
The Neutral Representation Project

Mike Barley, Peter Clark, Keith Williamson, Steve Woods
Boeing Research and Technology

P.O. Box 3707, WA 98124
{ barley,clarkp,kew,woods } @redwood.rt.cs.boeing.com

Abstract

The evolving complexity of many modern artifacts,
such as aircraft, has led to a serious fragmentation of
knowledge among software systems required for their
design and manufacture. In the case of aircraft design,
views of the same generic design knowledge are re-
dundantly encoded in multiple software systems, each
system using its own idiosyncractic ontology, and each
system containing that knowledge in an implicit, task-
and vendor-specific form. This situation is expensive,
due to high cost of developing from scratch, maintain-
ing and keeping synchronized the many systems used
in design.

Boeing’s "Neutral Representation" project aims to ad-
dress these concerns by prototyping languages and
methods for making these underlying ontologies and
knowledge explicit, and hence more sharable and
maintainable. We are approaching this goal through
three tasks: Building explicit, neutral, machine-
sensible representations of design knowledge; structur-
ing that knowledge into reusable components, indexed
by the ontologies which they use; and linking those
representations with existing design systems. In this
paper we present the work done this year, and discuss
issues related to ontological engineering and knowl-
edge sharing which have arisen.

Introduction

Overview

The Boeing Company performs very large scale engi-
neering of aerospace products. The 777 commercial
aircraft, for example, is comprised of about 3 million
parts, some 350,000 of which are significant designed
parts. Some of these parts are designed and built in
house, some are designed by Boeing and built by sup-
pliers, some are designed and built by suppliers to Boe-
ing specification, and some are standard parts, such
as fasteners, which are ordered off the shelf. In any
case, all parts must meet their specifications in order
to be integrated and assembled. In a manner of speak-
ing, this means that the design of all these component

parts conform to an underlying, coherent model of the
product.

Although this underlying model is articulated in
Boeing Design Manuals, industry standards, software,
and documented design processes, this articulation
is typically in the form of natural language text or
vendor-specific code, rather than in a neutral, machine-
sensible form. As a result, knowledge cannot be auto-
matically exchanged or shared between systems, re-.
sulting in higher development, validation, and main-
tenance costs. The inaccessibility of knowledge em-
bedded in engineering software is of special concern.
For example, it is typical for there to be separate ap-
plications creating the engineering design and tooling
design for parts. The applications are often indepen-
dently developed and maintained, but yet they do (and
must) share common knowledge about the part, how
it is made, and the assumptions underlying the design.
When these assumptions change, these programs will
become unsynchronized in a way that is hard to glean
directly from their lines of code. The cost of possible
desynchronization is that the part might not be pro-
ducible on the specified kind of tooling - perhaps the
bend radius of a sheet metal part is too sharp. Or per-
haps the part so produced has to be rejected because
there is too much springback.

This problem is growing, as Boeing is developing new
design automation software at a significant rate. One
class of software, called Knowledge Based Engineer-
ing (KBE), software is closely coupled to Computer
Aided Design (CAD) and Computer Aided Manufac-
turing (CAM) systems (Proctor 1995). KBE is being
used to create large quantities of product data in a
repeatable and standard way. It is extremely cost-
effective because it captures the mapping between a
particular design operation and the sequence of steps
needed to drive a CAD system’s solid modeler to cre-
ate the desired digital geometry. However, it also adds
yet another encoding of design knowledge to be main-
tained, and the knowledge which it contains cannot be

From: AAAI Technical Report SS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

easily transferred to or exchanged with other design
systems.

There are several ongoing projects within Boeing to
try to address these concerns with respect to prod-
uct instance data, so that at least information about
specific parts can be represented and exchanged in a
neutral, machine-sensible form (for example work on
STEP (Chen 1996), which aims to standardize the
form in which product data is exchanged). The Neu-
tral Representation project similarly is addressing
these concerns but with respect to design knowledge,
where information is mainly in the form of general
rules. Our goal is to develop machine-sensible repre-
sentations of design rules and assumptions, so that de-
sign knowledge can similarly be made explicit, stored,
and exchanged. This includes knowledge such as the
assumptions underlying a design, design constraints,
knowledge about design and manufacturing features,
design intent implicit in geometry data, manufactur-
ing knowledge and geometric knowledge.

