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Abstract Flavonoids exert a multiplicity of neuropro-

tective actions within the brain, including a potential to

protect neurons against injury induced by neurotoxins, an

ability to suppress neuroinflammation, and the potential to

promote memory, learning and cognitive function. These

effects appear to be underpinned by two common pro-

cesses. Firstly, they interact with critical protein and lipid

kinase signalling cascades in the brain leading to an inhi-

bition of apoptosis triggered by neurotoxic species and to a

promotion of neuronal survival and synaptic plasticity.

Secondly, they induce beneficial effects on the vascular

system leading to changes in cerebrovascular blood flow

capable of causing angiogenesis, neurogenesis and changes

in neuronal morphology. Through these mechanisms, the

consumption of flavonoid-rich foods throughout life holds

the potential to limit neurodegeneration and to prevent or

reverse age-dependent loses in cognitive performance. The

intense interest in the development of drugs capable of

enhancing brain function means that flavonoids may

represent important precursor molecules in the quest to

develop of a new generation of brain enhancing drugs.
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Introduction

Recently, there has been intense interest in the potential

of flavonoids to modulate neuronal function and prevent

against age-related neurodegeneration. The use of flavo-

noid-rich plant or food extracts in humans and animal

dietary supplementation studies have shown improve-

ments in cognition function possibly by protecting

vulnerable neurons, enhancing existing neuronal function

or by stimulating neuronal regeneration [134]. Their

neuroprotective potential has been shown in both oxi-

dative stress [41] and Ab-induced neuronal death models

[65]. Evidence also exists for the beneficial and neuro-

modulatory effects of flavonoid-rich ginkgo biloba

extracts, particularly in connection with age-related

dementias and Alzheimer’s disease [7]. Furthermore,

individual flavonoids such as the citrus flavanone tan-

geretin, has been observed to maintain nigro-striatal

integrity and functionality following lesioning with 6-

hydroxydopamine, suggesting that it may serve as a

potential neuroprotective agent against the underlying

pathology associated with Parkinson’s disease [24]. In

addition, flavonoids may also exert beneficial effects on

memory and may prevent cognitive losses associated

with ageing and even reverse certain age-related declines

[45, 46]. This review will highlight the neuroprotective

mechanisms of flavonoids and other polyphenols, in

particular their ability interact with neuronal signalling

pathways [91, 97] and their potential to inhibit neuro-

inflammatory processes in the brain [17, 48].
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Flavonoid: sources and structure

Flavonoids are major constituents of fruit, vegetables and

beverages, such as wine, tea, cocoa and fruit juices. Most

commonly, flavonoids share a common structure consisting

of two aromatic rings (A and B), which are bound together

by three carbon atoms, forming an oxygenated heterocycle

(ring C) (Fig. 1). Based on variations in the saturation of

the basic flavan ring system, their alkylation and/or gly-

cosylation and the hydroxylation pattern of the molecules,

flavonoids may be divided into seven subclasses: flavonols,

flavones, flavanones, flavanonols, flavanols, anthocyani-

dins, and isoflavones (reviewed by Manach et al. [67]).

The flavanols, sometimes referred to as flavan-3-ols,

are found predominantly in green and black teas, red wine

and chocolate. Variations in their structures lie in the

hydroxylation pattern of the B ring and the presence of

gallic acid in position 3. The lack of a double bond at the

2–3 position and the presence of a 3-hydroxyl group on

the C-ring create two centres of asymmetry. Typical

dietary flavanols include catechin, epicatechin, epigallo-

catechin (EGC) and epigallocatechin gallate (EGCG)

(Fig. 1). Flavanols exist also as oligomers or polymers,

referred to as condensed tannins or proanthocyanidins,

which are found in high concentration in cocoa, tea, red

wine and fruits such as apples, grapes and strawberries.

