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Abstract

Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define

and study a new class of distributions called the Kummer beta generalized family to extend the

normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions.

Some special models are discussed. The ordinary moments of any distribution in the new family

can be expressed as linear functions of probability weighted moments of the baseline distribution.

We examine the asymptotic distributions of the extreme values. We derive the density function

of the order statistics, mean absolute deviations and entropies. We use maximum likelihood

estimation to fit the distributions in the new class and illustrate its potentiality with an application

to a real data set.
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1. Introduction

Beta distributions are very versatile and can be used to analyze different types of

data sets. Many of the finite range distributions encountered in practice can be easily
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transformed into the standard beta distribution. In econometrics, quite often the data are

analyzed by using finite-range distributions. Generalized beta distributions have been

widely studied in statistics and numerous authors have developed various classes of

these distributions. Eugene et al. (2002) proposed a general class of distributions based

on the logit of a beta random variable by employing two parameters whose role is to

introduce skewness and to vary tail weights.

Following Eugene et al. (2002), who defined the beta normal (BN) distribution,

Nadarajah and Kotz (2004) introduced the beta Gumbel distribution (BGu), provided

expressions for the moments, examined the asymptotic distribution of the extreme order

statistics and performed maximum likelihood estimation (MLE). Nadarajah and Gupta

(2004) defined the beta Fréchet (BF) distribution and derived analytical shapes of the

probability density and hazard rate functions. Nadarajah and Kotz (2005) proposed the

beta exponential (BE) distribution, derived the moment generating function (mgf), the

first four moments, and the asymptotic distribution of the extreme order statistics and

discussed MLE. Most recently, Pescim et al. (2010) and Paranaı́ba et al. (2011) have

studied important mathematical properties of the beta generalized half-normal (BGHN)

and beta Burr XII (BBXII) distributions. However, those distributions do not offer

flexibility to the extremes (right and left) of the probability density functions (pdfs).

Therefore, they are not suitable for analyzing data sets with high degrees of asymmetry.

Ng and Kotz (1995) proposed the Kummer beta distribution on the unit interval (0,1)

with cumulative distribution function (cdf) and pdf given by

F(x) = K

∫ x

0
ta−1 (1− t)b−1 exp(−ct)dt,

and

f (x) = K xa−1 (1− x)b−1 exp(−cx), 0 < x < 1,

respectively, where a > 0, b > 0 and −∞ < c < ∞. Here,

K−1 =
Γ(a)Γ(b)

Γ(a+b)
1F1(a;a+b;−c) (1)

and

1F1(a;a+b;−c) =
Γ(a+b)

Γ(a)Γ(b)

∫ 1

0
ta−1 (1− t)b−1 exp(−ct)dt =

∞

∑
k=0

(a)k(−c)k

(a+b)k k!

is the confluent hypergeometric function (Abramowitz and Stegun, 1968), Γ(·) is the

gamma function and (d)k = d(d + 1) . . .(d + k − 1) denotes the ascending factorial.

Independently, Gordy (1998) has also defined the Kummer beta distribution in relation
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Figure 1: Plots of the Kummer beta pdf for some parameter values.

to the problem of common value auction. This distribution is an extension of the beta

distribution. It yields bimodal distributions on finite range for a < 1 (and certain values

of the parameter c). Plots of the Kummer beta pdf are displayed in Figure 1 for selected

parameter values.

Consider starting from a parent continuous cdf G(x). A natural way of generating

families of distributions from a simple parent distribution with pdf g(x) = dG(x)/dx

is to apply the quantile function to a family of distributions on the interval (0,1). We

now use the same methodology of Eugene et al. (2002) and Cordeiro and de Castro

(2011) to construct a new class of Kummer beta generalized (KBG) distributions. From

an arbitrary parent cdf G(x), the KBG family of distributions is defined by
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F(x) = K

∫ G(x)

0
ta−1 (1− t)b−1 exp(−ct)dt, (2)

where a > 0 and b > 0 are shape parameters introducing skewness, and thereby promot-

ing weight variation of the tails. The parameter −∞ < c < ∞ “squeezes” the pdf to the

left or to the right.

The pdf corresponding to (2) can be expressed as

f (x) = K g(x)G(x)a−1 {1−G(x)}b−1
exp{−c G(x)} , (3)

where K is defined in (1).

