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ABSTRACT
One of the effective mechanisms of neutrino energy losses in red giants, pre-supernovae and

in the cores of white dwarfs is the emission of neutrino–antineutrino pairs in the process

of plasmon decay. In this paper, we numerically calculate the emissivity due to plasmon

decay in a wide range of temperatures 107–1011 K and densities (2 × 102–1014) g cm−3.

Numerical results are approximated by convenient analytical expressions. We also calculate

and approximate by analytical expressions the neutrino luminosity of white dwarfs due to

plasmon decay, as a function of their mass and internal temperature. This neutrino luminosity

depends on the chemical composition of white dwarfs only through the parameter μe (the net

number of baryons per electron) and is the dominant neutrino luminosity in all white dwarfs

at the neutrino cooling stage.

Key words: neutrinos – white dwarfs.

1 I N T RO D U C T I O N

It is well known that neutrino emission plays an important role

in the evolution of red giants, pre-supernovae, white dwarfs and

neutron stars. Neutrinos appear in a number of reactions in dense

stellar matter (see e.g. Yakovlev et al. 2001) and freely escape from

the star, producing a powerful mechanism of their cooling. One

of the effective neutrino generation mechanisms is the plasmon

decay.

In contrast to ordinary photons in vacuum, plasmons, which are

quanta of electromagnetic field in a plasma, can be not only trans-

verse (in this case two polarization vectors of plasmon are perpen-

dicular to wavevector), but longitudinal as well. The longitudinal

plasmons appear in the theory as a result of quantization of the

well-known Langmuir plasma waves.

Plasmon can decay into a neutrino–antineutrino pair, γ → ν +
ν. The appropriate neutrino emissivity was analysed in a series of

papers since 1963, when Adams, Ruderman & Woo (1963) had

suggested this mechanism of energy losses in dense stellar matter

for the first time. An account of these papers and references can be

found in the review by Yakovlev et al. (2001) as well as in a recent

paper by Odrzywo�lek (2007). Here we discuss in more detail only

three papers which summarize and extend the results of previous

works.

Itoh et al. (1992) calculated the emissivity due to plasmon decay

as a function of temperature and density and presented a table of nu-

merical values and an approximate fitting formula. Unfortunately,

this approximate formula does not reproduce analytical asymptotes

�E-mail: kantor@mail.ioffe.ru (EMK); gusakov@astro.ioffe.ru (MEG)

for the emissivity and thus can be applied only in a restricted re-

gion of temperatures and densities (near the maximum value of the

emissivity). In addition, when calculating the emissivity, Itoh et al.

(1992) used approximate expressions for the dielectric functions

of electron gas and for plasmon dispersion relations which can be

justified only at low enough temperatures (in a strongly degenerate

electron gas).

On the contrary, Braaten & Segel (1993) started with the most

general expressions for the neutrino emissivity due to plasmon

decay. They did not make any assumptions concerning degen-

eracy of the electron gas while calculating the dielectric func-

tions and plasmon dispersion relations. To simplify their analy-

sis, Braaten & Segel (1993) suggested an elegant scheme to cal-

culate approximately the dielectric functions, dispersion relations

and the neutrino emissivity. However, these authors did not present

any tables with their numerical results or any approximate formula

for the emissivity. Therefore, it is difficult to use their results in

applications.

Using the approximate method of Braaten & Segel (1993), Haft

et al. (1994) calculated the emissivity due to plasmon decay and

fitted it by an analytical formula. This formula accurately describes

the emissivity in a range of temperatures and densities where the

plasmon decay is the most important neutrino emission mechanism.

However, the fitting expression of Haft, Raffelt & Weiss (1994) does

not satisfy the analytical asymptotes for the emissivity (they are

presented in Section 2).

In this paper we would like to fill in the gaps in the literature de-

voted to the subject. We will (i) numerically calculate the neutrino

emissivity due to plasmon decay making no assumptions concerning

degeneracy or relativity of the electron gas; (ii) employ the approxi-

mate scheme of Braaten & Segel (1993) and find a fitting expression
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for the emissivity which reproduces the correct asymptotes. Thus,

our main goal is to facilitate the use of the data on the neutrino

emission due to plasmon decay.

The paper is organized as follows. In Section 2 we present gen-

eral equations describing the neutrino energy-loss rate owing to

plasmon decay. In Section 3 we give the fitting expression for the

plasma frequency which is a key parameter because the asymptotes

of the emissivity depend on it. In Section 4 we present the fitting

expressions for the emissivity. In Section 5 we apply the results of

the preceding sections and find an analytical formula describing the

neutrino luminosity of white dwarfs as a function of their mass and

internal temperature. We summarize in Section 6. In Appendix A

we present expressions for the dielectric functions of the electron–

positron plasma. Finally, in Appendix B we describe a table of our

numerical results.

2 G E N E R A L E QUAT I O N S

The neutrino emissivity due to plasmon decay can be presented as

a sum of three components: the longitudinal component Ql (due

to decay of longitudinal plasmons); the transverse component Qt

(the decay of transverse plasmons governed by the vector part of

the weak interaction Hamiltonian) and the axial component QA (the

decay of transverse plasmons governed by the axial part of the weak

interaction Hamiltonian). The component QA is small and can be

neglected (see e.g. Kohyama et al. 1994).

