identification of neuropeptide signaling hubs 508 
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Although the rich club of the neuropeptide connectome is extensive and encompasses a large 509 

portion of the C. elegans nervous system, some neurons within this group are of particularly high 510 

degree and therefore may play key roles in neuromodulatory signaling. Perhaps not surprisingly, the 511 

premotor neurons of the synaptic rich club are also highly connected in the neuropeptide connectome; 512 

all 11 of these neurons show a neuropeptide degree above 400 in the short-range network. Since these 513 

neurons are known to play important roles in driving global brain states14,74,76 it is logical that they 514 

would also be important targets of neuromodulatory control. In addition, the neuropeptide 515 

connectome contains 6 neurons whose neuropeptide degree is higher than any of the synaptic rich 516 

club (degree > 490). Three of these neurons (PVT and the pair of AVK neurons) are specialized 517 

peptidergic neurons that express no classical neurotransmitter or monoamine and have been linked to 518 

arousal and sleep-like behaviors14,92,93.  Specialized neuropeptidergic neurons have also been 519 

described in other organisms, and in mice they have been linked to global behaviors such as fear94.  520 

The other peptidergic hubs (PVR and the pair of PVQ neurons) are tail neurons that extend long 521 

processes to the nerve ring, and in the case of the PVQs (as well as PVT) these processes are rich in 522 

dense-core vesicles48,65,66. Since AVK also has a long process (extended from its cell body in the head 523 

through the nerve ring and the ventral cord to the tail) these neurons may be morphologically 524 

specialized for local release of peptides throughout the nervous system. While AVK is known to play 525 

roles in arousal and motor control, the functions of the remaining neuropeptide hubs (or of other 526 

neurons of high neuropeptidergic degree such as PVN and PVP) are largely uncharacterized. Given 527 

their importance in the neuropeptide signaling network, it will be interesting in the future to explore 528 

the roles of these neurons in the control of behavioral states. 529 

 It is interesting to note that even in the long-range network, where no spatial restrictions on 530 

neuropeptide diffusion are imposed, the six short and mid-range hub neurons retain their central 531 

importance in the network. This confirms that the high degree of the hubs in the short- and mid-range 532 

networks is not merely an artifact of the spatial conditions we imposed but rather is a consequence of 533 

expressing key combinations of neuropeptides and receptors. Notably, the long-range network 534 

contains additional high-degree nodes that are not hubs in the short- and mid-range networks, in 535 

particular the oxygen-sensing neurons URX, AQR, PQR and BDU and the tail motorneurons DA09 536 
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and VA12. One might speculate that these neurons could in fact engage in long-range neuroendocrine 537 

signaling, and that the long-process morphology of the short- and mid-range hubs might allow them to 538 

carry out neuropeptide modulation on a finer temporal or spatial scale. In the future, these questions 539 

may be addressable using in vivo probes for neuropeptide receptor signaling95,96. 540 

Neuropeptide signaling links specific components of the nervous system 541 

In addition to these high degree nodes, the neuropeptide connectome also contains edges of 542 

unusually high weight, representing neuron pairs linked by multiple neuropeptide-signaling pathways. 543 

While many neuron pairs in the network are connected by a single neuropeptide pathway, 17 pairs of 544 

neurons are linked by 15 or more different neuropeptide-receptor couples. Most of these extremely 545 

high-weight edges involve connections between the oxygen-sensing neurons PQR or URXL/R and the 546 

motor circuit (either the DB motorneurons or the AVD premotor interneurons). Why might oxygen-547 

sensing neurons participate in so many complex neuromodulatory interactions? These neurons 548 

strongly influence locomotor states and their tonic responses to ambient oxygen are influenced by 549 

experience and other sensory cues. Complex neuropeptide signaling may allow feedback between the 550 

oxygen sensors and motorneurons to fine-tune the activity of this circuit across time and space. 551 

The oxygen-sensing neurons and the motor circuit were also found to be important sites for 552 

autocrine signaling, in which a neuropeptide receptor and its ligand are co-expressed in the same 553 

neuron. Autocrine peptide signaling is ubiquitous in other brains as well97,98, suggesting it supports 554 

important aspects of neural function. For example, autocrine neuropeptide pathways are known to 555 

mediate cell-autonomous feedback99–104, and are therefore often suggested to maintain neuronal 556 

homeostasis; this may be particularly important to regulate the activity of tonically signaling neurons, 557 

such as the oxygen-sensing neurons. In the motor circuit, ostensibly autocrine signaling may play a 558 

further role by coordinating the activities of neighboring neurons with similar gene expression 559 

patterns. Although proprioceptive and electrical coupling between adjacent motorneurons generates 560 

waves of muscle contraction over adjacent body regions88, autocrine pathways also have the capacity 561 

to coordinate physiology across neighboring cells105,106. Indeed, mutants for several of the 562 

neuropeptide ligands that act in motorneuron autocrine pathways have been shown to have 563 
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locomotion defects107,108, suggesting an important role for these connections in patterning locomotor 564 