The KBG family of distributions defined by (3) is an alternative family of models

to the class of distributions proposed by Alexander et al. (2012). The shape parameter

c > 0 in Alexander et al. (2012) together with a > 0 and b > 0 promotes the weight

variation of the tails and adds flexibility. On the other hand, the parameter −∞ < c < ∞

of the proposed family offers flexibility to the extremes (left and/or right) of the pdfs.

Therefore, the new family of distributions is suitable for analyzing data sets with high

degrees of asymmetry.

For each continuous G distribution (here and henceforth “G” denotes the baseline

distribution), we associate the KBG-G distribution with three extra parameters a, b and

c defined by the pdf (3). Setting u = t/G(x) in equation (2), we obtain

F(x) = K G(x)a

∫ 1

0
ua−1 [1−G(x)u]b−1

exp [−cG(x)u] du

=
K

a
G(x)a Φ1 (a;1−b;a+1;−cG(x);G(x)) ,

where Φ1 is the confluent hypergeometric function of two variables defined by (Erdélyi

et al., 1953)

Φ1(a;b;c;x;y) =
∞

∑
j,m=0

(a) j+m (b) j

(c) j+m

x j ym

for |x|< 1 and |y|< 1.

Special generalized distributions can be generated as follow. The KBG-normal

(KBGN) distribution is obtained by taking G(x) in equation (3) to be the normal cdf.

Analogously, the KBG-Weibull (KBGW), KBG-gamma (KBGGa) and KBG-Gumbel

(KBGGu) distributions are obtained by taking G(x) to be the cdf of the Weibull, gamma

and Gumbel distributions, respectively. Hence, each new KBG-G distribution can be

obtained from a specified G distribution. The Kummer beta distribution is clearly a

basic example of the KBG distribution when G is the uniform distribution on [0,1]. The

G distribution corresponds to a = b = 1 and c = 0. For c = 0, the KBG-G distribution
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reduces to the beta-G distribution proposed by Eugene et al. (2002). Further, for b = 1

and c= 0, the KBG-G distribution becomes the exponentiated-G distribution. One major

benefit of the KBG family of distributions is its ability to fit skewed data that cannot be

properly fitted by existing distributions.

We study some mathematical properties of the KBG family of distributions because

it extends several widely-known distributions in the literature. The article is outlined

as follows. Section 2 provides some special cases. In Section 3, we derive general

expansions for the new pdf in terms of the baseline pdf g(x) multiplied by a power series

in G(x). We can easily apply these expansions to several KBG distributions. In Section

4, we derive two simple expansions for moments of the KBG-G distribution as linear

functions of probability weighted moments (PWMs) of the G distribution. The mean

absolute deviations and Rényi entropy are determined in Sections 5 and 6, respectively.

In Section 7, we provide some expansions for the pdf of the order statistics. Extreme

values are obtained in Section 8. Some inferential tools are discussed in Section 9. In

Section 10, we analyze a real data set using a special KBG distribution. Section 11 ends

with some concluding remarks.

2. Special KBG generalized distributions

The KBG pdf (3) allows for greater flexibility of its tails and promotes variation of

the tail weights to the extremes of the distribution. It can be widely applied in many

areas of engineering and biological sciences. The pdf (3) will be most tractable when

the cdf G(x) and the pdf g(x) have simple analytic expressions. We now define some

of the many distributions which arise as special sub-models within the KBG class of

distributions.

2.1. KBG-normal

The KBGN pdf is obtained from (3) by taking G(·) and g(·) to be the cdf and pdf of the

normal distribution, N(µ,σ2), so that

f (x) =
K

σ
φ

(
x−µ
σ

){
Φ

(
x−µ
σ

)}a−1{
1−Φ

(
x−µ
σ

)}b−1

exp

{
−c Φ

(
x−µ
σ

)}
,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, a and b are

positive shape parameters, c ∈ R, and φ(·) and Φ(·) are the pdf and cdf of the standard

normal distribution, respectively. A random variable with the above pdf is denoted

by X ∼ KBGN(a,b,c,µ,σ2). For µ = 0 and σ = 1, we have the standard KBGN

distribution. Further, the KBGN distribution with a = 2, b = 1 and c = 0 is the skew

normal distribution with shape parameter equal to one (Azzalini, 1985).
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2.2. KBG-Weibull

The cdf of the Weibull distribution with parameters β > 0 and α > 0 is G(x) =

1− exp{−(βx)α} for x > 0. Correspondingly, the KBG-Weibull (KGBW) pdf is

f (x) = Kαβα xα−1 [1− exp{−(βx)α}]a−1
exp{−c [1− exp{−(βx)α}]−b(βx)α} ,

where x,a,b,β > 0 and c ∈ R. Let KBGW(a,b,c,α,β) denote a random variable with

this pdf. Forα= 1, we obtain the KBG-exponential (KBGE) distribution. KBGW(1,b,0,1,β)

is an exponential random variable with parameter β∗ = bβ .