The emissivities Qt and Ql (per unit volume) are given in the form

of integrals (see e.g. Braaten 1991; Braaten & Segel 1993):

Qt = 2 Q0

h- 9

m9
ec15

∫ ∞

0

dk k2 Z t(k)
(
ω2

t − k2c2
)3

nB(ωt), (1)

Ql = Q0

h- 9

m9
ec15

∫ kmax

0

dk k2 Z l(k)
(
ω2

l − k2c2
)3

nB(ωl). (2)

Here, the integration is carried over the plasmon wavenumber k. In

equations (1) and (2) Q0 = [(mec)9/h- 10][G2
F/(96π4α)](

∑
ν

C2
V) ≈

1.3858×1021 erg s−1 cm−3; GF = 1.436 × 10−49 erg cm3 is the Fermi

weak coupling constant; α = e2/(h- c) ≈ 1/137 is the fine structure

constant; e and me are the electron charge and mass, respectively;

h- is the Planck constant; c is the speed of light;
∑

ν
C2

V ≈ 0.9248

is the sum of squared normalized vector constants CV over all neu-

trino flavours. Furthermore, ωt(k) and ωl(k) are, respectively, the

frequencies of transverse and longitudinal plasmons, which de-

pend on the wavenumber k; Zt(k)−1 ≡ ∂(ω2
t εt)/∂(ω2

t ); Zl(k)−1 ≡
(ω2

l − k2c2) ∂εl/∂(ω2
l ), where εt and εl are the transverse and longi-

tudinal dielectric functions of the electron–positron plasma, respec-

tively. Finally, nB(ωt,l) = 1/{exp[h- ωt,l/(kBT)] − 1} is the Bose–

Einstein distribution function for transverse or longitudinal plas-

mons; T is the temperature; kB is the Boltzmann constant; kmax is the

maximum wavenumber at which the decay of longitudinal plasmon

is still kinematically allowed by energy and momentum conserva-

tion laws.

In the astrophysical literature the emissivity is presented as a

function of temperature T and the effective mass density ρ̃, given

by

ρ̃ ≡ ρ/μe, (3)

where ρ is the actual mass density; μe = ∑
i Ai ni/(

∑
i Zi ni ) is

the net number of baryons per electron; Zi and Ai are, respectively,

the charge and mass numbers of atomic nucleus species i; ni is the

number density of these species. Note that at densities higher than

Figure 1. The emissivity Q = Qt + Ql versus ρ̃ for T = 107, 108, 109 and

1010 K.

the neutron drip density ρd ≈ 4 × 1011 g cm−3, free neutrons must

be taken into account in the sum over i, in addition to atomic nuclei,

when calculating μe.

It is straightforward to verify that ρ̃ can be rewritten as

ρ̃ ≈ (ne − ne+ ) mu. (4)

Here, ne and ne+ are the number densities of electrons and positrons;

mu is the a.m.u.

The dependence of the emissivity Q = Qt + Ql on ρ̃ for temper-

atures T = 107, 108, 109 and 1010 K is presented in Fig. 1. As seen

from the figure, at fixed ρ̃ the emissivity increases with the growth

of T. If we fix T, the dependence Q(ρ̃) has a maximum. In the vicin-

ity of the maximum the plasma frequency of the electron–positron

plasma ωp is of the order of temperature, h- ωp ∼ kBT (see Section 5

for details). At high temperatures and low densities the emissivity

ceases to depend on ρ̃ (see equations 6, 10 and 11 below). In the

figure this situation is illustrated by the upper curve, which is plotted

for T = 1010 K. One sees that at ρ̃ < 108 g cm−3 the curve tends to

be horizontal.

As follows from equations (1) and (2), for calculation of Qt and

Ql one needs to know the dispersion relations for transverse and lon-

gitudinal plasmons, ωl(k) and ωt(k), as well as the dielectric func-

tions εt(ω, k) and εl(ω, k). We calculated the dielectric functions

εt(ω, k) and εl(ω, k) for a wide range of densities and tempera-

tures in the random phase approximation and numerically obtained

the dispersion relations and the plasma frequency ωp. The equa-

tions we used to compute the dielectric functions of the electron–

positron plasma are given in Appendix A. These results were ap-

plied to calculate the integrals (1) and (2). In these calculations,

we did not make any simplifying assumptions concerning the de-

gree of degeneracy or relativity of the electron gas. The table

with our numerical results can be found on the web, http://www.

ioffe.ru/astro/NSG/plasmon/table.dat (file table.dat). This table is

described in Appendix B.

The emissivities Ql and Qt depend on two parameters characteriz-

ing stellar matter. For example, one may choose T and ne or T and ρ̃

as proper parameters. Following previous results (see e.g. Itoh et al.

1992), we take T and ρ̃ as independent variables. It is convenient to

introduce the notation f ≡ h- ωp/(kBT).
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The expression for the plasma frequency in the Braaten–Segel

approximation has the form (see Braaten & Segel 1993)

ω2
p = 4α

π

c3

h- 2

∫ ∞

0

dp
p2

E

(
1 − 1

3
v2

)
[nF(E) + nF(E)] , (5)

where p, v = pc/E and E =
√

p2c2 + m2
ec4 are, respectively,

the momentum, dimensionless velocity and energy of an electron

or positron; nF(E) = 1/{exp[(E − μ)/(kBT)] + 1} is the Fermi–

Dirac distribution for electrons; nF(E) = 1/{exp[(E +μ)/(kBT )]+
1} is the Fermi–Dirac distribution for positrons; μ is the electron

chemical potential.

In the region of relativistic temperatures (kBT � mec2) and under

the condition kBT �pFc, the plasma frequency (5) has the asymptote

ω2
p = 4πα

9

(kBT )2

h̄2
. (6)

Here pF ≡ (3π2h- 3ne)
1/3. For a degenerate electron gas pF is the usual

Fermi momentum of the electrons.