behavior. 565 

We also observe a critical role for neuropeptide signaling in linking disconnected components 566 

of the nervous system to the broader network. In particular, the pharyngeal neurons, which form a 567 

wired network analogous (if not homologous) to the vertebrate's enteric nervous system, and the CAN 568 

neurons, whose processes lie in the excretory canal-associated nerve, are virtually completely 569 

unconnected to the somatic synaptic and gap junction connectomes yet are extensively integrated into 570 

the neuropeptide connectome. Both CAN and the pharyngeal neurons express multiple GPCRs whose 571 

ligands are expressed exclusively outside the pharynx or canal-associated nerve, indicating that these 572 

neurons are regulated by peptides released from physically-unconnected processes. Despite their 573 

disconnection from the wired connectomes, the pharynx and CAN neurons carry out essential 574 

physiological functions; indeed, CAN and the pharyngeal neuron M4 are the only neurons whose 575 

ablation is lethal to the animal109,110. This provides a means for communication between the wider 576 

nervous system and these isolated but biologically critical neurons.  577 

Prospects for future mapping of wireless brain connectomes 578 

 We have described here the draft neuropeptide connectome of C. elegans, an animal with 302 579 

neurons. In the future, we plan to refine this connectome, for example by expanding its scope through 580 

deorphanization of neuropeptide receptors whose ligands are currently unknown. Differential 581 

posttranscriptional processing may also lead to the synthesis of different peptides and receptors in 582 

neurons that express the same gene, and alternative patterns of gene expression during development or 583 

in response to environmental cues may likewise alter the structure and function of neuropeptide 584 

signaling networks. Moreover, non-neuronal cells function as both senders and receivers of 585 

neuropeptide signals; with the use of reporter lines for peptides and receptors it should be possible in 586 

the future to incorporate these cells into the neuropeptide connectome and observe plasticity in the 587 

network. We likewise plan to integrate functional information into the connectome map; for example, 588 

in vitro experiments could identify the G-protein pathways downstream of individual receptors, and in 589 

vivo sensors could provide empirical data on the spatial scope of neuropeptide signaling pathways. 590 
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Together these data will facilitate functional modeling of neuropeptidergic circuits revealed in the 591 

connectome maps. 592 

  In principle, the approaches described here should also be applicable to mapping the 593 

neuropeptide signaling networks of animals with much larger brains. Single-cell RNAseq data from 594 

different vertebrate animals indicates that, as in C. elegans, most neurons express at least one 595 

neuropeptide precursor and at least one neuropeptide receptor, facilitating dense and potentially 596 

decentralized networks18,39,43,44. Although it is currently not possible to precisely link gene expression 597 

clusters with individual neurons in brain circuits, the use of targeted reporters should eventually make 598 

it possible to relate neuropeptide and receptor expression to increasingly detailed synaptic 599 

connectome maps in flies and mice. Basic mechanisms of neuropeptide signaling are shared in all 600 

animals, from nematodes to mammals: neuropeptides are released from dense core vesicles and 601 

diffuse across space to neurons unconnected to the releasing cell by wired synapses. And although the 602 

C. elegans nervous system is anatomically small, at the molecular level its neuropeptide systems are 603 

highly complex and show significant homology to other animals. Thus, the neuropeptide connectome 604 

of C. elegans may serve as a prototype to unravel general principles of neuromodulatory network 605 

structure that also apply to much larger brains. 606 

34,35363718,38 607 

 608 

 609 

Methods  610 

Reporter Transgenic Strains 611 

CRISPR based constructs: Thirty-two transcriptional C-terminal GFP reporters of neuropeptides and 612 

neuropeptide receptors were created where GFP was recombineered in the last coding exon of the 613 

gene of interest.  Of the 17 total neuropeptide precursor genes that we made reporters for, 8 had only a 614 

T2A::3xNLS::GFP tag, 1 had a T2A::GFP::H2B tag, 6 had both T2A::3xNLS::GFP and 615 

SL2::GFP::H2B tags, and 2 had only an SL2::GFP::H2B tag (Supplementary Table 1). For the GPCR 616 
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receptors, 8 gene expression reporters were made all with SL2::GFP::H2B tags (Supplementary Table 617 

2). Most of these constructs were made by SUNY Biotech.  618 

 619 
Reporter Analysis 620 

Young adult animals were mounted on 5% agarose pads and immobilized with 100 mM sodium azide 621 

and imaged on a Zeiss LSM880 using a 40X objective lens. GFP expression reporters were identified 622 

at single neuron resolution as described111. GFP reporter expression of these constructs, as reported in 623 

Table S1-2 were noted using three categories: moderate to high expression, low and variable 624 

expression, and no detected expression. Additionally, we compared our GFP reporter expression data 625 

to single-cell RNA-seq expression (scRNAseq) data from the CeNGEN project using their standard 626 

thresholds (4 being the most stringent, 1 being the least stringent, and blank be unfiltered)40.  627 

