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Abstract

From the traditional perspective of associative learning theory, the
hypothesis linking modifications of synaptic transmission to learning
and memory is plausible. It is less so from an information-processing
perspective, in which learning is mediated by computations that
make implicit commitments to physical and mathematical principles
governing the domains where domain-specific cognitive mechanisms
operate. We compare the properties of associative learning and mem-
ory to the properties of long-term potentiation, concluding that the
properties of the latter do not explain the fundamental properties of the
former. We briefly review the neuroscience of reinforcement learning,
emphasizing the representational implications of the neuroscientific
findings. We then review more extensively findings that confirm the
existence of complex computations in three information-processing
domains: probabilistic inference, the representation of uncertainty, and
the representation of space. We argue for a change in the conceptual
framework within which neuroscientists approach the study of learning
mechanisms in the brain.
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INTRODUCTION

The theoretical frameworks with which we de-
scribe learning and memory have traditionally
taken one of two forms. In the associative con-
ceptual framework, the mechanism of learn-
ing cannot be separated from the mechanism
of memory expression. At the psychological
level of analysis, learning is the formation of
associations, and memory is the translation of
that association into a behavioral change. At
the neuroscientific level of analysis, learning is
the rewiring of a plastic nervous system by ex-
perience, and memory resides in the changed
wiring.

When approached from the second perspec-
tive, the information-processing perspective,
learning and memory are distinct mechanisms
with different functions: Learning mechanisms
extract potentially useful information from
experience, while memory carries the acquired
information forward in time in a computa-
tionally accessible form that is acted upon by
the animal at the time of retrieval (Gallistel &
King 2009). We review portions of the recent
behavioral neuroscience literature, briefly from
the first perspective, and more extensively from
the latter perspective, focusing on neurobio-

logical systems that extract different kinds of
information from different kinds of experience.

The distinction between the associative and
information-processing frameworks is of criti-
cal importance: By the first view, what is learned
is a mapping from inputs to outputs. Thus, the
learned behavior (of the animal or the network,
as the case may be) is always recapitulative of
the input-output conditions during learning:
An input that is part of the training input, or
similar to it, evokes the trained output, or an
output similar to it. By the second view, what is
learned is a representation of important aspects
of the experienced world. This representation
supports input-output mappings that are in no
way recapitulations of the mappings (if any) that
occurred during the learning.

Before focusing on domain-specific learn-
ing, and most extensively on spatial learning,
we briefly review some of the vast neuro-
science literature on the two commonly
proposed general-purpose associative learning
mechanisms, Pavlovian conditioning (a.k.a.
classical conditioning) and reinforcement
learning (a.k.a. instrumental conditioning,
a.k.a. operant conditioning). Historically, these
theories are non- (or anti-) representational.
They propose that the brain adapts behavior
(its input-output mappings) to environmental
circumstances without representing those
aspects of the environment that make the be-
havior adaptive. Most contemporary cognitive
science is, by contrast, representational; it
assumes that brains construct a behaviorally
useful representation of the experienced world
through extensive computation.

ASSOCIATIVE LEARNING
AND SYNAPTIC PLASTICITY

The hypothesis that the modification of synap-
tic transmission by experience mediates associa-
tive learning dates back to the elaboration of the
concept of the synapse itself (Cajal 1894, Tanzi
1893). Hebb’s (1949) influential statement of
the hypothesis was that if a presynaptic neuron
repeatedly played a role in firing a postsynaptic
neuron, there ensued an enduring modification
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of synaptic structure, such that activity in the
presynaptic neuron became more likely to
excite activity in the postsynaptic neuron. A
snappier statement of this idea is that neurons
that fire together wire together. Synapses that
exhibit these properties are commonly called
Hebbian synapses. Martin and colleagues
(2000, 2002) review the arguments in favor
of this hypothesis, which is widely accepted
by psychologists, cognitive scientists, and
neuroscientists.

The neurobiological process or phe-
nomenon now most often identified with the
Hebbian synapse is long-term potentiation
(LTP). Recently, interest has focused on a
form of LTP called spike timing–dependent
plasticity (STDP; for a recent review, see
Caporale & Dan 2008). In a variety of neural
circuits, an enduring modification of synaptic
transmission is produced by varying the timing
of weak and strong synaptic inputs over a
range of a few tens of milliseconds. The sign
of the modification depends critically on the
relative strength of stimulation and the timing
of the two inputs. For some parameter values,
transmission increases; that is, a presynaptic
spike now produces a “potentiated” (i.e., larger
amplitude or shorter latency) postsynaptic
response. For other combinations, transmis-
sion decreases; that is, a presynaptic spike now
produces a reduced postsynaptic response.

Most of the neurobiological literature on
LTP focuses on its cellular and molecular
mechanism. The relevance of this research to
the neuroscience of learning depends on the
hypothesis that links LTP to associative learn-
ing and to memory. The evidence for this
link would be strong if the properties of LTP
aligned closely with those of the associative
learning process as revealed by behavioral ex-
perimentation. Here we review those proper-
ties and conclude that the alignment is poor.

Effects of Interstimulus Interval
and Intertrial Interval

Behaviorally measured association formation
depends on time parameters in a fundamen-

tally different way than does LTP. In LTP,
differences of a few milliseconds to at most a
few tens of milliseconds in the timing of the
pre- and postsynaptic inputs are critical. This
dependence is often cited in support of the
linkage hypothesis (Quinn 2005, Thompson
& Mattison 2009, Usherwood 1993). There is,
however, nothing in the associative learning
literature showing a dependence of association
formation on event-timing differences mea-
sured in tens of milliseconds. The interstimulus
intervals in behavioral experiments are orders
of magnitude longer (seconds, minutes, and
hours rather than milliseconds).

More fundamentally, there is no inde-
pendent effect of the interstimulus interval
[ISI, also known as the conditioned stimulus-
unconditioned stimulus (CS-US) interval] in
behavioral association formation: The number
of trials to acquisition of a conditioned response
in Pavlovian conditioning depends on the ratio
of the CS-US interval to the US-US interval.
The shorter the CS-US interval is relative to
the US-US interval, the fewer the trials to ac-
quisition (Gallistel & Gibbon 2000, Gibbon &
Balsam 1981, Gottlieb 2008, Lattal 1999, Ward
et al. 2012). The critical role of the CS-US/US-
US ratio is dramatically shown by holding
the CS-US interval constant and progressively
shortening the US-US interval; there comes a
point at which the association that forms is in-
hibitory rather than excitatory (Kaplan 1984).
In short, there is no critical interstimulus inter-
val for the behavioral phenomenon. Moreover,
the more widely separated the instances of pair-
ing, the more rapidly the association develops.
The opposites are true for LTP: There is a crit-
ical interstimulus interval, which is orders of
magnitude smaller than any interval relevant at
the behavioral level. And, the more widely sep-
arated the instances of pairing, the weaker their
cumulative effect (de Jonge & Racine 1985).

In defense of the linkage hypothesis, it
may be argued that “This [disconnect] is only
paradoxical, however, if [it is assumed that]
CS-US associations occur online at the level
of individual synapses. It is less problematic if
the time-scale for information representation
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in a given brain region is different from that
pertaining to events as they happen” (Martin &
Morris 2002, p. 610). This argument stipulates
that the temporal properties of LTP do not
explain the temporal properties of behaviorally
measured association formation.

Persistence

Behaviorally measured associations can last
indefinitely, whereas LTP always decays and
usually does so rapidly. Its rate of decay is mea-
sured in hours or days (for review, see Abraham
2003). Even with extended “training,” a decay
to baseline levels is observed within days to a
week (e.g., Castro et al. 1989). An experiment
by Power et al. (1997) highlights the lack of cor-
respondence: They recorded changes in CA1-
evoked responses in brain slices obtained from
animals trained on a trace eyeblink conditioning
task, which is dependent on the hippocampus
for its behavioral expression. Potentiated post-
synaptic responses were observed at 1 hour,
but not at 24 hours after training. By contrast,
the learned eye-blink response remains intact
for weeks or months. Again, it may be argued
that “it would be premature to reject synaptic
plasticity as a memory mechanism merely for
this reason [lack of sufficient persistence]. Hip-
pocampal LTP may need only last long enough
(a few weeks perhaps) to permit completion
of a slower neocortical consolidation process”
(Martin & Morris 2002, p. 610). This argument
stipulates that the persistence of LTP does not
explain the persistence of associative learning.

Reacquisition

Although behavioral evidence for the presence
of an association can generally be obtained
months and even years after its establishment,
the strength of the conditioned response does
commonly decline somewhat with time. And, of
course, the learned response may be weakened
by extinction and/or counter-conditioning.
Both forgotten and extinguished conditioned
responses exhibit facilitated reacquisition; that
is, they are relearned more efficiently than

when they were initially acquired (e.g., Napier
et al. 1992; for review, see Miller et al. 1986).
Following its decay to baseline, LTP is neither
more easily induced nor more persistent than
it was after previous inductions (de Jonge &
Racine 1985).

Coding

Perhaps most importantly, the hypothesis that
a change in synaptic transmission is the mech-
anism of memory does not address the coding
problem. The encoding of the temporal inter-
vals in conditioning protocols routinely occurs
(Arcediano et al. 2003, Barnet et al. 1996,
Blaisdell et al. 1998, Burger et al. 2001, Cole
et al. 1995), probably before the emergence
of the conditioned response (Balsam et al.
2006, 2010; Balsam & Gallistel 2009). More
tellingly, the sign (excitatory or inhibitory) and
rate of association formation depend on the
ratio between the expectations of two intervals
in the protocol (the CS-US and the US-US
intervals; see Gallistel & Gibbon 2000, Ward
et al. 2012), which suggests that the encoding
of temporal intervals may be a precondition
for the appearance of conditioned responses.
Thus, the mechanism that mediates associative
learning and memory must be able to encode
the intervals between events in a computation-
ally accessible form. There is no hypothesis as
to how this could be accomplished through the
modification of synaptic transmission.

The lack of suggestions in the literature
about how Hebbian synapses might encode
the durations of intervals reflects a more
general failing of the associative conceptual
framework when viewed from the perspective
of cognitive science: It may explain reflex
modification phenomena, but it does not
explain the learning of behaviorally important
facts and the formation of data structures. It
fails to address the question of how facts about
the experienced spatio-temporal environment
may be carried forward for indefinite periods of
time to inform subsequent behavior in ways not
foreseeable when the facts were learned. The
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neuroscientific literature on the representation
of space, to which we soon turn, shows that the
brain carries in memory the learned geometry
of the experienced environment in a way that
makes this acquired information accessible to
computation in small fractions of a second.