In the case when (i) the electron gas is degenerate (kBT 	√
p2

Fc2 + m2
ec4 − mec2 and the contribution of positrons to ωp can

be neglected), or (ii) the gas is non-degenerate, non-relativistic, and

the temperature is not too high for the appearance of positrons (see

e.g. Landau & Lifshitz 1980, section 105), expression (5) reduces

to

ω2
p = 4α

3π

c3

h̄2

p3
F√

p2
Fc2 + m2

ec4
. (7)

If the gas is non-relativistic (pF 	 me c), then this equation gives the

well-known result, ω2
p = 4πe2ne/me. Note that since the contribu-

tion of the positrons to the asymptote (7) is negligible (ne+ 	 ne),

pF in this case can be approximately calculated as pF ≈ [3π2h̄3 (ne−
ne+ )]1/3 = (3π2h̄3 ρ̃/mu)1/3 (see equation 4). Introducing a new di-

mensionless parameter, p̃F ≡ (h̄/mec) (3π2 ρ̃/mu)1/3, one can sub-

stitute (mec p̃F) for pF in the asymptote (7).

Braaten & Segel (1993) developed a useful approximate method

to calculate the emissivity due to plasmon decay. Below in this

section we present some results obtained using this method (more

details are given in the original paper of the authors).

Using the method of Braaten & Segel (1993), the emissivity can be

expressed through the parameter v∗, which is a characteristic dimen-

sionless velocity of electrons scaling from 0 in the non-relativistic

limit to 1 in the ultrarelativistic limit,

v∗ = ω1

ωp

. (8)

Here, the plasma frequency ωp is given by equation (5) while the

frequency ω1 is

ω2
1 = 4α

π

c3

h̄2

∫ ∞

0

dp
p2

E

(
5

3
v2 − v4

)
[nF(E) + nF(E)] . (9)

In two limiting cases the neutrino emissivity due to decay of lon-

gitudinal and transverse plasmons can be calculated analytically. If

the plasma frequency is much smaller than the temperature [f ≡
h- ωp/(kBT) 	 1], then equations (1) and (2) can be simplified and

written as

Qt = Q0

(
kBT

mec2

)9

4ζ3 β6 f 6, (10)

Ql = Q0

(
kBT

mec2

)9

A(v∗) f 8. (11)

Here, ζ 3 � 1.202 057 is a value of the Riemann ζ -function and the

function β(v∗) equals

β =
[

3

2v2∗

(
1 − 1 − v2

∗
2v∗

ln
1 + v∗
1 − v∗

)]1/2

. (12)

In the non-relativistic limit (v∗ → 0) it reduces to β = 1, while in

the ultrarelativistic limit (v∗ → 1) one has β = √
3/2. Furthermore,

A(v∗) is a smooth function of v∗, changing from 8/105 ≈ 0.076 at

v∗ → 0 to 0.349 at v∗ → 1. If the plasma frequency is much greater

than the temperature (f � 1), then the integrals (1) and (2) can be

taken analytically,

Qt = Q0

(
kBT

mec2

)9

b1 f 7.5 exp(− f ), (13)

Ql = Q0

(
kBT

mec2

)9

b2 f 7.5 exp(− f ), (14)

where b1 = √
2π (1 + v2

∗/5)−3/2 and b2 = √
π/2 (3v2

∗/5)−3/2.

3 F I T F O R P L A S M A F R E QU E N C Y

To simplify subsequent analysis we derived an analytical for-

mula which approximates the plasma frequency (5) in a wide

range of temperatures T = 107–1011 K and effective densities

ρ̃ = (2 × 102–1014) g cm−3. This range of parameters includes all

possible limiting cases of degenerate, ultrarelativistic, as well as

of non-degenerate non-relativistic electron gas. We calculated the

emissivity on a dense grid of mesh points (with the steps 0.2 in

log T and log ρ̃). The rms relative error of our approximation is 0.4

per cent. The maximum error of 1.4 per cent is at log T = 9.0 (K)

and log ρ̃ = 2.4 (g cm−3). The fit reproduces the asymptotes from

Section 2. The squared plasma frequency can be approximated as

ω2
p =

(
me c2

h̄

)2√
asy2

2 + [asy1 (1 − C D)]2. (15)

Here, asy1 = 4α/(3π) p̃3
F/

√
1 + p̃2

F is exactly the low-temperature

asymptote (7) [we recall that p̃F = (h- /mec) (3π2ρ̃/mu)1/3], while

asy2 is given by

asy2 = 4πα

9
p2

(
t2

p2

+ 1 + p2

t2

)[
1 + p3

(t/
√

p2)p1

]−10

, (16)

with t ≡ kB T/(mec2). In the high-temperature limit, asy2 transforms

into the asymptote (6). The fitting parameters p1, p2 and p3 equal

1.793, 0.0645 and 0.433, respectively.

The function C in equation (15) is written as

C = 1 − c2

(c1 t)2

1 + (c1 t)2
, (17)

where

c1 = p4

1 + p5 ρ̃ p6

1 + p7 (1 + p5 ρ̃ p6 )
, (18)

c2 = p8 + p9

ρ̃

p10 + ρ̃
, (19)

with p4 = 0.011 39, p5 = 2.484 × 106, p6 = −0.6195, p7 =
0.000 9632, p8 = 0.4372, p9 = 1.614 and p10 = 8.504 × 108.