In our analysis, for each gene and each CeNGEN threshold, we tallied 1) the number of neurons that 628 

showed GFP expression but not scRNA expression, 2) the number of neurons showing both GFP 629 

expression and scRNA expression, and 3) the number of neurons that showed scRNA expression but 630 

no GFP expression (Table S3). 631 

Based on the results of this analysis threshold 4, although in some occasions too conservative, had the 632 

best correlation between GFP reporter and CeNGEN scRNAseq data expression per neuron for the 633 

tested NPP and GPCR genes.  634 

 635 

Synaptic and gap junction networks  636 

The synaptic and gap junction networks used in this work were based on the full 637 

hermaphrodite C. elegans connectome, containing all 302 neurons. This network was composed from 638 

the somatic connectome48, updated and released by the Chklovskii lab47; and the pharyngeal network 639 

of Albertson and Thomson65, made available by the Cybernetic Caenorhabditis elegans Program 640 

(CCeP). The functional classifications referred to in the text (i.e., sensory 641 

neuron, interneuron, motorneuron) are based on the classification scheme used in WormAtlas112. 642 

When there is double or triple classification in nerve ring neurons that can be sensory neurons, 643 

interneurons, or motorneurons, the Zhen lab classification66 was used to select one neuron type. URB 644 
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left and right neurons are the only ones in which the WormAtlas and the Zhen lab classification 645 

diverge, leading us to classify them as sensory neuron following the later most recent classification. 646 

DB neurons are identified as motorneurons although WormAtlas indicates that these could also be 647 

interneurons112. The gap junction network was modelled as an undirected network with bidirectional 648 

electrical synapses; note however that some gap junctions might be rectifying and thus exhibit 649 

directionality. In the synaptic network reciprocal connections between nodes are considered as two 650 

separate unidirectional connections.  651 

 652 

Monoamine network construction 653 

The monoamine network used in this work was made following the same procedure as in (Bentley et 654 

al., 2016). The monoamine expression for the 302 neurons comes from the neurotransmitter atlas of 655 

C. elegans75 and receptor expression for the 302 neurons comes from the single-cell expression data 656 

from the CeNGEN project (https://www.cengen.org)40.  We used the expression data at CeNGEN 657 

threshold 4. The interactions between ligand and receptors were previously described45. The 658 

adjacency matrix was built using a binary version of the expression data for the 302 neurons. For a 659 

given point AM(i,j) and for a given monoamine receptor pair M the connection between two neurons is 660 

defined by AM(i,j) = MonM(i,j) x ReceptorM(i,j). Each monoamine receptor interaction forms an 661 

individual binary network. To get the overall monoamines network we add each individual 662 

monoamine receptor network resulting in a weighted network where the weight indicates the number 663 

of monoamine receptor pairs that connect two nodes. Reciprocal connections between nodes are 664 

considered as two separate unidirectional connections. 665 

 666 

Neuropeptide network construction 667 

The neuropeptide network used in this work was made using a similar approach to that used for the 668 

monoamines. The interactions between ligands and receptors were identified using a large-scale in 669 

vitro reverse pharmacology pipeline in which over 87% of the predicted peptide GPCRs were 670 

challenged with FMRFamide related peptides (FLP) and non-insulin non-FLP like peptides (NLP)64. 671 

Neuropeptide precursor and GPCR gene expression for the 302 neurons was extracted from the 672 
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single-cell transcriptome data of the CeNGEN project (https://www.cengen.org)40. We used the 673 

expression data at CeNGEN threshold 4. The adjacency matrix was built using a binary version of the 674 

expression data for the 302 neurons. For a given point AN(i,j) and for a given neuropeptide receptor 675 

pair N the connection between two neurons is defined by AN(i,j) = NPPN(i,j) x GPCRN(i,j). Each 676 

neuropeptide receptor interaction forms an individual binary network. To get the overall 677 

neuropeptides network we add each individual neuropeptide receptor network resulting in a weighted 678 

network where the weight indicates the number of neuropeptide receptor pairs that connect two nodes. 679 

Reciprocal connections between nodes are considered as two separate unidirectional connections. 680 

 681 

Neuropeptide network spatial constraining 682 

Neuropeptidergic networks were locally thresholded to filter out connections between neurons that 683 

were anatomically far from each other. The anatomical EM data was obtained from The Mind of the 684 

worm (https://www.wormatlas.org/MoW_built0.92/MoW.html) and other literature48,65,66. This data 685 

was used to create a table of locations for each neuronal process, identifying 27 different neuronal 686 

process bundles in the C. elegans nervous system as previously defined48. This classification was then 687 

used to filter out neuropeptidergic connections based on putative signaling ranges. The stringent 688 

short-range thresholding allows connections only in between neuronal processes that are in the same 689 

process bundle and the pharynx is a separated system were all connections are allowed in between 690 

pharyngeal neurons only. The mid-range stringency thresholding allows connections between neurons 691 

with neuronal processes in the same anatomical area: head (including pharynx and the ventral cord 692 

neurons that are in the ventral ganglion), midbody and tail. And in the unthresholded system all 693 

neuropeptidergic connections are allowed.  694 

 695 

Topological network measures 696 

Edge counts, adjacency matrices and reducibility clusters were all computed using binary directed 697 

versions of the networks. The same networks, excluding self-connections (i.e. setting all diagonal 698 

elements to 0), were used to compute all other measures. 699 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.30.514396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514396
http://creativecommons.org/licenses/by/4.0/