These differ in nature based on their constitutive units

(e.g. catechins and epicatechin), their sequence and the

position of interflavanic linkages. The sources of antho-

cyanins such as pelargonidin, cyanidin and malvidin

include red wine and berry fruits such as blueberries,

blackberries cherries and strawberries. These compounds

exist as glycosides in plants, are water-soluble and appear

red or blue according to pH. Individual anthocyanins arise

from the variation in number and arrangement of the

hydroxyl and methoxy groups around the three rings

(Fig. 1). Flavones such as apigenin, luteolin are found in

parsley, chives, artichoke and celery. Hydroxylation on

position 3 of the flavone structure gives rise to the

3-hydroxyflavones also known as the flavonols (e.g.

kaempferol, quercetin), which are found in onions, leeks,

broccoli (Fig. 1). The diversity of these compounds stems

from the varying positions of phenolic –OH groups

around the three rings. Dietary flavanones include

naringenin, hesperetin and taxifolin and are found pre-

dominantly in citrus fruit and tomatoes. Hydroxylation of

flavanones in position 3 of C-ring gives rise to the fla-

vanonols (Fig. 1). Finally, isoflavones such as daidzein

and genistein are a subclass of the flavonoid family found

in soy and soy products. They have a large structural

variability and more than 600 isoflavones have been

identified to date and are classified according to oxidation

level of the central pyran ring (Fig. 1).

Absorption, metabolism and distribution of flavonoids

Although flavonoids have been identified as powerful

antioxidants in vitro [84–86], their ability to act as antiox-

idants in vivo is limited by the extensive biotransformation

and conjugation which occurs during their absorption from

the gastrointestinal (GI) tract, in the liver and finally in cells

(reviewed in [103, 107]). In the small intestine and liver,

dietary flavonoids (and other polyphenols) are substrates

for phase I (hydrolysing and oxidizing) and phase II

(conjugating and detoxifying), meaning that they are

de-glucosylated and metabolised into glucuronides, sul-

phates and O-methylated derivatives [99, 103, 104]. Further

metabolism occurs in the colon, where the enzymes of the

gut microflora induce the breakdown of flavonoids to sim-

ple phenolics acids that may then undergo absorption and

further metabolized in the liver [88]. Furthermore, flavo-

noids may undergo at least three types of intracellular

metabolism: (1) Oxidative metabolism, (2) P450-related

metabolism and (3) Conjugation with thiols, particularly

GSH [100]. Circulating metabolites of flavonoids, such as

glucuronides, sulphates and conjugated O-methylated

forms, or intracellular metabolites like flavonoid-GSH

adducts, have significantly reduced antioxidant potential

relative to the forms found in plants [102]. Indeed, studies

have indicated that although such conjugates and metabo-

lites may participate antioxidant reactions and may

scavenge reactive oxygen and nitrogen species in the cir-

culation, their effectiveness to do so is reduced compared to

their parent aglycones [22, 70, 94, 117, 132].

In order for flavonoids to access the brain, they must

first cross the blood brain barrier (BBB), which controls

entry of xenobiotics into the brain [2]. Flavanones such as

hesperetin, naringenin and their in vivo metabolites, along

with some dietary anthocyanins, cyanidin-3-rutinoside and

pelargonidin-3-glucoside, have been shown to traverse the

BBB in relevant in vitro and in situ models [135]. Their

degree of BBB penetration is dependent on compound

lipophilicity [133], meaning that less polar O-methylated

metabolites may be capable to greater brain uptake than the

more polar flavonoid glucuronides. However, evidence

exists to suggest that certain drug glucuronides may cross

the BBB [1] and exert pharmacological effects [52, 112],

suggesting that there may be a specific uptake mechanism

for glucuronides in vivo. Their brain entry may also depend

on their interactions with specific efflux transporters

expressed in the BBB, such as P-glycoprotein [63] which

appears to be responsible for the differences between na-

ringenin and quercetin flux into the brain in situ [135]. In

animals, flavanones have been found to enter the brain

following their intravenous administration [79], whilst

epigallocatechin gallate [115], epicatechin [3] and antho-

cyanins [26, 116] are found in the brain after their oral
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Fig. 1 The structures of the main classes of flavonoids. The major

differences between the individual groups reside in the hydroxylation

pattern of the ring-structure, the degree of saturation of the C-ring and

the substitution of in the 3-position: a general structure of flavonoids,

b structure of flavonols and flavones, c structure of flavanols, also

referred as flavan-3-ols, d structure of anthocyanidins, e structure of

flavanones and flavanonols and f structure of isoflavones
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administration. Furthermore, several anthocyanins have

