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New physics in the neutrino sector might be necessary to address anomalies between different
neutrino oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant
cosmological measurements of H0 and σ8. We show here that delaying the onset of neutrino free-
streaming until close to the epoch of matter-radiation equality can naturally accommodate a larger
value for the Hubble constant H0 = 72.3± 1.4 km s−1Mpc−1 and a lower value of the matter fluctu-
ations σ8 = 0.786± 0.020, while not degrading the fit to the cosmic microwave background (CMB)
damping tail. We achieve this by introducing neutrino self-interactions in the presence of a non-
vanishing sum of neutrino masses. Without explicitly incorporating additional neutrino species, this
strongly interacting neutrino cosmology prefers Neff = 4.02 ± 0.29, which has interesting implica-
tions for particle model-building and neutrino oscillation anomalies. We show that the absence of
the neutrino free-streaming phase shift on the CMB can be compensated by shifting the value of
several cosmological parameters, hence providing an important caveat to the detections made in
the literature. Due to their impact on the evolution of the gravitational potential at early times,
self-interacting neutrinos and their subsequent decoupling leave a rich structure on the matter power
spectrum. In particular, we point out the existence of a novel localized feature appearing on scales
entering the horizon at the onset of neutrino free-streaming. While the interacting neutrino cos-
mology provides a better global fit to current cosmological data, we find that traditional Bayesian
analyses penalize the model as compared to the standard cosmological scenario due to the relatively
narrow range of neutrino interaction strengths that is favored by the data. Our analysis shows that
it is possible to find radically different cosmological models that nonetheless provide excellent fits
to the data, hence providing an impetus to thoroughly explore alternate cosmological scenarios.

PACS numbers: 98.80.-k,14.60.St,98.70.Vc

I. INTRODUCTION

The neutrino sector of the Standard Model (SM) of
particle physics is a promising area to search for new phe-
nomena that could help pinpoint the Ultraviolet comple-
tion of the SM. Indeed, terrestrial neutrino experiments
have identified several anomalies that could potentially
indicate the presence of new physics in the neutrino sec-
tor (see, e.g., Ref. [1] for a recent review). Of particular
significance are the νµ → νe appearance results from the
MiniBooNE [2] and LSND [3] collaborations which, if in-
terpreted within a neutrino oscillation framework that in-
cludes an extra sterile neutrino, would indicate the pres-
ence of such a sterile neutrino at very high statistical sig-
nificance. Within this “3+1” neutrino oscillation frame-
work, these results are, however, very difficult to reconcile
with the absence of anomalies in the νµ → νµ disappear-
ance as probed by recent atmospheric [4, 5] and short-
baseline [6, 7] experiments. If these results are confirmed
by future analyses, it is likely that new physics beyond
the sterile+active oscillation models would be necessary
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to resolve the tension between neutrino appearance and
disappearance data.

Astrophysical and cosmological observations provide
complementary means of probing the properties of neu-
trinos. This is perhaps best illustrated by the cosmolog-
ical constraints on the sum of neutrino masses

∑

mν <
0.12 eV [8] obtained by combining cosmic microwave
background (CMB) data from the Planck satellite with
baryon acoustic oscillation (BAO) measurements. Cos-
mological observables such as the CMB and large-scale
structure (LSS) are also sensitive to the presence of new
interactions (see e.g. Refs. [9–42]) in the neutrino sector
that would modify their standard free-streaming behav-
ior during the radiation-dominated epoch following their
weak decoupling. In the literature, a phenomenological
description based on the ceff and cvis parametrization
[43] has often been used to test the free-streaming nature
of neutrinos in the early Universe [44–54]. While these
analyses generally find results consistent with the stan-
dard neutrino cosmology, they are difficult to interpret
in terms of possible new interactions among neutrinos, as
emphasized in Refs. [55, 56]. Other works [55–67] have
used more physical parameterizations that make the con-
nection to the underlying particle nature of the neutrino
interaction more transparent.

In particular, Ref. [56] has developed a rigorous treat-
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ment of the evolution of cosmological neutrino fluctua-
tions in the presence of neutrino self-interactions medi-
ated by either a massive or massless new scalar particle.
Using this framework, Ref. [66] used CMB data to put
constraints on the strength of neutrino self-interactions
in the early Universe for the case of a massive media-
tor. These results largely confirmed earlier constraints
from Refs. [55, 62, 65] obtained using an approximate
(but nonetheless accurate) form of the neutrino Boltz-
mann hierarchy. Interestingly, these studies, which fo-
cused on four-neutrino interactions parametrized by a
Fermi-like coupling constant Geff , found a bimodal pos-
terior distribution for this latter parameter. While the
first (and statistically dominant) posterior mode is con-
sistent with the onset of neutrino free-streaming being
in the very early Universe, the second posterior mode
corresponds to a much delayed onset of free-streaming
to zν,dec ∼ 8300. In Ref. [65], a previously unknown
multi-parameter degeneracy involving the amplitude of
scalar fluctuations, the scalar spectral index, the Hubble
constant, and the neutrino self-interacting strength was
identified as being responsible for the existence of this
second posterior mode. While intriguing, the neutrino
interaction strength favored by this mode is nearly ten
orders of magnitude above the standard weak interaction.
Taken at face value, this likely constitutes a very serious
challenge from a model-building perspective.

Nevertheless, given the current tensions among ter-
restrial and atmospheric neutrino experiments described
above, is the “interacting” neutrino mode hinting at the
presence of new physics beyond the SM? The simplified
interaction models used in Refs. [55, 65–67] are likely cap-
turing parts of a more realistic neutrino interaction sce-
nario, hence leading to a somewhat suboptimal fit to the
cosmological data. One aspect that has been neglected in
studies of self-interacting neutrinos so far is the presence
of neutrino mass. The impact of massive neutrinos on the
CMB and matter clustering has been studied extensively
in the literature (see e.g. Refs. [68–72]). One of the aims
of this paper is to understand how the effects of massive
neutrinos on cosmological observables are modified when
self-interactions are present in the early Universe.

Tensions are also growing between different late-time
measurements of the Hubble constant H0 [73–76] and
those based on CMB data [8]. Measurements of the
amplitude of matter fluctuations at low redshifts (often
parametrized using σ8) from weak gravitational lensing
and cluster counts are all consistently lower than that
inferred from the CMB [77–79]. While the statistical sig-
nificance of the deviation of each individual measurement
is less than 3σ, all recent measurements of the amplitude
fluctuations in the local universe are below the Planck
value. Physics beyond ΛCDM has been proposed to rec-
oncile these tensions, such as early dark energy [80–83],
dark matter interactions [84, 85], decaying dark matter
[86–89], modified gravity [90, 91], and new relativistic
species [92], among others. However, these propositions
often struggle to remedy both tensions simultaneously.

In this paper, we study how the presence of self-
interacting massive neutrinos in the early Universe af-
fect cosmological observables such as the CMB, with an
eye on how these new effects could help relieve the cur-
rent tensions among different datasets. In Sec. II, we
describe the simplified neutrino interaction model used
in this work. In Sec. III, we present the cosmological
perturbation equations for massive self-interacting neu-
trinos. In Sec. IV, we describe the physical impacts that
massive self-interacting neutrinos have on the CMB and
the matter power spectrum. In Sec. V, we outline the
data and method used in our cosmological analyses of
self-interacting. The results from these analyses are pre-
sented in Sec. VI and discussed in Sec. VIII. We conclude
and highlight future directions in Sec. IX.

II. NEUTRINO INTERACTION MODEL

In this work, we focus on a simple framework that cap-
tures the most important cosmological aspects of realis-
tic neutrino interaction models. We note however that
building a successful model of neutrino self-interaction
that respects the gauge and flavor structure of the SM
likely requires the introduction of a light sterile species
which mass-mixes with the active neutrinos and is itself
coupled to a massive scalar or vector mediator (see e.g.
Refs. [32, 93–100]). The presence of these new interac-
tions in the sterile sector suppresses the effective mix-
ing angle between the active and sterile species at early
times, ensuring that Big Bang nucleosynthesis (BBN)
constraints are respected . At later times once the active-
sterile oscillation rate becomes comparable to the finite
temperature effective potential resulting from the new in-
teraction, the mixing angle is no longer suppressed hence
allowing the active and sterile sectors to partially ther-
malize with each other [30, 33, 35].
Diagonalizing the mass matrix of such a model leads to

an effective interaction Lagrangian between the different
neutrino mass eigenstates of the generic form

Lint = gij ν̄iνjϕ, (1)

where gij is a (generally complex) coupling matrix, νi
is a left-handed neutrino Majorana spinor, and the in-
dices i, j labeled the neutrino mass eigenstates. Here we
have assumed a Yukawa-type interaction with a massive
scalar ϕ, but note that the results presented in this work
also apply if a massive vector is assumed instead. The
Lagrangian given in Eq. (1) could also arise in models
where neutrinos couple to a Majoron [11, 101, 102].
In models where the new interaction arises through

active-sterile mixing, the structure of the coupling matrix
gij would generally depend on the flavor content of each
mass eigenstate. For instance, a mass eigenstate made
of mostly active flavors will couple very weakly to the
massive scalar ϕ, while an eigenstate being largely com-
posed of the sterile species would couple more strongly
to the mediator. In other models of neutrino interaction,
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the structure of the coupling matrix could be more ar-
bitrary. In all cases though, gij is subject to important
flavor-dependent bounds [103–105] arising from meson,
tritium, and gauge boson decay kinematics.
In this work, we consider the simple case of a universal

coupling gν between every neutrino mass eigenstate

gij ≡ gνδij , (2)

where δij is the Kronecker delta. While the universal
coupling case is likely unrealistic for the reason outlined
above, it does provide a simple benchmark to test the
sensitivity of cosmological data to new neutrino physics.
We work in the contact-interaction limit in which the

mass of the ϕ mediator is much larger than the typical
energy of the scattering event. In this case, one can inte-
grate out this massive mediator and write the interaction
as a four-fermion contact interaction. This is an excellent
approximation at the energy scale probed by the CMB
for mϕ & 1 keV. In this limit, the squared scattering
amplitude for a neutrino νi to interact with any other
neutrino in the thermal bath is

|M|2νi
=
∑

spins

|M|2νi+νj→νk+νl

= 2G2
eff

(

s2 + t2 + u2
)

, (3)

where we have defined the dimensionfull coupling con-
stant Geff ≡ |gν |2/m2

ϕ. Here, s, t, and u are the stan-
dard Mandelstam variables. While our phenomenological
model described by Geff is unlikely to accurately capture
all the complexity of novel neutrino interactions, it is
nonetheless a useful framework to identify the interest-
ing parameter space, as described in Ref. [31].
Introducing new neutrino interactions has an impact

beyond cosmology. For a low mass mediator (< 10
MeV), SN 1987A [15], Big Bang nucleosynthesis (BBN)
[106, 107], and the detection of ultra-high energy neutri-
nos at IceCube [31, 34, 108] provide some of the strongest
constraints, with the latter bound having the potential
of being the most stringent in the near future. Other
limits [10, 109, 110] coming from Z-boson decay do not
directly apply at the energy scale probed by the CMB.
Also, elastic collisions caused by the new interaction do
not affect the time it takes for neutrinos to escape super-
novae [111, 112], although they could lead to interesting
phenomena (see e.g. Refs. [113–118]). Finally, supernova
cooling puts bounds on the coupling of majorons to SM
neutrinos [119–122], but the applicability of these likely
depends on the details of the exact coupling matrix used.

III. COSMOLOGICAL PERTURBATIONS

In this section we summarize the key ingredients and
simplifications entering our derivation of the Boltzmann
equation governing the evolution of massive and self-
interacting neutrino fluctuations, at first order in per-
turbation theory. Our computation uses two main ap-
proximations:

• Based on previous studies [55, 65], we assume that
neutrinos decouples while still in the relativistic
regime. We thus neglect the presence of the small
neutrino mass in the computation of collision inte-
grals. As we shall see, our final results are consis-
tent with this approximation.

• We assume that the neutrino distribution function
remains exactly thermal throughout the epoch at
which neutrinos decouple and start free-streaming.
This thermal approximation (also called, relaxation
time approximation) implies that the only possible
neutrino perturbations are local temperature fluc-
tuations. This approximation was shown to be very
accurate in Ref. [66] for the type of interaction we
consider here.

Conformal Newtonian gauge is used throughout this
section.

A. Neutrino distribution function and

perturbation variables

We present a detailed derivation of the left-hand side
of the Boltzmann equation for massive neutrino in Ap-
pendix B (see also Ref. [123]). Our starting point is to
expand the neutrino distribution function as

fν(x,p, τ) = f (0)ν (p, τ)[1 + Θν(x,p, τ)], (4)

where x denotes the spatial coordinates, τ is confor-
mal time, and p is the proper momentum. The back-
ground (spatially uniform) neutrino distribution function
is taken to be of a Fermi-Dirac shape

f (0)ν (p, τ) =
1

ep/Tν + 1
, (5)

where p = |p|. In the ultra-relativistic regime, for which
the thermal approximation implies that the only possi-
ble neutrino perturbations are local temperature fluctu-
ations, the perturbation variable Θν admits the form

Θν(x,p, τ) = −d ln f
(0)
ν

d ln p

δTν(x, τ)

T̄ν(τ)
, (6)

where T̄ν is the background neutrino temperature, and
δTν is its perturbation. It is therefore convenient to in-
troduce the temperature fluctuation variables Ξν

Ξν(x,p, τ) ≡
−4Θν(x,p, τ)

d ln f
(0)
ν

d ln p

(7)

which is independent of p in the thermal approximation
for massless neutrinos. However, the presence of a non-
vanishing neutrino mass and the non-negligible momen-
tum transfered in a typical neutrino-neutrino collision
would in general introduce some extra p-dependence to
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Ξν [123]. This turns the Boltzmann equation of self-
interacting neutrinos into a differentio-integral equation
that is particularly difficult to solve exactly [56]. In prac-
tice though, the absence of energy sources or sinks cou-
pled to the neutrino sector implies that the momentum
dependence of the right-hand side of Eq. (7) should be
vanishingly small at early times when neutrinos form a
highly-relativistic tightly-coupled fluid. This allows us
to neglect the momentum-dependence of Ξν in the com-
putation of the collision integrals, an approximation that
was found to be accurate in Ref. [66]. We do retain, how-
ever, the momentum dependence of Ξν in the left-hand
side of the Boltzmann equation.
In this work, we only consider scalar perturbations and

thus expand the angular dependence of the Ξ̃ν variable
(the Fourier transform on Ξν) in Legendre polynomials
Pl(µ)

Ξ̃ν(k,p, τ) =

∞
∑

l=0

(−i)l(2l + 1)νl(k, p, τ)Pl(µ), (8)

where µ is the cosine of the angle between k and p. Be-
fore presenting the equation of motion for the neutrino
multipole moments νl, we discuss the structure of the
collision integrals.