 27 

Network measures are compared to 100 null model networks generated using the degree-preserving 700 

edge swap procedure from the Brain Connectivity Toolbox for MATLAB113. This is performed by 701 

selecting a pair of edges (A→B) (C→D) and swapping them to give (A→D)(C→B). If the resulting 702 

edges already exist in the network, another pair of edges is selected instead. Each edge was swapped 703 

10 times to ensure full randomization.  704 

 705 

Degree 706 

Degree is the number of edges connected to a given node. Indegree is the number of incoming 707 

connections connected to a given node and outdegree is the number of outgoing connections.   708 

 709 

Density 710 

Density d is the fraction of present connections K to possible connections between the given nodes N: 711 

 712 

Clustering coefficient 713 

Transitivity defines the ratio of triangles to triplets in the network (where a triple is a single node with 714 

edges running to an unordered pair of others, and a triangle is a fully-connected triple). For a directed 715 

network, this is equivalent to: where A is the 716 

adjacency matrix, N is the number of nodes, kout and kin are the out-degree and in-degree, and ti is the 717 

number of triangles around a node:   718 

 719 

Reciprocity 720 

Reciprocity is the fraction	of	reciprocal	edges	in	the	network: where	M	is	the	number	of	edges,	721 

and	|E↔|	is	the	number	of	reciprocal	edges:	 	 722 

Rich-club coefficient 723 
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The rich-club coefficient measures the tendency for high-degree nodes in a network to form highly 724 

interconnected communities55. These communities can be identified by creating subnetworks for each 725 

degree level k and removing nodes with a degree ≤ k. Then the rich-club coefficient Φ(k) for each 726 

subnetwork is defined as the ratio of connections in the subnetwork Mk to the number of maximum 727 

possible connections. For a directed network with no self-connections, where Nk is the number of 728 

remaining nodes, this is given by:  729 

Thus, a fully connected subnetwork at a given degree k has a rich-club coefficient Φ(k) = 1. We 730 

normalize the rich-club coefficient by calculating:  were ˂Φrandom(k) ˃ is the 731 

average value of the rich-club coefficient across random networks.  732 

A rich-club exists when Φnorm(k) ≥ 1 , but in order to get a clear threshold range we use a probabilistic 733 

approach. The threshold range of the rich-club is defined by Φnorm(k) ≥ 1 + 1σ, where σ is the Standard 734 

Deviation of Φrandom(k) for the 100 random networks. 735 

 736 

Dimensionality reduction analysis 737 

t-SNE is an algorithm for dimensionality reduction that facilitates visualizing high dimensionality 738 

data. The analysis described here was performed using the MATLAB t-sne function on the adjacency 739 

network of connections. The neuropeptide dimension was reduced, and clustering was performed 740 

based on the pattern of connections due to receptor expression. Different distant measures were tested 741 

to confirm the clustering: Euclidean distance, Chebychev distance, cosine distance and Mahalanobis 742 

distance.  743 

 744 

Co-expression analysis  745 

The signaling networks used in this work represent connections between co-occurring genes. Nodes 746 

are defined as pairs of neuropeptide precursor and GPCR genes that co-occur more than expected by 747 

chance as measured by a Fisher’s exact test114 with FDR (false positive rate) correction115.  The 2x2 748 

contingency table for the Fisher’s exact test contains the number of neurons for which both genes co-749 
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occur and the number of neurons in which each NPP and GPCR gene is expressed without co-750 

occurring with the second gene. Thus, the Fisher’s test is defined as: 751 

𝑝 = (𝑅%! 𝑅'!)(𝐶%! 𝐶'!)
𝑁!∏,,.𝑛,,.!

 752 

 753 
Where R1 and R2 are the row sums, C1 and C2 are the column sums, N is the total number of 754 

observations in the contingency table, and nij is the value in the ith row and jth column of the table 755 

Interactions between nodes are defined by the receptor-ligand interactions that the co-occurring genes 756 

have with genes that co-occur in another node. The interactions between ligand and receptors were 757 

identified using a large-scale in vitro reverse pharmacology pipeline64.  758 

 759 

Software 760 

Network measures were computed in MATLAB (v9.8.0.1323502 (R2020a), The MathWorks Inc. 761 

Natick, MA) using the Brain Connectivity Toolbox113 (v2019-03-03) and the MATLAB/Octave 762 

Networks Toolbox116. Clustering and visualization of multilayer plots was performed using 763 

MuxViz117. And additional network visualizations were created using Cytoscape118.  764 