been identified in different regions of the rat [78] and pig

brains [47] of blueberry fed animals, with 11 intact

anthocyanins found in the cortex and cerebellum. Studies

have indicated that the accumulation of flavonoids in the

brain is not dependent on the brain region, with levels of

anthocyanins reaching 0.45 ± 0.12 nmol/g in the hippo-

campus and 0.46 ± 0.11 nmol/g in the cortex following

intervention with a 2% w/w blueberry diet for 12 weeks

[129]. Flavanols have been shown to accumulate at sig-

nificantly higher levels (Hippocampus: 2.65 ± 0.17 nmol/

g tissue; cortex levels were 2.54 ± 0.18), following the

same dietary intervention. These results indicate that

flavonoids traverse the BBB and are able to localize in the

brain, suggesting that they are candidates for direct neu-

roprotective and neuromodulatory actions.

Protection against neuronal injury induced

by neurotoxins

Neurodegeneration in Parkinson’s, Alzheimer’s, and other

neurodegenerative diseases appears to be triggered by

multi-factorial events including neuroinflammation, gluta-

matergic excitotoxicity, increases in iron and/or depletion

of endogenous antioxidants [6, 44, 113]. There is a growing

body of evidence to suggest that flavonoids may be able to

counteract the neuronal injury underlying these disorders

[68, 98, 105]. For example, a Ginkgo biloba extract has

been shown to protect hippocampal neurons from nitric

oxide- and beta-amyloid-induced neurotoxicity [65] and

studies have demonstrated that the consumption of green

tea may have beneficial effect in reducing the risk of Par-

kinson’s disease [16]. In agreement with the latter study,

tea extracts and (-)-epigallocatechin-3-gallate (EGCG)

have also been shown to attenuate 6-hydroxydopamine-

induced toxicity [61], to protect against hippocampal injury

during transient global ischemia [56] and to prevent nigral

damage induced by MPTP [60].

The death of nigral neurons in Parkinson’s disease is

thought to involve the formation of the endogenous

neurotoxin, 5-S-cysteinyl-dopamine [108, 109]. Recent

investigations have shown that 5-S-cysteinyl-catechol-

amine conjugates possess strong neurotoxicity and initiate

a sustained increase in intracellular reactive oxygen species

(ROS) in neurons leading to DNA oxidation, caspase-3

NO•

O2
•-

ONOO-

DA

DA-o-quinone

DHBT-1

[O]

Oxidative stress CysH

Apoptosis

Modulation of
cell signalling

Mitochondrial 
dysfunction

[O]

Inibition of complex 1

Lipid peroxydation
Protein nitration 5-S-Cys-DA

NO•

O2
•-

ONOO-

DA

DA-o-quinone

DHBT-1

[O]

Oxidative stress CysH

Apoptosis

Modulation of
cell signalling

Mitochondrial 
dysfunction

[O]

Inibition of complex 1

Lipid peroxydation
Protein nitration 5-S-Cys-DA

NH2OH

OH

S

COOHNH2

NH2OH

S
HOOC

NH

5-S-Cys-DA DHBT-1

Microglia/Astrocyte

TNF-a

iNOS

NO•

IFN IL-1b TNF-a

Caspase-8 

CD23

Inflammatory trigger

IL-1b

Caspase-3 

Neuron

Fig. 2 Involvement of

neuroinflammation, endogenous

neurotoxins and oxidative stress

in dopaminergic

neurodegeneration. Structures

of the 5-S-cysteinyl-dopamine

(5-S-Cys-DA) and the

dihydrobenzothiazine-1

(DHBT-1) are shown
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activation and delayed neuronal death [37, 111] (Fig. 2).

Such adducts may be generated by reactive species [121]

and have been observed to be been elevated in the human

substantia nigra of patients who died of Parkinson’s disease

[108], suggesting that such species may be potential

endogenous nigral toxins. However, 5-S-cysteinyldop-

amine-induced neuronal injury is counteracted by

nanomolar concentrations of various flavonoids including

pelargonidin, quercetin, hesperetin, caffeic acid, the 40-O-

Me derivatives of catechin and epicatechin [121]. Fur-

thermore, in presence of the flavanol, (?)-catechin,

tyrosinase-induced formation of 5-S-cysteinyl-dopamine

was inhibited by a mechanism linked to the capacity of

catechin to undergo tyrosinase-induced oxidation to yield

cysteinyl-catechin adducts [123]. In contrast, the inhibition

afforded by flavanones, such as hesperetin, was not

accompanied with the formation of cysteinyl-hesperetin

adducts, indicating that it may inhibit via direct interaction

with tyrosinase [123].