At low temperatures the plasma frequency in the first approxi-

mation depends only on ρ̃ and we have C = 1. The function D in
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equation (15) has the form

D = t2

d1

√
1 + (d2 t)2

, (20)

d1 = 6

π2

p̃2
F(1 + p̃2

F)

2 p̃2
F + 5

, d2 = π2

6

1√
1 + p̃2

F − 1
. (21)

At high temperatures (when t � 1 and the electron gas is non-

degenerate) the fit (15) reproduces the high-temperature asymp-

tote (6). At low temperatures (a degenerate gas or a non-degenerate

non-relativistic gas; positrons can be neglected) the fit (15) trans-

forms into the analytical asymptote (7), which depends only on ρ̃.

The function D is designed in such a way to reproduce not only

the asymptote (7) of plasma frequency but also the first tempera-

ture corrections to ωp. For a degenerate electron gas, the expansion

parameter is kBT/μ; for the non-degenerate non-relativistic gas it

reduces to kBT/(mec2).

4 F I T F O R T H E N E U T R I N O E M I S S I V I T Y

In this section we present an analytical formula which approximates

the results of numerical calculations of the emissivity Q = Qt + Ql

(per unit volume) and reproduces the asymptotes from Section 2.

The approximation was made in a range of temperatures T = 107–

1011 K and effective densities ρ̃ = (2 × 102–1014) g cm−3. The

emissivity Q(ρ̃, T ) was calculated on the same grid points as the

plasma frequency (Section 3). At f ≡ h̄ ωp/(kBT) > 20 the accuracy

of our fit is only logarithmic. However, in this case the emissivity Q
is exponentially small, Q ∼ exp (− f ).

The fit for the emissivity can be presented in the form

Q = Ql + Qt = Q0t9 (Wt + Wl) exp(− f ), (22)

where, as before, t ≡ kBT/(me c2) and we define

Wt ≡ asyt1 + asyt2 exp

[
q3

( f q1 + q2)

]
, (23)

Wl ≡ asyl2

[
asyl1 + q4

(
1 + q5 v2.5

∗
)3.5

f 9
]

asyl2 + [
asyl1 + q4

(
1 + q5 v2.5∗

)3.5
f 9

] . (24)

In equations (23) and (24)

asyt1 = a1 f 6, asyl1 = a2 f 8, (25)

asyt2 = b1 f 7.5, asyl2 = b2 f 7.5, (26)

a1 = 4ζ3β
6, a2 = 8

105
+

(
0.349 − 8

105

)
v10

∗ ; (27)

the functions b1(v∗) and b2(v∗) are the same as in equations (13)

and (14); the function β(v∗) is given by equation (12). At f 	 1

equation (22) transforms into

Q = Qt = Q0t9asyt1 = Q0t9 4ζ3β
6 f 6 (28)

(compare with the asymptotes 10 and 11). At f � 1 one has

Q = Q0t9(asyt2 + asyl2) exp(− f ) = Q0t9(b1 + b2) f 7.5 exp(− f )

(29)

(compare with the asymptotes 13 and 14).

When calculating the emissivity from equation (22) one should

use fit (15) for the plasma frequency ωp and the following fit for the

characteristic velocity v∗,

v∗ =
(

ṽ3
F + s1 t s2 ρ̃s3

1 + s1 t s2 ρ̃s3

)1/3

, (30)

where ṽF ≡ p̃F/
√

1 + p̃2
F; s1 = 9.079; s2 = 1.399; s3 = −0.065 92.

The rms relative error of this approximate formula in the chosen

range of T and ρ̃ constitutes 1.4 per cent. The maximum fitting error

is equal to 5.4 per cent at log T = 8.4 (K) and log ρ̃ = 3.8 (g cm−3).

In addition, it turns out to be necessary to use a special approxi-

mate formula for the function β6(v∗) from which the fitting expres-

sion (22) depends on [a simple substitution of equation (30) into

(12) and subsequent calculation of β6 results in large errors]

β6 = β6(ṽF) + [
3.375 − β6(ṽF)

] tr2 ρ̃r3

(r1 + tr2 ρ̃r3 )
, (31)

where r1 = 0.3520; r2 = 1.195; r3 = − 0.1060. The rms relative

error of this fit constitutes 2.5 per cent, the maximum error of 8.3 per

cent is at log T = 9.6 (K) and log ρ̃ = 5.0 (g cm−3). The function

(31) was approximated in the same temperature and density range

as the parameter v∗ and the emissivity Q.

The use of approximate formulae (15) and (30)–(31) leads to the

following values of fitting parameters q1, . . . , q5 (see equations 23

and 24), minimizing rms deviation of the emissivity, provided by

equation (22), from the numerical values,

q1 = 0.7886, q2 = 0.2642,

q3 = 1.024, q4 = 0.078 39, q5 = 0.1784. (32)

The rms relative error of the approximate formula (22) with these

coefficients is 4 per cent, the maximum error is 7.9 per cent at

log T = 8.4 and log ρ̃ = 6.4.

In Fig. 2 we compare our numerical results for the emissivity Qnum

with the results taken from the literature (corresponding emissivi-

ties are denoted as Qlit). The figure presents the relative deviation

δ ≡ (Qlit − Qnum)/Qnum as a function of ρ̃ for a set of temperatures

T = 107, 108, 109 and 1010 K. The solid curves demonstrate relative

deviations of the approximation (22), suggested in this paper, from

our numerical results Qnum; the long dashes show deviations from

numerical calculations of Itoh et al. (1992) (taken from their table);

the dotted curves correspond to relative deviations calculated using

an approximate formula, suggested by Itoh et al. (1992); the short

dashes describe relative deviations calculated from a fitting formula

of Haft et al. (1994). Finally, by the dot–dashed curves we show

relative deviations calculated from the approximate formula for the

emissivity given in the review of Yakovlev et al. (2001). In that re-

view it is recommended to use the formula only for ρ̃ > 108 g cm−3

and for strongly degenerate electrons. From the analysis of Fig. 2 a

number of conclusions can be inferred as follows.