 765 

Lead contact  766 

Requests for resources should be directed to the Lead Contact William Schafer (wschafer@mrc-767 

lmb.cam.ac.uk)  768 

 769 

Data and software availability 770 

The scRNAseq data are available at  www.cengen.org. The biochemical deorphanization data are 771 

available at https://worm.peptide-gpcr.org/project/neuropeptides/flps/ 64. Analysis code is available at 772 

https://github.com/LidiaRipollSanchez/Neuropeptide-Connectome.git 773 

Nematode Strains  774 

The strains used in this study are listed in Supplementary Tables 1 and 2.  775 

 776 
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Figure titles and Legends 799 

Figure 1. In silico reconstruction of the neuropeptidergic connectome of the C. elegans nervous 800 

system by combining in vitro neuropeptide-GPCR interaction, gene expression and anatomical 801 

datasets.   802 

(A) Datasets used to build the network in silico. Left: biochemical neuropeptide-GPCR 803 

interaction dataset defining 91 neuropeptide - G protein-coupled receptor (GPCR) pairs below 804 
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500 nM EC50 affinity, coupling 51 GPCRs to 48 neuropeptides64. Neuropeptides from the 805 

same precursor gene (NPP) are considered the same. Middle: anatomical and morphological 806 

description of the C. elegans hermaphrodite nervous system48. Right: single-cell RNAseq 807 

expression of the 302 C. elegans neurons, adapted from40. 808 

(B) Representation of the C. elegans nervous system connectome network in which all types of 809 

neurons (pharyngeal, interneuron, CAN neurons, motorneurons and sensory neurons) are 810 

connected through neuropeptidergic connections.  811 

 812 

Figure 2. Single-copy genomic knock-in reporters corroborate the expression profiles of neuropeptide 813 

and GPCR genes obtained from scRNAseq. GFP-positive neurons were identified using the 814 

NeuroPAL multicolor transgene 111Figure pictures all segments (head, tail, vulva and midbody) 815 

showing neuronal expression, within which individual neurons are circled and labeled. Scale bars 816 

represent 10 µm. Tables of expression data and comparisons between cells identified in reporters and 817 

scRNAseq detection thresholds are in Supplementary Tables S1-3. 818 

(A) Fluorescent GFP reporters for the expression of two representative neuropeptide genes, flp-20 819 

and nlp-45, showing high correalation between reporter expression and CeNGEN scRNAseq 820 

expression. Data for additional neuropeptide gene reporters are shown in Supplementary 821 

Figure S1A.   822 

(B)  Fluorescent GFP reporters for the two representative neuropeptide-activated GPCRs, 823 

expression of tkr-1 and dmsr-6, showing high correalation between reporter expression and 824 

CeNGEN scRNAseq expression.111. Data for additional GPCR gene reporters are shown in 825 

Supplementary Figure S1B.  826 

 827 

Figure 3. Analysis of neuropeptide and receptor expression allows assessment of the spatial scale of 828 

neuropeptide signaling.  829 

(A) Full anatomical description of the C. elegans hermaphrodite nervous system112. Neuronal 830 

bundles represented in red, and the pharynx in green. Short-range connections are defined as 831 

occurring within the same neuronal bundle (axons and dendrites considered equally). Mid-832 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.30.514396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514396
http://creativecommons.org/licenses/by/4.0/


 32 

range connections occur between neurons whose processes are present in one of following 833 

distinct anatomical areas: head (ranging from nose to deirid commissures including the 834 

ventral and retrovesicular ganglion), midbody (between but not including deirid commissures 835 

and the preanal ganglion), or tail (from and including the preanal ganglion to the tail’s tip). 836 

Classifications of individual neurons are in Supplementary Table S4. 837 

(B) Expression matrix for 23 GPCRs activated in vitro by a single neuropeptide ligand. Neurons 838 

are sorted by neuron type on the x axis and the expression of each GPCR on the y axis. Colors 839 

indicate the range of diffusion distance required for communication with at least one ligand-840 

expressing neuron: blue indicates that the receptor expressing neuron makes contact with a 841 

neuron expressing its ligand, either within the same stratum of the nerve ring (dark blue) or in 842 

a thinner neuronal bundle (light blue); orange indicates short-range connections between 843 

strata in the nerve ring (i.e. between neurons in same bundle but not in physical contact); red 844 

indicates connections between neurons in the same anatomical area but not in the same 845 

bundle. Nerve ring stratum as defined67,6867,6867,68 846 

(C) Expression matrix for 23 neuropeptide precursor genes with a single target receptor in vitro. 847 

Neurons are sorted by neuron type on the x axis and the expression of each neuropeptide gene 848 

on the y axis. Colors indicate the range of diffusion distance required for communication with 849 

a receptor-expressing neuron, as described above.   850 

Figure 4. Assortativity analysis of 91 individual NPP-GPCR networks shows different topologies 851 

depending on the NPP-GPCR interaction.  852 

(A) Representation of network topologies depending on assortativity, reflecting the preference of 853 

neuropeptides to signal to GPCRs that are expressed in the same number of neurons. 854 

Networks are classified either as local, pervasive, broadcaster or integrative. Bottom left: 855 

scatter plot showing the number of neurons expressing a particular GPCR versus the number 856 

of neurons expressing the corresponding NPP gene for each of the 91 individual networks. 857 