Reactive oxygen and nitrogen species have also been

proposed to play a role in the pathology of many neu-

rodegenerative diseases [44] (Fig. 2). There is abundant

evidence that flavonoids are effective in blocking this

oxidant-induced neuronal injury, although their potential

to do so is thought not to rely on direct radical or oxidant

scavenging [98, 102, 110]. Instead, they are believed to

act by modulating a number of protein kinase and lipid

kinase signalling cascades, such as the PI3 kinase

(PI3 K)/Akt, tyrosine kinase, protein kinase C (PKC) and

mitogen-activated protein kinase (MAP kinase) signalling

pathways [98, 130]. Inhibitory or stimulatory actions of

these pathways are likely to profoundly affect neuronal

function by altering the phosphorylation state of target

molecules, leading to changes in caspase activity and/or

by gene expression [130]. For example, flavonoids have

been observed to block oxidative-induced neuronal dam-

age by preventing the activation of caspase-3, providing

evidence in support of their potent anti-apoptotic action

[91, 92, 102]. The flavanols epicatechin and 30-O-methyl-

epicatechin also protect neurons against oxidative damage

via a mechanism involving the suppression of JNK, and

downstream partners, c-jun and pro-caspase-3 [91].

Flavanones, such as hesperetin and its metabolite, 5-nitro-

hesperetin, have been observed to inhibit oxidant-induced

neuronal apoptosis via a mechanism involving the

activation/phosphorylation of signalling proteins impor-

tant in the pro-survival pathways [122]. Similarly, the

flavone, baicalein, has been shown to significantly inhibit

6-hydroxydopamine-induced JNK activation and neuronal

cell death and quercetin may suppress JNK activity and

apoptosis induced by hydrogen peroxide [42, 124],

4-hydroxy-2-nonenal [119] and tumour necrosis factor-

alpha (TNF-alpha) [49].

Inhibition of neuroinflammation

Neuroinflammatory processes in the CNS are believed to

play a crucial role in the development of neurodegenerative

diseases such as Alzheimer’s and Parkinson’s disease [39]

as well as with neuronal injury associated with stroke

[137]. Glial cells (microglia and astrocytes) activation

leads to the production of cytokines and other inflamma-

tory mediators which may contribute to the apoptotic cell

death of neurons observed in many neurodegenerative

diseases. In particular, increases in cytokine production

(interleukin-1b, IL-1b; tumor necrosis factor-alpha,

TNF-a) [50], inducible nitric oxide synthase (iNOS) and

nitric oxide (NO), and increased NADPH oxidase activa-

tion [4] all contribute to glial-induced neuronal death

(Fig. 2). These events are controlled by MAPK signalling

which mediate both the transcriptional and post-transcrip-

tional regulation of iNOS and cytokines in activated

microglia and astrocytes [9, 69]. Whilst ibuprofen, a non-

steroidal anti-inflammatory drug, has been shown to delay

the onset of neurodegenerative disorders, such as Parkinson

disease [14], the majority of existing drug therapies for

neurodegenerative disorders has failed to prevent the

underlying degeneration of neurons. Consequently, there

is a desire to develop alternative strategies capable of

preventing the progressive neuronal loss resulting from

neuroinflammation.

Flavonoid-rich blueberry extracts have been observed to

inhibit NO, IL-1b and TNF-a production in activated

microglia cells [53, 54], whilst the flavonol quercetin [17],

the flavones wogonin and bacalein [55], the flavanols cate-

chin and epigallocatechin gallate (EGCG) [62], and the

isoflavone genistein [125] have all been shown to attenuate

microglia and/or astrocyte mediated neuroinflammation via

mechanisms that include inhibition of: (1) iNOS and cyclo-

oxygenase (COX-2) expression, (2) NO production, (3)

cytokine release, and (4) NADPH oxidase activation and

subsequent reactive oxygen species generation, in astrocytes

and microglia. Flavonoids may exert these effects via direct

modulation of protein and lipid kinase signalling pathways

[98, 105, 130], for example via the inhibition of MAPK

signalling cascades, such as p38 or ERK1/2 which regulate

both iNOS and TNF-a expression in activated glial cells [9].