The degree to which we are successful will influence
how our core design knowledge assets are expressed
and utilized. The project should clarify and standard-
ize design vocabularies and methods. It will mean
that proven .design methods can be used, without sub-
stantial reimplementation, for multiple aircraft models.
Equally this core knowledge will be used consistently
in multiple locations (wing, fuselage, and tail) on the
same aircraft.

Representations and Ontologies

Before presenting the project in more detail, we de-
scribe our use of the word "ontology". As well as
building representations of design knowledge, we wish
to also characterize which objects those representations
are about. We refer to that characterization as the rep-
resentation’s ontology: the ontology is a specification
of that which can be talked about, a description of the
representation’s universe of discourse, analagous to a
database schema. The ontology states the ’necessary’
or universal facts, while theories using that ontology
represent ’contingent’ or transient facts. An ontology
helps a person (or machine) identify how a specific rep-
resentation ’carves up’ the world into concepts, and
hence how to interface to that representation correctly.
In fact, the boundary between what should go in the
ontology and what should be part of a specific theory
is not always clear cut, and where the boundary falls is
partly a pragmatic choice. However, one of the values
of the distinction in the context of knowledge sharing,
especially when the ontology has been standardized,
is that the axioms that define it don’t have to be in-
cluded in every exchange; instead, they are part of the

1. Code Fragment Synthesis

Neutral Design Knowledge
(eg. KIF)

Application System (eg. ICAD)

Operational Design Knowledge
(eg, 1CAD proceduresl

2. Reasoning
: Neutral Design Knowledgei

(eg. KIF)

lnferenco Engine :- query
,csp~nsc Application System

- " ’ ’ query (eg. ICAD, Genesis):’ Operational Design Rules i,.
(eg. ADS/StoneRule if...then.., rules!! response

3. Customized Manuals
[Neutral Design Knowledge [

(eg. KIF) i

Customized Document Generator

Operational Design Rules

Custom zed
[] Manual

[] [~ (eg. viewed
i through Netscape)

4. Smart Documentation
Neutral Design, Knowied~,~

: (eg. KIF) ,-t- -- =

(bi-dircctional
p~fintcrs)

Application Code + Comments

cOn|lllCnls

c~xle

COllllllerlts

c~le

¢OllllnCfl[~

coclc

Figure 1: Scenarios of Use for A Neutral Representa-
tion.

background context for communication.

Scenarios of Use

An explicit, machine-sensible representation of de-
sign knowledge opens the door to a wealth of (non-
mutually-exclusive) possible uses. To motivate our
general goal, we describe several of these:

Code Fragment Synthesis: One scenario of use is
the automatic translation of design knowledge from
a neutral to operational form, resulting in code frag-
ments in some target language. Such fragments can
be embedded within target application software, al-
lowing it to use design knowledge originally encoded
in the neutral repository, thus avoiding the expen-
sive, error-prone, manual re-coding of design knowl-
edge for each new application system developed. As
well, this should improve are ability to understand
precisely what is encoded in software. Does it incor-
porate required safety separations between electri-
cal and fuel systems? Does it use standard fastener

types? Is it usuable for subsonic and supersonic air-
craft? Even these most basic design questions can
be difficult to answer if our only recourse is to lines
of code.

Reasoning: Perhaps the biggest advantage of a
machine-sensible encoding of knowledge is the abil-
ity to perform inference. Given such design rules, an
inference engine can reason with and combine knowl-
edge to answer a wide variety of questions, and tailor
answers to an application system’s specific context.
This approach has been highly successful in many
knowledge-based systems, including within Boeing
(eg. ESDS (Dahl 1993), which reasons with applica-
tion data to advise on tasks such as material selec-
tion, electrical engineering aspects). A neutral rep-
resentation could similarly act as an active source
of design information for both users and application
software.