(i) The approximate formula obtained in this section is in good

agreement with the results of numerical calculations as long as f <

20 (at greater f, i.e. at higher densities, the solid curve tends to go

upward).

(ii) Our calculations agree with results of Itoh et al. (1992) in the

range of parameters, where the electron gas is strongly degenerate

and the emissivity is not small. However, as follows, e.g. from Fig. 2

at T = 109 K, some our results deviate from those of Itoh et al. (1992)

for ρ̃ ∼ 1013 g cm−3. For this case, matter is strongly degenerate so

that the simplified assumptions, made by Itoh et al. for calculating

the emissivity, could not lead to such deviations. [Let us note that

Itoh et al. used the dielectric function, calculated by Jancovici (1962)
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1706 E. M. Kantor and M. E. Gusakov

Figure 2. Relative deviation δ ≡ (Qlit − Qnum)/Qnum versus ρ̃ for T = 107, 108, 109 and 1010 K. Here, Qnum is the emissivity, numerically calculated in this

paper. For Qlit we take one of the emissivities obtained either from the fitting formula (22) (solid lines); or from the table of Itoh et al. (1992) (long dashes); or

from the fitting formula of Itoh et al. (1992) (dots); or from the fitting formula of Haft et al. (1994) (short dashes); or from the approximate formula from the

review of Yakovlev et al. (2001) (dot–dashed lines).

for a strongly degenerate electron gas, see Appendix A.] Taking into

account that our numerical results at such densities and T = 109 K do

not differ from the analytical asymptote for the emissivity by more

than 10 per cent, the results of Itoh et al. (1992) in the indicated

parameter range seem less accurate than ours.

(iii) The fitting formula of Itoh et al. (1992) satisfactorily de-

scribes the results of numerical calculations only near the maximum

of the emissivity (when f ∼ 1).

(iv) The fitting formula of Haft et al. (1994) agrees well with our

numerical results in the same region of temperatures and densities

in which the numerical results of Itoh et al. (1992) agrees with our

numerical results.

(v) The approximate formula from the review of Yakovlev et al.

(2001) becomes inaccurate at high temperatures (i.e. T = 1010 K)

and low densities (ρ̃ ∼ 108 g cm−3). This approximate formula is

valid only for strongly degenerate electrons, while the electron de-

generacy becomes mild at high T and low ρ̃.

Summarizing, as follows from Fig. 2, the results of various authors

are in satisfactory agreement in the ranges of T and ρ̃ where the

process of neutrino emission due to plasmon decay is the most

efficient mechanism of energy losses in dense stellar matter.

5 T H E N E U T R I N O L U M I N O S I T Y
O F W H I T E DWA R F S

Let us apply the results of Section 4 to analyse the neutrino luminos-

ity of white dwarfs. As will be argued below, the neutrino luminosity

due to plasmon decay only weakly depends on a specific model of

a white dwarf. Thus, it can be considered as a universal function

of the white dwarf mass M and its internal temperature T. Here we

calculate this universal function and approximate it by a convenient

analytical formula.

As is well known, the thermal evolution of a white dwarf consists

of two stages, the neutrino cooling stage (where cooling is mainly

realized through the neutrino emission from the entire stellar body)

and the photon stage (the main energy losses through the photon

radiation from the stellar surface). A transition from one stage to

the other occurs at the stellar age τ ∼ (107–108) yr, when the surface

temperature of a star equals Ts ∼ 2.5 × 104 K (for a hydrogen or

helium atmosphere white dwarf, see e.g. Winget et al. 2004).

At the neutrino cooling stage the main mechanism of energy

losses is the neutrino emission due to plasmon decay (the second im-

portant process – the neutrino bremsstrahlung in collisions of elec-

trons with atomic nuclei – is 10–100 times weaker, see Winget et al.

2004). We numerically calculated the neutrino luminosity Lν(M, T)

of white dwarfs caused by the decay of plasmons. When doing the

calculation, we made the following assumptions. First, to obtain the

density profile inside a white dwarf we assumed that the pressure

is fully determined by degenerate electrons. Secondly, the stellar

core was assumed to be isothermal, which is a good approxima-

tion for not too young white dwarfs (τ � 10–1000 yr). Thirdly, we

neglected beta-captures when calculating the structure and luminos-

ity of massive white dwarfs. Beta-captures lead to softening of the

equation of state, and influence the hydrostatic structure of a star. In

addition, they change stellar chemical composition, affect the num-

ber of nucleons per electron, μe, and, consequently, the quantities

ρ̃ and Lν . However, because the neutrino luminosity is the integral
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Figure 3. The neutrino luminosity Lν versus internal stellar temperature T
for white dwarfs with M = 0.4, 0.6, 1.0 and 1.4 M.

characteristic of a star, it should not strongly depend on these sim-

plified assumptions.

In Fig. 3 we present the neutrino luminosity Lν as a function of

stellar core temperature T for white dwarfs with the masses M =
0.4, 0.6, 1.0 and 1.4 M.