In this respect, fisetin inhibits p38 MAP kinase phosphory-

lation in LPS-stimulated BV-2 microglial cells [136] and the

flavone luteolin inhibits IL-6 production in activated

microglia via inhibition of the JNK signalling pathway. The

effects of flavonoids on these kinases may influence down-

stream pro-inflammatory transcription factors important in

iNOS transcription. One of these, nuclear factor-Kappa B

(NF-jB), responds to p38 signalling and is involved in iNOS

induction [8], suggesting that there is interplay between

signalling pathways, transcription factors and cytokine

Genes Nutr (2008) 3:115–126 119
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production in determining the neuroinflammatory response

in the CNS. However, flavonoids have also been shown to

prevent transcription factor activation, with the flavonol

quercetin able to suppress NF-jB, signal transducer and

activator of transcription-1 (STAT-1) and activating protein-

1 (AP-1) activation in LPS- and IFN-c-activated microglial

cells [17].

Flavonoid-induced improvements in memory,

learning and cognitive performance

There is a growing interest in the potential of phyto-

chemicals to improve memory, learning and general

cognitive ability [105, 106]. A recent prospective study

aimed at examining flavonoid intake in relation to cogni-

tive function and decline, has provided strong evidence that

dietary flavonoid intake is associated with better cognitive

evolution, i.e. the preservation of cognitive performance

with ageing [59]. In this PAQUID study (Personnes Agées

QUID), a total of 1,640 subjects (aged 65 years or older)

free from dementia at baseline and with reliable dietary

assessment data were examined for their cognitive perfor-

mance (Mini-Mental State Examination, Benton’s Visual

Retention Test, ‘‘Isaacs’’ Set Test) four times over a 10-

year-period. After adjustment for age, sex, and educational

level, flavonoid intake was found to be associated with

significantly better cognitive performance at baseline and

with a significantly better evolution of the performance

over time. In particular, subjects included in the two

highest quartiles of flavonoid intake had better cognitive

evolution than subjects in the lowest quartile and after

10 years follow-up, subjects with the lowest flavonoid

intake had lost on average 2.1 points on the Mini-Mental

State Examination, whereas subjects with the highest

quartile had lost 1.2 points. Such data provides a strong

indication that regular flavonoid consumption may have a

positive effect on neuro-cognitive performance as we age.

There has been much interest in the neuro-cognitive

effects of soy isoflavones (Fig. 1), primarily in post-meno-

pausal women [10, 28, 57, 128]. Isoflavone supplementation

has been observed to have a favourable effect on cognitive

function [13], particularly verbal memory, in postmeno-

pausal women [51] and a 6 and 12-week supplementation

was observed to have a positive effect of frontal lobe function

[27]. Furthermore, animal studies have also indicated that

isoflavones are capable of improving cognitive function [58,

64, 77]. However, there is still uncertainty regarding their

effects as some large intervention trials have reported that

isoflavone supplementation does not lead to cognitive

improvements [30]. The rationale behind the potential of

isoflavones to exert positive effects on cognitive function is

believed to lie primarily in their potential to mimic the

actions and functions of oestrogens in the brain [10]. For

example, postmenopausal women who undertake oestrogen-

replacement therapy have a significantly lower risk for the

onset of Alzheimer’s disease than women who do not [38].

They may also be effective by affecting the synthesis of

acetylcholine and neurotrophic factors such as brain-derived

neurotrophic factor (BDNF) and nerve growth factor (NGF)

in hippocampus and frontal cortex [75, 76].