Customized Manuals: ’Information overload’ is a
major problem in complex domains such as aircraft
design and maintenance. For example, the mainte-
nance manuals for the 777 aircraft contain in the ex-
cess of sixty thousand pages, and even with modern
search engines provide a formidable challenge for a
user to locate relevant information. However, given a
machine-sensible encoding of design knowledge and
design rules, it becomes possible for a machine to
quickly find information pertinent to a user’s con-
text and problem, and to synthesize text to describe
it using standard natural language generation tech-
niques. This approach has been prototyped in sev-
eral areas, including aerospace (Marchant, Cerbah,
& Mellish 1996) and distributed computing (Clark
& Porter 1996).

Smart Documentation: Currently, documentation
of designs and design software is typically in free
text format, making the relationships and depen-
dencies between different aspects of a design opaque.
However, if documentation included pointers back to
machine-sensible descriptions of the design knowl-
edge it used, then dependencies between design as-
pects would become more explicit. As a result,
the impact of technology or requirement changes
could be more easily assessed, as the dependence
of code or designs on specific rules or assump-
tions would have been recorded. This approach has
been applied in several systems (eg. (Klein 1993;
Conklin & Begeman 1987)).

Consistency Checking: Finally, given de-
sign knowledge represented only in text format, it
is almost impossible to ensure that design rules are

Figure 2: Drawing of a stiffened panel.

(defun get-w-n (local-cell-dim max-limit-width
min-limit-width sep end-sep)

(if (>= 1-cell-dim (+ min-limit-width
(* 2 end-sep)))

(let-streams ((i (from

(width (fby (- l-cell-dim (* 2 end-sep))

(- (div (- (+ 1-cell-dim
sep)

(* 2 end-sep))
(tail i)) sep))))

((return-when (<= width max-limit-width)
(if (>= width min-limit-width)

(list width i)
(if (< l-cell-dim (+ width (* 2 end-sep)))

’(o o)
(if (> i

(list max-limit-width (- i i))
(list max-limit-width I)))))))

,(o o)))
Figure 3: Fragment of (pre-production) ICAD code for
stiffened panel layout.

consistent. Given a machine-sensible representation,
however, it becomes feasible to develop techniques to
automatically check consistency. This approach has
been used in many domains in expert systems re-
search, for example in law for identifying regulatory
inconsistencies.

Although there are many possible uses for a neutral
encoding of design knowledge, we have initially con-
centrated on the first of these (code fragment synthe-
sis). We describe the application and approach used in
more detail in the next Section.

A Prototype for Stiffened Panels

In the first phase of this project, we have focussed
on a small design task, namely the layout of stiffened
panels for rigid structures. Minimizing weight, while
maintaining structural integrity, is an important goal
in aircraft design. A simple example of this is includ-
ing lightening holes (ie. holes to reduce weight) in
structure, as illustrated in Figure 2. A similar task is
locating the number of stiffeners needed (and no more)

for a given panel. The computation of the size and
placement of such holes, stiffeners, and other repeated
elements requires various different types of knowledge,
but this knowledge is typically not made explicit in
the software which performs these computations. In-
stead, it is (at best) buried in the lines of code, or (at
worst) not recorded at all. Figure 3 shows a fragment
of design code for one such placement task, illustrat-
ing the inaccessibility of the design knowledge which it
incorporates.
Our goals in this study were to:
1. Identify the underlying knowledge used.
2. Represent it explicitly in a ’neutral’ format, and

structure that representation into a set of component
theories, characterized by the ontology which it uses.

3. Show how that representation can be used to syn-
thesize operational code fragments, which could be
used for this and other design tasks.

In this Section we describe the work done on these
three tasks. Following this, we discuss the issues, prob-
lems and opportunities which this study presented.

Identifying Panel Design Knowledge

By manually analyzing code such as that in Figure 3,
and interviewing designers, we were able to identify
various fragments of the knowledge used in this task.
This includes some panel geometry knowledge, im-
plicit in the code, such as:

IF the panel is standard shape
THEN panel length = total width of holes +

total width of separators +
total width of end-separators.