Local networks show restricted NPP and GPCR expression in 50 neurons or less. Pervasive 858 

networks have broad NPP and GPCR expression in more than 50 neurons. Broadcaster 859 

networks show broad GPCR (˃50 neurons) but restricted NPP expression (≤50 neurons), 860 
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while integrative networks display broad NPP (˃50 neurons)  and restricted GPCR expression 861 

(≤50 neurons). Filled circles indicate receptor presence in that neuron and empty circles 862 

indicate neuropeptide release from that neuron. Left top: example of local network for CAPA-863 

1/NMUR-1 that has been linked to learning32. Left middle top: example of pervasive network 864 

FLP-18/NPR-5 of which the receptor is implicated within locomotory behavior119. Right 865 

middle top: example of broadcaster network FLP-1/FRPR-7 that modulates the interaction 866 

between food sensation and locomotion13. Right top: example of integrative network NLP-867 

47/GNRR-1, the receptor of which is linked to egg-laying behavior 120 and is only activated by 868 

NLP-47 in vitro 64,120. Diagrams of all 91 networks are in Supplementary Figures S2 and S3. 869 

(B) The topology of the network is defined by the individual NPP-GPCR pairing. Networks of the 870 

same receptor can show different topologies depending on its neuropeptide ligand.  In each 871 

example, the same receptor can form both pervasive and broadcasting networks (DMSR-2, 872 

DMSR-7) or both local and integrative networks (FRPR-8 and EGL-6) depending on the 873 

activating ligand.  874 

 875 

Figure 5. The aggregate neuropeptide connectome in C. elegans connects all 302 neurons in a dense 876 

network.  Adjacency matrix representation of the aggregate 91 NPP-GPCR pair network considering 877 

short-range (color) and mid-range (gray) diffusion models. Axes represent the number of NPP and 878 

GPCR genes per neuron. Virtually all neurons express at least 1 NPP and 1 GPCR gene, the only 879 

exception of which is the IL1 neuron class that does not show GPCR expression. Neurons can 880 

communicate with each other using up to 18 different NPP-GPCR pathways, a feature conserved in 881 

both short- and mid-range diffusion models. Dense and diverse connections are mainly seen from 882 

oxygen sensing neurons to inter- and motorneurons. 5% of all connections are putative autocrine 883 

connections in which a single neuron co-expresses both NPP and GPCR genes of a cognate pair. 884 

Supplementary Figure 4 shows adjacency matrices for long-range (A) and mid-range (B) models. 885 

 886 

Figure 6. Topological analysis of the C. elegans nervous system highlights neuropeptide signaling 887 

hubs and a large rich club. 888 
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(A) Degree distribution of the short-range model aggregate neuropeptide network. Degree (sum of 889 

incoming and outgoing connections) is shown in orange, the indegree (sum of incoming 890 

connections) is shown in green and the outdegree (sum of outgoing connections) is shown in 891 

purple. . The 10 hubs with the highest degree are indicated, including hubs of the synaptic 892 

connectome (AVAL/R, PVCL/R and DVA) as well as 6 neurons with specialised roles in the 893 

neuropeptide signaling network (AVKL/R, PVT, PVQL/R, PVR).   894 

(B) Degree distribution of the mid-range model aggregate neuropeptide network. Similar to the 895 

short-range model, degree distribution is equally influenced by both in- and outdegree: the 10 896 

hub neurons of highest degree are indicated. 897 

(C) Degree distribution of the synaptic network of C. elegans. Compared to the neuropeptide 898 

connectome, the synaptic connectome contains a much smaller number of high-degree hub 899 

nodes.  900 

(D) Degree distribution of the monoamine network of C. elegans. The overall degree distribution 901 

shows two distinct phases, correlating with the network having a star-like topology centered 902 

around a small core of high degree hubs. This topological feature is further reflected in the 903 

low outdegree of most neurons.   904 

(E) Conceptual network representation highlighting: node (neuron), edge (connection between 905 

neurons), degree (k, sum of incoming and outgoing connections), hub (highly connected 906 

neurons), and rich club (group of hubs that connect more to one another than to the rest of the 907 

network).  908 

(F) Rich club of the C. elegans neuropeptidergic connectome. The rich club coefficient F(k) for 909 

the C. elegans neuropeptidergic network is shown in black and the randomized rich club 910 

curve Frandom(k) generated by averaging the rich club coefficients of 100 randomized versions 911 

of the C. elegans neuropeptidergic network that preserve degree distribution) is depicted in 912 

gray. The red curve is the normalized coefficient. F(k) ³ Frandom(k) + 10s over the range 203 913 

£ k £ 298, indicating  the rich club. The large number of connections in the range k > 298 914 

make the random networks more unreliable but since F(k) is very close and mostly higher 915 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.30.514396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514396
http://creativecommons.org/licenses/by/4.0/


 35 

than Frandom(k) + 10s we can infer that all neurons where 203 £ k are part of the rich club. 916 