2.3. KBG-gamma

Let Y be a gamma random variable with cdf G(y) = Γβy(α)/Γ(α) for y, α, β > 0, where

Γ(·) is the gamma function and Γz(α) =
∫ z

0 tα−1e−tdt is the incomplete gamma function.

The pdf of a random variable X , say X ∼ KBGGa(a,b,c,β ,α), having the KBGGa

distribution can be expressed as

f (x) =
Kβα xα−1 exp(−βx)

Γ(α)a+b−1
exp

{
−c

Γβx(α)

Γ(α)

}
Γβx(α)

a−1
{

Γ(α)−Γβx(α)
}b−1

.

For α = 1 and c = 0, we obtain the KBGE distribution. KBGGa(1,b,0,β ,1) is an

exponential random variable with parameter β∗ = bβ .

2.4. KBG-Gumbel

The pdf and cdf of the Gumbel distribution with location parameter µ > 0 and scale

parameter σ > 0 are given by

g(x) = σ−1 exp

{
x−µ
σ

− exp

(
x−µ
σ

)}
, x > 0,

and

G(x) = 1− exp

{
−exp

(
−x−µ
σ

)}
,

respectively. The mean and variance are equal to µ− γσ and π2σ2/6, respectively,

where γ≈ 0.57722 is the Euler’s constant. By inserting these equations in (3), we obtain

a KBGGu random variable, say KBGGu(a,b,c,µ,σ).

Figure 2 displays some possible shapes of the four KBG pdfs. These plots show the

great flexibility achieved with the new distributions.



R. R. Pescim, G. M. Cordeiro, C. G. B. Demétrio, E. M. M. Ortega and S. Nadarajah 159

(a) (b)

-2 -1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

f(
x
)

c = -20
c = -10
c = 0
c = 10
c = 15

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

x

f(
x
)

c = -5

c = -2

c = 0

c = 2

c = 5

(c) (d)

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

x

f(
x
)

c = -5

c = -2

c = 0

c = 2

c = 5

-6 -4 -2 0 2

0
.0

0
.2

0
.4

0
.6

0
.8

x

f(
x
)

c = -5

c = -2

c = 0

c = 2

c = 5

Figure 2: (a) KBGN(8,2,c,0,1), (b) KBGW(5,3,c,0.5,4), (c) KBGGa(3,1.5,c,4,2)

and (d) KBGGu(0.8,1,c,0,1) pdfs (the red lines represent the beta-G pdfs).

3. Expansions for pdf and cdf

The cdf F(x) and pdf f (x) = dF(x)/dx of the KBG-G distribution are usually straight-

forward to compute given G(x) and g(x) = dG(x)/dx. However, we provide expan-

sions for these functions as infinite (or finite) weighted sums of cdf’s and pdf’s of

exponentiated-G distributions. In the next sections, based on these expansions, we ob-
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tain some structural properties of the KBG-G distribution, including explicit expressions

for moments, mean absolute deviations, pdf of order statistics and moments of order

statistics.

Using the exponential expansion in (2), we write

F(x) =
∞

∑
i=0

wi Ha+i,b(x), (4)

where wi = [K B(a+ i,b)(−c)i]/i! and

Ha,b(x) =
1

B(a,b)

∫ G(x)

0
ta−1 (1− t)b−1dt

denotes the beta-G cdf with positive shape parameters a and b (Eugene et al., 2002).

Equation (4) reveals that the KBG-G cdf is a linear combination of beta-G cdf’s. This

result is important. It can be used to derive properties of any KBG-G distribution from

those of beta-G distributions.

For b > 0 real non-integer, we have the power series representation

{1−G(x)}b−1 =
∞

∑
j=0

(−1) j

(
b−1

j

)
G(x) j, (5)

where the binomial coefficient is defined for any real. Expanding exp{−cG(x)} in

power series and using (5) in equation (2), the KBG-G cdf can be expressed as

F(x) =
∞

∑
i, j=0

wi, j G(x)a+i+ j, (6)

where

wi, j =
K (−1)i+ j ci

i!(a+ i+ j)

(
b−1

j

)
.