The results of numerical calculations of Lν in the range of tem-

peratures T = 3 × 107–5 × 108 K and masses M = (0.4–1.3) M
were approximated by the formula

Lν1(M, T )

= 1039
k1T 31/3

8 (k4 M̃k2 + M̃k3 )(1 + k5 M̃)22/3[
k6(1 + k5 M̃)22/(3k7)T 22/(3k7)

8 + M̃22/(3k7)
]k7

erg s−1,

(33)

where M̃ = M/M, T8 = T /(108 K), and

k1 = 1.050, k2 = 11.86, k3 = 5.901,

k4 = 1.010, k5 = −0.5448, k6 = 2.777, k7 = 5.635. (34)

For white dwarfs with M = (1.3–1.4) M the neutrino luminosity

in the same range of temperatures T = 3 × 107–5 × 108 K is given

by

Lν2(M, T ) = 1039 l1T 31/3
8 M̃l2[

l3T 22/(3l5)
8 + M̃22l4/(3l5)

]l5
erg s−1, (35)

where

l1 = 2.777, l2 = 25.13, l3 = 3.095, l4 = 7.585, l5 = 7.381. (36)

The maximum error of the fitting expressions (33) and (35) does not

exceed 14 per cent. Unfortunately, these two approximations do not

match at M = 1.3 M. Thus, to calculate the neutrino emissivity for

a white dwarf with the mass M ∈ [1.28, 1.32 M], we recommend

to use a linear interpolation

Lν3(M, T ) = Lν1(1.28 M, T )

+ Lν2(1.32 M, T ) − Lν1(1.28 M, T )

0.04
(M̃ − 1.28). (37)

This interpolation does not affect the maximum fitting error which

remains to be 14 per cent at T = 2.38 × 108 K and M = 1.34 M.

As seen from equations (33) and (35), in the limit of high temper-

atures Lν ∼ T3, while in the limit of low temperatures Lν ∼ T31/3.

Let us demonstrate how to obtain this temperature dependence from

simple physical arguments.

At high temperatures, the internal stellar temperature T is much

greater than the plasma frequency ωp0 in the centre of the star. Since

the plasma frequency of degenerate electrons becomes smaller as the

density decreases (see equation 7), we have kBT � h- ωp throughout

the star. In this case the neutrino emissivity of an arbitrary volume

element in the star is given by asymptote (28) and the luminosity

equals

Lν ≈ 4ξ3

h- 6k3
B

(mec2)9
Q0T 3

∫
star

β6 ω6
p dV . (38)

Here the integral is taken over the volume V of the star. Since the

plasma frequency ωp and the parameter β depend only on ρ̃ (see

equations 7 and 12), one gets Lν ∝ T3.

In the low-temperature limit, when kBT 	 h- ωp0, the main contri-

bution to the luminosity comes from a thin spherical layer of width h,

in which h- ωp ∼ kBT . This layer is situated in the outermost part of the

stellar core, where the electrons form a degenerate, non-relativistic

gas. Indeed, if we move from this layer to the stellar centre, ωp

will increase while the emissivity will be exponentially suppressed,

Q ∼ exp(−h- ωp/kBT), in accordance with equation (29). If we move

from the layer to the stellar surface then the emissivity will also de-

crease (see asymptote 28) but in a power-law fashion, Q ∼ β6ω6
p

= ω6
p(β = 1 for the non-relativistic electron gas, see equation 12).

Therefore, the emissivity will have a maximum in a layer in which

h- ωp ∼ kB T , and the neutrino luminosity of a star can be estimated

as

Lν ∼ 4ξ3β
6 Q0

(
kBT

mec2

)9 (
h- ωp

kBT

)6

4πR2h

∼ 16πξ3 Q0

(
kBT

mec2

)9

R2h, (39)

where R is the white dwarf radius. An order of magnitude estimate

gives the characteristic width h of the layer, h ∼ω6
p/(d ω6

p/d r). Using

the hydrostatic equilibrium equation and the scaling relations for the

plasma frequency (see equation 7) ωp ∝ ρ̃1/2 and pressure P ∝ ρ̃5/3

of the degenerate non-relativistic gas, we get h ∝ ρ̃2/3 ∝ ω4/3
p ∝

T 4/3. Consequently, Lν ∝ T31/3 in agreement with the estimate (39).

Let us note that the plasmon decay neutrino emissivity and hence

the luminosity of the star depends on the effective density ρ̃, which

is related to the real density ρ by equation (3), ρ̃/ρ = 1/μe =∑
i Zi ni/(

∑
i Ai ni ). In white dwarfs with any reasonable chemical

composition, the mass number Ai of atomic nuclei species i is always

twice as much than the charge number Zi (recall that we neglect beta-

captures). Thus, the ratio ρ̃/ρ is equal to 1/2. We used this ratio in

all our calculations.

6 S U M M A RY

We have calculated the neutrino emissivity Q due to plasmon decay

in an electron–positron plasma making no assumptions about degree

of degeneracy or relativity of the electron gas.

When calculating the emissivity one needs the plasma dielectric

functions as well as the dispersion relations for transverse and lon-

gitudinal plasmons in a wide range of temperatures and densities.

In particular, we have calculated the plasma frequency ωp and fit-

ted it by an analytical formula. This formula reproduces the main

asymptotes for ωp (degenerate, ultrarelativistic or non-degenerate

non-relativistic electrons, see Section 3).
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The results of numerical calculations of the neutrino emissivity

were also approximated by a convenient analytical expression. It

satisfies the asymptotes in various limiting cases (Section 4, also

see the paper by Braaten & Segel 1993). The approximation is

valid for T = 107–1011 K and ρ̃ = (2 × 102–1014) g cm−3. The

rms relative error of the approximation does not exceed 4 per cent

for those temperatures and densities, for which f = h- ωp/(kBT) <

20 [while at f > 20 the emissivity is exponentially small, Q ∼
exp(−f )].