B. Collision term

The details of the collision term calculation for the
νν → νν process is given in Appendix C. As explained
above, the main simplification entering this calculation
is the use of the thermal approximation in which we ne-
glect the momentum dependence of the νl variables. Un-
der this assumption, the collision term at first order in

perturbation theory C
(1)
ν can be written as

C(1)
ν [p] =

G2
effT

6
ν

4

∂ ln f
(0)
ν

∂ ln p1
(9)

×
∞
∑

l=0

(−i)l(2l + 1)νlPl(µ)

(

A

(

p

Tν

)

+Bl

(

p

Tν

)

− 2Dl

(

p

Tν

)

)

,

where the functions A(x), Bl(x), and Dl(x) are given
in Eqs. (C52), (C53), and (C54), respectively. Here, we
have adopted the notation Tν ≡ T̄ν to avoid clutter.

C. Boltzmann equation for self-interacting

neutrinos

Substituting the collision term from Eq. (9) into
Eq. (B10) and performing the µ integral yields the equa-
tion of motion for the different neutrino multipoles νl.

They can be summarized in the following compact form

∂νl
∂τ

+ k
q

ǫ

(

l + 1

2l + 1
νl+1 −

l

2l + 1
νl−1

)

(10)

− 4

[

∂φ

∂τ
δl0 +

k

3

ǫ

q
ψδl1

]

= −aG
2
effT

5
ν νl

f
(0)
ν (q)

(

Tν,0
q

)

(

A

(

q

Tν,0

)

+Bl

(

q

Tν,0

)

− 2Dl

(

q

Tν,0

)

)

,

where we have introduced the comoving momentum q ≡
ap, q = |q|, ǫ =

√

q2 + a2m2
ν , a is the scale factor nor-

malized to a = 1 today, δmn is the Kronecker delta func-
tion, and Tν,0 is the current (a = 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to νl is a consequence of our use of the
thermal approximation. We note that energy and mo-
mentum conservation ensures that A+B0−2D0 = 0 and
A+B1 − 2D1 = 0, respectively.
As is standard in analyses of massive neutrino cosmolo-

gies, we shall consider our neutrino sector to be composed
of a mix of massive and massless neutrinos. In the mass-
less case (q = ǫ), one can integrate Eq. (10) over the
comoving momentum to yield a simpler neutrino multi-
pole hierarchy [55, 65]

∂Fl

∂τ
+ k

(

l + 1

2l + 1
Fl+1 −

l

2l + 1
Fl−1

)

(11)

− 4

[

∂φ

∂τ
δl0 +

k

3
ψδl1

]

= −aG2
effT

5
ναlFl,

where

αl =
120

7π4

∫ ∞

0

dx x2

[

A (x) +Bl (x)− 2Dl (x)

]

, (12)

and where we denoted the massless perturbations as Fl

to distinguish them from the massive neutrino variables
νl.
We implement these modified Boltzmann equations in

the cosmological code CAMB [124]. For computational
speed, we precompute the functions A, Bl and Dl on a
grid of q/Tν,0 values and use an interpolation routine to
access them when solving the cosmological perturbation
equations. As in standard CAMB, we use a sparse 3-point
grid of q/Tν,0 values to evaluate the integrals required
to compute the energy density and momentum flux of
massive neutrinos. We have checked convergence of our
scheme against a 5-point momentum grid and found neg-
ligible difference in the CMB and matter power spec-
trum in the parameter space of interest. We also precom-
pute the coefficient αl and tabulate them. We emphasize
that energy and momentum conservation ensures that
α0 = α1 = 0, which we have checked with high accuracy.
For simplicity, we assume throughout this paper that

the neutrino sector contains one massive neutrino, with
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the remaining neutrino species being massless. All neu-
trinos are assumed to interact with the same coupling
strength Geff . We find that varying the number of mas-
sive neutrinos and number of mass eigenstates, while
holding Neff and

∑

mν constant, has a very small impact
on the CMB and matter power spectra for all values of
Geff consistent with the data used here. It is however
possible that future data might be sensitive to the way
∑

mν is spread among different mass eigenstates.
At early times, the large self-interaction rate of neu-

trinos renders the equations of motion for multipoles
l ≥ 2 extremely stiff. To handle this, we employ a tight-
coupling scheme [126] in which multipole moments with
l ≥ 2 are set to zero at early times. Once the neutrino
self-interaction rate falls to about a 1000 times the Hub-
ble expansion rate, we turn off this tight-coupling ap-
proximation and allows power to flow to the higher mul-
tipoles. We have checked that this switch happens early
enough as to not affect the accuracy of our results. After
neutrino decoupling, once they become non-relativistic,
we revert to the standard velocity-integrated truncated
Boltzmann hierarchy as described in Ref. [127]. We also
modified the adiabatic initial conditions for the cosmo-
logical perturbations to take into account the absence of
free-streaming neutrinos at early times. Finally, through-
out this work, we use the standard BBN predictions to
compute the helium abundance given the abundance of
relativistic species and the baryon-to-photon ratio.

IV. EFFECT ON COSMOLOGICAL

OBSERVABLES

A. Cosmic microwave background

In the standard cosmological paradigm, free-streaming
neutrinos travel supersonically through the photon-
baryon plasma at early times, hence gravitationally
pulling photon-baryon wavefronts slightly ahead of where
they would be in the absence of neutrinos [42, 128, 129].
As a result, the free-streaming neutrinos imprint a net
phase shift in the CMB power spectra towards larger
scales (smaller ℓ), as well as a slight suppression of its
amplitude. Free-streaming neutrinos thus lead to a phys-
ical size of the photon sound horizon at last scattering r∗
that is slightly larger than it would otherwise be. This
phase shift is thought to be a robust signature of the
presence of free-streaming radiation in the early Universe
[42, 130, 131].
The neutrino self-interactions mediated by the cou-

pling constant Geff delay the time at which neutrinos
begin to free-stream. Fourier modes entering the causal
horizon while neutrinos are still tightly-coupled will not
experience the gravitational tug of supersonic neutrinos
and will therefore not receive the associated phase shift
and amplitude reduction. Compared to the standard
ΛCDM model, neutrino self-interactions thus shift the
CMB power spectra peaks towards smaller scales (larger

ℓ) and boost their fluctuation amplitude. This leads to
a net reduction of the physical size of the photon sound
horizon at last scattering r∗. As we shall see, this is the
key feature of our model that helps reconcile CMB and
late-time measurements of the Hubble constant H0.

The left panels of Fig. 1 show the temperature CMB
power spectra and their relative difference to a ΛCDM
model for different values of Geff ,

∑

mν , and Neff to
illustrate the effects of neutrino self-scattering in the
presence of a non-vanishing mass term. Here, we keep
Ωm fixed as

∑

mν changes, and use the best-fit Planck
TT+lowP+lensing ΛCDM values as our fiducial cosmol-
ogy [132]. The middle left panel of Fig. 1 displays the
combined effect of changing both Geff and

∑

mν . For the
minimal sum of neutrinos masses

∑

mν = 0.06 eV, an in-
teraction strength of Geff = 10−4 MeV−2 (solid blue line)
has for only effect a slight increase of power at large mul-
tipoles. On the other hand, increasing the neutrino cou-
pling strength to Geff = 10−2 MeV−2 (solid red line) sig-
nificantly boosts the amplitude of the TT spectrum and
introduces a clear phase shift (identifiable from the oscil-
latory pattern of the residuals), which are the two telltale
signatures of self-scattering neutrinos as described above.

Increasing the sum of neutrinos masses to
∑

mν =
0.23 eV (at fixed Ωm) delays the time of matter-radiation
equality. The delay slightly increases the amplitude of
the TT spectrum near the first few acoustic peaks and
dampens the spectrum at smaller scales (see dashed black
line in Fig. 1). The resulting changes to the photon-
baryon sound horizon at recombination and to the an-
gular diameter distance to the surface of last scattering
create a net phase shift towards low ℓ [69], that is, in the
opposite direction to that caused by increasing Geff . This
opens the door for possible cancellations between the rel-
ative phase shift (as compared to ΛCDM) caused by neu-
trino self-scattering and that resulting from a large sum
of neutrino masses. Such cancellation partially occurs in
the middle left panel of Fig. 1 for Geff = 10−2 MeV−2

as
∑

mν is increased from 0.06 to 0.23 eV (dashed red
line). Similarly, the boost in amplitude from Geff can also
compensate for the damping effects of increasing

∑

mν

at small scales (see e.g. the dashed blue line). Overall,
we see that the effect of massive neutrinos and increased
interaction strength are nearly additive1, reflecting the
fact that the physical processes associated with each of
these properties take place at different times in the cos-
mological evolution.

The lower left panel of Fig. 1 displays the impact of
increasing the energy density of the neutrino fluid, which
we parametrized here through the standard parameter

1 Indeed, combining the spectrum for {Geff = 10−2 MeV−2,
Σmν = 0.06 eV} (solid red line) with that of the Σmν = 0.23 eV
ΛCDM model (dashed black line) yields a spectrum similar to
the model with {Geff = 10−2 MeV−2, Σmν = 0.23 eV} (dashed
red line).
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FIG. 1: Effects of
∑

mν , Geff , and Neff on the phase and amplitude of the TT and EE power spectra. Colors denote
different values of Geff . Solid spectra correspond to

∑

mν = 0.06 eV and dashed spectra correspond to
∑

mν = 0.23 eV. Measurements from the Planck 2015 data release are included [125].

Neff , defined via the relation

ρR =

[

1 +Neff
7

8

(

4

11

)4/3
]

ργ , (13)

where ρR and ργ are the total energy density in radiation
and in photons, respectively. The effects on the CMB of
increasing Neff have been well-studied in the literature
(see e.g. Ref. [133]) for the case of free-streaming neutri-
nos. For fixed values of the angular scale of the sound
horizon, the epoch of matter-radiation equality, and the
physical baryon abundance, it was found that the most
important net impact of increasing Neff was to damp the
high-ℓ tail of the TT spectrum and to induce a phase
shift towards larger scales (low-ℓ). Interestingly, self-
interacting neutrinos can partially compensate for these

effects, hence pointing to a possible degeneracy between
Geff and Neff . An example of this can be seen in the
dotted red line in the lower left panel of Fig. 1, where
the excess of damping caused by Neff = 4.046 (dotted
black line) is compensated by suppressing neutrino free-
streaming with Geff = 10−2 MeV−2.