The failure to address the coding problem
would not count against the hypothesis that
links LTP to memory if “what gets encoded and
how is an emergent property of the network in
which this plasticity is embedded, rather than
of the mechanisms operating at the synapse in
isolation” (Martin et al. 2000, p. 650). This ap-
peal to emergent properties stipulates that the
properties of LTP do not explain the essential
property of a memory mechanism, the ability
to store information in a computationally
accessible form (Gallistel & King 2009). That
most basic property is said to reside in “the
network.” One naturally asks where it resides
and how that storage is implemented. Does
the claim that the storage of information is an
emergent property imply that we are never to
have answers to these questions?

In summary, if synaptic LTP is the mech-
anism of associative learning—and more
generally, of memory—then it is disappointing
that its properties explain neither the basic
properties of associative learning nor the es-
sential property of a memory mechanism. This
dual failure contrasts instructively with the suc-
cess of the hypothesis that DNA is the physical
realization of the gene. This linkage hypothesis
asserts that DNA is the molecule that stores
hereditary information and makes it accessible
to orchestrate ontogeny and much else. The
structure of the molecule explains not only its
ability to store information but also how copies
of it may be made. There is no need to appeal to
elusive (and possibly illusive) emergent proper-
ties in support of this linkage hypothesis. This
explanatory power is a major reason why the hy-
pothesis that links the gene to DNA is so much
more compelling than the hypothesis that links
LTP to associative learning and to memory.

In Table 1, we catalog the discrepancies be-
tween the properties of LTP and the properties
of associative learning.

REINFORCEMENT LEARNING

Historically, two different association-forming
processes have often been posited, one de-
pendent only on temporal contiguity, the
other on response-contingent reinforcement
(and temporal contiguity). The latter process
is often called instrumental conditioning, to
distinguish it from the former, which is called
Pavlovian or classical conditioning. In the
traditional conception of the effects of rein-
forcement, there was no representation of the
reinforcement. The reinforcement “stamped
in” an association between a stimulus and the
response that produced the reinforcement
(Hull 1952), but neither the reinforcement nor
its being a consequence of the response was
represented. In the quite different contem-
porary formulation, which has been strongly
influenced by theoretical work on reinforce-
ment learning in computer science (Sutton &
Barto 1998), reinforcement history is explicitly
represented by a value variable associated with
the response: A temporal-difference learning
algorithm computes the value of an action in
a given situation (Dayan & Daw 2008, Redish
et al. 2007). The estimated value is updated
after each performance of the response in
proportion to an error term, which is the
difference between the obtained reinforcement
and the predicted reinforcement.

Neurobiological support for these models
is found in the similarity between the value
prediction error term and the signals observed
in dopamine neurons following reinforcement
and nonreinforcement. There are several
recent, theoretically oriented reviews of the
relevant literature (Berridge 2012, Dayan &
Daw 2008, Flagel et al. 2011, Schultz 2006,
Zhang et al. 2009). The general finding is
that dopaminergic neurons in the basolateral
diencephalon fire in response to events that
occur at unpredictable times. If the time of
reinforcement (the US) may be predicted by
reference to an earlier temporal “landmark,”
then dopaminergic neurons do not fire. Rather,
they fire in response to the occurrence of the
landmark (the CS), whose time of occurrence is
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Table 1 Disparate properties of LTP and associative learning

Property Hebbian LTP Associative learning
Coding Not implemented by LTP itself: an

“emergent property” of circuits
Depends on encoding of temporal intervals, stimulus
properties, and stimulus relationships

Necessary CS-US relation Close temporal contiguity Contingency
Form of learned output Recapitulative: When stimulus recurs,

output recurs
Anticipatory: Learned behavior usually differs from
behavior during learning

Critical ISI 1–100 ms None: Rate of conditioning is inversely proportional
to ISI/ITI

Effect of ITI The longer the ITI, the weaker the
LTP

The longer the ITI relative to ISI, the faster and
stronger the learning

Induction kinetics Expression requires tens of seconds to
minutes

Behavioral expression is immediate, <1 s after
induction

Acquisition function Requires repetition Often complete within single trial
Persistence Hours–weeks Months–years (up to a lifetime)
Reacquisition Not facilitated by previous acquisition Facilitated by previous acquisition
Context learning Not consistent with ISI requirement Ubiquitous and fundamental
Long delay and trace conditioning Seemingly incompatible with ISI

requirement
Easily attained

Cue competition (blocking,
overshadowing, etc.)

Not explained by properties of LTP Ubiquitous and fundamental

Note: Some of these properties are not discussed in text; see Matzel & Shors (2001) and Gallistel & King (2009) for full discussion. For temporal pairing
versus contingency, dependence of associative learning on ISI/ITI, and cue competition, see Gallistel & Gibbon (2000), Balsam & Gallistel (2009), Balsam
et al. (2010), and Ward et al. (2012). Abbreviations: CS-US, conditioned stimulus-unconditioned stimulus; ISI, interstimulus interval; ITI, intertrial
interval; LTP, long-term potentiation.

itself unpredictable. If the US fails to occur at
the predicted time, the neuron fires. The neu-
ron also fires if the US occurs at an unexpected
time in relation to the CS. Thus, contemporary
reinforcement learning theory assumes that
the duration of the previously experienced
CS-US interval resides in memory, where it
forms the expectation against which a currently
experienced CS-US interval is compared. The
comparison between present experience of the
CS-US interval and the information about past
intervals stored in memory is on the causal
pathway from a reinforcing event to the firing
of dopaminergic neurons elicited by that event.

The enduring appeal of antirepresentational
associative theory has been its neurobiological
transparency: It is easy to imagine that the
formation of an associative bond is physically
realized by a change in synaptic transmission.

Conceptually, both are simple conductive
connections. In associative learning theory, the
associative bond does not represent an aspect of
the experienced world, so our inability to spec-
ify how changes in synaptic transmission en-
code facts is not a problem. The convergence of
behavioral and neuroscientific evidence on the
conclusion that the coding of temporal facts (in-
terval durations) is an essential feature of both
Pavlovian and reinforcement learning suggests
that the antirepresentational form of associa-
tive theorizing may need to be abandoned. If
so, we must now face squarely the unanswered
question as to the physical realization of the
neural memory mechanism that stores simple
abstract experiential facts, such as durations,
distances, directions, and probabilities, in a
structured form and makes them accessible to
computation on a millisecond time scale.
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INFORMATION-PROCESSING
DOMAINS

In associative learning theory, the brain rewires
itself so as to perform better in the experienced
world, but it does not represent what it is about
the world that makes the new performance
better suited to it. When so conceived, the
association-forming process may be mathe-
matically modeled, but it is not the physical
realization of a computation (or a memory).
The information-processing framework, by
contrast, is closely allied to the computational
theory of mind, which holds that a necessary
level of analysis in connecting neuroscience
to behavioral phenomena is an analysis of the
computations that the brain performs in ex-
tracting behaviorally useful information from
raw experience (Marr 1982). On this theory, to
understand the operations of the mind/brain,
we must understand what aspects of the
experienced world the brain represents (the
representational question), how it represents
them (the encoding question), how it computes
that representation from the relevant aspects
of its experience (the computational question),
and how it translates its representations into
behavior (the performance question).

Framing learning problems as compu-
tational problems leads to the postulation
of domain-specific learning mechanisms
(Chomsky 1975, Gallistel 1999) because no
general-purpose computation could serve the
demands of all types of learning. Some com-
putations are broadly useful whereas others are
only useful in a single context. However, they
all apply the primitive operations of arithmetic
and logic to different combinations of inputs
to achieve different results.

Framing learning as the problem of how
the brain computes a behaviorally useful rep-
resentation of the experienced world more or
less eliminates any distinction between percep-
tion and learning. In the study of perception,
it is understood that an understanding of the
physical and mathematical principles operative
in a domain is a precondition for psycholog-
ical and neuroscientific understanding of how

the brain functions in that domain. You can-
not understand vision without understanding
the rudiments of geometric optics. Similarly,
the information-processing approach to learn-
ing mechanisms requires an understanding of
the rudiments of the different domains in which
different learning mechanisms operate. In the
balance of this review, we consider three do-
mains: probabilistic inference, the representa-
tion of uncertainty, and the representation of
space. In each domain, we review the rudiments
before focusing on neuroscientific findings rel-
evant to the first two of Marr’s questions: What
is represented, and how is it represented?

When it is assumed that the neuroscience of
learning is the neuroscience of synapse modifi-
cation, then the study of processes that modify
synaptic transmission is naturally conceived of
as the study of the cellular and molecular mech-
anism of learning. But if learning is the result
of domain-specific computations, then study-
ing the mechanism of learning is indistinguish-
able from studying the neural mechanisms that
implement computations. Although there is a
large body of theoretical work in computational
neuroscience, there is as yet no consensus about
foundational questions, such as:

1. How is information encoded in spike
trains?

2. What are the primitive computational
operations in neural tissue?

3. Are they implemented at the network
level, the molecular level (intracellularly),
or both?

4. What cellular and/or molecular mecha-
nisms implement the arithmetic opera-
tions?

5. What mechanism implements memory
(the storage of information in a compu-
tationally accessible form; see Gallistel &
King 2009)?

6. What mechanism implements variable
binding in memory? (For an explanation
of variable binding and its importance in
computation, see Gallistel & King 2009.)

7. What mechanism implements data struc-
tures in memory?
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Thus, at this stage of our science, neu-
roscientific findings bear strongly on repre-
sentational questions in learning—on what is
learned—but they do not yet give us a cellu-
lar and molecular understanding of underlying
computational mechanisms.

Our review of the neuroscience of domain-
specific learning mechanisms begins with the
neural mechanism of Bayesian inference be-
cause it is an example of a broadly applicable
complex computation. Its relevance to percep-
tion is now well understood, but it also applies
to learning, because learning the state of the
world is an inferential process. Gallistel (2012)
models extinction as Bayesian change detection.
This treatment of a basic issue in traditional
learning theory explains quantitatively the par-
tial reinforcement extinction effect,1 which has
resisted principled explanation for more than
half a century. A second reason for beginning
with the neuroscience of probabilistic inference
is that there is interesting recent work on the
neural mechanism of marginalization, which is
an essential component of Bayesian inference.