The fitting expression for the emissivity was used to calculate the

neutrino luminosity of white dwarfs (Section 5). This neutrino lu-

minosity was fitted by analytic formulae and presented as a function

of white dwarf mass and its internal temperature. It is shown that

the neutrino luminosity depends on the chemical composition of a

white dwarf only through the parameter μe which is equal to 2 for

reasonable white dwarf compositions.

The results of this paper can be used in a number of applications,

in particular, in modelling of the evolution of red giants or pre-

supernovae as well as in the cooling theory of white dwarfs (see

e.g. Haft et al. 1994; Winget et al. 2004).

AC K N OW L E D G M E N T S

The authors are grateful to D. G. Yakovlev for discussions; to our

referee, Agnes Kim, for valuable suggestions and comments; to

A. I. Chugunov for providing the code that was used to approxi-

mate numerical results by analytical functions; to A. Y. Potekhin

for calculating the relation between the surface and internal temper-

atures of helium atmosphere white dwarfs; and to D. P. Barsukov

and A. M. Krassilchtchikov for technical assistance. This research

was supported by RFBR (grants 05-02-16245 and 05-02-22003)

and by the Federal Agency for Science and Innovations (grant NSh

9879.2006.2).

R E F E R E N C E S

Adams J. B., Ruderman M. A., Woo C.-H., 1963, Phys. Rev., 129, 1383

Braaten E., 1991, Phys. Rev. Lett., 66, 1655

Braaten E., Segel D., 1993, Phys. Rev. D, 48, 1478

Haft M., Raffelt G., Weiss A., 1994, ApJ, 425, 222

Itoh N., Mutoh H., Hikita A., Kohyama Y., 1992, ApJ, 395, 622

Jancovici B., 1962, Nuovo Cimento, 25, 428

Kohyama Y., Itoh N., Obama A., Hayashi H., 1994, ApJ, 431, 761

Landau L. D., Lifshitz E. M., 1980, Course of Theoretical Physics, Part I,

Statistical Mechanics. Pergamon Press, Oxford

Odrzywo�lek A., 2007, Eur. Phys. J. C, in press (doi:10.1140/epjc/s10052-

007-0378-4) (arXiV:0704.1222)

Winget D. E., Sullivan D. J., Metcalfe T. S., Kawaler S. D., Montgomery M.

H., 2004, ApJ, 602, L109

Yakovlev D. G., Kaminker A. D., Gnedin O. Y., Haensel P., 2001, Phys.

Rep., 354, 1

A P P E N D I X A : D I E L E C T R I C F U N C T I O N S O F E L E C T RO N – P O S I T RO N P L A S M A

Using the density matrix formalism we calculated the dielectric function of the electron–positron gas in the first order of perturbation theory.

The longitudinal εl(ω, k) and transverse εt(ω, k) components of the dielectric tensor can be written in the form (c = h- = kB = 1)

εl = 1 − 4πα

ω2

∑
e−,e+

∫
d3 p

(2π)3

1

E p+k E p

n p+k − n p

E p+k − E p − ω − iδ

×
[

2
(p · k)2

k2
+ (p · k) + E p+k E p − E2

p

]
, (A1)

εt = 1 − 4πα

ω2

∑
e−,e+

∫
d3 p

(2π)3

1

E p+k E p

n p+k − n p

E p+k − E p − ω − iδ

×
[

(p×k)2

k2
− (p · k) + E p+k E p − E2

p

]
. (A2)

Here, the summation is carried over electrons and positrons; np = 1/[exp(E p ∓ μ)/T + 1] is the Fermi–Dirac distribution function for

electrons (in this case one has to choose the sign −) or positrons (the sign +); E p =
√

p2 + m2
e and E p+k =

√
(p + k)2 + m2

e are the

energies of an electron or a positron with momenta p and p +k, respectively.

We have checked that equations (A1) and (A2) are equivalent to corresponding expressions for the dielectric function which can be obtained

from the polarization tensor �μν of Braaten & Segel (1993) (see their equation A1).

The integration over the angles in equations (A1) and (A2) can be done analytically. As a result, one obtains for real parts of εl and εt,

εl = 1 − α

πω2

∫ ∞

0

dp p2
[
nF(Ep) + nF(Ep)

]
Rl, (A3)

εt = 1 − α

πω2

∫ ∞

0

dp p2
[
nF(Ep) + nF(Ep)

]
Rt, (A4)
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where

Rl = − 4ω2

Epk2

+ ω2

2Epk3 p

[
(2Ep + ω)2 − k2

]
ln

∣∣∣∣ E2
p−k − (Ep + ω)2

E2
p+k − (Ep + ω)2

∣∣∣∣
+ ω2

2Epk3 p

[
(2Ep − ω)2 − k2

]
ln

∣∣∣∣ E2
p−k − (Ep − ω)2

E2
p+k − (Ep − ω)2

∣∣∣∣ , (A5)

Rt = 2 (ω2 + k2)

Epk2

+ 1

4Epk3 p

[
k4 + 4k2 p2 + 4k2 Epω − ω2(2Ep + ω)2

]
ln

∣∣∣∣ E2
p−k − (Ep + ω)2

E2
p+k − (Ep + ω)2

∣∣∣∣
+ 1

4Epk3 p

[
k4 + 4k2 p2 − 4k2 Epω − ω2(2Ep − ω)2

]
ln

∣∣∣∣ E2
p−k − (Ep − ω)2

E2
p+k − (Ep − ω)2

∣∣∣∣ . (A6)

In equations (A3)–(A6) nF(Ep) and nF(Ep) are the Fermi–Dirac distribution functions for electrons and positrons, respectively; E p±k =√
(p ± k)2 + m2

e is the energy of an electron or a positron with the absolute value of momentum equal to (p ± k).