This means the short-range aggregate neuropeptide network has a rich club of 156 neurons 917 

(166 in the mid-range, Suppl. Figure 6) 918 

(G) Correlation between synaptic and neuropeptidergic degrees. A positive correlation was 919 

observed over all neurons (r = 0.54, p = 3.1 e-14). Dark red dots indicate neurons in the C. 920 

elegans neuropeptidergic rich club. Synaptic hubs, which also exhibit a high neuropeptide 921 

degree (k>400) (ranking among the top 30 neuropeptide hubs) are highlighted. Also 922 

highlighet are 6 neuropeptidergic hubs, with low synaptic degree (k < 30, below the 923 

correlation line), as well as low monoamine (22 > k ³ 10) and gap junction (14 > k ³ 3) 924 

degrees (Suppl. Figure 6), appear to be specialized for neuropeptide signaling.   925 

 926 

Figure 7. Mesoscale structure of the neuropeptide connectome 927 

(A) t-SNE dimensionality reduction of the adjacency matrix of the mid-range aggregate network 928 

(Euclidean distance, perplexity 30). This plot we identifies 3 clear clusters (1, 2, 3) which 929 

encompass 112 of out the 166 mid-range neuropeptide rich club neurons), in addition to a  930 

periphery of loosely clustered neurons. Datapoint markers represent their neuronal 931 

classification. 932 

(B) PCA dimensionality reduction of the adjacency matrix of the mid-range aggregate network 933 

(Euclidean distance, perplexity 30). Neurons in this plot are colored based on that of the 934 

groups defined in (A). A clustering pattern similar to that following t-SNE appears, 935 

highlighting the robustness of these defined groups across dimensionality reduction 936 

techniques. Datapoint markers represent their neuronal classification.  937 

(C) Mid-range aggregate network sorted in both dimensions (sending and receiving neurons) 938 

based on neuronal clusters defined in (A) and (B). Neuronal clusters divisions are highlighted 939 

with discontinuous lines. Group 3 does not receive nor send connections to group 1. All three 940 

groups, specially 2 and 3, send a large number of connections to peripheral neurons while not 941 

receiving significant input from the periphery. Group 2 is the only group that sends and 942 
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receives connections to and from all 4 neuronal clusters. The neurons with higher weight of 943 

connections (number of NPP-GPCR pairs used to make the connection) are mainly found in 944 

groups 2 and 3. The neurons defining the patterns that drive the clustering of each group are 945 

shown at the bottom: group 1 is mainly driven by the connections of DA, VC and VA 946 

terminal motorneurons; group 2 is mainly driven by the connections of neuropeptidergic hubs 947 

PVQL/R and PVR, synaptic hubs AVAL/R and PVNL/R neurons; group 3 is mainly driven 948 

by the connections of pharyngeal neurons I5 and I4 and RIR, RICL/R interneurons.  949 

(D) Violin plots showing indegree values for the 3 clusters and the periphery. Indegree cleanly 950 

defines the 3 groups and the periphery (median group 1: 139, median group 2: 267, median 951 

group 3: 198, median periphery: 54), and therefore is the determinant factor in the definition 952 

of these groups. Significances determined by Kruskal-Wallis test followed by Tukey-Kramer 953 

test for multiple comparisons with rank sums. The mean ranks for the 4 groups were shown to 954 

be significantly different (mean rank group 1: 162, mean rank group 2: 276, mean rank group 955 

3: 223, mean rank periphery: 77).  n.s. not significant; ***p ≤ 0.001. 956 

(E) Diagram showing the organization of connections between the 3 defined clusters. Group 1 957 

contains the main motorneurons core. These connect between themselves, with the periphery 958 

and with group 2. Group 2 contains the main interneurons core including the top 10 hubs. 959 

These neurons connect to almost every other neuron in the nervous system. Group 3 contains 960 

the main sensory neurons and pharyngeal neurons core. These neurons connect to group 2 961 

neurons and the periphery but do not connect to group 1 neurons. This structure indicates an 962 

intrinsic organization of the C. elegans neuropeptidergic connectome rich club and how it 963 

coordinates the function of the overall neuropeptidergic connectome.  964 

 965 

Figure 8. Co-expression between GPCRs and their corresponding neuropeptide ligand(s) facilitates 966 

potential autocrine and paracrine signaling. Additional data on putative autocrine signaling is in 967 

Supplementary Figure S6. 968 
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(A) Neuronal expression matrix for both NPP and GPCR genes of the 91 NPP-GPCR pairs. Grey 969 

dots represent neuronal expression of only the NPP (upper panel) or GPCR (lower panel) 970 

gene, which black dots indicating co-expression of both.  971 

(B) Percentage of each neuron type showing peptide autocrine connections (upper panel). The 972 

number of different NPP-GPCR pairs being co-expressed in each neuron type is figured in the 973 

bottom panel. Neurons showing the highest diversity of different NPP-GPCR pairs being co-974 

expressed are highlighted, including the sensory neurons PQR and URX and the interneuron 975 