There is also extensive evidence that berries, in partic-

ular blueberries, are effective at reversing age-related

deficits in motor function and spatial working memory [5,

12, 45, 46, 129]. In addition to spatial memory, blueberry

supplementation has been shown to improve ‘object rec-

ognition memory’ [34] and ‘inhibitory fear conditioning

learning’ [5]. Blueberry appears to have a pronounced

effect on short-term memory [82] and has also been shown

to improve long-term reference memory following 8 weeks

of supplementation. [12]. Tests using a radial arm maze

have supported these findings and have provided further

evidence for the efficacy of blueberries [129]. Indeed, these

have shown that improvements in spatial memory may

emerge within 3 weeks, the equivalent of about 3 years in

humans. The beneficial effects of flavonoid-rich foods and

beverages on psychomotor activity in older animals have

also been reported [95, 96]. In addition to those with ber-

ries, animal studies with tea [15] and pomegranate juice

[36], or pure flavonols such as quercetin, rutin [80] or

fisetin [66] have provided further evidence that dietary

flavonoids are beneficial in reversing the course of neuro-

nal and behavioural aging.

The flavonoid-rich plant extract, Ginkgo Biloba has also

been shown to induce positive effects on memory, learning

and concentration [19, 20, 25]. Ginkgo Biloba has a

prominent effect on brain activity and short-term memory

in animals and humans suffering from cognitive impair-

ment [43, 93, 131] and promotes spatial learning in aged

rodents [40, 114, 126, 131]. Furthermore, Ginkgo Biloba

promotes inhibitory avoidance conditioning in rats with

high-dose intake leading to short-term, but not long-term,

passive avoidance learning in senescent mice [114, 118].

However, the pharmacological mechanisms by which

Ginkgo Biloba promotes cognitive effects are unclear, with

its ability to elicit a reduction in levels of ROS [72, 73], to

increase cerebral blood flow [33], to modulate brain fluidity

[114], to interact with the muscarinic cholinergic system

[18] and to protect the striatal dopaminergic system [81] all

being suggested as possible mechanisms of brain action.

The effects of flavonoid-rich foods on neuro-cognitive

function have been linked to the ability of flavonoids to

interact with the cellular and molecular architecture

responsible for memory and learning [105, 106], including

those involved in long-term potentiation and synaptic plas-

ticity [98] (Fig. 3). These effects are likely to lead to the
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enhanced neuronal connection and communication and thus

a greater capacity for memory acquisition, storage and

retrieval [106]. For example, the flavanol (-)-epicatechin,

especially in combination with exercise, has been observed

to enhance the retention of rat spatial memory by a mecha-

nism involving increased angiogenesis and neuronal spine

density in the dentate gyrus of the hippocampus, and an up-

regulation of genes associated with learning in the hippo-

campus [120]. Fisetin, a flavonoid found in strawberries, has

been shown to improve long-term potentiation and to

enhance object recognition in mice by a mechanism depen-

dent on the activation of ERK and CREB [66]. Similarly, the

flavanol (-)-epicatechin induces both ERK1/2 and CREB

activation in cortical neurons and subsequently increases

CREB regulated gene expression [89], whilst nanomolar

concentrations of quercetin are effective at enhancing CREB

activation [101]. Blueberry-induced improvements in

memory have been shown to be mediated by increases in the

phosphorylation state of ERK1/2, rather than that of calcium

calmodulin kinase (CaMKII and CaMKIV) or protein kinase

A [129]. Other flavonoids have also been found to influence

the ERK pathway, with the citrus flavanone hesperetin

capable to activating ERK1/2 signalling in cortical neurons

[122] and flavanols such as EGCG restoring both protein

kinase C and ERK1/2 activities in 6-hydroxy dopamine

toxicity and serum deprived neurons [61, 83].

Cerebrovascular effects of flavonoids

Dementia is a serious degenerative disease effecting pre-

dominantly elderly people with the two most common

forms of this illness being Alzheimer’s and vascular

dementia. The factors affecting dementia are age, hyper-

tension, arteriosclerosis, diabetes mellitus, smoking, atrial

fibrillation and those with the ApoE4 genotype [11]. There

is evidence to suggest that flavonoids may be capable

of preventing many forms of cerebrovascular disease,

including those associated with stroke and dementia [21,

23]. There is powerful evidence for the beneficial effects of

flavonoids on endothelial function and peripheral blood

flow [90] and these vascular effects are potentially signif-

icant as increased cerebrovascular function is known to

facilitate adult neurogenesis in the hippocampus [32]