Knowing the dielectric functions, the plasmon dispersion relations can be found from the equations

εl(ω, k) = 0, ω2 εt(ω, k) = k2. (A7)

If the electron gas is completely degenerate (T = 0), then the integrals in equations (A3) and (A4) can be taken analytically. The result is

εl = 1 − α

π

{
−8

3

1

k2
pF

√
p2

F + m2
e + 2

3
sinh−1 pF

me

+ 1

3

(k2 − ω2 − 2m2
e)

(k2 − ω2)

√
k2 − ω2 + 4m2

e

ω2 − k2
L1

− 1

6k3

√
p2

F + m2
e

(
3ω2 − 3k2 + 4p2

F + 4m2
e

)
L2

+ ω

12k3

(
ω2 − 3k2 + 12p2

F + 12m2
e

)
L3

}
, (A8)

εt = 1 − α

πω2

{
2

3

(k2 + 2ω2)

k2
pF

√
p2

F + m2
e

−2

3
(k2 − ω2) sinh−1 pF

me

− (k2 − ω2 − 2m2
e)

3

√
k2 − ω2 + 4m2

e

ω2 − k2
L1

+
√

p2
F + m2

e

k3

[
− 1

3
(k2 − ω2)(p2

F + m2
e) + 1

4

( − k4 + ω4 + 4m2
ek2

)]
L2

+ ω

24k3

[
(k2 − ω2)

(
3k2 + ω2 + 12p2

F + 12m2
e

) − 12m2
ek2

]
L3

}
. (A9)

The quantities L2 and L3 are

L2 = ln

∣∣∣∣ (−k2 + ω2 − 2kpF)2 − 4ω2(p2
F + m2

e)

(−k2 + ω2 + 2kpF)2 − 4ω2(p2
F + m2

e)

∣∣∣∣ , (A10)

L3 = ln

∣∣∣∣∣ (−k2 + ω2)2 − 4(ω
√

p2
F + m2

e + kpF)2

(−k2 + ω2)2 − 4(ω
√

p2
F + m2

e − kpF)2

∣∣∣∣∣ . (A11)
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The quantity L1 depends on the sign of D ≡ (ω2 − k2)(k2 − ω2 + 4 m2
e). At D � 0 one has

L1 = arctan

⎡
⎣−2mekpF + (

k2 + 2meω − ω2
)(√

p2
F + m2

e − me

)
pF

√
(ω2 − k2)

(
k2 − ω2 + 4m2

e

)
⎤
⎦

+ arctan

⎡
⎣2mekpF + (

k2 + 2meω − ω2
)(√

p2
F + m2

e − me

)
pF

√
(ω2 − k2)

(
k2 − ω2 + 4m2

e

)
⎤
⎦

+ arctan

⎡
⎣−2mekpF + (

k2 − 2meω − ω2
)(√

p2
F + m2

e − me

)
pF

√
(ω2 − k2)

(
k2 − ω2 + 4m2

e

)
⎤
⎦

+ arctan

⎡
⎣2mekpF + (

k2 − 2meω − ω2
)(√

p2
F + m2

e − me

)
pF

√
(ω2 − k2)

(
k2 − ω2 + 4m2

e

)
⎤
⎦ .

(A12)

At D < 0

L1 = i

2
ln

∣∣∣∣∣∣∣
[

(k2 − ω2)
√

p2
F + m2

e + pF

√
(k2 − ω2)(k2 − ω2 + 4m2

e)

]2

− 4m4
eω

2[
(k2 − ω2)

√
p2

F + m2
e − pF

√
(k2 − ω2)(k2 − ω2 + 4m2

e)

]2

− 4m4
eω

2

∣∣∣∣∣∣∣ . (A13)

Note that equations (A8) and (A9) for the dielectric functions agree with the well-known results of Jancovici (1962) only at D < 0 (see his

equations A1 and A4). At D � 0 his expressions (A1) and (A4) are formally inapplicable (the real part of the dielectric functions in these

equations becomes complex). In this case one should use our equations (A8) and (A9).

In addition, it may be useful to note that the Jancovici’s definition of the transverse dielectric function differs from a generally accepted

one. His dielectric function εJanc
t is related to our dielectric function by εJanc

t = (k2− ω2 εt)/(k2 − ω2).

A P P E N D I X B : D E S C R I P T I O N O F A TA B L E O F O U R N U M E R I C A L R E S U LT S

The results of our numerical calculations are summarized in the table (file table.dat) which can be found on the web site

http://www.ioffe.ru/astro/NSG/plasmon/table.dat.

The table consists of seven columns. In the first column, we present log T (in K); in the second column we give log(ρ̃) = log(ρ/μe)

(g cm−3); in the third and fourth columns we present, respectively, the emissivities Qt and Ql (erg s−1 cm−3) due to decay of transverse and

longitudinal plasmons; the fifth column is the plasma frequency ωp (s−1), which is numerically calculated from the exact dispersion relations

(A7) (not using the Braaten–Segel approximation); the sixth column is the same plasma frequency but calculated from equation (5) (the

Braaten–Segel approximation). Finally, in the seventh column we present the characteristic dimensionless velocity of electrons v∗ = ω1/ωp

in units of c, calculated in the Braaten–Segel approximation (i.e. by making use of equations 5 and 9 for ωp and ω1, respectively).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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