IF the holes are of equal size
THEN total width of holes = width of hole * #holes.

IF the holes are equally spaced
THEN total width of separators = width of separator

* number of separators.
IF panel is standard shape
THEN number of separators = number of holes - I.

IF hole sequence is centered
THEN total width of end-separators = 2 * end-sep.

In addition, the code implicitly minimizes the num-
ber of elements, subject to constraints on their mini-
mum and maximum size. The design rationale for
this decision is not represented anywhere in the code,
but can be reconstructed as one aimed to minimize
cost. I. This rationale in turn is based on knowledge
about the manufacturing process, and costs involved.

~This is a best-guess reconstruction for the rationale in
this design: there may have been other factors also leading
to this design decision which we have not recovered here.

We can additionally make this underlying design ratio-
nale explicit; not only will it provide ’traceability’ for
design decisions, but will allow identification of how the
design should be modified if the underlying assump-
tions change (for example, if a new machining process
is developed changing the manufacturing costs). For
this purpose, a simple model of manufactured parts
can be constructed, including rules such as:

IF part is a standard panel
AND operation is drilling lightening holes
THEN manufacturing cost = stock cost +

(cost-per-hole * number of holes).

IF part is a standard panel
THEN total cost = K1*panel-weight + K2*manuf-cost.

(using some appropriate values for K1 and K2). Simi-
larly, some basic physics knowledge and basic ge-
ometry knowledge is needed to compute parameters
used by these rules, including:

IF part is homogeneous
THEN Mass = volume * density.

Weight = Mass * G.

IF part is a box

THEN volume = height * width * depth.

IF part is a cylinder
THEN volume = depth * pi * r ^ 2.

Representation in A ~vlachlne-SensiBle,
Neutral Form
The above rules are an informal description of (some
of) the knowledge underlying this simple design appli-
cation. There are various possible languages we can
use to express this knowledge more formally. We have
been evaluating two, both based on first-order logic:
KIF/Ontolingua: KIF is a stable, standardized syn-

tax for first-order logic, which aims to remove
all vendor-specific notational idiosyncracies (Gene-
sereth & Fikes 1992). In our experiments we used
Ontolingua, an extended version of KIF allowing
theories to be specified in a pseudo object-oriented
style.

SLANG: A language which supports the construction
of separate, modular theories, and their integration
together (Jullig et al. 1995).

KIF/Ontolingua has particular advantages due to its
ongoing emergence as a standard, while SLANG has
particular advantages due to its capabilities for merg-
ing different theories together in sophisticated ways.
To compare both of these, and examine the feasibility
of using both, we have expressed the knowledge in both
KIF and SLANG, and have prototyped an automatic
translator for translating between the two (we com-
ment further on this later in the Discussion Section).

Rather than formalizing the design knowledge as a sin-
gle, large rulebase, we have broken it up into several
component theories which interact together to produce
the final design. This modularity helps improve the
generality and reusability of the encoded knowledge.
The theories we have identified and represented are:
¯ panel geometry
¯ manufactured parts
¯ basic physics

¯ basic geometry
¯ materials (not shown above)
¯ design goals (eg. maximize strength, minimize

cost)
Each of these theories in this study is small, containing

a few (1-5) definitions and axioms. In addition, each
theory can be characterized by the ontology which it
uses, expressed as a set of taxonomically related vo-
cabulary terms. The ontology is important for use of
the theories, allowing identification of which theories
are compatible, and providing a guide to the terms
which an application must ’understand’ if that ontol-
ogy is to be imported into it. Figures 4 and 5 illus-
trate the formalization of this knowledge into KIF and
SLANG respectively. Each figure shows (parts of) two
of these theories (called "specifications" in SLANG,
and "Ontologies" in KIF/Ontolingua), one containing
knowledge about manufactured panels, and one of ba-

sic physics.