Probabilistic Inference

Rudiments: Bayes rule. The Bayesian com-
putation mediates probabilistic inference about
the state, w, of some aspect of the world by tak-
ing the product of a likelihood function and a
prior probability distribution:

L(w|D, π (w)) = L(w|D)π (w).

The prior distribution, π (w), represents the
probability of the different possible states in
the light of previous or extraneous evidence.
The likelihood function, L(w|D), represents

1Partial reinforcement during training increases the number
of unreinforced trials or responses required to extinguish the
learned response. This is paradoxical in associative learning
theory because the unreinforced trials during training should
weaken net excitatory associative strength at the end of train-
ing. Fewer nonreinforced trials should then be required to
reduce this weak association to insignificance, whereas in
fact the number of unreinforced trials required for extinc-
tion increases in proportion as the pre-extinction probability
of reinforcement decreases.

the likelihood of those states in the light of
some new data (or event or signal), symbolized
by D, that carries information about that
state of the world. The product of the two
functions weights each prior probability by the
corresponding likelihood, giving the relative
likelihoods of the different possibilities “all
considered.” When normalized so that it
integrates to one, the product is called the
posterior probability distribution.

Rudiments: Likelihood. From a neurobio-
logical perspective, a likelihood function is
a neuronal firing pattern viewed backwards,
viewed, that is, from the brain’s perspective
rather than from the perspective of the experi-
menter (cf. Rieke et al. 1997), which is why like-
lihood is sometimes called reverse probability.
The experimenter, who knows the experimen-
tally given stimulus (the relevant state of the
world), determines by experiment the probabil-
ities of the different possible neuronal responses
(different numbers of spikes) and plots them as
a neuronal tuning curve, a staple of experimen-
tal systems neuroscience. The tuning curves for
an array of neurons of the same class, for exam-
ple, the simple cells in the primary visual cor-
tex (V1), determine the firing pattern across an
array of neurons of that class. However, from
the brain’s perspective, this firing pattern is the
given; what it must infer are the relative like-
lihoods of the different plausible stimuli, i.e.,
what it was out there in the world that produced
this pattern of firing.

Rudiments: Marginalization. To assess the
risks attendant on different possible decisions,
the brain needs to represent the entire likeli-
hood function, not just the most likely value
of w. The problem it almost always faces is
that several different aspects of the world affect
the firing pattern. For example, the firing of
the so-called simple neurons in the primary
visual cortex (V1) is jointly determined by
(among several other factors) the location,
orientation, and contrast of the image on the
retina. Put more formally, tuning curves, hence
also the likelihood functions, are almost always
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multidimensional. For any one decision, the
brain commonly needs a one-dimensional
likelihood function, a function, for exam-
ple, that gives the likelihoods of different
possible orientations, regardless of contrast
and location. To obtain a one-dimensional
likelihood function, it must marginalize the
multidimensional likelihood function; that
is, it must “integrate out” the effects of the
“nuisance” parameters. (In this example, they
are the location and contrast in the light
pattern.) Metaphorically, marginalization is a
bulldozer that moves along one dimension of
a multidimensional likelihood function, piling
up the likelihood against an orthogonal wall.

Neural implementation. Beck and colleagues
(2011) show that combining two widely
observed properties of neuronal stimulus-
response functions—divisive normalization and
quadratic nonlinearities—gives a neurobiolog-
ically plausible implementation of marginaliza-
tion. Divisive normalization is a form of lateral
inhibition in which the response of one neu-
ron in a class of neurons (e.g., the simple cells
in V1) is suppressed in proportion to the in-
verse of the sum of the responses of the other
neurons in its class (see, e.g., Heeger 1992,
Olsen et al. 2010, Simoncelli & Heeger 1998).
Quadratic nonlinearities occur when the inputs
to a neuron combine multiplicatively rather
than additively (see, e.g., Andersen et al. 1985,
Galletti & Battaglini 1989, Groh et al. 2001,
Werner-Reiss et al. 2003).

Beck et al. (2011) emphasize the broad range
of applications of marginalization, from coor-
dinate transformations to causal inference. As
they stress, it is a key operation in Bayesian
inference. According to much contemporary
thinking in cognitive science, Bayesian infer-
ence is everywhere in cognition, from percep-
tion to learning and causal reasoning (Chater
et al. 2006, Griffiths et al. 2010).

Representation of Uncertainty

Probabilistic inference plays a central role in
the construction of useful representations of the

experienced world because there is a complex,
noisy, and ambiguous relation between the
behaviorally important properties of the world
and the first-order neural signals from which
the brain must infer the states of the world.
The inferences to be drawn from sensory
input are for that reason uncertain to varying
degrees. The quantification of this uncertainty
through information-theoretic computations
complements Bayesian inference.

Rudiments: Uncertainty = entropy =
available information. A counterintuitive as-
pect of information theory is that information
and uncertainty are two words for the same
quantity. The objective amount of uncertainty
about some aspect of the world, that is, the
range of possibilities and their probabilities, is
the source information, also called the avail-
able information. It puts an upper limit on
the amount of information that a neural signal
(or correlated event, or variable, or memory)
can convey about that aspect of the world. In-
tuitively, the more uncertainty there is about
something, the more there is to learn, that is,
the more information to be gained. If there is
no uncertainty, then there is nothing to learn,
that is, no information to be gained.

A probability distribution specifies the prob-
abilities of a set of mutually exclusive and ex-
haustive possibilities. The possibilities are the
support for the distribution. Signals, signs, and
events carry information insofar as they may be
used to narrow the range of plausible possibili-
ties. A probability distribution is an example of
structured information: It links the symbols for
the possibilities to the symbols for their relative
frequencies.

The entropy of a probability distribu-
tion measures the amount of uncertainty. If
the probability distribution is in the brain’s
representation of an empirical variable, then
its entropy measures the brain’s uncertainty
about the value of that variable. A signal or
predictor event is informative about that value
to the extent that it reduces the entropy of this
distribution, because information is defined as
the reduction of uncertainty (Shannon 1948).
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The formula for computing the entropy of a
distribution is a probability-weighted sum, as
are the formulae for mean, variance, and the
still higher moments:

H =
i=n∑

i=1

pi log(1/pi ) entropy of

the distribution

μ =
i=n∑

i=1

piwi the mean (1st moment)

σ 2 =
i=n∑

i=1

pi (wi − μ)2 the variance

(2nd moment about the mean)

γ =
i=n∑

i=1

pi (wi − μ)3 the skew

(3rd moment about the mean)

where i indexes the possibilities that constitute
the support for the distribution. The log of 1/pi

measures the information attendant on the oc-
currence of wi, the ith possibility. The summa-
tion weights each such amount by the relative
frequency of its occurrence, that is, by pi.

Rudiments: Contingency. An important ad-
vance in our understanding of associative learn-
ing came from experiments demonstrating that
the emergence of a conditioned response de-
pends not on the temporal pairing of two events
but rather on the contingency between them.
Eliminating the contingency while preserving
the temporal pairing prevents the emergence of
a conditioned response (Rescorla 1967, 1968).
Thus the simple contiguity of events is insuffi-
cient to support learning. This is another case
in which the Hebbian properties of LTP fail to
explain the properties of associative learning:
LTP is driven by temporal pairing; association
formation is driven by contingency.

Neuroscientific evidence. The importance
of this insight to our understanding of the
neurobiology of associative learning is shown
by the finding that signals in the mesolimbic
dopaminergic neurons encode the probability
and uncertainty of reinforcement (Fiorillo
et al. 2003) and by the more recent discovery

that the response of neurons in the amygdala
to reward-predicting stimuli depends on the
contingency between the stimulus and the
reward rather than on their temporal pairing
(Bermudez & Schultz 2010). Thus, to under-
stand the neurobiology of associative learning,
a measure of contingency is needed.

Information theory provides a generally
applicable measure:

CYX = IYX/H(p(X )) �= CXY = IYX/H(p(Y )),

where IYX is the mutual information between
variables Y and X, CYX measures the extent to
which Y is contingent on X, and H(p(X)) is the
entropy of the distribution of X, which distribu-
tion is symbolized by p(X). The mutual infor-
mation is the sum of the entropies of the indi-
vidual distributions minus the entropy of their
joint distribution:

IYX = H(p(X )) + H(p(Y )) − H(p(X × Y )),

where p(X × Y ) symbolizes the joint distri-
bution. Intuitively, the information-theoretic
measure of contingency quantifies the extent
to which knowledge of a putative predictor (Y,
the CS or a response) reduces the uncertainty
about when reinforcement (X) will occur.

Given the evidence from both behavior and
neuroscience that contingency is fundamental,
an important challenge for further neuroscien-
tific investigation is to discover the mechanisms
that represent distributions, compute their en-
tropies, and measure the contingencies between
events.

Spatial Learning

For decades, psychologists, cognitive sci-
entists, and neuroscientists with an em-
piricist bent resisted the assumption that
the mind/brain explicitly represents anything
(Brooks 1991, Chemero 2011, Edelman 1989,
Elman & Zipser 1988, Hull 1930, Markman &
Dietrich 2000, Rumelhart & McClelland 1986,
Shastri & Ajjanagadde 1993, Skinner 1938,
Smolensky 1986), let alone aspects of experi-
ence as far removed from sense data as proba-
bility, uncertainty, time, and space.
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There is, however, a large behavioral liter-
ature implying that learned representations of
spatial locations and directions underlie animal
navigation, including the navigation of many
insects (for reviews, see Cheng 2008, Cheng
et al. 2007, Collett & Collett 2004, Collett
& Graham 2004, Gallistel 1990, Legge et al.
2010, Menzel et al. 2005, Merkle & Wehner
2008, Sommer et al. 2008, Wystrach et al.
2011). Another substantial literature implies
the representation of time-of-day, time-of-
month, time-of-year, and temporal duration
and direction (Antle & Silver 2005, Bouton &
Garcia-Gutierrez 2006, Budzynski & Bingman
1999, Buhusi & Meck 2005, Crystal 2001,
Denniston et al. 2004, Gwinner 1996, Matzel
et al. 1988, Meck 2003, Savastano & Miller
1998, Zhang et al. 2006), but there is not space
to review that literature here.

Fundamentals of navigation and spatial
representation. To assume that animals rep-
resent space is to assume that the brain has one
or more spatial coordinate systems that encode
locations in one or more frames of reference. It
also assumes brain mechanisms for estimating
distance and direction. Without a mechanism
that implements a system of coordinates, there
is no way to represent location. Without mech-
anisms for estimating direction and distance,
there is no way to assign to a notable point in the
environment a vector representing its location.
In short, the postulation of spatial represen-
tations assumes the existence of nontrivial,
genetically specified, purpose-specific repre-
sentational machinery. This machinery does
the spatial learning when it constructs a rep-
resentation of the geometry of the experienced
environment and tracks the animal’s position
and heading within that representation.