PVR.  976 

(C) Scatter plot showing the number of neurons with co-expression for each of the 91 NPP-977 

GPCRs. Pairs with promiscuous GPCRs, specially DMSR-1 and DMSR-7 are co-expressed in 978 

many different neurons, highlighting their central role in autocrine neuropeptidergic 979 

signaling.  980 

(D) Correlation between number of autocrine connections and neuropeptide (left) or synaptic 981 

(right) degree for each of the 302 neurons. Point shapes indicate degree (round), indegree 982 

(incoming arrow), outdegree (outgoing arrow).  983 

(E) Representation of the autocrine connections in each neuron of the C. elegans worm (anterior 984 

part of the worm in the left side, posterior in the right, dorsal upper part, and ventral lower 985 

part). The size of each cell body indicates the number of autocrine NPP-GPCR pairs 986 

expressed in that neuron. Circuits in which autocrine connections are prominent are the 987 

locomotion and oxygen sensing circuit. The colors indicate the neurons in the oxygen sensing 988 

and locomotion circuits that have the largest number of autocrine connections. Left bottom: 989 

oxygen sensing circuits with autocrine connections, URX and PQR are the neurons with the 990 

largest number of connections (arrow size indicates number of NPP-GPCR pairs). Right 991 

bottom: description of the locomotion system with autocrine connections, VA/VB and 992 

DA/DB are excitatory motorneurons that actuate worm crawling and which show many 993 

autocrine connections while inhibitory DD/VD and minor excitatory AS motorneurons do not 994 

have autocrine connections.   995 

 996 
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Supplementary Figure S1. Expression patterns of neuropeptide and GPCR reporters. Cells were 997 

identified as described in Figure 2. A) Fluorescent GFP reporters for the expression of 17 998 

representative neuropeptide precursor genes. B) Fluorescent GFP reporters for the expression of 8 999 

representative GPCR precursor genes. Images of the trhr-1 expression strain show some bleed-1000 

through signal that does not represent neuronal expression. 1001 

 1002 

Supplementary Figure S2.  Graphical representations of the 91 NPP-GPCR networks with short-1003 

range connections. Colors given by assortativity like Figure 4; yellow indicates local, green pervasive, 1004 

blue integrative and red promiscuous networks.  1005 

 1006 

Supplementary Figure S3. Graphical representations of the 91 NPP-GPCR networks with mid-range 1007 

connections. Networks are sorted in the same order as in Supplementary Figure 2 for comparison. 1008 

Colors given by assortativity as defined in Figure 4, yellow indicates local, green pervasive, blue 1009 

integrative and red promiscuous networks. Networks that change assortativity between short and mid-1010 

range spatial models of neuropeptide transmission are highlighted. 1011 

 1012 

Supplementary Figure 4. Adjacency matrix representation of the long and mid-range neuropeptide 1013 

networks. A) Model 1, aggregate matrix of the long-range neuropeptide connections, the histogram 1014 

lining the matrix indicate the number of GPCR or NPP that the neuron expresses. B) Model 2, 1015 

aggregate matrix of the mid-range neuropeptide connections.   1016 

 1017 

Supplementary Figure 5. Co-expression analysis of NPP and GPCR  genes. A) Hierarchical 1018 

clustering matrix showing NPP – GPCR pairs with significant co-expression. The y axis indicates 1019 

GPCR and the x axis indicates NPP expression. The significance of their co-expression is indicated by 1020 

the legend. B) Adjacency matrix representation of the co-expression network. The nodes represent 1021 

NPP – GPCR pairs with significant neuronal coexpression, and edges are formed when the NPP of 1022 

one node is the ligand of the GPCR of another node. C) Hierarchical clustering matrix of the NPP vs 1023 

NPP co-expression. D) Hierarchical clustering matrix of the GPCR vs. GPCR co-expression. E) 1024 
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Visual representation of one of the possible signaling cascades based on the co-expression network. 1025 

DMSR-3 co-expresses with FLP-34 and NLP-54 releasing neurons, which means that secretion could 1026 

be activated by FLP-14 binding to DMSR-3.  1027 

 1028 

Supplementary Figure 6. Autocrine connections sensitivity analysis. A) comparison of co-1029 

expression of cognate NPP-GPCR pairs in the 4 different combinations of CeNGEN and 1030 

deorphanization datasets with different stringencies (CeNGEN threshold 2 or 4; EC50 threshold 1 µM 1031 

or 500 nM), each depicted in a different color. B) Number of NPP-GPCR co-expressed per fraction of 1032 

neurons in these 4 different combinations of datasets. C) Number of neurons with co-expression for 1033 

the FLP or NLP neuropeptides show that FLP are more prevalent. D) Comparison of number of 1034 

autocrine connections between specific and promiscuous NPP-GPCR pairs, showing that promiscuous 1035 

pairs tend to have more autocrine connections. E) Correlation of autocrine connections with gap 1036 

junction and monoamine networks. F) Number of autocrine connections in each motorneuron for each 1037 

of the main promiscuous NPP-GPCR pairs present in those neurons.  1038 

 1039 
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