Code Fragment Synthesis from the
Neutral Representation

Code Generation Both the KIF and SLANG
representations are reasonably language-neutral, in
that their syntactic structures closely reflect their
meaning (as expressed in first-order logic), and avoid
implementation-specific idiosyncracies. However, to be
able to exploit these representations in any practical
sense, they need to be converted to an operational
form, for example to Lisp, ADS/Stonerule rules, Pro-
log etc. The language-neutrality of these representa-
tions helps in this task, as the representations are not
cluttered with idiosyncratic features unrelated to their
meaning¯ This thus allows for easier, automatic trans-
lation of these structures to operational forms¯

In this particular study, we have explored one par-

ticular scenario of use, namely synthesis of (ICAD-
compatible) Lisp code from the original neutral rep-
resentation. We are prototyping this automatic trans-
lation from the SLANG encoding¯ (Similar techniques

could be used to convert from the KIF encoding)¯ In
this process, each axiom translates to a Lisp function¯
The translator, to a first approximation, applies a set
of syntactic rewrite rules to convert from the neutral to

(Define-0ntology Panels)

(Define-Frame Panel
:Template-Slots ((Material-Type))
: Axioms
¯ "Manuf cost = stock cost + cost-per-hole * #holes"
((=> (And (Panel

(Hole ?X ?Hole))
(= (Manuf-Cost ?X)

(Plus (Cost-0f-Raw-Stock ?X)
(Times (Number-0f-Holes ?X)
(Cost-0f-Drilling-Hole ?X THole)))

; "Tot cost = K1 * panel-weight + K2 * manuf-cost"
(=> (Panel ?X)

(= (Cost ?X)
(Plus (Times Purchase-Constemt (Weight ?X))

(Times Manuf-Constant (Manuf-Cost ?X)))))
¯..))

(Define-Frame)

(Define-0ntology Basic-Physics)

(Define-Frame Mass
: Axioms
; "Mass = volume * density."
((<=> (= (Mass ?PhysObj-O) ?Value)

(= (Times (Volume ?PhysObj-O)
(Density ?Phys0bj-0) ?Value))))

(Define-Frame Aluminum-7075
: Axioms
; "Parts of aluminum-7075 have density 5021.32."
((Forall (?0hj)

(=> (= (Material-Type ?0bj) Aluminum-7075)
(= (Density ?0bj) 5021.32)))))

Figure 4: Design rules, encoded in KIF/Ontolingua.

Lisp-based structure. For example, the SLANG axiom:

definition manuf-cost-def of manuf-cost is
axiom (equal (manuf-cost p)

(plus (cost-of-raw-stock p)
(times (number-of-holes
(cost-of-drilling-hole p (hole p)))))

would translate to the Lisp function:

(defun manuf-cost (panel)
(+ (cost-of-raw-stock panel)

(* (number-of-holes panel)
(cost-of-drilling-hole panel (hole panel)))))

We could apply similar techniques to generate Pro-
log rules, producing for example:

manuf_cost(Panel, Cost) :-
isa(Panel, panel),
cost_of_raw_stock(Panel, StockCost),
number_of_holes(Panel, NHoles),
hole (Panel, Hole)
cost_of_drilling_hole(Panel, Hole, CostPerHole),
Cost is StockCost + (NHoles * CostPerHole).

spec manufactured-panels
Vo "manu] cost = stock cost + cost-per-hole * # holes."
definition manuf-cost-def of manuf-cost is
axiom (equal (manuf-cost

(plus (cost-of-raw-stock
(times (number-of-holes

(cost-of-drilling-hole p (hole p)))))
end-definition

"Total cost = K1 * panel-weight + K2 * manuf-cost."
definition cost-def of cost is
axiom (equal (cost p)

(plus (times purchase-constant (weight p))
(times manuf-constant (manuf-cost p))))

end-definltlon

end-spec

spec basic-physics
"Mass = volume * density."

definition Mass-clef of massis
axiom (equal (mass x) (times (vol x) (density
end-definltion

Vo "Parts made of aluminum-?O?5 have density 5021."

axiom (implies (equal (material x) al-7075)
(equal (density x) 5021)

end-spec
Figure 5: Design rules, encoded in SLANG.