Frames of reference. A behaviorally useful
coordinate system for representing location
and/or direction must be anchored to a frame
of reference. Coordinates are symbols that
represent locations. Typically, they are vectors,
ordered pairs (or triplets) of numbers that are
subject, as ordered pairs, to some mathematical

operations such as addition and subtraction. A
frame of reference is established when at least
two of these vectors are assigned a referent in a
physically instantiated space: this vector refers
to that place or that direction. Assigning refer-
ents for at least two vectors establishes referents
for all possible vectors (all the possible location
symbols within a given framework). Changing
the frame of reference changes which sym-
bols refer to which locations. Symbols carry
information forward in time (Gallistel & King
2009). Their physical realization in neural tis-
sue is as yet unknown (unless one imagines that
altered synaptic conductances can somehow
function as symbols). Signals carry information
from place to place. In the brain, information
is carried over long distances by spikes (nerve
impulses). As we will see, changes in the frame
of reference are common in the neurons whose
firing signals spatial locations and directions.

Frames of spatial reference fall into two
broad classes, egocentric (self centered) and
allocentric (other centered), depending on
whether the system of coordinates is anchored
to a part of the animal’s body or to an aspect of
the environment. Prominent among the ego-
centric frameworks are the eye-centered and
head-centered frameworks. Prominent among
the allocentric frameworks are the geocentric
(earth-centered), enclosure-centered, object-
centered, and array-centered frameworks.

A well-established behavioral result, to be
borne in mind when assessing the neurobio-
logical results, is that animals of widely diverse
species maintain a geocentric orientation:
a sense of their orientation (and location)
in a framework anchored to an indefinitely
extended surrounding environment (Baird
et al. 2004, Douglas 1966, Dudchenko &
Davidson 2002, Etienne et al. 1986). Mammals
are compass-oriented even when they have no
immediate sensory basis for this orientation.
Their compass sense is based on inertial dead
reckoning, not on the earth’s magnetic field;
that is, it is based on integrating the angular
velocity signals from the semicircular canals in
the ear. This integration rests on an implicit
commitment to the principle that direction
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(angular position) is the integral of angular
velocity.

An early and striking manifestation of rats’
compass orientation came in experiments de-
signed to determine the cues that a rat uses in
navigating a familiar maze (Carr 1917). Rats
were trained to run rapidly through a com-
plex maze, inside a square enclosure of heavy
black curtains, within a large laboratory room.
Between trials, the rats were kept in home cages
at the other end of the room, outside and some
distance from the curtained enclosure. Running
trials in complete darkness had little effect on
performance, as did blinding the rats, deafening
them, or rendering them anosmic. On the other
hand, rotating the maze and the surrounding
curtain enclosure by 90◦ produced a profound
disruption of maze performance, even though
the maze itself and its relation to the perceiv-
able surroundings (the black curtains) were in
no way altered.

One of the present authors observed a sim-
ilar effect in a similar experiment, again with
rats (Margules & Gallistel 1988). The rats were
trained to find buried food at previously demon-
strated locations in a rectangular box with high
walls and prominent, multimodally distinctive
landmarks in the corners. The landmarks were
intended to distinguish one end of the box from
the other. Between trials, the rats were kept in
a cage elsewhere in the room. Rotating the ex-
perimental box between trials within a normally
lighted room noticeably upset them, causing
freezing and other signs of fear. Despite the
high walls, which prevented their seeing any-
thing but the ceiling of the room when in the
box, they were aware of and greatly perturbed
by the change in the geocentric orientation of
the test box. On the other hand, under red
light (complete darkness for the rat) and af-
ter slow rotation of their cage for a few min-
utes before they were transferred to the box,
which destroyed their inertial orientation, they
were no longer perturbed by rotation of the test
box in the room, because they could no longer
detect it.

Our intent in rotating the box within the
room was to force the rats to rely on the

prominent landmarks in the box to distinguish
one end of the box from the other. In this,
we failed. As in earlier experiments, when
geocentrically disoriented, the rats ignored the
corner landmarks when digging at what they
took to be the location of the buried food,
with the result that half the time they dug at
the rotationally equivalent location (Cheng
1986, Gallistel 1990, Margules & Gallistel
1988). A rotationally correct location is correct
except for a 180◦ rotation of the box; it is the
location one digs at when one is misoriented
within the rectangle. In other words, when the
geometry of the test box limited the possible
reorientations to two, rats consistently failed
to use prominent landmarks in the corners to
establish a unique (and correct) orientation.

The evidence for the maintenance of geo-
centric orientation does not imply that animals
do not rely on more local frames of reference
when navigating within enclosed spaces. Neu-
robiological results on place and head direction
cells show clearly that they do use these local
coordinate frameworks. However, unless the
animal is geocentrically disoriented before
placement in the enclosure, the geocentric
orientation of the enclosure itself is also repre-
sented, even when this may not be apparent in
the firing of head direction cells. This represen-
tation is a basis for the subjective polarization of
symmetrical enclosures, such as rectangles and
cylinders. Rotational confusions in symmetric
enclosures (Cheng 1986) are observed only
when the rats are geocentrically disoriented by
slow rotation in the dark. When subjects enter
an enclosure with their geocentric orientation
intact, their geocentric orientation polarizes
the enclosure, establishing for the animal which
way is which within that enclosure. When an
intrinsically polarized enclosure—one without
rotational symmetries—has been rotated, then
the animal’s geocentric orientation enables it
to detect and respond to that rotation.

The midbrain’s capacity to integrate the an-
gular velocity signal from the vestibular system
so as to maintain the geocentric orientation by
inertial means explains rats’ remarkable sensi-
tivity to changes in the geocentric orientation
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of experimental closures (Angelaki et al. 2010,
Rochefort et al. 2011). This capacity enables
rats to carry the directional parallel from their
cage and the larger room into test enclosures
that eliminate or greatly restrict sensory access
to the larger space. To “carry a parallel” is to
preserve a directional axis when going from
one part of the world to another (or one part
of a map to another). Doing so is essential to
dead reckoning, which is an essential aspect of
navigation, map construction, and landmark
recognition.

Dead reckoning, also known as path in-
tegration, plays a fundamental role in animal
navigation (Cheung et al. 2008, Collett &
Graham 2004, Gallistel 1990, Loomis et al.
1998, Wehner & Srinivasan 2003, Wittlinger
et al. 2006). It is the reckoning of a new
position and heading from an old position by
summing successive intervening displacements
and changes in heading to obtain the net
change in position and heading.

Dead reckoning provides the animal with a
moment-to-moment representation of its loca-
tion and orientation on its cognitive map. The
mechanism that mediates dead reckoning is a
learning mechanism, by means of which the ani-
mal learns where it is. Diverse species of animals
rely strongly on this dynamic representation of
their position and heading, as did marine navi-
gators until the very recent advent of the global
positioning system. When a rat has learned to
run a complex maze rapidly and the experi-
menter then shortens the paths, the rat runs
full tilt into the walls at the end (Carr 1917). If
it is an elevated maze, the rat runs off the end
of the shortened segments into thin air (Dennis
1932). These results are analogous to the many
shipwrecks caused by faulty dead reckoning.
The rat, like the mariner, only looks (or feels)
for landmarks when its dead reckoned position
on its map approaches a mapped boundary or
waypoint.

Dead reckoning plays an important role in
map construction (Biegler 2000; Clark & Taube
2009; Collett & Collett 2009a,b; Gallistel 1990;
McNaughton et al. 2006; Tcheang et al. 2011).
It provides the animal with its own approximate

coordinates in a frame that remains the same
as the animal moves between widely separated
parts of its environment. This makes it possi-
ble for the animal to represent in a common
system of coordinates the location and orien-
tation of the surfaces it encounters in locations
far removed from one another. The mechanism
that mediates map construction is the spatial
learning mechanism.

Dead reckoning plays an important role
in landmark recognition, that is, in the estab-
lishment of an identity between a currently
perceived distinctive feature of the environ-
ment and a charted feature, which is a feature
whose location and orientation has previously
been recorded on the cognitive map. In natural
environments, the readily perceptible features
of most landmarks are rarely sufficient in and
of themselves to uniquely identify them. The
animal’s dead-reckoning-based sense of its
location and heading on its cognitive map es-
tablishes a prior probability distribution on the
charted landmarks that might plausibly corre-
spond to a terrain feature it currently perceives.
Landmarks in improbable locations or with an
improbable orientation are treated as “impos-
tors” and ignored, no matter how much they
may resemble the one that animal is looking
to use (Gallistel 1990). Landmarks in the right
location and orientation are accepted despite
wide variation in their salient surface charac-
teristics, such as color (Cartwright & Collett
1983). Thus, the learning of where you are by
dead reckoning is intimately connected to your
ability to recognize that what you are looking
at now is a unique landmark that you have seen
before and represented on your cognitive map.

A stable frame of reference is a sine qua non
for functional dead reckoning. The summing
of successive small displacements (in the limit,
the integration of velocity with respect to time)
only yields a useable representation of current
location if the displacements are all computed
within the same frame of reference. If the
frame of reference varies during the summa-
tion/integration, the resulting vector does not
correctly represent the animal’s location in
any frame of reference (Figure 1). Thus, dead
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Figure 1
Dead reckoning requires using at every location a frame of reference whose
axes are parallel to the frame at the other locations (“carrying the parallel”). It
cannot be validly carried out in a changing frame of reference, such as a frame
of reference in which the end of one axis is anchored to a prominent landmark.
In this example, the landmark is a large white card set against the wall of a black
cylinder. If the animal were to use the ever-changing direction from itself to
the center of the white card as one axis in its dead-reckoning frame of
reference, the vector that results from summing successive displacements,
〈∑ �x

∑
�y〉, would not represent its location in any frame of reference.