If b is an integer, the index i in the previous sum stops at b− 1. If a is an integer,

equation (6) reveals that the KBG-G pdf can be expressed as the baseline pdf multiplied

by an infinite power series of its cdf.

If a is a real non-integer, we can expand G(x)a+i+ j as follows

G(x)a+i+ j =
∞

∑
k=0

(−1)k

(
a+ i+ j

k

)
[1−G(x)]k .
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Then,

G(x)a+i+ j =
∞

∑
k=0

k

∑
r=0

(−1)k+r

(
a+ i+ j

k

) (
k

r

)
G(x)r.

Further, equation (2) can be rewritten as

F(x) =
∞

∑
i, j,k=0

k

∑
r=0

ti, j,k,r G(x)r, (7)

where

ti, j,k,r = ti, j,k,r(a,b,c) = (−1)k+r

(
a+ i+ j

k

) (
k

r

)
wi, j

and wi, j is defined in (6). Replacing ∑
∞
k=0 ∑

k
r=0 by ∑

∞
r=0 ∑

∞
k=r in equation (7), we obtain

F(x) =
∞

∑
r=0

br G(x)r, (8)

where the coefficient br = ∑
∞
i, j=0 ∑

∞
k=r ti, j,k,r denotes a sum of constants.

Expansion (8), which holds for any real non-integer a, expresses the KBG-G cdf as

an infinite weighted power series of G. If b is an integer, the index i in (7) stops at b−1.

We also note that the cdf of the KBG family can be expressed in terms of exponentiated-

G cdfs. We have

F(x) =
∞

∑
r=0

br Vr(x), (9)

where Vr = G(x)r is an exponentiated-G cdf (Exp-G cdf for short) with power parameter

r.

The corresponding expansions for the KBG pdf are obtained by simple differentia-

tion of (6) for a > 0 integer

f (x) = g(x)
∞

∑
i, j=0

w∗
i, j G(x)a+i+ j−1, (10)

where w∗
i, j = (a+ i+ j)wi, j. Analogously, from equations (8) and (9), for a > 0 real

non-integer, we obtain

f (x) = g(x)
∞

∑
r=0

b∗r G(x)r, (11)
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and

f (x) =
∞

∑
r=0

cr vr+1(x), (12)

where b∗r = (r + 1)br+1 and cr = br+1 for r = 0,1 . . ., and vr+1 = (r + 1)g(x)G(x)r

denotes the Exp-G pdf with parameter r+1. Equation (12) reveals that the KBG-G pdf

is a linear combination of Exp-G pdfs. This result is important to derive properties of

the KBG-G distribution from those of the Exp-G distribution.

Mathematical properties of exponentiated distributions have been studied by many

authors in recent years, see Mudholkar et al. (1995) for exponentiated Weibull, Gupta

et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for exponentiated

exponential and Nadarajah and Gupta (2007) for exponentiated gamma.

Equations (10)-(12) are the main results of this section. They play an important role

in this paper.

4. Moments and generating function

4.1. Moments

The sth moment of the KBG-G distribution can be expressed as an infinite weighted sum

of PWMs of order (s,q) of the parent G distribution from equation (10) for a integer

and from (11) for a real non-integer. We assume that Y and X follow the baseline G and

KBG-G distributions, respectively. The sth moment of X can be expressed in terms of the

(s,q)th PWMs of Y , say τs,q = E[Y s G(Y )q] (for q = 0,1, . . .), as defined by Greenwood

et al. (1979). The moments τ(s,q) can be derived for most parent distributions.

For an integer a, we have

µ′s = E(X s) =
∞

∑
i, j=0

w∗
i, jτs,a+i+ j−1.

For a real non-integer a, we can write from (11)

µ′s =
∞

∑
r=0

b∗r τs,r.

So, we can calculate the moments of any KBG-G distribution as infinite weighted sums

of PWMs of the G distribution.

Alternatively, we can express µ′s from (11) in terms of the baseline quantile function

Q(u) = G−1(u). We have
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µ′s =
∞

∑
r=0

b∗r

∫
xs g(x)G(x)r dx.

Setting u = G(x) in the last equation, we obtain

µ′s =
∞

∑
r=0

b∗r

∫ 1

0
ur Q(u)s dt.