Geff affects the EE polarization power spectrum in a
similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ΛCDM model and that with self-interacting
neutrinos is more visible in this case due to the sharp, well
defined peaks of the polarization spectrum [129]. This
allows to directly see in which direction the spectrum is
shifted compared to ΛCDM since the oscillations in the
residuals lean in the direction of the phase shift, that is,
there is a sharper drop off in the residuals in the direction
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
of Geff can be partially canceled by increasing

∑

mν , in
a nearly additive fashion. For the EE polarization spec-
trum, suppressing neutrino free-streaming can somewhat
compensate the extra damping caused by a large Neff (at
fixed θ∗, zeq, and Ωbh

2; see lower right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neu-
trinos’ impact on the two gravitational potentials φ
and ψ. Indeed, neutrino self-interactions suppress the
anisotropic stress of the universe, leading to φ − ψ = 0
before the onset of neutrino free-streaming. This con-
trasts with the ΛCDM case for which φ = (1 + 2Rν/5)ψ
on large scales at early times for the adiabatic mode [123],
where Rν is the radiation free-streaming fraction. This
difference in the evolution of the potentials modifies the
gravitational source term driving the growth of matter
fluctuations. The equation describing the evolution of
dark matter fluctuations can be written in Fourier space
as [128]

d̈c +
ȧ

a
ḋc = −k2ψ, (14)

where

dc ≡ δc − 3φ, (15)

and where δc = δρc/ρc is the standard dark matter en-
ergy density contrast in Newtonian gauge. Here, an over-
head dot denotes a derivative with respect to conformal
time τ . The gauge-invariant variable dc represents the
fractional dark matter number density perturbation by
unit coordinate volume. At late times, dc is nearly equal
to δc and it is thus a useful quantity to understand the
structure of the matter power spectrum at z = 0. In the
radiation-dominated epoch where ȧ/a = τ−1, the solu-
tion to Eq. (14) can be written [134]

dc(k, τ) = −9

2
φp + k2

∫ τ

0

dτ ′τ ′ψ(k, τ ′) ln (τ ′/τ), (16)

where φp is the primordial value of φ on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when kτ ∼ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the ψ potential at horizon entry.
We compare the evolution of ψ in the presence of self-

interacting neutrinos with Geff = 10−2 MeV−2 to that of
standard ΛCDM in the left panel of Fig. 2. There, we
track the evolution of three different Fourier modes: k =
10h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10−3 h/Mpc which does not enter
the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential ψ decays in
an oscillatory fashion [134]. The absence of anisotropic
stress implies that ψ starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ΛCDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ΛCDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
ψ in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ΛCDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential ψ begins decaying from its
larger value with Rν = 0 but rapidly locks into its stan-
dard ΛCDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the ψ potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
ΛCDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the ψ po-
tential quickly converging to its ΛCDM behavior. The
evolution of the k = 0.3h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ΛCDM counterparts, as illustrated by the k =
10−3 h−1Mpc mode in Fig. 2. Taking together the evolu-
tion of the different Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
ΛCDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ΛCDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ΛCDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ΛCDM.
Focusing for the moment on the cases with

∑

mν = 0.06
eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ΛCDM.
The shape of this power excess is determined by the neu-
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FIG. 2: The evolution of the ψ gravitational potential (left) and of the gauge invariant dark matter density contrast
dc (right) for different k-modes as a function of redshift. Solid lines correspond to the interacting neutrino case with
Geff = 10−2 MeV−2, Neff = 3.046, and

∑

mν = 0.06 eV, whereas dashed lines correspond to the ΛCDM case. On
the left, we plot −3ψ/(2ζ), where ζ is the gauge-invariant curvature perturbation. The lower left panel shows the
normalized difference between the interacting neutrino and ΛCDM ψ potential, while the lower right panel shows

the ratio of the dark matter fluctuations in the two models. The onset of neutrino free-streaming for the interacting
neutrino model shown here occurs at zdec,ν ≃ 104. Dark matter fluctuations entering the horizon while neutrinos are
still tightly coupled decay and appear damped at present relative to ΛCDM, while those entering the horizon during

neutrino decoupling receive a net boost that persists until the present epoch.

trino visibility function [55] encoding the details of neu-
trino decoupling. Increasing the sum of neutrino masses
(at fixed Ωm) leads to a damping of the matter power
spectrum on small scales [69, 72]. This standard reduc-
tion of power is shown for ΛCDM as the thick black
dashed line in Fig. 3. Interestingly, this small-scale sup-
pression is also present for self-interacting neutrinos and
occurs in addition to that caused by the slower decay
of the gravitational potential ψ discussed above. Thus,
the matter power spectrum for massive self-interacting
neutrinos is even more suppressed at large k than in the
standard ΛCDM case with massive neutrinos.

This fact might seem counterintuitive at first since the
reduction of small-scale power from massive neutrinos is
often refereed to as “free-streaming” damping. We see
this moniker is somewhat of a misnomer since the damp-
ing is present whether or not neutrinos are actually free-
streaming. Instead, the small-scale reduction of power is
simply caused by the large pressure term that prohibits
neutrino clustering on these scales. This pressure term
is always there as long as neutrinos are relativistic, even

when neutrinos are self-scattering. As was the case for
the CMB, the effects of a non-vanishing sum of neutrino
masses and large Geff are largely additive. Comparing
the

∑

mν = 0.23 eV cases to that with
∑

mν = 0.06
eV in Fig. 3 for both interacting neutrino models shown
illustrates this well. Again, this near additivity reflects
the fact that part of the effect comes from the behavior
of dark matter fluctuations at horizon entry, while the
rest is caused by the large pressure term of relativistic
neutrinos on small scales.

The lowest panel of Fig. 3 shows the effect of increas-
ing Neff (at fixed θ∗, zeq, and Ωbh

2) on the matter power
spectrum. For ΛCDM, the main impact is to increase the
amplitude of Fourier modes that enter the causal hori-
zon during radiation domination. This results from the
larger radiation density and free-streaming fraction Rν

[128] at early times. Suppressing neutrino free-streaming
for Neff = 4.046 (dotted red line) nullifies this increase
of power on small-scales, even leading to a net damping
compared to ΛCDM for k > 10h/Mpc. However, as the
neutrinos start to decouple from one another, the larger
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FIG. 3: Effects of Geff ,
∑

mν , and Neff on the matter
power spectrum. Colors denote different values of Geff .
Solid spectra correspond to

∑

mν = 0.06 eV and dashed
spectra correspond to

∑

mν = 0.23 eV. Dotted lines in
the bottom panel have Neff = 4.046. Note the localized
increase in amplitude at the scales entering the horizon

at the onset of neutrino free-streaming.

radiation density leads to a higher amplitude feature on
scales entering the horizon at that time.

We thus see that taken together, the joint effect of
Geff ,

∑

mν , and Neff can lead to matter power spectra
having a significantly different structure and shape than
the standard ΛCDM paradigm.

V. DATA & METHODOLOGY

We use our modified versions of CAMB [124] and
CosmoMC + Multinest [135, 136] to place constraints on
Geff , Neff , and

∑

mν , as well as the standard cosmolog-
ical parameters. We use nested sampling [137] to ensure
that we properly sample our posterior, which we expect
to be multi-modal as in previous cosmological studies of
self-interacting neutrinos [55, 65, 66].
We use a combination of CMB and low-redshift data

sets in our analysis:

• TT: low-ℓ and high-ℓ CMB temperature power
spectrum from the Planck 2015 release2 [125].

• EE, TE: low-ℓ and high-ℓ CMB E-mode polariza-
tion and their temperature cross-correlation from
the Planck 2015 data release3 [125]. The 2015 po-
larization data is known to have residual systemat-
ics and results drawn using this dataset should be
interpreted with caution. While our main conclu-
sions will not make use of this dataset, we nonethe-
less present results including this dataset for com-
pleteness.

• lens: CMB lensing data from the Planck 2015 data
release [138].

• BAO: Baryon Acoustic Oscillation (BAO) mea-
surements from the 6dF Galaxy Survey constrain-
ingDV at z = 0.106 [139], Sloan Digital Sky Survey
(SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) data release 11 low-z data measuring
DV at z = 0.32 and CMASS data measuring DV

at z = 0.57 [140], and data from the SDSS Main
Galaxy Sample measuring DV at z = 0.15 [141]

• H0: Local measurement4 of the Hubble parameter
H0 = 73.0 ± 1.75 km s−1Mpc−1 at z = 0.04 from
Ref. [73].

We use the lite high-ℓ likelihood, which marginal-
izes over nuisance parameters, to reduce the number of
free parameters in our analysis. We use the following
data set combinations for our nested sampling analysis:
‘TT+lens+BAO’, ‘TT+lens+BAO+H0’, ‘TT,TE,EE’,
and ‘TT,TE,EE+lens+H0’.
In Table I we list our adopted prior ranges. We place

uniform priors on all these parameters, except for the

2 Explicitly, we use the likelihood plik lite v18 TT for high-ℓ and
commander rc2 v1.1 l2 29 B at low-ℓ.

3 Explicitly, we use the likelihood plik lite v18 TTTEEE for high-ℓ
and lowl SMW 70 dx11d 2014 10 03 v5c Ap at low-ℓ.

4 We note that the mean value of H0 used in our analysis is slightly
lower (∼ 0.14σ) than the value quoted in the published version
of Ref. [73] (ours corresponds to the value found in an earlier
version of their manuscript). We do not expect this very small
difference to impact our results in any way.
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TABLE I: Adopted prior ranges

Parameter Prior

log10(GeffMeV2) [−5.5,−0.000001]∑
mν [eV] [0.0001, 1.5]
Neff [2.0, 5.0]

Ωbh
2 [0.01, 0.04]

Ωch
2 [0.08, 0.16]

100θMC [1.03, 1.05]
τ [0.01, 0.25]

ln(1010As) [2, 4]
ns [0.85, 1.1]

ycal [0.9, 1.1]

Planck calibration parameter ycal, for which we use a
Gaussian prior ycal = 1.0000 ± 0.0025. For the analy-
ses using the Planck polarization data, we also include a
Gaussian prior on the optical depth to reionization given
by τ = 0.058± 0.012 from Ref. [142].
We use 2000 live points in our nested sampling runs,

setting the target sampling efficiency to 0.3. We im-
pose an accuracy threshold on the log Bayesian evidence
of 20%, which ensures that our confidence intervals are
highly accurate. We use the mode-separation feature of
Multinest to isolate each posterior mode and compute
their respective summary statistics.

VI. RESULTS

In this section, we first present the main highlights of
our analysis, before discussing the physical properties of
the two categories of interacting neutrino models that are
favored by the data. We end this section with a brief dis-
cussion about which properties of interacting neutrino
models help alleviate current tensions in cosmological
data. Throughout this section, we quote and analyze
results for the TT + lens + BAO+H0 data set combina-
tion unless otherwise specified. We discuss the impact
of other data (including CMB polarization) in Sec. VIII
and list parameter constraints for these other data set
combinations in Table VI and Table VII, in Appendix A.

A. Highlights

Similarly to previous works [55, 65, 66], we find two
unique neutrino cosmologies preferred by the data: a
strongly interacting neutrino cosmology (hereafter de-
noted SIν model) characterized by log

(

Geff MeV2
)

=

−1.35+0.12
−0.07 for the TT+lens+BAO+H0 combination,

and a moderately interacting neutrino cosmology (here-
after, MIν model) characterized by log

(

Geff MeV2
)

=

−3.90+1.00
−0.93 for the same data set. Values of Geff between

these two modes are strongly disfavored by the data since

they either prefer to have a phase shift that is largely con-
sistent with free-streaming neutrinos, or no phase shift at
all. We present constraints on cosmological parameters
for the SIν and MIν modes in Table II. While the MIν
cosmology was nearly indistinguishable from the ΛCDM
scenario with massless neutrinos in previous work [65],
the addition of neutrino mass and Neff in combination
with the H0 measurement from Ref. [73] leads to a slight
preference for a delayed onset of neutrino free-streaming.
We expand more on this new development in Sec. VIC
below.
Cosmological parameters in the SIν cosmology admit

values that are significantly different from ΛCDM:

1. The angular scale of the baryon-photon sound hori-
zon at last scattering 100θ∗ = 1.04604 ± 0.00056
(68% C.L.) takes a value that is radically different
(> 5σ away) than in the ΛCDM scenario, reflecting
the absence of the free-streaming neutrino phase
shift.

2. The large Neff value 4.02 ± 0.29 (68% C.L.) sug-
gests the presence of an additional neutrino species,
which might help reduce tensions between different
neutrino oscillation experiments.

3. A smaller value of the baryon drag scale rdrag =
138.8 ± 2.5Mpc (68% C.L.) helps reconcile BAO
with local Hubble constant measurements, leading
to H0 = 72.3± 1.4 km s−1 Mpc−1 (68% C.L.).

4. The impact of self-interacting neutrinos on the
growth of dark matter perturbations and a pre-
ferred suppressed spectrum of primordial scalar
fluctuations lead to σ8 = 0.786± 0.020 (68% C.L.).

To illustrate the ability of neutrino self-interactions to
help resolve current cosmological tensions, we compare
the S8 ≡ σ8Ω

0.5
m and H0 2D posteriors for the SIν model

and MIν model with the base ΛCDMmodel in Fig. 4. We
overlay bands for HSC constraints on S8 [79] and local
measurements of H0 [73]. In order for our analysis to be
independent from these measurements, we show posteri-
ors for the TT+lens+BAO constraints for both the neu-
trino self-interaction models and ΛCDM. Intriguingly,
the strong neutrino self-interactions in the SIν model are
able to independently produce the preferred values for S8

and H0, even without using these measurements in our

analysis. The base ΛCDM model is unable to achieve
these values, and the weak neutrino interactions of the
MIν model can only achieve such values with weak sig-
nificance.
In Table III we compute the ∆χ2 values between the

two neutrino self-interaction models and ΛCDM. The
data favor the strongly interacting neutrino model over
ΛCDM with ∆χ2

Total = −7.91. This is a significant differ-
ence, even after accounting for the three extra parameters
in the SIν model (see Sec. VIIB for further discussion
about this point). The preference for the self-interacting



11

64 68 72 76
H0 [km/s/Mpc]

0.40

0.42

0.44

0.46

σ
8
Ω
0
.5
m

ΛCDM SIν

63 66 69 72 75
H0 [km/s/Mpc]

0.42

0.44

0.46

0.48

σ
8
Ω
0
.5
m

ΛCDM MIν

FIG. 4: 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions.
We compare the Planck TT + lens + BAO ΛCDM posterior to the SIν and MIν posteriors for TT + lens + BAO.

We overlay 2σ bands for the measurements S8 = 0.427± 0.016 [79] and H0 = 73± 1.75 km/s/Mpc [73].