For the resultant vector to be useful, the animal’s displacements in different
parts of the environment must be represented in the same coordinate
framework and by reference to a single system of directional parallels. In this
figure, one such framework has its origin at the center of the cylinder and one
axis passing through the center of the white card. This is an array-centered
framework whose origin is derived from the geometry of the cylinder. Another
has its origin at the center of the white card, with one axis perpendicular to it
and the other tangential. This is an object-centered framework, defined by
reference to the geometry of the card. Direction for dead-reckoning purposes
must be reckoned with respect to what for practical purposes is a point at
infinity, a point so far away that its direction does not change as the animal
moves. Perceptible terrestrial landmarks are rarely far enough away.

reckoning and map construction are intimately
intertwined. Without dead reckoning, map
construction is not possible. Without map
construction, there is no world-anchored
framework within which to represent one’s
current position and heading.

Piloting. Piloting is navigation by reference
to charted landmarks. It presupposes an

ability to identify currently perceived terrain
features with features recorded on a cognitive
map. Thus, it presupposes a cognitive map. The
map is, of course, learned; the brain is not born
with a representation of the geometry of the
environment in which the animal happens to
find itself. What the brain is born with is the
machinery it needs to construct such a repre-
sentation. This machinery is what enables the
animal to learn from experience.

The first and most basic task in piloting
is to establish geocentric orientation, orienta-
tion within the largest accessible frame of ref-
erence. Colloquially, this is called getting one’s
bearings. For most animals outdoors, the sun,
if visible, is the preferred directional referent.
For practical purposes, it is a point at infinity,
which means that all lines of sight to it are func-
tionally parallel. Its direction changes because
of the earth’s rotation, but animals of diverse
species rapidly learn the solar ephemeris, the
sun’s direction as a function of the time of day
at a given season and latitude, which enables
them to compensate for the predictable changes
in its azimuth (Dyer & Dickinson 1994, Foa
et al. 2009, Gagliardo et al. 2005, Gallistel 1990,
Heinze & Reppert 2011, Sauman et al. 2005,
Wehner 1984, Wehner & Müller 1993).

Establishing a geocentric orientation with-
out reference to a perceptible point at infinity
or to the earth’s magnetic field is an image-
registration problem. By “image,” we mean a
representation in the brain of a set of percep-
tible surfaces with substantial relief. Getting
oriented under these conditions presupposes
two such representations: a cognitive map,
constructed from earlier experience in the envi-
ronment, and a current perception of a portion
of the mapped environment, constructed from
ongoing sensory input. The map is encoded
in one framework. The current perception
of the surroundings is encoded in another.
The computational challenge is to discover
the translation and rotation of the current
perception that brings it into register with the
corresponding portion of the cognitive map.
This computation mediates an animal’s learn-
ing which way it is headed when it emerges into

182 Gallistel · Matzel

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
3.

64
:1

69
-2

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 2

08
.1

58
.7

.1
40

 o
n 

01
/0

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PS64CH07-Gallistel ARI 15 November 2012 13:43

a familiar environment after becoming disori-
ented with respect to that frame of reference.

There are two basic approaches to image
registration: feature matching and computing
shape parameters. Feature matching requires
finding distinctive features in each image
followed by the establishment of cross-image
feature correspondences (landmark recogni-
tion). It requires that localized regions of an
image contain information that makes them
unique (hence unambiguously recognizable).
Discovering which features in one image
“match” which features in another is inher-
ently a trial-and-error process; hence, it is
computationally intensive. This contrasts with
the closed-form computation of geometric
parameters, such as the centroid, principal
axes, and higher moments of a shape.

Registration by the computation of shape
parameters operates purely on the sets of co-
ordinates that represent the shape. The lo-
cations of the surfaces that form a shape,
when represented by coordinates, are, from
a mathematical perspective, highly structured
scatter plots. Image parameters are the cen-
troid, principal axes, medial axes, skews, and
so on of these scatter plots; they character-
ize the spatial distribution of sensible points in
the environment by measures computed from
the coordinates representing the locations of
those points. Image registration by means of
shape parameters does not single out features,
nor, a fortiori, does it establish between-image
feature correspondences; that is, there is no
landmark-recognition stage in this computa-
tion. The feature-matching approach focuses
on local distinctive, easily sensed surface prop-
erties, whereas the shape-parameters approach
focuses on the global shape of the experienced
environment, that is, on its geometry.

The unexpected finding that disoriented(!)
rats do not use easily sensed, highly salient
corner landmarks to distinguish one end
of a rectangular enclosure from the other
(Cheng 1986, Margules & Gallistel 1988) led
to the suggestion that the image-registration
computation mediating the establishment of a
geocentric orientation in a disoriented animal

was mediated by the computation of shape
parameters (Gallistel 1990). This would explain
the rat’s failure to use distinctive nonpositional
features to determine which way was which
within a rectangular enclosure. If getting reori-
ented depends on feature matching, the rat’s
failure to attend to the landmarks is hard to
understand. They were exactly what a feature-
matching algorithm most needs—highly
distinctive in several sensory modalities and
well localized, therefore easily recognized. The
hypothesized brain mechanism for establishing
orientation on the basis of shape parameters has
come to be called the geometric module. There
is now a large behavioral literature pro and con
(for recent reviews, see Burgess 2008, Cheng
2008, Cheng & Newcombe 2005, Vallortigara
2009). This hypothesis about how a disoriented
animal learns its orientation presupposes that
the animal has a representation of the overall
shape of the experienced environment—a
metric cognitive map. On that score, there is
now considerable consensus in the behavioral
literature, a consensus strongly supported by
the to-be-reviewed neuroscientific findings.

Should this hypothesis about the nature
of the orientation computation prove correct,
landmarks may nonetheless play a role in estab-
lishing an orientation. In some environments
(e.g., rectangles, which are symmetrical about
both principal axes), the principal axes together
with the centroid and/or other shape param-
eters (medial axes, higher-order moments) do
not suffice to uniquely orient the navigator.
Shape-parameter computations yield two
equally acceptable alignments (orientations).
Absent other input, the orientation settled on
will be wrong half the time. When it is wrong,
it will fail to correctly predict salient features
(landmarks). This failure may alert the brain
to its image-alignment error. It may then try
whether the other, equally probably alignment
does correctly predict landmark location(s).
On this hypothesis, correct alignment precedes
and makes possible landmark recognition.
On the hypothesis that alignment is achieved
by feature matching, alignment follows from
landmark recognition. Thus, the question
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is not fundamentally about which cues are
used, shape parameters, or landmarks; rather,
it is about the nature of the image-aligning
computation by which an animal becomes
oriented on its cognitive map. The nature of
the computation determines how the cues are
used and the order in which the alignment and
recognition processes occur.

The sign-landmark distinction. An important
distinction, which has not been clearly main-
tained in the behavioral literature, and which
is rarely recognized in the neurobiological lit-
erature, is the distinction between landmarks
and signs. A distinctive feature is a landmark
when it is used to establish the navigator’s bear-
ings (orientation and location in an allocentric
frame of reference). A sign, sometimes called a
beacon, marks a region where something of mo-
tivational interest may be located, something to
be approached or avoided. Landmarks cannot
be duplicated, because a landmark is, by defi-
nition, a unique and recognizable location. In
contrast, there can be many instances of a sign.
An oak tree, if it is a particularly distinctive one,
may function as a landmark, but it more typ-
ically functions as a sign that acorns may be
found in its vicinity. A storm cloud is a sign that
there is bad weather in that direction; it is not
a landmark, no matter how salient. The farther
away a landmark is, the more effective it is for
establishing orientation, whereas the closer a
sign is to a goal, the better it serves as a beacon.

There are two considerations of method-
ological importance for behavioral and neu-
robiological investigations in connection with
the distinction between signs and landmarks:
(a) A geocentric reorientation by reference to
the shape of, and/or landmarks in, an experi-
mental enclosure is only likely to occur when
subjects have been disoriented by prolonged
slow rotation in the dark. Absent this inertial
disorientation, subjects probably carry a geo-
centric parallel into an experimental enclosure.
In that case, the enclosure is subjectively po-
larized by its perceived orientation within the
broader geocentric framework. Intuitively, the
animal that is not geocentrically disoriented

knows which way is which in any enclosure,
no matter how symmetrical and how feature-
less. The violation of this sense of the en-
closing maze’s geocentric orientation was what
confused the rats in the Carr (1917) experi-
ments that first revealed the devastating effect
on animal navigation of rotating a maze. (b) The
essential test of geocentric reorientation by ref-
erence to a putative landmark is the effect of
changing that landmark’s location on the locus
of a subject’s search for goals at a substantial
distance from the feature. When the goal is at
or near or directly behind the distinctive feature
and the rat is not disoriented, one is probably
not testing properties of the hypothesized ge-
ometric module. One is probably testing sign
learning (cf. Cheng 2008, Graham et al. 2006,
Pearce et al. 2006).

Coordinate formats. Symbol systems for en-
coding locations differ in how they do it. The
most familiar such difference is that between the
Cartesian and polar coordinates. In the Carte-
sian system, the coordinates specify distances
from two orthogonal axes. In the polar system,
the two coordinates specify an angular deviation
from a directional axis (a bearing) and a distance
(range). The form of a geometric computation
depends strongly on the coordinate format. For
computational reasons, it is likely that path in-
tegration (dead reckoning, discussed above) is
computed in a Cartesian format. In that for-
mat, the errors in the estimates of direction
are not compounded in the ongoing integra-
tion, whereas these unavoidable errors are com-
pounded when the computation is carried on in
the polar format. This compounding leads to
the rapid buildup of a large error (Cheung &
Vickerstaff 2010, Gallistel 1990).

A less familiar means of spatial representa-
tion is by spatial basis functions. Spatial basis
functions are distributions that may be com-
bined in weighted sums to create a probability
distribution that peaks at the subject’s probable
location. We say more about this less familiar
way of representing location when we review
the properties of grid cells.
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An advantage of the basis-function format
is that it naturally encodes spatial probability
distributions rather than points. Thus it
naturally represents positional uncertainty.
Representing positional uncertainty is almost
as important as representing position, as many
amateur navigators learn to their cost. Also,
transformation into a basis-function represen-
tation is frequently used in image-registration
and image-stitching computations. As already
mentioned, computing a geocentric orien-
tation is an image-registration computation.
Keeping track of how one local coordinate
system relates to the next as one moves through
a complex space is closely related to what are
called image-stitching problems in image pro-
cessing. Image registration and image stitching
computations map between coordinate frame-
works. The maintenance of mappings between
different coordinate frameworks is the essence
of navigation (cf. Worden 1992).