(Fig. 3). Indeed, new hippocampal cells are clustered near

blood vessels, proliferate in response to vascular growth

factors and may influence memory [74]. As well as new

neuronal growth, increases in neuronal spine density and

morphology are considered vital for learning and memory

[35]. Changes in spine density, morphology and motility

have been shown to occur with paradigms that induce

synaptic, as well as altered sensory experience, and lead to

alterations in synaptic connectivity and strength between

neuronal partners, affecting the efficacy of synaptic com-

munication. These events are mediated at the cellular and

molecular level and are strongly correlated with memory

and learning.

Efficient cerebral blood flow is also vital for optimal

brain function, with several studies indicating that there is a

decrease in cerebral blood flow (CBF) in patients with

dementia [71, 87]. Brain imaging techniques, such as

‘functional magnetic resonance imaging’ (fMRI) and

‘trans-cranial Doppler ultrasound’ (TCD) has shown that

there is a correlation between CBF and cognitive function
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Angiogenesis

mTOR

Arc/Arg3.1
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Fig. 3 Signalling pathways

underlying neuronal survival

and cognitive performance.

Flavonoids activate ERK-CREB

pathway and the PI3 kinase-

mTOR cascade leading to

changes in synaptic plasticity.

They are also capable of

influencing neurogenesis

through the activation of PI3

kinase-Akt-eNOS
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in humans [87]. For example, cerebral blood flow velocity

is significantly lower in patients with Alzheimer disease

and low CBF is also associated with incipient markers of

dementia. In contrast, non demented subjects with higher

CBF were less likely to develop dementia. Flavonoids have

been shown to exert a positive effect on cerebral blood flow

(CBF) in humans [29, 31]. After consumption of a flavanol-

rich cocoa drink, the ‘flow oxygenation level dependent’

(BOLD)-fMRI showed an increase in blood flow in certain

regions of the brain, along with a modification of the

BOLD response to task switching. Furthermore, ‘arterial

spin-labelling sequence magnetic resonance imaging’

(ASL-MRI) [127] also indicated that cocoa flavanols

increase CBF up to a maximum of two hours after inges-

tion of the flavanol-rich drink. In support of these findings,

an increase in cerebral blood flow through the middle

cerebral artery has been reported after the consumption of

flavanol-rich cocoa using TCD [29].

Conclusion

The neuroprotective actions of dietary flavonoids involve a

number of effects within the brain, including a potential to

protect neurons against injury induced by neurotoxins, an

ability to suppress neuroinflammation, and the potential to

promote memory, learning and cognitive function. This

multiplicity of effects appears to be underpinned by two

common processes. Firstly, they interact with important

neuronal signalling cascades in the brain leading to an

inhibition of apoptosis triggered by neurotoxic species and

to a promotion of neuronal survival and differentiation.

These include selective actions on a number of protein

kinase and lipid kinase signalling cascades, most notably

the PI3 K/Akt and MAP kinase pathways which regulate

pro-survival transcription factors and gene expression

(Fig. 3). It appears that the concentrations of flavonoids

encountered in the brain may be sufficiently high to exert

such pharmacological activity on receptors, kinases and

transcription factors. Secondly, they are known to induce

beneficial effects on the peripheral and cerebral vascular

system, which lead to changes in cerebrovascular blood

flow. Such changes are likely to induce angiogenesis, new

nerve cell growth in the hippocampus and changes in

neuronal morphology, all processes known to important in

maintaining optimal neuronal function and neuro-cognitive

performance (Fig. 3).

The consumption of flavonoid-rich foods, such as ber-

ries and cocoa, throughout life holds a potential to limit

neurodegeneration and prevent or reverse age-dependent

deteriorations cognitive performance. However, at present

the precise temporal nature of the effects of flavonoids on

these events is unclear. For example, it is presently unclear

as to when one needs to begin consuming flavonoids in

order to obtain maximum benefits. It is also unclear which

flavonoids are most effective in inducing these changes.

However, due to the intense interest in the development of

drugs capable of enhancing brain function, flavonoids may

represent important precursor molecules in the quest to

develop of a new generation of brain enhancing drugs.
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