TABLE II: TT + lens + BAO + H0 Constraints: Parameter 68% Confidence Limits

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

Ωbh
2 0.02245+0.00029

−0.00033 0.02282± 0.00030
Ωch

2 0.1348+0.0056
−0.0049 0.1256+0.0035

−0.0039

100θMC 1.04637± 0.00056 1.04062+0.00049
−0.00056

τ 0.080± 0.031 0.127+0.034
−0.029∑

mν [eV] 0.42+0.17
−0.20 0.40+0.17

−0.23

Neff 4.02± 0.29 3.79± 0.28
log10(GeffMeV2) −1.35+0.12

−0.066 −3.90+1.0
−0.93

ln(1010As) 3.035± 0.060 3.194+0.068
−0.056

ns 0.9499± 0.0098 0.993+0.013
−0.012

H0 [km/s/Mpc] 72.3± 1.4 71.2± 1.3
Ωm 0.3094± 0.0083 0.3010± 0.0080
σ8 0.786± 0.020 0.813+0.023

−0.020

109As 2.08+0.11
−0.13 2.44± 0.15

109Ase
−2τ 1.771± 0.016 1.892+0.019

−0.017

r∗ [Mpc] 136.3± 2.4 139.1± 2.3
100θ∗ 1.04604± 0.00056 1.04041+0.00058

−0.00064

DA [Gpc] 13.03± 0.23 13.37± 0.21
rdrag [Mpc] 138.8± 2.5 141.6± 2.3

TABLE III: Comparison to ΛCDM for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

∆χ2
low ℓ 0.66 −0.75

∆χ2
high ℓ −1.15 1.08

∆χ2
lens 0.06 −0.24

∆χ2
H0

−6.68 −6.12
∆χ2

BAO −0.81 −0.36

∆χ2
Total −7.91 −6.39

∆AIC −1.91 −0.39



12

neutrinos comes from the local measurements of H0, the
high-ℓ TT data, and the BAO data.
In Fig. 5, we separate the posterior modes and plot

their separate statistical distribution for the most salient
parameters. For comparison, we also show the marginal-
ized posteriors for the standard ΛCDM paradigm, as well
as for its Neff+

∑

mν two-parameter extension. In Fig. 6,
we show the different covariances between the most rele-
vant model parameters for three of the dataset combina-
tions used in this work5.

B. Strongly interacting neutrino mode

The existence of the SIν mode was first pointed out
in Ref. [55], and further studied in Refs. [65, 66]. As
discussed there, the SIν cosmology arises due to a multi-
parameter degeneracy that opens up in CMB data when
the onset of neutrino free-streaming is delayed until red-
shift z ∼ 8000. This approximately coincides with the
epoch when Fourier modes corresponding to multipole
ℓ ≈ 400 enters the causal horizon [65], which lies some-
where between the first and second peak of the CMB
temperature spectrum. We review below the properties
of this alternate cosmology, emphasizing its differences
with the standard ΛCDM model.
Sound horizon One of the most striking features of the
SIν model is the significantly larger value of the angular
size of the sound horizon θ∗. This is probably the most
confusing aspect of our results since the angular size of
the CMB sound horizon at last scattering is thought to
be the best measured quantity in all of cosmology. To
understand this apparent discrepancy, it is important to
realize that the angular sound horizon is defined as θ∗ ≡
r∗/DA, where

r∗ =

∫ a∗

0

cs(a)

a2H(a)
da, DA =

∫ 1

a∗

da

a2H(a)
, (17)

where cs is the baryon-photon sound speed, H is the Hub-
ble rate, and a∗ is the scale factor at last scattering. We
thus see that θ∗ is purely defined in terms of background
quantities, independent of the behavior of cosmological
perturbations. In particular, it is independent of the
gravitational tug that neutrinos exert on the photons.
Of course, when fitting CMB data we use the full

temperature and polarization spectra computed from the
Boltzmann equation which includes the effect of neutri-
nos. For the SIν model, the absence of free-streaming

5 Due to the presence of two posterior modes with different width,
it is difficult to choose a smoothing scale that faithfully captures
the intrinsic shape of the whole posterior while removing sam-
pling noise. This particularly affects the SIν mode and results in
a significantly reduced height which appears to visually suppress
its statistical significance. See Fig. 11 in Appendix A for a figure
with a smoothing scale more appropriate for the SIν mode.

neutrinos means that the CMB spectra do not receive the
standard phase shift, and thus appear slightly displaced
toward larger ℓ as compared to the corresponding ΛCDM
spectra. In order to fit the data, we must compensate for
this shift by increasing the value of θ∗. Thus, the dif-
ference between the values of θ∗ in the SIν and ΛCDM
models directly reflects the absence of the free-streaming
neutrino phase shift in the former.

We note that it was a priori far from obvious that
such a dramatic change in the angular size of the sound
horizon was possible without introducing other artifacts
that would significantly worsen the fit to CMB and BAO
data. Our analysis shows that the larger value of θ∗ is
achieved by increasing H0 and Ωch

2 above their ΛCDM
values.

Primordial spectrum In addition to removing the
CMB phase shift, suppressing neutrino free-streaming
also increases the amplitude of the temperature and po-
larization spectra, as discussed in Sec. IVA. In the SIν
model, these changes are reabsorbed by modifying the
primordial spectrum of scalar fluctuations parametrized
by the amplitude As and spectral index ns. As was found
in Refs. [55, 65], lower values of both As and ns are re-
quired to fit the temperature data in the SIν mode. The
difference between this alternative cosmology and ΛCDM
is even more apparent if we compare the values of the pa-
rameter Ase

−2τ which directly determines the amplitude
of the CMB temperature spectrum. As shown in Fig. 5,
this amplitude parameter admits values that are radically
(> 5σ) different than in ΛCDM, again reflecting the large
impact that suppressing neutrino free-streaming has on
the CMB.

Neutrino properties The SIν model is consistent with
having an entire additional neutrino species (Neff =
4.02 ± 0.29, see Fig. 5), which has interesting implica-
tions for neutrino oscillation experiments. By comparing
the SIν cosmology with a more standard ΛCDM + Neff +
∑

mν model, we can understand how much of this prefer-
ence is driven by the neutrino self-interaction. As shown
in Fig. 5, the two-parameter extension of the ΛCDM cos-
mology already favors a larger Neff , but the introduction
of strong neutrino self-interactions shifts the posterior to
even larger values. To a certain extent, this shift is driven
by the need to fit the large value of the local Hubble rate
from Ref. [73] by reducing the size of the sound horizon
at the baryon drag epoch (see e.g. Ref. [143]). However,
in the presence of free-streaming neutrinos, increasing
Neff also leads to a larger phase shift toward low ℓ which
puts a limit on how much extra free-streaming radiation
can be added before severely degrading the fit to CMB
data. For the SIν model, the absence of this phase shift
allows for larger Neff , which leads to a smaller value of
rdrag and, in turn, a larger Hubble constant. This is the
key feature of the SIν model that allows it to severely
reduce the Hubble rate tension between CMB and late-
time measurements, as we shall discuss in Sec. VID.

The SIν model also statistically prefers a nonzero value
for the sum of neutrino masses. This preference was how-
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FIG. 5: 1D posteriors for the TT+lens+BAO+H0 data combination after separating the SIν and MIν modes and
plotting them independently. For this reason, the peak locations and posterior shapes are of physical interest rather

than the relative heights of the peaks.
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ever already present at a less significant level (< 2σ) in
the Neff +

∑

mν extension of the ΛCDM scenario. In
this latter case, nonzero neutrino masses arise from the
need to suppress the amplitude of matter of fluctuations
at late times (as measured here through CMB lensing) in
the presence of a larger Neff and Ωm. For the SIν model,
the preference for a nonzero sum of neutrino masses is in-
creased (> 2σ) due to the even larger Neff and Ωm values
favored by this scenario.
We note that, in our analysis, the primordial helium

abundance YP is highly correlated with Neff due to our
use of the BBN consistency condition. Allowing YP to
take a different set of values in the SIν scenario could
lead to an even better fit to cosmological data.
Matter clustering Several competing effects act to set
the amplitude of late-time matter fluctuations (as cap-
tured by the parameter σ8) in the SIν model. First,
the large values of Neff and Ωm (the latter necessary to
keep the epoch of matter-radiation equality fixed) tend to
boost the amplitude of matter fluctuation as discussed in
Sec. IVB. On scales entering the horizon before the onset
of neutrino free-streaming, this increase is counteracted
by both a nonzero sum of neutrino masses and the reduc-
tion of the horizon entry boost for dark matter fluctua-
tions in the presence of self-interacting neutrinos. Dark
matter fluctuations entering the horizon during neutrino
decoupling, which for the SIν model are coincidentally
those primarily contributing to σ8, are however enhanced
by the rapid decay of the gravitational potential on these
scales. Finally, the lower amplitude and spectral index
of the primordial scalar spectrum in the SIν model tend
to suppress power on scales probed by σ8. Putting all
of these effects together leads to a net lower value of
σ8, which, as discussed in the previous section, might be
favored by some probes of late-time matter clustering.
The overall shape of the matter power spectrum in the
SIν model will be further discussed in Sec. VIII.

C. Moderately interacting neutrino mode

Within the MIν mode, the onset of neutrino free-
streaming occurs before most Fourier modes probed by
the Planck high-ℓ data enter the causal horizon. As such,
the cosmological parameter values preferred by this mode
are very similar to those from the Neff +

∑

mν exten-
sion of the ΛCDM scenario (see Fig. 5). The main differ-
ence here is that high-ℓ CMB modes do not receive the
full amplitude suppression associated with free-streaming
neutrinos due to the finite width of the neutrino visibil-
ity function. In other words, even though these high-ℓ
modes enter the horizon after most neutrinos have started
to free-stream, residual scattering in the neutrino sec-
tor still influences the amplitude of the CMB damping
tail (see, e.g., the model with Geff = 10−4 MeV−2 and
∑

mν = 0.06 eV in Fig. 1). This increased small-scale
power allows for a larger Neff , which, by reducing the
baryon drag scale, leads to slightly larger Hubble con-

stant. This shift is however quite small.
A surprising fact about the MIν mode (also pointed out

in Ref. [66]) is that it shows a slight statistical preference
for a nonzero value of Geff . As we can see in Fig. 6, this
preference is nearly entirely driven by the local Hubble
constant measurement of Ref. [73]. Indeed, removing this
dataset from our analysis (blue contours) eliminates most
of the preference for a nonzero value of Geff .

D. Mediating Controversy: Effects on H0 and σ8

We show in Fig. 7a the impact of Geff , Neff and
∑

mν

on the inferred value of the Hubble parameter. As de-
scribed above, the large values of Neff allowed in the
presence of neutrino self-interactions reduce the size of
the baryon drag scale, which allows a larger value of H0

without damaging the fit to the BAO scale [143] and
without introducing extra damping at large multipoles
(see Fig. 1 for an illustration of this latter effect). In
the SIν model, this effect is compounded by the larger
value of θ∗ necessary to compensate for the absence of the
free-streaming neutrino phase shift. This further slightly
increases the value of H0 necessary to fit the data, as
can be seen by comparing the two modes in the left-most
panel of Fig. 7a.

It is worth noting that when Neff is fixed at 3.046,
H0 and

∑

mν are usually negatively correlated (see
e.g. Ref. [132]). If both Neff and

∑

mν are allowed to
vary, there is not a strong correlation between Neff and
∑

mν for CMB data alone. However, when H0 or BAO
data are added, Neff and

∑

mν become positively cor-
related [144] as shown in Fig. 6. The tight correlation
between Neff and H0 then permits a positive correlation
between H0 and

∑

mν , seen in the third panel from the
left of Fig. 7a. Thus, instead of larger

∑

mν being corre-
lated with a smaller Hubble constant, here a larger sum
of neutrino masses corresponds to a slightly larger H0.
Allowing the neutrinos to self-interact does not dramat-
ically change the direction of this degeneracy, but does
allow it to stretch to larger H0 values.
Geff ’s direct effects on matter clustering are scale de-

pendent. As discussed in Sec. IVB, dark matter fluctu-
ations that enter the horizon during neutrino decoupling
receive a boost, while fluctuations that enter the hori-
zon before neutrino decoupling are damped. For the SIν
mode, neutrino decoupling is coincident with the modes
entering the horizon that contribute most to σ8, giving
them a gravitational boost. However, low values of As

and ns must accompany a large Geff for the SIν, as dis-
cussed in Sec. VIB, which consequently damp these same
scales. The combination of Geff ’s effects thus leads to an
overall decrease in matter clustering at scales probed by
σ8, seen in the SIν island in the left panel of Fig. 7b.

The sum of neutrino masses is negatively correlated
with σ8 since massive neutrinos do not contribute to
matter clustering for small scales where their pressure
term is large (see third panel in Fig. 7b). Typically large
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FIG. 7: Correlations between H0 and σ8 with neutrino properties.

Neff boosts the dark matter fluctuations upon horizon
entry, leading to a positive correlation between Neff and
σ8. However, the positive correlation between Neff and
∑

mν when including BAO data causes Neff and σ8 to be
negatively correlated (see second panel in Fig. 7b). This
allows the interacting neutrino model to both be compat-
ible with a large value of the Hubble constant and not
overpredict the amplitude of matter fluctuations at late
times.

E. Impact of CMB polarization data

As can be seen in Fig. 6 and Fig. 7, the addition of EE
polarization data tends to significantly reduce the statis-
tical significance of the SIν cosmology. This is in con-
trast with Ref. [65] which found that polarization data
slightly increased the significance of the SIν mode (see
also Ref. [66]). The degradation of the fit for the SIν
model in our case is the result of (i) our use of the reion-
ization optical depth prior from Ref. [142] whenever we
use polarization data, and (ii) our use of BBN calcula-
tions to predict the helium abundance for a given value of
Neff . As we discuss in Sec. IX, it is likely that the fit could
improve significantly by replacing this strong prior with
the actual low-ℓ polarization data used to obtain it, and
by letting the helium fraction float freely in the fit. As
might be expected, the addition of the local Hubble con-
stant measurement increases the statistical significance of
the SIν mode, as can be seen from TT,TE,EE+lens+H0

data set in Fig. 11 in Appendix A.

VII. STATISTICAL SIGNIFICANCE

In this section, we quantify the relative statistical sig-
nificance of the two modes of the posterior, and compare
the maximum likelihood values between our interacting
neutrino models and standard extensions of the ΛCDM
paradigm.