The place cell system. Neuroscientific
evidence for an abstract representation of the
geometry of experienced space and for the
representation of the animal’s location within
that geometry (i.e., a cognitive map) comes
from the extensive literature on place cells,
grid cells, head direction cells, border cells, and
boundary-vector cells. As their names suggest,
these functionally specialized neurons signal
abstract properties of the animal’s relation to
its spatial environment. These cells are present
in rudimentary form as soon as rat pups leave
the nest (Langston et al. 2010, Wills et al.
2010), suggesting important genetic control
over their development, that is, a genetic basis
for the mechanisms by which the brain rep-
resents experienced spatial geometry. These
specialized neurons are compelling evidence
for problem-specific learning mechanisms,
that is, mechanisms specialized for learning
in a mathematically and physically definable
domain of experience. Their specialization for
this function makes implicit commitments to
domain-defining principles.

Place cells fire when the animal is in a partic-
ular place in a familiar environment. In the rat,

where they have been most studied, they are
found in the hippocampus, the adjacent subicu-
lar complex, and in the entorhinal cortex, which
is the main interface between the hippocampus
and the neocortex (Moser et al. 2008). Circuits
within these three closely connected structures
in the medial temporal lobe appear to be
specialized for navigational computations.

The sizes of the firing fields for place cells
increase as the recording electrode moves from
dorsal to ventral within the hippocampus ( Jung
et al. 1994, Kjelstrup et al. 2008). Viewed from
the brain’s perspective, different place cells rep-
resent spatial location with different degrees of
resolution, just as different simple cells in V1
represent local spatial frequencies on the retina
with different degrees of resolution.

The striking feature of the firing of place
cells is that it does not depend on concurrent
sensory input. A place cell fires when a rat stands
in or moves through a delimited region of a par-
ticular environment. The region is often well
away from the walls and other distinctive fea-
tures of the environment. Different place cells
fire in different places. In some environments, a
place cell fires regardless of what the rat is look-
ing at, and it fires even if the rat is navigating in
complete darkness. Neither immediate visual
experience nor prior visual experience is neces-
sary; place cells with normal properties develop
in rats blinded soon after birth (Save et al. 1998).

It should be recalled that turning off
the lights or blinding rats has little effect
on their ability to navigate a familiar maze.
The combination of these behavioral and
neurobiological findings is not consistent
with recurring suggestions in the behavioral
literature that places are defined by views
(Cheng 2008, Sheynikhovich et al. 2009).
Place is defined by reference to coordinates
stored in memory that represent the learned
geometry of the experienced environment, that
is, by reference to a cognitive map. Vision is
only one of many different sensory modalities
that convey information about the animal’s
coordinates in a frame of reference. The firing
of a place cell represents the integration of
and abstraction away from the more sensible

www.annualreviews.org • The Neuroscience of Learning 185

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
3.

64
:1

69
-2

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 2

08
.1

58
.7

.1
40

 o
n 

01
/0

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PS64CH07-Gallistel ARI 15 November 2012 13:43

aspects of experience to signal a highly abstract
aspect of that experience, namely, its location.

A cognitive map is a repository for acquired
information about the positions of sensible
features of the animal’s environment, as en-
coded in one or more frames of reference. The
firing of place cells is fundamentally dependent
on such a repository, which is why the study
of such cells is central to the neuroscience of
learning and memory.

A striking feature of the results from ex-
periments that have sought to determine what
stimuli control the firing of place cells is that
removing from the environment a cue that
has been shown to affect the place in the ex-
perimental environment at which a place cell
fires, e.g., a distal landmark, does not termi-
nate its effect on the cell’s firing. In many ex-
periments of this kind, rotating a cue by 90◦

or 180◦ rotates the cell’s place field by a simi-
lar amount. However, the cell continues to fire
when the animal returns to that place after the
cue has been removed altogether (Muller &
Kubie 1987, O’Keefe & Speakman 1987, Quirk
et al. 1990, Shapiro et al. 1997). What matters is
not the current sensory input from the cue, but
rather the relation between the rat’s current lo-
cation and the remembered location of the cue.

In another environment, a given place cell
will fire to a different place or may not have a
field. Thus, the firing of a place cell does not
signal that the rat is in a place unique in its ex-
perienced world, although the aggregate firing
pattern across place cells may do so. In multi-
chamber or multiarm environments, a place cell
may fire in different places in different chambers
or arms (Gothard et al. 1996a,b; Shapiro et al.
1997; Skaggs & McNaughton 1998).

The place where a given neuron fires when
in one copy of a box does not predict the box-
relative place (if any) where it fires in an ex-
act copy of that box in another room (Leutgeb
et al. 2004; O’Keefe & Conway 1978). This re-
inforces the conclusion drawn from behavioral
work that a subject’s behavior in one box may
differ systematically from its behavior inside a
copy of that box when the copies are in differ-
ent locations in the macro environment, even

when there is no sensory/perceptual access to
the macroenvironment from inside the boxes.
This re-emphasizes the important point that
animals keep track of their own position and
orientation in the macroenvironment as well
as the position and orientation of the enclosed
spaces they enter. They behave differently in
different but seemingly identical experimen-
tal boxes because the information in memory
about the different locations of the two boxes
in the macroenvironment informs the brain
that the two otherwise indistinguishable boxes
are not one and the same (Collett et al. 1997,
Collett & Kelber 1988). With enclosures, as
with landmarks, location confers identity. No
matter how much one enclosure looks and feels
and smells like another, it is not that other en-
closure if it is not where the animal has the
other located on its large-scale map of its ex-
perienced environment (or if it has the wrong
orientation on that large-scale map). The be-
havioral results and the neuroscientific results
are in accord on this fundamentally important
point: Location determines the subjective de-
termination of identity, not vice versa.

Multiple frames of reference. The effects of
moving landmarks on the location of place fields
suggest conclusions about how the brain uses
local landmarks to maintain a geocentric ori-
entation. It does so by using sensed position in
a framework established by one or more local
landmarks to correct accumulating error in its
dead-reckoned orientation. Geocentric orien-
tations based solely on vestibular and optic-flow
cues inevitably degrade over time because there
is noise in the signals being integrated (Che-
ung & Vickerstaff 2010, Vickerstaff & Cheung
2010). Frames of reference anchored to percep-
tible landmarks in an enclosed space can prevent
the accumulation of error while the animal is in
that environment (Figure 2).

Only by keeping track of position in more
than one framework can the animal make prob-
able inferences about what is moving with re-
spect to what. It has no way of knowing a priori
which objects (potential landmarks) are mov-
able and which are not. If the card moves with
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respect to the cylinder, then other points of
interest on the circumference of the cylinder (a
nest or escape hole, for example) change their
coordinates in the card-based frame of refer-
ence but not in a cylinder-based frame. To dis-
tinguish rotation of the card within the cylinder
from rotation of the cylinder itself, the brain
must represent places and directions within the
cylinder in more than one frame of reference.

When a white card is rotated within an oth-
erwise featureless black cylinder, most place
cells change their firing field correspondingly
(Yoder et al. 2011). If subjects have been geo-
centrically disoriented before placement in the
cylinder, the card is the only thing that permits
the establishment of a stable direction. How-
ever, the same shift occurs even when the card is
moved while the rat is in the cylinder. This ma-
nipulation places the card-centered framework
in conflict with cylinder-centered and geocen-
tric frameworks (Blair & Sharp 1996, Sharp
et al. 1995). During the small interval over
which rotation of the card within the cylinder
takes place, there is little accumulation of er-
ror in the inertial geocentric framework. If the
world (the cylinder, including its floor) were to
rotate, there would be a signal from the semi-
circular canals. Absent a signal indicating rota-
tion in an inertial frame, the probable inference
is that the card moved, not the cylinder. Thus,
for locating the nest or escape hole, a coordinate
frame anchored to the cylinder is the one to use.

Thus, a fundamental question in these ex-
periments is, when the card is rotated in the
presence of a geocentrically oriented subject,
does behaviorally measured orientation go with
the card? In posing this question, one must not
use a behavioral test that puts the goal at the
card, because then the card may function as a
sign. What is required is a behavioral test of a
kind already reported in the literature on animal
navigation (Mittelstaedt & Mittelstaedt 1980):
A mother gerbil with a nest located behind a
hole in a wall of the cylinder leaves the nest to
retrieve a pup in the center of the cylinder. If the
cylinder (with the nest) is rotated while she gets
her pup from a stationary cup in the center, her
return run is “correct” in the now erroneous

black cylinder

white
card

ε

card-centered framework

initial-geocentric parallel

place field
in c-c framework

Figure 2
By maintaining its position concurrently in both local and global frameworks, a
navigator can prevent the accumulation of directional error in the global
framework. The finely dashed directed line is an initial geocentric parallel; it
represents the animal’s orientation in a large-scale geocentric framework on
entering the enclosed, maximally symmetrical space. The finely dashed circle
represents a place field in the framework established by the large white card,
which is the only distinctive feature in a black cylinder, an enclosure with no
principal axes. In such an enclosure, the only way to maintain a geocentric
orientation is by angular dead reckoning, but exclusive reliance on this
computation will bring with it unavoidable directional drift (coarsely dashed
directed line). The directional drift, ε, will put the geocentric framework out of
register with the local landmark framework; a position in global coordinates
that initially superposed on the place in local coordinates will no longer
superpose (coarsely dashed circle). The discrepancy between the referents of
what should be corresponding coordinates can be used to correct the drift error
in the geocentric direction. Intuitively, if the correct geocentric orientation
were that indicated by the coarsely dashed line, then the animal should find
itself close to the orientation axis of the card-centered framework. From the
quite different gaze angle from the place where a neuron fires, the accumulated
error in its geocentric orientation may be computed and corrected.

inertial frame of reference rather than in the
cylinder-centered frame. She ignores the highly
salient odor cues and pup cries coming from the
nest. This is one of many demonstrations of the
navigational importance of inertial (hence, geo-
centric) frames of reference. The question thus
is, assuming that a large white card in such a
cylinder would establish a frame of reference
for place fields, would the rotation of the card
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that caused a relocation of the place fields also
cause the rat to run 90◦ off the true direction
of a nest located well away from the card? Or,
as the hypothesis about the function of place
fields in card-centered frames of reference im-
plies, would the rat still return directly to its
nest, despite the change in the place fields? To
our knowledge, this question has not been put
to the experimental test.

When individual landmarks, landmark
arrays, or components of more complex
environments are moved, the results resist
easy summary (Gothard et al. 1996a,b; Shapiro
et al. 1997; Tanila et al. 1997), but they are
consistent with the hypothesis that the brain’s
navigation system tracks the animal’s position
and orientation in several different frameworks
simultaneously.