Ontological Commitment Under this ’code syn-
thesis’ scenario of use, vendor-specific code fragments
containing design knowledge ("knowledge nuggets")
can be generated for use by a designer. However,
there is more involved than simply splicing code into
an existing design system - for the fragments to
work, the application must con/orm to the vocabu-
lary of the imported design knowledge. Conformance2

means that the application’s objects and methods
can be made to match those of the imported the-
ory. For instance, consider the synthesized Lisp
function just described for manuf-cost(). Import-
ing this requires that the application can provide
an object denoting a panel which has functions
cost-of-raw-stock (), number-of -holes (), hole
and cost-of-drilling-hole () defined on it, or alter-
natively import additional theories which define these
operations in terms of other primitives which the ap-
plication can provide. Ontologies, as the objects which
characterize these conceptual vocabularies, help the
system designer identify what commitments the the-

2We prefer the word ’conformance’ to ’commitment’:
An application is not constrained to be written using a
particular vocabulary, but only to be capable of mapping
("conforming") its vocabulary and a theory’s vocabulary
together in order to import it.

ories make, and hence what vocabulary the applica-
tion must be made to conform to in order that those
theories can be used. At present, our ontologies have
a simple structure, consisting of a list of the objects
and relations used in a theory, their taxonomic rela-
tionships, and the domain and range constraints on
relations.

The scenario of use, then, is that the application
engineer select one or more ontologies (corresponding
to the objects manipulated in the application), and
then import the theories he/she requires which are ex-
pressed in terms of those ontologies. Ideally, the ap-
plication would be designed to conform to particular,
established ontologies from the outset. It is important
to note that applications are already written to con-
form, in a less rigorous way, to the vocabularies used
in Boeing’s design manuals: for example, if the design
manual treats stiffeners (say) as having three different
types, then an application will similarly treat stiffeners
as having three different types in order that the design
manual’s rules can be expressed in the software. The
issue of conformance, then, in the neutral representa-
tion project is not a new one, but an attempt to put it
on a more formally defined footing.

Discussion
In the previous Section, we outlined the study we con-
ducted in identifying, representing and using design
knowledge, expressed as theories plus ontologies, for a
simple design task. We now provide some discussion
of the issues which arose in this study.

What Should an Ontology Contain?

We have argued for the need for a "specification of that
which is talked about" in a theory - the theory’s ontol-
ogy - to help a person (or system) understand what
theory is about, and understand its compatibility with
other theories. We have argued the ontology should be
distinct from the theory itself, but what then should an
ontology contain? At present, our ontologies consist of
the theory’s conceptual and relational vocabulary, tax-
onomic relationships between those concepts, and do-
main and range constraints on those relations. How-
ever, we could have also included other information,
eg. English definitions, meronymic (part-whole) rela-
tionships, or more or even all of the axioms in the the-
ory. It seems there is no crisp answer as to where the
content boundary should lie: rather there is a trade-off
between ontologies containing a small amount of infor-
mation (making it simple and comprehensible) and
large amount (making the specifications more precise).
The two extremes of this would thus be just a list of
vocabulary terms (simplest), or the entire theory it-

self (most detailed). Advocating an ontology should
only contain the ’major’ or ’relatively unchanging’ ax-
ioms begs the question as to which those axioms are.
However, although it may be a pragmatic decision as to
what an ontology should contain, we do see a clear role
for some form of characterization of a theory, separate
from the theory itself. Further work on using ontolo-
gies to achieve the specific goals for which they were
built (eg. conveying a conceptual structure to people,
or for automatic determination of whether theories are
compatible) will help clarify what is useful and what is
superfluous as ontology content. Interestingly, in the
database community the distinction between the speci-
fication of the conceptual vocabulary (ie. the database
schema) and content (ie. the database itself) is appar-
ently cleaner than for knowledge-based systems.