A. Mode Comparison

To determine the statistical significance of the SIν
mode relative to the MIν mode, we can compare their rel-
ative Bayesian evidence. It is defined as the parameter-
averaged likelihood of the data

Z ≡ Pr (d|M) =

∫

Ωθ

Pr (d|θ,M) Pr (θ|M) dθ, (18)

where d is the data, M is the cosmological model, θ are
the parameters in model M, and Ωθ is the domain of
the model parameters. We use Multinest’s [145] mode
separation algorithm to compute the Bayesian evidence
for each mode. In practice, this mode separation occurs
near a neutrino coupling value of log10

(

Geff MeV2
)

≈
−2.2. This separation in parameter space defines Ωθ for
each mode.
To compare the SIν to the MIν mode, we compute the

following Bayes factor:

BSIν ≡ Pr (MSIν |d)
Pr (MMIν |d)

=
ZSIν

ZMIν

Pr (MSIν)

Pr (MMIν)
. (19)

We place a uniform prior on log10
(

Geff MeV2
)

rather
than a uniform prior on Geff to avoid introducing a pre-
ferred energy scale. With our choice of prior, small values
of Geff can be thoroughly explored, which is particularly
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important since the actual Fermi constant governing neu-
trino interaction in the Standard Model takes the value
GF ∼ O

(

10−11 MeV−2
)

. Taking a uniform prior on Geff

would greatly increase the statistical significance of the
interacting mode (see Ref. [55]). We thus consider it con-
servative to adopt a uniform prior on log10

(

Geff MeV2
)

,
but note that the statistical significance of the SIν mode
could be greatly enhanced by a different choice of prior.

The probability of the prior is equivalent for each mode
(or cosmological model), so Pr (MSIν) /Pr (MMIν) = 1.
In Table IV we show the Bayes factor for each data set
combination we consider in this work. A Bayes factor
less than unity indicates the data prefer the MIν mode
for the specified parameter space. All values are below
unity, indicating the data, on average, do not prefer the
SIν mode. As expected though, incorporating the local
Hubble rate measurement does increase the significance
of the SIν mode.

A useful method to understand if the SIν mode is
ever preferred and to further investigate the significance’s
dependence on LSS data is to compare the maximum-
likelihood value of each model:

RSIν =
max [L (θSIν |d)]
max [L (θMIν |d)]

. (20)

In Table IV we show the maximum-likelihood ratios for
the data set combinations in our analysis. Again, adding
H0 and CMB lensing data increases the likelihood of the
strongly interacting mode. Intriguingly, the SIν mode
has a larger maximum-likelihood (by a factor larger than
2) than the MIν mode for TT+lens+BAO+H0 (see the
unsmoothed posteriors in Fig. 11). It is reasonable that
the Bayes factor for TT+lens+BAO+H0 is below unity
while the maximum-likelihood ratio is above unity since
the former is a global, parameter-averaged statistic while
the latter is based on a single set of best-case scenario
parameters. This indicates that the parameter space for
which strong neutrino interactions are preferred has a
small volume.

It is also informative to look at the individual χ2 values
for the different data sets. To compare the two modes, we
list the ∆χ2 = χ2

SIν−χ2
MIν values in Table IV. A positive

∆χ2 value thus means that the MIν mode is preferred,
and vice versa. The H0 and high-ℓ TT,TE,EE data show
preference for the SIν mode for TT,TE,EE+lens+H0,
but this is compensated by a poorer fit to low-ℓ and CMB
lensing data. For the TT+lens+BAO data combinations,
the BAO and high-ℓ TT data display a slight preference
for the SIν mode, which is again overshadowed by the
low-ℓ data. We see that the slight preference for the SIν
mode with the TT+lens+BAO+H0 data combination is
largely due to improvement of the BAO and high-ℓ like-
lihoods.

B. Comparison to ΛCDM and its extensions

Comparing how well each mode fits the data rel-
ative to ΛCDM and its common extensions tells us
if these neutrino self-interaction models offer a viable
improvement to current cosmological theory. For the
TT+lens+BAO+H0 data set, we list the ∆χ2 = χ2

SIν −
χ2
ΛCDM+ext values and the ∆χ2 = χ2

MIν−χ2
ΛCDM+ext val-

ues for each observable in Table V. Here, ΛCDM+ ext
refers to the Neff +

∑

mν two-parameter extension of
the ΛCDM cosmology. Comparison to plain ΛCDM was
given in Table III above. For all data sets except the low-
ℓ TT data, both modes offer a better fit to the data than
ΛCDM + ext. In fact, the SIν mode has a total ∆χ2 of
−3.33, a significant difference. The improvement of the
high-ℓ CMB data is notable since jointly fitting CMB
and local H0 data usually results in a worse fit to the
CMB damping tail. For the SIν model, this is somewhat
compensated by a degradation of the low-ℓ fit.
What if the strong improvement in fit over ΛCDM

is due to overfitting from the extra parameter we have
added? To take this into account we compute the Akaike
information criterion (AIC) [146]. The AIC takes into
account how well the model fits the data and penalizes
extra parameters, thereby discouraging overfitting. The
AIC is defined as

AIC = −2 ln (L) + 2k = χ2
Total + 2k, (21)

where χ2
Total = χ2

low ℓ + χ2
high ℓ + χ2

lens + χ2
H0

+ χ2
BAO, L

is the maximum-likelihood, and k is the number of fit
parameters. Then we can write

∆AIC = AICIν −AICΛCDM = ∆χ2 + 2∆k, (22)

where ∆k is the difference in the number of parameters
between the two models. The lower AIC between two
models corresponds to the preferred model. Thus, for
us, a negative ∆AIC value indicates the data prefer the
specified Iν model over ΛCDM, while a positive ∆AIC
value indicates the data prefer ΛCDM over the Iν model.
We list the ∆AIC values relative to ΛCDM + Neff +

∑

mν in Table V. Here ∆k = 1, and the SIν mode has a
negative ∆AIC = −1.33, indicating a genuine statistical
preference for the suppression of neutrino free-streaming
in the early Universe for the TT+lens+BAO+H0 data
set. On the other hand, ∆AIC = 0.19 for the MIν mode,
indicating that the neutrino self-interactions do not add
value to the fit beyond what is already provided by the
Neff +

∑

mν extension. Values of ∆AIC between the Iν
models and standard ΛCDM (∆k = 3) are also given in
Table III. The fact that ∆AIC values for the SIν cosmol-
ogy are similar (−1.91 versus −1.33) when comparing it
to plain ΛCDM and ΛCDM +Neff +

∑

mν means that
suppressing neutrino free-streaming is the true driving

factor behind the improvement of the fit. Thus, even after
penalizing the self-interacting neutrino models for incor-
porating additional parameters, the TT+lens+BAO+H0

data still significantly prefer the strongly interacting neu-
trino cosmology over ΛCDM.
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TABLE IV: Mode Comparison. Here, BSIν is the Bayes factor between the SIν and the MIν mode, RSIν is theie
maximum likelihood ratio, and ∆χ2 = χ2

SIν − χ2
MIν . The low-ℓ dataset refers to low-ℓ TEB if polarization was

included and low-ℓ TT if only temperature was used. Similarly, the high-ℓ dataset refers to high-ℓ TT,TE,EE if
polarization was included and high-ℓ TT if only temperature was used.

Parameter TT,TE,EE TT,TE,EE + lens + H0 TT + lens + BAO TT + lens + BAO + H0

BSIν 0.03± 0.01 0.10± 0.04 0.13± 0.04 0.37± 0.10
RSIν 0.26 0.63 0.81 2.14

∆χ2
low ℓ 2.47 2.18 2.00 1.41

∆χ2
high ℓ 0.22 −0.16 −1.53 −2.23

∆χ2
lens – 1.34 0.16 0.30

∆χ2
H0

– −2.12 – −0.56
∆χ2

BAO – – −0.20 −0.44
∆χ2

Total 2.69 0.92 0.43 −1.52

TABLE V: Comparison of the interacting neutrino cosmology to ΛCDM+Neff +
∑

mν for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

∆χ2
low ℓ 2.40 0.99

∆χ2
high ℓ −3.40 −1.17

∆χ2
lens −0.20 −0.50

∆χ2
H0

−1.32 −0.76
∆χ2

BAO −0.81 −0.36

∆χ2
Total −3.33 −1.81

∆AIC −1.33 0.19

VIII. DISCUSSION

A. Cosmic microwave background

In Fig. 8, we plot the high-ℓ TT and EE power spec-
tra residuals between the maximum likelihood parame-
ters for each data set combination used and the best-fit
Planck ΛCDM model. For the SIν mode (upper panels),
the most striking feature of the residuals is the deficit
of power at high multipoles (ℓ > 1500) as compared to
ΛCDM for the TT+lens+BAO and TT+lens+BAO+H0

data combinations. This is caused by the large value of
Neff and the resulting high helium abundance6 YP for
this category of models. This implies that the multi-
parameter degeneracy that allows the SIν cosmology to
provide a decent fit to CMB temperature data at ℓ <
1500 could be broken by the addition of high-resolution
CMB data (see e.g. Refs. [147, 148]). However, it is rea-
sonable to assume that the BBN helium abundance is
modified in the presence of the new neutrino physics we
explore here, and that the deficit of power at large mul-
tipoles could be compensated by a smaller value of YP
[133]. We leave the study of the impact of a free he-

6 We remind the reader that we use the standard BBN predic-
tions to compute the helium abundance for given Neff and Ωbh

2

values.

lium fraction on interacting neutrino cosmologies to fu-
ture works.

The EE polarization residuals shown in the right panel
of Fig. 8 for the TT+lens+BAO and TT+lens+BAO+H0

data combinations also display strong oscillations for the
SIν mode (upper panel). This implies that the shift in θ∗
(and other parameters, see Sec. VIB) that was required
to compensate for the absence of the free-streaming neu-
trino phase shift in the temperature spectrum does not
fully realign the peaks of the polarization spectrum with
the data. This is a consequence of the polarization data
being more sensitive to the phase of the acoustic peaks
[129]. With the current size of the Planck error bars, this
does not constitute an overwhelmingly strong constraint
on the absence of a neutrino-induced phase shift, but it
is possible that future CMB polarization data could en-
tirely rule out this possibility.

The TT+TE+EE CMB-only data combination in the
upper panels of Fig. 8 display an excess of power as com-
pared to ΛCDM at nearly all scales, resulting in an over-
all poorer fit to the CMB data. At large multipoles,
this is of course in contrast with the deficit of power that
the TT+lens+BAO and TT+lens+BAO+H0 fits display.
Our use of the polarization-driven prior on the reioniza-
tion optical depth from Ref. [142] is largely responsible
for this excess of power as compared to ΛCDM for the
SIν mode with the TT+TE+EE data set. Again, this
shows that polarization data could in principle break the
multi-parameter degeneracy that allows the SIν cosmol-
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FIG. 8: Relative difference between the SIν mode (upper panels) or MIν mode (lower panels) and ΛCDM for the
high-ℓ TT (left) and EE (right) power spectra. The SIν mode and MIν mode spectra are produced using the
maximum likelihood parameter values for each respective mode. Colors denote the data set combination used.

Measurements from the Planck 2015 data release are included [125].

ogy to exist.

All dataset combinations we consider display an excess
of power at ℓ < 50 for the SIν mode. This is largely
caused by the lower value of the scalar spectral index ns

which adds power on large scales. While error bars are
large in this regime due to cosmic variance, the dip in
power around ℓ ∼ 20-30 in the CMB temperature data
tends to penalize any model displaying more low-ℓ power
than ΛCDM. If this dip were to be explained by some
other physics (from the inflationary epoch, say), then it
is possible that the fit to the data using the SIν cosmology
could significantly improve.

It is important to emphasize how the suppression of
neutrino free-streaming plays a very important role in
the existence of the SIν cosmology. To illustrate this,
we plot in Fig. 9 the spectra corresponding to the best-
fit SIν parameters for the TT+lens+BAO+H0 data set
but allow neutrino to free-stream at all times by setting
Geff = 0 (red dashed-dot line), along with the original
TT+lens+BAO+H0 best-fit SIν model (solid red) and a
ΛCDM model with

∑

mν = 0.23 eV (black dashed), for
reference. Here, the difference between the dashed-dot
and solid red lines is entirely driven by the streaming
property of neutrinos. Figure 9 reinforces our discussion
from Sec. VIIB that the Geff parameter plays a statis-
tically significant role in improving the fit to the CMB
data, beyond what is already provided by theNeff+

∑

mν

two-parameter extension of ΛCDM.

B. Matter clustering

We show in Fig. 10a the linear matter power spec-
trum residuals between the best-fit SIν (and MIν) mod-
els and the corresponding ΛCDM models. The most
striking feature for the SIν mode is the overall red tilt
of the matter power spectrum residuals for all data
combinations shown. This tilt is due to the low pre-
ferred value of ns for this mode. Despite this global
shape difference with ΛCDM, the enhancement of mat-
ter fluctuations on scales entering the horizon at the
onset of neutrino free-streaming discussed in Sec. IVB
causes the matter power spectrum to only slightly de-
viate from the CDM prediction on scales contributing
the most to σ8 (0.02hMpc−1 . k . 0.2hMpc−1). For
the TT+lens+BAO and TT+lens+BAO+H0 data com-
binations, this difference is less than 5% on these scales
and results in a σ8 value that is slightly lower than in
ΛCDM, potentially bringing low-redshift measurements
of the amplitude of matter fluctuations in agreement with
CMB data as discussed in Sec. VID.
Nevertheless, it is important to note that the localized

feature in the matter power spectrum caused by the late
onset of neutrino free-streaming nearly coincides with the
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FIG. 9: Illustration of the importance of the neutrino
self-interaction to the fit to CMB data for the SIν
cosmology. The red solid spectra corresponds to the

best-fit SIν model, while the red dashed-dot spectra use
the same best-fit cosmological parameters but allows

neutrino free-streaming by setting Geff = 0.