Dependence on vestibular input. Vestibular
input is essential to the computational mech-
anisms that generate the firing of place cells.
Temporary inactivation of this signal elimi-
nates the place-specific firing of hippocampal
cells for the duration of the inactivation (Stack-
man et al. 2002). Lesioning the vestibular ap-
paratus eliminates it permanently (Russell et al.
2003). Given the many demonstrations that the
place fields depend strongly on local landmarks,
the dependence on vestibular input may seem
surprising. The explanation is probably that
vestibular input is essential to the maintenance
of orientation in an inertial (hence geocentric)
frame of reference. The maintenance of this
orientation is essential to the dead reckoning
that plays a critical role in the construction of
cognitive maps, landmark recognition, and in-
ferences about what moves relative to what.
Whatever disrupts dead reckoning can be ex-
pected to disrupt all of these processes.

The evidence that much of the basic ma-
chinery of navigation does not operate properly
in the absence of appropriate vestibular signals
is important for the methodology of behavioral
studies of navigation. It suggests caution in
interpreting the results from virtual reality
experiments and functional magnetic reso-
nance imaging (fMRI) experiments, in which

vestibular signals processed in the midbrain
(Angelaki et al. 2010) indicate no translation
or rotation in an inertial framework, whereas
optic-flow signals processed in the forebrain
(Britten 2008) indicate self-motion. Much of
the brain’s navigational machinery may not
function properly under these conditions.

What else place cells signal. Many other as-
pects of the animal’s experience affect the firing
of hippocampal place cells. In more complex
environments, firing varies strongly with the
direction in which the animal moves through
a place. Changing the color of the walls has a
large effect (Leutgeb et al. 2005), as does chang-
ing the task that the animal is carrying out
(Colgin et al. 2008, Komorowski et al. 2009,
Leutgeb et al. 2005, Manns & Eichenbaum
2009, Markus et al. 1995). Many of these effects
cause what is called rate remapping: The place
field does not change but the firing rate and
firing pattern in that field does. The effects of
highly diverse nonspatial cues demonstrate the
dependence of neural firing in the hippocam-
pus on a vast repository of acquired informa-
tion, much of it highly abstract. When we learn
how to read the spike train code, the firing of
a single hippocampal neuron may tell volumes
about the animal’s current experience in rela-
tion to its past experience in that environment.

It may seem puzzling that a neural structure
that is a critical component of a complex sys-
tem for navigating should also be strongly im-
plicated in memory phenomena that, on their
surface, have nothing to do with navigation and
the representation of space. Gallistel (1990), in
a chapter on “The Unity of Remembered Expe-
rience,” adduced evidence that spatio-temporal
indexing is the mechanism by which the brain
knits together the diverse aspects of experi-
ence computed by the many different problem-
specific modules that are implied by the neu-
roanatomy and electrophysiology of the cortex.
On this hypothesis, the brain binds the remem-
bered color of an object to its remembered
shape on the basis that the physically separated
(at the level of brain substrates) memories of
the object’s color and its shape have the same
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spatio-temporal index. They have the same
spatio-temporal index because they were per-
ceived in the same place at the same time. This
hypothesis maintains that episodic memory,
that is, the ability to reconstruct an experience
in all of its diversity, depends fundamentally on
the representation of the spatial and temporal
location of the elements of the experience.

Consistent with this hypothesis about the
key role in memory of the encoding of spatio-
temporal location is the recent discovery that
hippocampal place cells also signal position in
time. MacDonald et al. (2011) taught rats to
associate one of two objects with one of two
odors presented 10 s after the rats had in-
spected the objects. On a given trial, one or
the other odor was mixed into the sand in a
flowerpot and presented to the rat 10 s after it
inspected the object. If the odor was that asso-
ciated with the recently inspected object, dig-
ging in the flowerpot yielded food. If it was the
wrong odor, the one associated with the other
object, the rat had to avoid digging in the pot
and go to another location to obtain food. The
experimenters recorded from multiple pyrami-
dal cells in the hippocampus throughout each
trial. They found that the firing rates of differ-
ent cells peaked at different times during the
10 s delay between the inspection of the object
and the presentation of the odiferous flowerpot
(Figure 3). Thus different cells signaled differ-
ent locations within the interval. As expected
from the scalar variability seen in behavioral
work on interval timing (Gallistel & Gibbon
2000), the signals from cells whose firing peaked
later in the interval were more spread out in
time.

The grid cell system. Grid cells are multi-
modal place cells. A grid cell fires at multiple
locations within a familiar environment (see
Derdikman & Moser 2010, Moser et al.
2008, Yoder et al. 2011). The locations where
it fires form a triangular grid (Figure 4).
The grids for different cells have different
phases, different compass orientations, and
different scales, as would be expected if they
mediate a basis function representation of the

animal’s probable location. The scale of the
grids increases as one moves the recording
electrode from dorsal to ventral in the en-
torhinal cortex (Brun et al. 2008). (Recall that
a similar increase in the size of place fields
occurs along the same dorsal-to-ventral axis
in the hippocampus.) The effects of moving
landmarks on grid cells are similar to their
effects on place and head direction cells; the
relevant experiments show that grid cells are
anchored to multiple frames of reference and
can change their frame of reference within less
than 100 ms (Derdikman et al. 2009; Diba &
Buzsáki 2008; Frank et al. 2000; Gothard et al.
1996a,b; McNaughton et al. 1996; Redish et al.
2000; Rivard et al. 2004).

An important difference between grid cells
and place cells is that the entorhinal grid cell
map (together with the head direction cells,
border cells, and boundary-vector cells) ap-
pears to be a single map with different phase
and alignment to the environment in different
places or in different conditions (Fyhn et al.
2007, Solstad et al. 2008). The place cell sys-
tem, by contrast, appears to reflect several dif-
ferent more local maps (Derdikman et al. 2009).
An analogy to marine charts may help. Between
ports, navigators use a large-scale map on which
there are many ports. The navigator uses differ-
ent parts of this map from different orientations
under different circumstances, but it is all one
map. Elsewhere in the chart book (or some-
times on the back of the large-scale chart) there
are port maps, one for each port. This differ-
ence between the grid cell system and the place
cell system is consistent with the behavioral evi-
dence that animals maintain their sense of place
within the large-scale environment (extramaze
cues) while also being sensitive to their location
relative to local features (intramaze cues).

Grid cells are found in the medial entorhinal
cortex and in the subiculum and parasubiculum,
the subset of the medial temporal lobe struc-
tures that contain a neural system specialized
for the representation of the animal’s position
and heading on its cognitive map.

Head direction cells fire when the head
is oriented within roughly +/– 45◦ of a

www.annualreviews.org • The Neuroscience of Learning 189

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
3.

64
:1

69
-2

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 2

08
.1

58
.7

.1
40

 o
n 

01
/0

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PS64CH07-Gallistel ARI 15 November 2012 13:43

curtain

hall

room

Figure 5
A head direction cell fires whenever the rat’s head is at a specific angle with
respect to directional parallels (dashed lines), regardless of where the rat is in
the environment and even in complete darkness. The experimental set-up
portrayed schematizes common features of those actually used: A test arena
(radial maze or cylinder or box) surrounded by curtains, often with some
landmarks on them (the differently shaped lumps against the curtain), located
in a laboratory room off a hall through which the rat is transported prior to
testing. Behavioral and electrophysiological results imply that the entire space
is represented on at least some of the maps that inform behavior and the firing
of place and head direction cells.

directional parallel in some frame of reference
(for a recent review, see Taube 2007). The
more closely the head’s orientation matches
the center of a cell’s directional tuning, the
more rapidly the cell fires. At the optimal
orientation, firing is typically brisk (20–100
spikes/s) and sustained. Different cells are
tuned to different directions. In the population
of head direction cells, there does not appear
to be a favored direction. Their directional
tuning in a given environment is stable across
many days. Thus head direction cells could be
described as compass cells. They provide the
directional signal required for dead reckoning.

They are not, however, components of a
magnetic compass, as their directional tuning
is not dependent on the earth’s magnetic field.

Head direction cells are found in diverse and
widely separated brain structures: the anterior
dorsal thalamic nucleus, the lateral dorsal thala-
mus, and the lateral mammillary nuclei, which
are widely separated loci in the diencephalon;
also in the dorsal tegmental nucleus in the
midbrain; the dorsal striatum in the subcortical
telencephalon; and in diverse cortical areas,
including entorhinal, retrosplenial, medial
precentral, and medial prestriate cortex. They
are most prevalent in the anterior dorsal nu-
cleus of the thalamus (∼60% of cells recorded
there), but the population in the subiculum has
also been intensively studied. The subiculum is
intermediate between the hippocampus and the
entorhinal cortex. Like the entorhinal cortex, it
is a way station for signals going into and com-
ing out of the hippocampus. Like place cells,
head direction cells require a vestibular signal.

The firing of a head direction cell signals
a highly abstract property of the relation be-
tween an animal and its surroundings. It does
not signal that the head is directed toward a par-
ticular place or object in the local environment,
because the place toward which the head is ori-
ented differs depending on where the animal is
(Figure 5). A head direction cell fires when the
head has the cell’s preferred orientation even in
complete darkness. Direction, like location, is
defined only by reference to the learned geom-
etry of the experienced environment.

The effects of moving prominent landmarks
on the tuning curves of head direction cells are
similar to the effects on place cells: In complex
environments, when proximal and distal land-
marks are rotated in conflicting directions, the
frame of reference usually goes with the distal
landmarks (Yoganarasimha et al. 2006, Zugaro
et al. 2001), as one would expect, given that
for determining direction, the farther away a
landmark is, the better it will function. This
is another manifestation of the many ways
in which the signaling of these specialized
cells reveals implicit commitments to domain-
specific mathematical principles. In a cylinder
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environment, where most such experiments
have been done, rotating the card 90◦ or 180◦

on the wall of the cylinder rotates the frame
of reference for all the head direction cells
by the same amount. Notice in Figure 5 that
such a rotation (for example, of the triangle
in the northeast quadrant) constitutes a much
greater change in viewing angle for the rat
when it is looking from the end of the east arm
than when it is looking from the end of the
south arm. This emphasizes the fact that what
rotates coherently is the frame of reference
within which directional parallels are defined,
not landmark-viewing angles.