Ontological Boundaries

In our initial study, we treated an ontology as charac-
terizing the concepts and relations used in a theory. In
its simplest formulation, each theory has its own ontol-
ogy. However, in practice, we envisage an application
importing rules from multiple theories (eg. where rules
in one theory compute parameter values used as primi-
tives in another), and hence the application making an
"ontological commitment" to a larger ontology which
includes all these component ontologies. In fact, all
the theories we have constructed for this initial study
could be be viewed as conforming to a single, large on-
tology, as our suite of theories does not contain differ-
ent, conflicting theories about the same phenomenon.
This raises the question of how to best characterize
a theory’s ontology: Should the ontology contain just
the concepts explicitly used in the theory? If so, how
can ontologies from different theories be combined, to
characterize the overall ontology used by a collection of
(merged) theories? Or should the theory be viewed
part of a larger ontology, including concepts it does not
specifically reference? If so, how should the boundaries
of that larger ontology be chosen?

Biased Use of ~Neutral’ Languages
In an ideal scenario, theories in a ’neutral’ language
such as KIF will be translatable to multiple opera-
tional languages (eg. LOOM, Prolog). However,
practice only a subset of first-order logic can be eas-
ily expressed in these operational languages, and that
subset will differ depending on the target language.
This raises a dilemma: if KIF (say) theories are writ-
ten without regard to the target language, then the
theories become untranslatable and hence of no oper-

ational use; on the other hand, if KIF is written for a
specific target language (ie. using only KIF constructs
which are easily translatable to that target), then we

lose all the benefits of neutrality and are unable to de-
liver the theory’s contents to systems based on other
target languages. Although translation to and from
KIF has been demonstrated elsewhere for individual
languages (eg. LOOM), there is still a need for a con-
vincing demonstration of translating from a target lan-
guage, to KIF, and then to a different target language.
Achieving this requires both identification of language
constructs which are translatable to many targets (eg.
Horn clauses), and further research on translator tech-
nology. The important point here is that neutral lan-
guages are not a panacea, and careful consideration of
their target uses is essential for the representations to
have operational value.

The Practicality of Declarative Semantics

The two languages we have considered (KIF and
SLANG) both have declarative semantics, in that it
is possible to understand the meaning of individual
expressions in the language in isolation, and without
appeal to an interpreter for manipulating those ex-
pressions (unlike, say, a language where rule ordering
affects their meaning). While many statements and
rules are concisely expressible in these languages, other
statements are less practical to express. For exam-
ple, it is often the case that design rules have excep-
tions, and have exceptions to exceptions, etc. While
such rules can be expressed in a declarative, first-order
logic syntax ("if A and (not B) and (not C)
(not (not D)) and ..."), this can in practice
for large and unreadable expressions. Other notations
(eg. inheritance hierarchies with exceptions) can offer
a syntactically neater way of expressing these kinds of
constructs. At the minimum, translation of such con-
structs to and from KIF is complicated in these cases.

Centralized vs. Distributed Repository

Throughout this paper, we have implicitly assumed
a centralized repository containing a neutrally rep-
resented design knowledge. However, an alternative
would be to have a ’virtual’ repository, with differ-
ent theories of design stored in the different systems
which used them. Accessing knowledge would then
involve knowledge exchange between a heterogeneous
set of applications, rather than from a centralized
resource (although to each application it would ap-
pear that a single ’virtual’ repository was available
to it). The distributed model requires an additional
ability of applications to ’publish’ the knowledge they
know, in request to queries from other applications. In
practice, earlier experiments in knowledge sharing (eg.
PACT (Cutkosky et al. 1993), SHADE (McGuire et
al. 1993)) employed a hybrid approach, where some

knowledge was exchanged between existing applica-
tions while other knowledge was explicitly formalized
in a new, centralized ontology resource for those appli-
cations.

Use of Existing Knowledge Resources

There are several extensive resources already devel-
oped elsewhere, which may be of benefit to this project
if we were able to import and use them. These in-
clude the Ontolingua library (containing a collection
KIF-based theories) (Gruber 1993), the Cyc ontology
(Cycorp, Inc. 1996), and the large amount of work
done in STEP (Chen 1996; SCRA, Inc 1996). How-
ever, there are also significant barriers to being able
to import and use knowledge from these resources "off
the shelf". For Ontolingua, the difficulty of translat-
ing arbitrary KIF expressions to multiple operational
languages remains a barrier. For STEP, there is cur-
rently no support for exchanging general design rules
(as opposed to specific instance data), although Ex-
press (its conceptual schema language) does allow rules
for constraint-checking to be stated. In addition, the
challenge of conveying the content of these resources
(without simply reciting them in their entirity) still
remains a challenge needing to be addressed for their
general exchange and reuse.