BAO scale, that is, it is on scales where we have a large
amount of data from, for example, spectroscopic galaxy
surveys (see e.g. Ref. [140]). While an analysis that takes
into account the full shape of the measured galaxy power
spectrum at these scales is beyond the scope of this work,
we note that both the SIν and MIν cosmologies only
mildly deviate from the ΛCDM model near the BAO
scale. On smaller scales, the SIν mode displays a net
suppression of power which has implications for probes
of small-scale structure such as the Lyman-α forest [149]
and the satellite galaxy count surrounding the Milky Way
[150]. It is an interesting possibility that the SIν cosmol-
ogy could help alleviate the small-scale structure prob-
lems [151] without introducing a nongravitational cou-
pling between neutrinos and dark matter.

The MIν residuals (lower panel) in Fig. 10a display
an even richer structure than those shown in Fig. 3. In-
deed, even in the case of relatively weak neutrino inter-
actions, their impact on the matter power spectrum is
significant, and potentially provide a different channel
to constrain new physics in the neutrino sector. Since
the dominant constraining power of the data used here
comes from k ∼ 0.1hMpc−1, we observe that the MIν
power spectra have values similar to ΛCDM near this
scale. Outside the scales probed by σ8, the linear matter

power spectra deviate more significantly (up to ∼ 20%)
from ΛCDM.
The lensing potential power spectrum in Fig. 10b

shows a similar pattern to the matter power spectrum
for the different best-fit models, as expected. The cur-
rent large error bars of the Planck lensing measurements
allow substantial freedom to the SIν and MIν cosmolo-
gies. As shown in Table IV, the lensing data prefer the
MIν mode for all data-set combinations, but we note that
the SIν modes are typically within the error bars of the
lensing data.

IX. CONCLUSIONS

The presence of yet-unknown neutrino interactions
taking place in the early Universe could delay the onset of
neutrino free-streaming, imprinting the CMB and probes
of matter clustering with distinct features. We have per-
formed a detailed study of the impact of neutrino self
interactions with a rate scaling as Γν ∼ G2

effT
5
ν on the

CMB and the matter power spectrum, taking into ac-
count the presence of nonvanishing neutrino masses and
of a nonstandard neutrino thermal history. Using recent
measurements of the BAO scale, the local Hubble rate,
and of the CMB, we find that a cosmological scenario
(originally pointed out in Ref. [55]) in which the onset
of neutrino free-streaming is delayed until close to the
epoch of matter-radiation equality can provide a good
fit to CMB temperature data while also being consistent
with the Hubble constant inferred from the local distance
ladder [73].
This strongly interacting neutrino cosmology has the

following properties:

• Using the data combination TT+lens+BAO+H0,
it displays a strong preference (> 3σ) for an ad-
dition neutrino species (Neff = 4.02 ± 0.29, 68%
C.L.). This can have important implications given
the current anomalies in neutrino oscillation exper-
iments. It also prefers a nonvanishing value of the
sum of neutrino masses

∑

mν = 0.42+0.17
−0.20 eV (68%

C.L.).

• It can easily accommodate a larger value of H0 and
smaller σ8, hence possibly alleviating tensions be-
tween current measurements. Quantitatively, the
data combination TT+lens+BAO+H0 favorsH0 =
72.3± 1.4 km s−1 Mpc−1 and σ8 = 0.786± 0.020 at
68% C.L.

It is remarkable that a cosmological model admitting
parameter values that are so different (see Fig. 5) than
in the standard ΛCDM paradigm can provide a better
fit to the data at a statistically-significant level (∆AIC=
−1.91). We believe that this is the most important lesson
to be drawn from our work: While most analyses have
focused on mild deformation from the standard ΛCDM
scenario in trying to reconcile the current cosmological
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FIG. 10: Relative difference between the SIν mode (upper panels) or MIν mode (lower panels) and ΛCDM for the
linear matter power spectrum (left) and the CMB lensing power spectrum (right). The SIν and MIν spectra are

produced using the maximum likelihood parameter values for each respective mode. Measurements from the Planck
2015 data release [125] are included in the right panel.

datasets, it is important to entertain the possibility that
a radically different scenario (i.e. statistically disjoint
in cosmological parameter space) could provide a better
global fit to the data.

Despite the success of the strongly interacting neutrino
cosmology in addressing tensions between certain cosmo-
logical data sets, there are several important obstacles
that still tilt the balance towards the standard ΛCDM
cosmology. First, the addition of polarization data seems
to degrade the quality of the fit for the strongly interact-
ing neutrino cosmology. We have traced this deterio-
ration of the fit to our use of a Gaussian prior on the
reionization optical depth from Ref. [142]. This prior
was utilized as a way to capture the constraint on the
optical depth from low-ℓ HFI Planck polarization data
before the full likelihood is made available. It it likely
that the Gaussian form of the prior leads to constraints
that are too strong as compared to what the full like-
lihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to deter-
mine whether this is the case. An important fact to keep
in mind is that Ref. [65] found that the addition of CMB
polarization data (without an additional τ prior) tends
to increase the statistical significance of the strongly in-
teracting neutrino cosmology.

Second, the low values of the Bayes factor (see Ta-

ble IV) consistently favor either very weakly interacting
neutrinos or no interaction at all. This reflects the fact
that strongly interacting neutrinos can only fit the data
better for a narrow window of interaction strengths, while
ΛCDM provides a decent (but overall less good) fit over
a broader part of the parameter space. This is a funda-
mental feature of Bayesian statistics and it is unlikely to
change in future analyses. This highlights the need to
consider a portfolio of statistical measures to assess the
quality of a given cosmological model.

Third, it might be difficult from a particle model-
building perspective to generate neutrino self interactions
with the strength required by the strongly interacting
neutrino cosmology while not running afoul of other con-
straints on neutrino physics. A viable model might look
similar to that presented in Ref. [32], but it remains to be
seen whether the necessary large interaction strength can
be generated while evading current constraints [103] on
new scalar particles coupling to Standard Model neutri-
nos. It is also possible that a successful self-interacting
neutrino model could have a different temperature de-
pendence than that considered in this work (Γν ∝ T 5

ν ).
This would change the shape of the neutrino visibility
function (see Refs. [55, 65]) and potentially improve the
global fit to the data. We leave the study of different
temperature scalings of the neutrino interacting rate to
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future works.

Our analysis could be improved in a few different ways.
Given the computational resources we had at our disposal
and the need to obtain accurate values of the Bayesian
evidence, we used the “lite” version of the Planck high-ℓ
likelihoods in our analysis. Since some of the assump-
tions that went into generating these likelihoods [152]
might not apply to the interacting neutrino cosmologies,
it would be interesting, given sufficient computing power,
to reanalyze these models with the complete version of
the likelihoods that include all the nuisance parameters.
In particular, it is possible that some of the foreground
nuisance parameters might be degenerate with the effect
of self-interacting neutrinos. For simplicity, we have also
assumed that the helium fraction is determined by the
standard big-bang nucleosynthesis calculation through-
out our analysis. Given the new physics and the result-
ing modified thermal history of the neutrino sector for
the type of models we explore here, it reasonable to as-
sume that the helium fraction would in general be differ-
ent than in ΛCDM. While the details of the helium pro-
duction within any interacting neutrino model are likely
model-dependent, a sensible way to take these effects into
account would be to let the helium fraction float freely
in the fit to CMB data. We leave such analysis to future
works.

Given the structure of the residuals between the
best-fit interacting neutrino cosmologies and the ΛCDM
model presented in Sec. VIII, it is clear that future high-
ℓ CMB polarization and matter clustering measurements
will play an important role in constraining or ruling out
these models [see e.g. 153]. In particular, the overall red
tilt of the matter power spectrum in the strongly inter-
acting neutrino cosmology could have important conse-
quences on both large and small scales. Since current
anomalies in terrestrial neutrino experiments [2, 3] may
indicate the presence of new physics in the neutrino sec-
tor, it is especially timely to use the complementary na-
ture of cosmological probes to look for possible clues

about physics beyond the Standard Model.
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Appendix A: Results for all data sets

We display in Table VI and Table VII the 68% confi-
dence limits for the strongly interacting and moderately
interacting neutrino modes, respectively. In Fig. 11, we
show the marginalized posteriors for key cosmological pa-
rameters for a choice of smoothing kernel that represents
more accurately the shape of the SIν mode. In Fig. 12,
we compare the marginalized posterior distribution of the
SIν mode for the four data set combinations considered
in this work.

Appendix B: Perturbation equations for interacting massive neutrinos

In this appendix, we derive the Boltzmann equation governing the evolution of the distribution function of massive
self-interacting neutrinos which we denote by fν(x,P, τ), where P is the canonical conjugate variable to the position
x, and τ is the conformal time. In the scenario considered here, neutrinos can exchange energy and momentum via
2-to-2 scattering of the type νi + νj → νk + νl. The Boltzmann equation of neutrino species i can be written as

dfνi

dλ
=

3
∑

j,k,l=1

Cνi+νj→νk+νl
[fνi

, fνj
fνk

, fνl
] (B1)

where λ is an affine parameter that described the trajectory of the observer (see below) and Cνi+νj→νk+νl
is the

collision term for the process νi + νj → νk + νl. In the conformal Newtonian gauge, the space-time metric takes the
form

ds2 = a2(τ)[−(1 + 2ψ)dτ2 + (1− 2φ)d~x2], (B2)
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TABLE VI: Strongly interacting neutrino cosmology: Parameter 68% Confidence Limits

Parameter TT,TE,EE TT,TE,EE + lens + H0 TT + lens + BAO TT + lens + BAO + H0

Ωbh
2 0.02219+0.00024

−0.00022 0.02257± 0.00018 0.02239+0.00029
−0.00036 0.02245+0.00029

−0.00033

Ωch
2 0.1189+0.0032

−0.0038 0.1222± 0.0032 0.1311+0.0090
−0.0065 0.1348+0.0056

−0.0049

100θMC 1.04590+0.00061
−0.00045 1.04622+0.00054

−0.00042 1.04623+0.00067
−0.00044 1.04637± 0.00056

τ 0.0633+0.0089
−0.0066 0.0624+0.0089

−0.0074 0.082+0.028
−0.036 0.080± 0.031∑

mν [eV] 0.166+0.064
−0.18 0.069+0.027

−0.066 0.39+0.16
−0.20 0.42+0.17

−0.20

Neff 2.88+0.19
−0.22 3.20± 0.18 3.80± 0.45 4.02± 0.29

log10(GeffMeV2) −1.60+0.14
−0.089 −1.55+0.12

−0.080 −1.41+0.20
−0.066 −1.35+0.12

−0.066

ln(1010As) 2.995+0.019
−0.015 2.994± 0.017 3.036+0.054

−0.071 3.035± 0.060
ns 0.9273± 0.0080 0.9412± 0.0061 0.947± 0.011 0.9499± 0.0098

H0 [km/s/Mpc] 66.2+2.3
−1.9 70.1± 1.3 71.1± 2.2 72.3± 1.4

Ωm 0.327+0.013
−0.026 0.2961+0.0075

−0.011 0.3115± 0.0090 0.3094± 0.0083
σ8 0.799+0.041

−0.017 0.824+0.015
−0.010 0.786± 0.020 0.786± 0.020

109As 1.998+0.039
−0.030 1.998± 0.034 2.09+0.10

−0.15 2.08+0.11
−0.13

109Ase
−2τ 1.760± 0.014 1.763± 0.013 1.766± 0.016 1.771± 0.016

YP 0.2430± 0.0029 0.2476± 0.0024 0.2549+0.0060
−0.0048 0.2577± 0.0034

r∗ [Mpc] 145.8± 2.0 143.0± 1.7 138.2+3.2
−4.3 136.3± 2.4

100θ∗ 1.04626+0.00060
−0.00046 1.04629+0.00053

−0.00044 1.04604+0.00060
−0.00046 1.04604± 0.00056

DA [Gpc] 13.93± 0.19 13.67± 0.16 13.21+0.30
−0.41 13.03± 0.23

rdrag [Mpc] 148.5± 2.1 145.6± 1.8 140.8+3.3
−4.3 138.8± 2.5

TABLE VII: Moderately Interacting Neutrino Mode: Parameter 68% Confidence Limits

Parameter TT,TE,EE TT,TE,EE + lens + H0 TT + lens + BAO TT + lens + BAO + H0

Ωbh
2 0.02203± 0.00023 0.02246± 0.00018 0.02254+0.00030

−0.00035 0.02282± 0.00030
Ωch

2 0.1191± 0.0031 0.1220± 0.0027 0.1220+0.0039
−0.0046 0.1256+0.0035

−0.0039

100θMC 1.04085± 0.00044 1.04063± 0.00040 1.04086± 0.00058 1.04062+0.00049
−0.00056