When a rat walks from a familiar chamber
into an unfamiliar one, a head direction cell
typically maintains the frame of reference es-
tablished in the familiar room (Dudchenko &
Zinyuk 2005, Golob & Taube 1999, Stackman
et al. 2003, Taube & Burton 1995). This is an
example of carrying the directional parallel into
unexplored parts of an environment. As the new
chamber becomes familiar, the frame of ref-
erence mediating the neuron’s signaling often
shifts to the landmarks in that chamber. How-
ever, as the subject gains familiarity with a mul-
tichambered environment, some head direction
cells adopt a frame of reference that remains the
same from chamber to chamber (Dudchenko &
Zinyuk 2005).

The shifts in the frame of reference for the
head direction signal in response to changes in
enclosure shape and landmarks is often taken
to indicate that this signal does not participate
in the behaviorally well-documented process of
maintaining a geocentric orientation with re-
spect to the environment outside the enclo-
sure. This is a mistake. The neuron is not the
rat. Carrying a directional parallel depends on
computations performed on the overall geom-
etry of the so-far experienced space. Carrying
the parallel further, as one enters unexplored
regions, is essential to the construction of a
coherent map of the large-scale environment.
The construction of such a map makes it pos-
sible for the place- cum-head-direction-cum-
boundary-cell system to signal direction and
location in a large-scale framework. It enables

the animal to keep track of where it is in the
world.

Border cells fire when the rat is near a
compass-oriented boundary (Solstad et al.
2009). What drives the cell’s firing is not
concurrent sensory input (e.g., a view or feel or
touch). What drives firing is a geometric ab-
straction, the existence of an extended bound-
ary or obstacle to navigation with a particular
orientation with respect to the large-scale en-
vironment. For example, a boundary cell may
fire all along the east side of a north-south wall,
whether the lights are on or not. If it is the wall
of a square box and the box is elongated parallel
to that wall, the firing field now extends all along
the elongated wall. When the wall is removed so
that the boundary becomes the limit of the nav-
igable surface on which the rat is supported, the
cell still fires all along this limit, even though its
sensory properties are now radically different.
When the rat is moved into other environments
with north-south boundaries, the same cell
fires all along the east side of those boundaries,
too. If a north-south-oriented wall is inserted
partway into one of these environments, the cell
fires along the east side of that wall and along
the east side of the enclosing environment.
The moving of landmarks and the changing of
environmental shape that cause remapping of
place and head direction cell firing do not cause
remapping of boundary cells; that is, they do
not cause them to fire along boundaries with
a different compass orientation. The existence
of these cells is strong confirmation of the con-
clusion drawn from behavioral work that rats
generally maintain a sense of their orientation
in the large-scale environment. Border cells
may be special cases of boundary-vector cells.

Boundary-vector cells fire when a limit to
navigation lies at some remove in a particular
compass direction from the rat, regardless of
the color, material, or shape of the boundary
and regardless of whether it is a material obsta-
cle to navigation or an immaterial obstacle, that
is, the void where the supporting platform ends
(Lever et al. 2009). Like border cells, boundary-
vector cells do not usually remap in response to
the manipulation of landmarks, and they fire
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at the same remove and direction from a limit
in different environments with different shapes
in different locations within the macroenviron-
ment. The longer a boundary cell’s vector, that
is, the farther from the boundary its firing field
is located, the greater is the extent of the field.
This suggests scalar uncertainty in the repre-
sentation of distance as well as time, a result
consistent with behavioral results (Durgin et al.
2009).

Border cells and boundary-vector cells are
found intermingled with head direction cells
and grid cells in what are by now “the usual
suspects,” that is, the medial entorhinal cortex
and the subiculum, which are in the medial tem-
poral lobe next to the hippocampus.

CONCLUSIONS

The mechanisms of synaptic plasticity (e.g., as-
sociative LTP or the Hebbian synapse) do not
explain the properties of associative learning.
The hypothesis that LTP is the mechanism of
memory offers no account of how the highly
structured, acquired information that mediates
animal navigation and the firing of place, head
direction, grid, and boundary-vector cells may
be carried forward in time in a manner that
makes it available to computation on a millisec-
ond time scale. The stored information in the
causal chain that informs the firing of cells in
the navigation system can change radically in a
fraction of a second, as, for example, when the
frame of reference for a place or head direction
cell changes ( Jezek et al. 2011).

The shortcomings of the synaptic plasticity
hypothesis highlight the necessity for a more
behaviorally and cognitively sophisticated
approach to the neuroscience of learning and
memory. The literature on the functional prop-
erties of neurons in the medial temporal lobe
that are sensitive to environmental geometry
implies the existence in the brain of genetically
specified, purpose-specific computational
mechanisms that construct a metric repre-
sentation of the geometry of the experienced
spatial environment and continually signal the
animal’s location and orientation within that

representation. The neurobiological results
testify to the neurophysiological reality of
metric cognitive maps, whose existence has
been a controversial hypothesis in psychology
and cognitive science for decades. Similar
conclusions may be drawn from fMRI results
in humans (Epstein 2008, 2011; MacEvoy &
Epstein 2011; Morgan et al. 2010), but space
does not permit a review.

A common feature of space-representing
neurons is the highly abstract nature of their
tuning. Their tuning cannot be described in
terms of the stimuli acting on sensory receptors
when the neuron fires. It can only be described
by reference to a map in memory and to entities,
such as directional parallels and boundaries,
which must be constructed by computations
performed on that map. A place is not defined
by anything acting on the rat’s sensorium when
it is at that place, and likewise for a head di-
rection. Position and heading are defined only
by reference to the learned geometry of the
surrounding space. Most of that geometry is
not directly sensible by the rat on any particular
occasion when it happens to pass through that
place on that heading. Under many circum-
stances, it is dead reckoning that mediates the
brain’s representation of the animal’s location
and heading, rather than the processing of con-
temporary sensory input unique to that place
and heading. That is, the animal’s represen-
tation of itself as being in a certain place with
a certain heading depends on computations
that took as inputs idiothetic signals generated
while it was moving toward that place, rather
than signals emanating from extracorporeal
features of that place (its feel, its reflectance,
the views from that place, the sounds heard
there, the odors smelled there, and so on).

The neurobiological evidence confirms
the conclusion drawn from studies of animal
navigation that dead reckoning is foundational.
Dead reckoning is a domain-specific compu-
tation that makes an implicit commitment to
a domain-specific mathematical principle. It
presupposes nontrivial genetically specified
neural mechanisms that implement a system
of coordinates anchored to a large-scale
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frame of reference. The representation of the
geometrical relation between a place and the
surrounding navigationally important surfaces
comes from the cognitive map, which is the
repository in memory of the spatial information
acquired in past explorations of the environ-
ment. Geometric information enters the brain
via many different sensory modalities (and,
probably, from reafferent motor commands)
and over extended periods of time.

The extended period of time required for
the construction of a global map reminds us
that the fundamental function of memory is to
carry acquired information forward in time in
a computationally accessible form (Gallistel &
King 2009). Any hypothesis about the neuro-
biological mechanism of memory must make
clear how the proposed memory mechanism
stores structured information and makes it ac-
cessible to computation. The hypothesis that
synaptic plasticity is the mechanism of mem-
ory has yet to meet (or even address) this chal-
lenge. In the words of Griffiths et al. (2010,
p. 363), “. . .the single biggest challenge for the-
oretical neuroscience is not to understand how
the brain implements probabilistic inference,
but how it represents the structured knowledge
over which such inference is defined.” The rep-
resentation of the geometry of the experienced
environment is a prime example of structured
knowledge. The firing of place- and direction-
sensitive neurons gives direct neurobiological
evidence that such a representation exists in

neural tissue and that it is every bit as abstract
as the term “cognitive map” implies.

The aspects of experience that drive learn-
ing in other domains are similarly far removed
from elementary sense experience. Associative
learning—and the signaling of neurons that
participate in it—is driven by contingency, not
by the temporal pairing of events. Contingency
is a property of the global distributions of events
in time, just as shape is a property of the global
distribution of surfaces in space. Contingency
is comprehended through the computation
of entropies, just as shape is comprehended
through the computation of locations. The
signaling of neurons that participate in rein-
forcement learning is driven by computations
that refer to remembered temporal structure.
In both the spatial and the temporal domain,
these computations can only be performed
on a symbolic representation of where events
have occurred—where in space and where in
time.

Seen from a broad historical perspective,
these conclusions support a materialist form
of Kantian rationalism: The brain has geneti-
cally specified machinery for the construction
of a spatio-temporal probabilistic representa-
tion of the experienced world. This machin-
ery is a precondition for what have traditionally
been thought of as “elementary” sense expe-
riences, because all remembered experience is
localized in space and time, with an explicitly
represented degree of uncertainty.

FUTURE ISSUES

1. Where and how is the acquired geometric information that informs the firing of place,
grid, head-direction, and boundary-vector cells stored? In the synaptic conductances
between neurons in the circuits in which the cells are embedded? In molecules within
the cells (e.g., in micro RNAs selected on the basis of their base-pair sequences, or in the
methylation patterns on stretches of junk DNA, or in switch-like molecules, of which
rhodopsin is an example)? In the conformation of molecules embedded in the synaptic
membranes?

2. Where and how is the acquired temporal information that informs the firing of hip-
pocampal cells stored?

3. Is environmental shape encoded using the same code as object shape?
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4. Complex computations reduce to sequences of the basic arithmetic operations. How
are these operations implemented and at what level of neural structure (circuit, cellular,
molecular)?

5. How is it possible for the frame of reference in which a cell signals place or head direction
to change in less than 100 ms, given that this frame of reference depends on acquired
information stored in memory?
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Figure 3
The firing of cells in the hippocampus is tuned to location in time as well as location in space. Each row gives
the normalized firing pattern from one of more than 30 neurons whose activity was simultaneously recorded
on repeated trials during the 10 s delay between object sampling and odor presentation (peak firing indicated
by red). The neurons have been ordered from top to bottom in accord with where in the interval their firing
peaked. For similar results from neurons in posterior parietal cortex in mice, see Harvey et al. (2012).
(Reproduced from figure 2, panel B in MacDonald et al. 2011 by permission of the authors and publisher.)

Figure 4
Schematic rendering of the firing fields of two different grid cells (black and red). The regions where a cell
fires are represented by the circles. They are connected by dashed lines to emphasize the triangular structure
of the grid. The scale factor for the two grids differs by a factor of 1.5. The arrow points to the unique region
where both cells would fire. This shows how the firing field of a place cell could be constructed by
thresholding the summed input from these two grid cells (cf. Cheng & Frank 2011, Giocomo et al. 2011).
The firing of grid cells represents spatial location in a basis function format.
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