Summary
In modern design systems, there is a vast amount of
redundant re-encoding of design knowledge, each re-
encoding adding to development, validation, mainte-
nance and synchronization costs. The root of this prob-
lem is that encoded design knowledge is inaccessible to
other systems (and people), due to its being ’locked up’
in task- and vendor-specific lines of code. The neutral
representation project aims to reduce this problem by
prototyping methods for encoding knowledge in an ex-
plicit, neutral, and machine-sensible form.

In the initial study presented here, we encoded de-
sign knowledge for stiffened panels as a set of explicit
rules, represented as KIF and SLANG theories, and
with associated ontologies characterizing the concep-
tual vocabulary of those theories. The study has illus-
trated the viability of both building and using such rep-
resentations, and also raised several important issues
about ontology content, neutral language translation,
and knowledge sharing. During 1997 we are planning a
larger application, which we hope will further advance
our understanding of these issues.

References

Chen, S. 1996. Step: Links to projects and organiza-
tions. (http://gsun6.gintic.ntu.ac.sg:8000/~,,chchan/

link/step.html).

Clark, P., and Porter, B. 1996. The dce help-desk
project. (http://www.cs.utexas.edu/users/mfkb/
dce.html).

Conklin, J., and Begeman, M. L. 1987. gIBIS: a
hypertext tool for team design deliberation. In Smith,
J. B., and Halasz, F., eds., Hypertext ’87 Proceedings,
247-251. NY: Assoc. Computing Machinery.

Cutkosky, M. R.; Engelmore, R. S.; Fikes, R. E.;
Genesereth, M. R.; Gruber, T. R.; Mark, W. S.;
Tenenbaum, J. M.; and Weber, J. C. 1993. PACT:
An experiment in integrating concurrent engineering
systems. IEEE Computer 28-37.

Cycorp, Inc. 1996. The cyc public ontology.
(http://www.cyc.com/public.html).

Dahl, M. 1993. ESDS: Materials technology knowl-
edge bases supporting design of boeing jetliners. In
Proc 5th Innovative Applications o/ AI (IAAI-93),
26-33. CA: AAAI Press.

Genesereth, M. R., and Fikes, R. E. 1992. Knowledge
interchange format: Version 3.0 reference manual.
Tech Report Logic-92-1, Computer Science, Stanford
Univ, CA. (http://logic.stanford.edu/kif/kif.html).

Gruber, T. R. 1993. A translation approach to
portable ontology specifications. Knowledge Acqui-
sition 5(2):199-220.

Jullig, R.; Srinivas, Y. V.; Blaine, L.; Gilham,
L.-M.; Goldberg, A.; Green, C.; McDonald,
J.; and Waldinger, R. 1995. Specware lan-
guage manual. Technical report, Kestrel Institute.
(http://kestrel.edu/www/specware.html).

Klein, M. 1993. Capturing design rationale in con-
current engineering teams. IEEE Computer 39-47.

Marchant, B. P.; Cerbah, F.; and Mellish, C. S. 1996.
The GhostWriter project: a demonstration of the use
of AI techniques in the production of technical pub-
lications. In Expert Systems ’96 (Proc 16th Annual
Con/o] the BCS Specialist Group on Espert Systems).

McGuire, J. G.; Kuokka, D. R.; Weber, J. C.; Tenen-
baum, J. M.; Gruber, T. R.; and Olsen, G. R. 1993.
SHADE: Knowledge-based technology for the re-
engineering problem. Concurrent Engineering: Ap-
plications and Research (CERA) 1(2).

Proctor, P. 1995. Boeing adopts ’expert’ design sys-
tem. Aviation Week ~ Space Technology 27.

SCRA, Inc. 1996. Step/pde: Frequently asked ques-
tions. (http://www.scra.org/uspro/faq.html).