τ 0.0642+0.0095
−0.0082 0.0645+0.0090

−0.0073 0.108± 0.033 0.127+0.034
−0.029∑

mν [eV] 0.150+0.054
−0.16 0.052+0.020

−0.052 0.28+0.12
−0.23 0.40+0.17

−0.23

Neff 2.95± 0.19 3.29± 0.16 3.44+0.30
−0.38 3.79± 0.28

log10(GeffMeV2) −4.44+0.58
−0.77 −4.26± 0.69 −4.12± 0.77 −3.90+1.0

−0.93

ln(1010As) 3.059+0.022
−0.019 3.067+0.019

−0.016 3.150± 0.067 3.194+0.068
−0.056

ns 0.9548± 0.0089 0.9718± 0.0073 0.980+0.014
−0.015 0.993+0.013

−0.012

H0 [km/s/Mpc] 65.3+2.2
−1.7 69.3± 1.2 69.3+1.7

−1.9 71.2± 1.3
Ωm 0.335+0.012

−0.025 0.3021+0.0077
−0.010 0.3075± 0.0092 0.3010± 0.0080

σ8 0.798+0.038
−0.016 0.826+0.014

−0.011 0.809+0.021
−0.018 0.813+0.023

−0.020

109As 2.132± 0.043 2.148+0.039
−0.035 2.34+0.14

−0.18 2.44± 0.15
109Ase

−2τ 1.875± 0.018 1.888± 0.016 1.880± 0.021 1.892+0.019
−0.017

YP 0.2439± 0.0027 0.2486± 0.0022 0.2506+0.0041
−0.0048 0.2550± 0.0035

r∗ [Mpc] 145.5± 1.9 142.8± 1.5 141.9+3.0
−2.7 139.1± 2.3

100θ∗ 1.04117± 0.00054 1.04066± 0.00047 1.04086± 0.00070 1.04041+0.00058
−0.00064

DA [Gpc] 13.97± 0.17 13.72± 0.14 13.63+0.28
−0.25 13.37± 0.21

rdrag [Mpc] 148.3± 1.9 145.4± 1.6 144.5+3.1
−2.8 141.6± 2.3

where a is the cosmological scale factor and φ and ψ are the two gravitational potentials. We can define the affine
parameter in terms of the four-momentum P of an observer

Pµ ≡ dxµ

dλ
, (B3)

where x = (τ, ~x) is a four-vector parametrizing the trajectory of the observer. Using Eq. (B2), we can then write

d

dλ
=
dτ

dλ

d

dτ
= P 0 d

dτ
=
E(1− ψ)

a

d

dτ
, (B4)

where we have used the dispersion relation gµνP
µP ν = −m2

ν . Here, we have defined E =
√

p2 +m2
ν , where p = |p|

is the proper momentum, which is related to the conjugate momentum P via the relation p2 = gijP
iP j . We note
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FIG. 11: 1D posteriors for bimodal parameters with low smoothing.

that Eq. (B4) is valid to first-order in perturbation theory. As in other work in the literature, we choose to write
the distribution function in terms of the proper momentum p. This choice is valid as long as we also modify the
phase-space volume element as d3P → a3(1 − 3φ)d3p. The left-hand side of the Boltzmann equation takes the form
[123, 134]

dfνi

dτ
=
∂fνi

∂τ
+

p

E
· ∇fνi

+ p
∂fνi

∂p

[

−H+
∂φ

∂τ
− E

p2
p · ∇ψ

]

, (B5)

where H ≡ ȧ/a is the conformal Hubble parameter, a overhead dot denoting a derivative with respect to conformal
time. We expand the neutrino distribution function as

fνi
(x,p, τ) = f (0)νi

(p, τ)[1 + Θνi
(x,p, τ)]. (B6)

At early times, neutrinos form a relativistic tightly-coupled fluid with an equilibrium background distribution function

f
(0)
ν (p, τ) given by the Fermi-Dirac distribution. If the interactions mediated by the Lagrangian in Eq. (1) go out
of equilibrium while neutrinos are relativistic, the background distribution function would maintain this shape, with
a temperature red shifting as Tν ∝ a−1. As mentioned in Sec. III, we work under this approximation here and
assume that the background distribution function maintains its equilibrium shape throughout the epoch of neutrino
decoupling. In the absence of energy source or sink, and for the type of interaction we consider in this work, this is
an excellent approximation [66].
Substituting Eq. (B6) in Eq. (B5) and keeping terms that are first order in the perturbation variables, we obtain

f (0)νi
(p, τ)

[

∂Θνi

∂τ
+

p

E
· ∇Θνi

]

+ p
∂f

(0)
νi (p, τ)

∂p

[

−HΘνi
+
∂φ

∂τ
− E

p2
p · ∇ψ

]

=
a

E
C(1)

νi
[p], (B7)

where the superscript C
(1)
νi denotes the part of the collision term that is first order in the perturbation variables Θνi

.
It is useful at this point to introduce the comoving momentum q ≡ ap and comoving energy ǫ ≡ aE. Going to Fourier
space, Eq. (B7) becomes

f (0)νi
(q, τ)

[

∂Θ̃νi

∂τ
+ i

q

ǫ
kµΘ̃νi

]

+ q
∂f

(0)
νi (q, τ)

∂q

[

∂φ

∂τ
− i

ǫ

q
kµψ

]

=
a2

ǫ
C(1)

νi
[q], (B8)
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FIG. 12: SIν mode posteriors for all data set combinations.

where Θ̃νi
is the Fourier transform of the perturbation variable Θνi

, k is the Fourier conjugate of x, k = |k|, µ ≡ q̂ · k̂,
and k̂ = k/k. In this work, we focus on (helicity) scalar perturbations and expand the angular dependence of the Θ̃νi

variable in Legendre polynomials Pl(µ)

Θ̃νi
(q,k, τ) =

∞
∑

l=0

(−i)l(2l + 1)θl(k, q, τ)Pl(µ). (B9)

We note that this decomposition is always valid for scalar perturbations since they must be azimuthally symmetric with
respect to k, independently of the structure of the collision term. Substituting the above expansion in the first-order

Boltzmann equation and and integrating both sides with 1
2(−i)l

∫ 1

−1
dµPl(µ) yields the hierarchy of equations

f (0)νi

[

∂θl
∂τ

+ k
q

ǫ

(

l + 1

2l + 1
θl+1 −

l

2l + 1
θl−1

)]

+ q
∂f

(0)
νi

∂q

[

∂φ

∂τ
δl0 +

k

3

ǫ

q
ψδl1

]

=
a2

ǫ

1

2(−i)l
∫ 1

−1

dµPl(µ)C
(1)
νi

[q], (B10)

where δij is the Kroenecker delta and where we have suppressed the arguments of f
(0)
νi and θl for succinctness. We

now turn our attention to the collision integral.
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Appendix C: Collision Integrals

We now compute the first-order collision term for neutrino scattering, νi(p1) + νj(p2) ↔ νk(p3) + νl(p4). We start
from the general expression [154]

Cν [p1] =
1

2

∫

dΠ2dΠ3dΠ4|M|2ν(2π)4δ4(P1 + P2 − P3 − P4)F (p1,p2,p3,p4), (C1)

where |M|2ν here is the spin-summed (not averaged) matrix element for the scattering as defined in Eq. (3), pi denotes
the ith three-momentum, pi = |pi|, and where

dΠi =
d3pi

(2π)32Ei
, (C2)

and

F (p1,p2,p3,p4) = fν(p4)fν(p3)(1− fν(p2))(1− fν(p1))− fν(p2)fν(p1)(1− fν(p4))(1− fν(p3)). (C3)

Using Eq. (B6) and keeping only the first order term in the perturbation variable Θν , we can rewrite the collision
term as:

C(1)
ν =

1

2

∫

dΠ2dΠ3dΠ4|M|2ν
(2π)4δ4(P1 + P2 − P3 − P4)e

(p1+p2)/T

(ep1/T + 1)(ep2/T + 1)(ep3/T + 1)(ep4/T + 1)

×
(

2(1 + e−p3/T )Θν(p3)− (1 + e−p2/T )Θν(p2)− (1 + e−p1/T )Θν(p1)
)

, (C4)

where we have suppressed the x and τ dependence of the Θν variables to avoid clutter, and where we have used the
symmetry p3 ↔ p4 to simplify the integrand. Here, we have taken the background neutrino distribution function
to have a relativistic Fermi-Dirac shape. As mentioned in Sec. III, we assume neutrinos decouple in the relativistic
regime and thus neglect the small neutrino mass in the computation of the collision integrals, gµνP

µP ν ≈ 0 and
E ≈ p. We use the technique developed in Refs. [56, 155, 156] to perform the majority of the integrals. We first
perform the p4 integration using the identity

d3pi
2Ei

≡ d4Piδ(P
2
i )H(P 0

i ), (C5)

where H(x) is the Heaviside step function. The collision term then reduces to:

C(1)
ν = π

∫

dΠ2dΠ3|M|2νδ(2(P1 · P2 − P1 · P3 − P2 · P3))H(p1 + p2 − p3)F̃ (p1, p2, p3, p1 + p2 − p3), (C6)

where we have gathered all the terms dependent on the distribution functions inside F̃ . To make progress, we have
to choose a coordinate system. We take p1 to point in the z-direction, and p3 to lie in the x-z plane. and define the
following angles:

p̂1 · k̂ = µ p̂1 · p̂2 = cosα, p̂1 · p̂3 = cos θ, p̂2 · p̂3 = cosα cos θ + sinα sin θ cosβ, (C7)

where k is the Fourier wavenumber of the perturbations and β is the azimuthal angle for p2 to wrap around p1. The
integration measure than takes the form

d3p3 = p23dp3d cos θdφ d3p2 = p22dp2d cosαdβ. (C8)

The φ angle is the azimuthal angle for p3 to wrap around p1. Since we are only dealing with scalar perturbations here,
we are free to redefine this angle at will since no physical quantity depends on it. Within this coordinate system, we can
write P1 ·P2 = −p1p2+p1p2 cosα, P1 ·P3 = −p1p3+p1p3 cos θ, and P2 ·P3 = −p2p3+p2p3(cosα cos θ+sinα sin θ cosβ).
We can now use the delta function to do the β integration. Setting the argument of the delta function to zero and
solving for cosβ yields

cosβ = −p1p2 − p1p3 − p2p3 − p1p2 cosα+ p1p3 cos θ + p2p3 cosα cos θ

p2p3 sinα sin θ
. (C9)
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Performing the integration introduces a Jacobian

C(1)
ν =

1

8(2π)5

∫

p2dp2p3dp3d(cosα)d(cos θ)dφ√
aα cos2 θ + bα cos θ + cα

|M|2ν

×H(p1 + p2 − p3)F̃ (p1, p2, p3, p1 + p2 − p3)H(aα cos2 θ + bα cos θ + cα). (C10)

In the above, aα, bα, and cα are

aα = −p23(p21 + p22 + 2p1p2 cosα), (C11)

bα = 2p3(p1 + p2 cosα)(p2p3 + p1(p3 − p2) + p1p2 cosα), (C12)

cα = −(p2p3 + p1(p3 − p2) + p1p2 cosα)
2 + p22p

2
3(1− cos2 α). (C13)

The above form of the collision term is useful when the θ integration needs to be performed first. In some instances,
it will be easier to first perform the α integral first. In this latter case, the collision term can equivalently be written
as:

C(1)
ν =

1

8(2π)5

∫

p2dp2p3dp3d(cosα)d(cos θ)dφ√
aθ cos2 α+ bθ cosα+ cθ

|M|2ν

×H(p1 + p2 − p3)F̃ (p1, p2, p3, p1 + p2 − p3)H(aθ cos
2 α+ bθ cosα+ cθ). (C14)

In the above, aθ, bθ, and cθ are

aθ = −p22(p21 + p23 − 2p1p3 cos θ), (C15)

bθ = 2p2(p1 − p3 cos θ)(p1p2 − p3(p1 + p2) + p1p3 cos θ), (C16)

cθ = −(p1p2 − p3(p1 + p2) + p1p3 cos θ)
2 + p22p

2
3(1− cos2 θ). (C17)

We remark that using Eq. (C9) simplifies P2 · P3

P2 · P3 → p1p3 − p1p2 + p1p2 cosα− p1p3 cos θ = P1 · P2 − P1 · P3. (C18)

We note that since the matrix element for the type of interaction of interest (see Eq. (3)) only depends on a sum of
Mandelstam variables or squares of Mandelstam variables, we can write

|M|2ν = 16G2
eff

(

∆2(θ) cos
2 α+∆1(θ) cosα+∆0(θ)

)

or |M|2ν = 16G2
eff

(

∆2(α) cos
2 θ +∆1(α) cos θ +∆0(α)

)

,
(C19)

depending on which of the θ or α integral we want to perform first. The coefficients are as follow:

∆2(θ) = p21p
2
2

∆1(θ) = p21p2 (p3 − 2p2 − p3 cos θ)

∆0(θ) =
(

p21(p
2
2 − p2p3 + p23) + p1p3 cos θ(p1(p2 − 2p3) + p1p3 cos θ)

)

, (C20)

∆2(α) = p21p
2
3

∆1(α) = p1p3 (p1(p2 − 2p3)− p1p2 cosα)

∆0(α) =
(

p21(p
2
2 − p2p3 + p23) + p1p2 cosα(p1(−2p2 + p3) + p1p2 cosα)

)

. (C21)

We note that we can perform the cos θ or the cosα integration using the following results:

∫ ∞

−∞

dx√
ax2 + bx+ c

H(ax2 + bx+ c) =
π√
−aH(b2 − 4ac), (C22)

∫ ∞

−∞

xdx√
ax2 + bx+ c

H(ax2 + bx+ c) = − bπ

2a
√
−aH(b2 − 4ac), (C23)
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∫ ∞

−∞

x2dx√
ax2 + bx+ c

H(ax2 + bx+ c) =
π(3b2 − 4ac)

8a2
√
−a H(b2 − 4ac). (C24)

To make further progress in performing the angular integration, we need to specify the angular dependence of the
Θν(pi) variables. As in Eq. (B9), we expand their angular dependence in Legendre polynomials with respect to the
angle between the vector k and the pi vectors. Within our coordinate system, these angles are

p̂1 · k̂ = cos γ ≡ µ, p̂2 · k̂ = cosα cos γ + sinα sin γ cos (φ− β), p̂3 · k̂ = cos θ cos γ + sin θ sin γ cosφ. (C25)

The following identity will be useful later in order to perform the remaining azymuthal integral (the “φ” integral)

∫ 2π

0

dφPl(cos θ cos γ + sin θ sin γ cosφ) = 2πPl(cos θ)Pl(cos γ). (C26)

We now consider separately the different terms in the perturbative expansion in Θν(pi).

1. Terms involving Θν(p1)

This is the simplest case since Θν(p1) can be carried outside the integrals. The azymuthal φ integral is trivial and
yield an extra factor of 2π.

−Θν(p1)

8(2π)4

∫

p2dp2p3dp3d(cosα)d(cos θ)√
aθ cos2 α+ bθ cosα+ cθ

〈|M|2ν〉H(p1 + p2 − p3)H(aθ cos
2 α+ bθ cosα+ cθ)

× ep2/Tν

(ep2/Tν + 1)(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)
(C27)

Performing the α integration first using Eqs. (C22)-(C24), we obtain

−16G2
effΘν(p1)

128π3

∫

p2dp2p3dp3d(cos θ)√−aθ

(

∆2(θ)
3b2θ − 4aθcθ

8a2θ
−∆1(θ)

bθ
2aθ

+∆0(θ)

)

H(p1 + p2 − p3)H(b2θ − 4aθcθ)

× ep2/Tν

(ep2/Tν + 1)(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)
.(C28)

Writing η ≡ cos θ, we have

−G
2
effΘν(p1)

8π3

∫

dp2p3dp3dη
√

(p21 + p23 − 2p1p3η)
|M̄η(p1, p2, p3, η)|2H(p1 + p2 − p3)H(b2θ − 4aθcθ)

× ep2/Tν

(ep2/Tν + 1)(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)
, (C29)

where we have use the definition
(

∆2(θ)
3b2θ − 4aθcθ

8a2θ
−∆1(θ)

bθ
2aθ

+∆0(θ)

)

≡ |M̄η(p1, p2, p3, η)|2. (C30)

The Heaviside step function H(b2θ − 4aθcθ) determines the range of integration of both η and p3. It yields

Max[η−,−1] ≤ η ≤ 1 for 0 ≤ p3 ≤ p1 + p2, (C31)

where

η− =
(p1 + 2p2)p3 − 2p2(p1 + p2)

p1p3
. (C32)

We can then write

−G
2
effΘν(p1)

8π3

∫ ∞

0

dp2
1

(e−p2/Tν + 1)

∫ p1+p2

0

p3dp3
(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)

×
∫ 1

Max[η−,−1]

dη
|M̄η(p1, p2, p3, η)|2
√

(p21 + p23 − 2p1p3η)
. (C33)
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Defining xi ≡ pi/Tν , we obtain

−G
2
effT

6
νΘν(p1)

8π3

∫ ∞

0

dx2
1

(e−x2 + 1)

∫ x1+x2

0

x3dx3
(ex3 + 1)(e(x1+x2−x3) + 1)

×
∫ 1

Max[η−,−1]

dη
|M̄η(x1, x2, x3, η)|2
√

(x21 + x23 − 2x1x3η)
. (C34)

2. Terms involving Θν(p2)

For the term involving Θν(p2), we start from Eq. (C10) and substitute the expansion from Eq. (B9).

−
∞
∑

l=0

(−i)l(2l + 1)

8(2π)5

∫

p2dp2p3dp3d(cosα)d(cos θ)dφ√
aα cos2 θ + bα cos θ + cα

〈|M|2ν〉H(p1 + p2 − p3)H(aα cos2 θ + bα cos θ + cα)

×θl(p2)Pl(cosα cos γ + sinα sin γ cos (φ))ep1/Tν

(ep1/Tν + 1)(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)
, (C35)

where we have used the available freedom to redefine the azymuthal angle φ. We can now perform the φ integral
using the identity given in Eq. (C26)

−
∞
∑

l=0

(−i)l(2l + 1)Pl(µ)

8(2π)4

∫

p2dp2p3dp3d(cosα)d(cos θ)√
aα cos2 θ + bα cos θ + cα

〈|M|2ν〉H(p1 + p2 − p3)H(aα cos2 θ + bα cos θ + cα)

× θl(p2)Pl(cosα)e
p1/Tν

(ep1/Tν + 1)(ep3/Tν + 1)(e(p1+p2−p3−µν)/Tν + 1)
. (C36)

Performing the cos θ integral yields

−16G2
eff

∞
∑

l=0

(−i)l(2l + 1)Pl(µ)

128π3(e−p1/Tν + 1)

∫

p2dp2p3dp3d(cosα)√−aα

(

∆2(α)
3b2α − 4aαcα

8a2α
−∆1(α)

bα
2aα

+∆0(α)

)

×H(p1 + p2 − p3)H(b2α − 4aαcα)
θl(p2)Pl(cosα)

(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)
. (C37)

Similarly to the previous section, we define
(

∆2(α)
3b2α − 4aαcα

8a2α
−∆1(α)

bα
2aα

+∆0(α)

)

≡ |M̄ρ(p1, p2, p3, ρ)|2. (C38)

We use the Heaviside step function H(b2α − 4aαcα) to determine the range of integration for ρ ≡ cosα and p3

Max[ρ−,−1] ≤ ρ ≤ 1 for 0 ≤ p3 ≤ p1 + p2, (C39)

where

ρ− =
p1p2 − 2(p1 + p2)p3 + 2p23

p1p2
. (C40)

We thus obtain

−
∞
∑

l=0

G2
eff(−i)l(2l + 1)Pl(µ)

8π3(e−p1/Tν + 1)

∫ ∞

0

dp2θl(p2)p2

∫ p1+p2

0

dp3
(ep3/Tν + 1)(e(p1+p2−p3)/Tν + 1)

×
∫ 1

Max[ρ−,−1]

dρ
|M̄ρ(p1, p2, p3, ρ)|2Pl(ρ)
√

(p21 + p22 + 2p1p2ρ)
. (C41)

The remaining difficulty is the p2 dependence of θl(p2). Since we are working in the thermal approximation in which
the only possible neutrino perturbations are local temperature fluctuations, we note that the perturbation variable
Θ(p2) admits the form

Θ(x,p2, τ) = −d ln f
(0)
ν

d ln p2

δTν(x, τ)

T
(0)
ν (τ)

. (C42)
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It is therefore convenient to introduce the temperature fluctuation variables (see Eq. (7) in main text) νl

νl ≡
−4θl(p2)

d ln f
(0)
ν

d ln p2

, (C43)

which are independent of p2 in the ultra-relativistic limit. We note that as the neutrinos transition to the non-
relativistic regime, the νl variables will develop a momentum dependence due to the presence of the mass term in the
left-hand side of the Boltzmann equations. However, since we expect the neutrinos to self-decoupled in the relativistic
regime, we can safely assume that νl is independent of the neutrino momentum. Substituting

θl(p2) =
1

4

ep2/Tν

1 + ep2/Tν

p2
Tν
νl (C44)

in Eq. (C41) and writing down the answer in terms of xi, we obtain

−
∞
∑

l=0

G2
effT

6
ν (−i)l(2l + 1)νlPl(µ)

32π3(e−x1 + 1)

∫ ∞

0

dx2x
2
2

ex2

1 + ex2

∫ x1+x2

0

dx3
(ex3 + 1)(e(x1+x2−x3) + 1)

×
∫ 1

Max[ρ−,−1]

dρ
|M̄ρ(x1, x2, x3, ρ)|2Pl(ρ)
√

(x21 + x22 + 2x1x2ρ)
. (C45)

3. Terms involving Θν(p3)

For the term involving Θν(p3), we begin from Eq. (C14) and substitute the expansion from Eq. (B9)

∞
∑

l=0

(−i)l(2l + 1)

8(2π)5

∫

p2dp2p3dp3d(cosα)d(cos θ)dφ√
aθ cos2 α+ bθ cosα+ cθ

〈|M|2ν〉H(p1 + p2 − p3)H(aθ cos
2 α+ bθ cosα+ cθ)

×e
(p1+p2−p3)/Tνθl(p3)Pl(cos θ cos γ + sin θ sin γ cosφ)

(ep1/Tν + 1)(ep2/Tν + 1)(e(p1+p2−p3)/Tν + 1)
. (C46)

We can now perform the φ integral using the identity given in Eq. (C26)

∞
∑

l=0

(−i)l(2l + 1)Pl(µ)

8(2π)4

∫

p2dp2p3dp3d(cosα)d(cos θ)√
aθ cos2 α+ bθ cosα+ cθ

〈|M|2ν〉H(p1 + p2 − p3)H(aθ cos
2 α+ bθ cosα+ cθ)

× e(p1+p2−p3)/Tνθl(p3)Pl(cos θ)

(ep1/Tν + 1)(ep2/Tν + 1)(e(p1+p2−p3)/Tν + 1)
. (C47)

Performing the cosα integral yields

16G2
eff

∞
∑

l=0

(−i)l(2l + 1)Pl(µ)

128π3

∫

p2dp2p3dp3d(cos θ)√−aθ

(

∆2(θ)
3b2θ − 4aθcθ

8a2θ
−∆1(θ)

bθ
2aθ

+∆0(θ)

)

×H(p1 + p2 − p3)H(b2θ − 4aθcθ)
e(p1+p2−p3)/Tνθl(p3)Pl(cos θ)

(ep1/Tν + 1)(ep2/Tν + 1)(e(p1+p2−p3)/Tν + 1)
. (C48)

Writing η ≡ cos θ and using the same integration limits as in Eq. (C31), we obtain

∞
∑

l=0

G2
eff(−i)l(2l + 1)Pl(µ)

8π3(ep1/Tν + 1)

∫ ∞

0

dp2
ep2/T + 1

∫ p1+p2

0

dp3
p3θl(p3)

e−(p1+p2−p3)/Tν + 1

×
∫ 1

Max[η−,−1]

dη
|M̄η(p1, p2, p3, η)|2Pl(η)
√

p21 + p23 − 2p1p3η
. (C49)

Again, writing down the p3 dependence of θl(p3) in terms of the νl variables and writing the integrals in terms of the
dimensionless variables xi, we get

∞
∑

l=0

G2
effT

6
ν (−i)l(2l + 1)νlPl(µ)

32π3(ex1 + 1)

∫ ∞

0

dx2
ex2 + 1

∫ x1+x2

0

dx3
x23e

x3

(1 + ex3)(e−(x1+x2−x3) + 1)

×
∫ 1

Max[η−,−1]

dη
|M̄η(x1, x2, x3, η)|2Pl(η)
√

x21 + x23 − 2x1x3η
. (C50)
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4. Total Collision Term

The complete collision term can then be written as

C(1)
ν [p1] =

G2
effT

6
ν

4

∂ ln f (0)(p1)

∂ ln p1

∞
∑

l=0

(−i)l(2l + 1)νlPl(µ)

(

A

(

p1
Tν

)

+Bl

(

p1
Tν

)

− 2Dl

(

p1
Tν

))

, (C51)

where

A(x1) =
1

8π3

∫ ∞

0

ex2dx2
ex2 + 1

∫ x1+x2

0

x3 dx3
(ex3 + 1)(e(x1+x2−x3) + 1)

∫ 1

Max[η−,−1]

dη
|M̄η(x1, x2, x3, η)|2
√

(x21 + x23 − 2x1x3η)
, (C52)

Bl(x1) =
1

8π3x1

∫ ∞

0

ex2x22dx2
ex2 + 1

∫ x1+x2

0

dx3
(ex3 + 1)(e(x1+x2−x3) + 1)

∫ 1

Max[ρ−,−1]

dρ
|M̄ρ(x1, x2, x3, ρ)|2Pl(ρ)
√

(x21 + x22 + 2x1x2ρ)
,(C53)

Dl(x1) =
e−x1

8π3x1

∫ ∞

0

dx2
ex2 + 1

∫ x1+x2

0

ex3x23dx3
(ex3 + 1)(e−(x1+x2−x3) + 1)

∫ 1

Max[η−,−1]

dη
|M̄η(x1, x2, x3, η)|2Pl(η)
√

x21 + x23 − 2x1x3η
,(C54)

where xi = pi/Tν .
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[140] L. Anderson, É. Aubourg, S. Bailey, F. Beutler,
V. Bhardwaj, M. Blanton, A. S. Bolton, J. Brinkmann,
J. R. Brownstein, A. Burden, C.-H. Chuang, A. J.
Cuesta, K. S. Dawson, D. J. Eisenstein, S. Escoffier,
J. E. Gunn, H. Guo, S. Ho, K. Honscheid, C. Howlett,
D. Kirkby, R. H. Lupton, M. Manera, C. Maras-
ton, C. K. McBride, O. Mena, F. Montesano, R. C.
Nichol, S. E. Nuza, M. D. Olmstead, N. Padmanabhan,
N. Palanque-Delabrouille, J. Parejko, W. J. Percival,
P. Petitjean, F. Prada, A. M. Price-Whelan, B. Reid,
N. A. Roe, A. J. Ross, N. P. Ross, C. G. Sabiu, S. Saito,
L. Samushia, A. G. Sánchez, D. J. Schlegel, D. P. Schnei-
der, C. G. Scoccola, H.-J. Seo, R. A. Skibba, M. A.
Strauss, M. E. C. Swanson, D. Thomas, J. L. Tinker,
R. Tojeiro, M. V. Magaña, L. Verde, D. A. Wake, B. A.
Weaver, D. H. Weinberg, M. White, X. Xu, C. Yèche,
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