Now, we express moments of KBG distributions from equation (12) in terms of

moments of Exp-G distributions. Let Yr+1 have the Exp-G pdf vr+1 = (r+1)g(x)G(x)r

with power parameter (r+ 1). As a first example, consider G the Weibull distribution

with scale parameter λ > 0 and shape parameter γ > 0. If Yr+1 has the exponentiated

Weibull distribution, its moments are

E(Y s) =
(r+2)

λs
Γ

(
s

γ
+1

)
∞

∑
i=0

(−r)i

i!(i+1)(s+γ)/γ
,

where (a)i = a(a+1) . . .(a+ i−1) denotes the ascending factorial. From this expecta-

tion and equation (12), the sth moment of the KBG-Weibull distribution is

µ′s = λ
−s Γ

(
s

γ
+1

)
∞

∑
r,i=0

(r+2)cr (−r)i

i!(i+1)(s+γ)/γ
.

For a second example, take the Gumbel distribution with cdf G(x) = 1 − exp

{−exp(− x−µ
σ

)}. The moments of Yr+1 having the exponentiated Gumbel distribution

with parameter (r+1) can be obtained from Nadarajah and Kotz (2006) as

E(Y s
r+1) = (r+1)

s

∑
i=0

(
s

i

)
µs−i (−σ)i

(
∂

∂ p

)i [
(r+1)−p Γ(p)

]∣∣∣∣
p=1

.

From the last equation and (12), the sth moment of the KBG-Gumbel (KBGGu)

distribution becomes

µ′s =
∞

∑
r=0

cr (r+1)
s

∑
i=0

(
s

i

)
µs−i (−σ)i

(
∂

∂ p

)i [
(r+1)−p Γ(p)

]∣∣∣∣
p=1

.

Finally, as a third example, consider the standard logistic cdf G(x)= [1+exp(−x)]−1.

We can easily obtain the sth moment of the KBG-logistic (KBGL) distribution as

µ′s =
∞

∑
r=0

cr

(
∂

∂ t

)s

B(t +(r+1),1− t)

∣∣∣∣
t=0

.
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4.2. Generating function

Let X ∼KBG-G(a,b,c). We provide four representations for the mgf M(t)=E[exp(tX)]

of X . Clearly, the first one is

M(t) =
∞

∑
s=0

µ′s
s!

ts,

where µ′s = E(X s). The second one comes from

M(t) = K E
[
exp [t X − cG(X)] Ga−1(X) {1−G(X)}b−1

]

= K
∞

∑
j=0

(−1) j

(
b−1

j

)
E

[
exp(t X −Uc)

U−(a+ j−1)

]
,

where U is a uniform random variable on the unit interval. Note that X and U are not

independent.

A third representation for M(t) is obtained from (12)

M(t) =
∞

∑
i=0

ci Mi+1(t),

where Mi+1(t) is the mgf of Yi+1 ∼ Exp-G(i+ 1). Hence, for any KBG-G distribution,

M(t) can be immediately determined from the mgf of the G distribution.

A fourth representation for M(t) can be derived from (11) as

M(t) =
∞

∑
i=0

b∗i ρ(t, i), (13)

where ρ(t,r) =
∫ ∞
−∞ exp(tx)g(x)G(x)rdx can be expressed in terms of the baseline

quantile function Q(u) as

ρ(t,a) =

∫ 1

0
ua exp [t Q(u)] du. (14)

We can obtain the mgf of several KBG distributions from equations(13) and (14). For

example, the mgfs of the KBG-exponential (KBGE) (with parameter λ), KBGL and

KBG-Pareto (KBGPa) (with parameter ν > 0) are easily calculated as

M(t) =
∞

∑
i=0

b∗i B
(
i+1,1−λ t−1

)
, M(t) =

∞

∑
i=0

b∗i B(i+1,1− t) ,
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and

M(t) = exp(−t)
∞

∑
i,p=0

b∗i t p

p!
B
(
i+1,1− pν−1

)
,

respectively.

Clearly, four representations for the characteristic function (chf) φ(t) = E[exp(i tX)]

of the KBG-G distribution are immediately obtained from the above representations for

the mgf by φ(t) = M(i t), where i =
√
−1.

5. Mean absolute deviations

Let X ∼ KBG-G(a,b,c). The mean absolute deviations about the mean (δ1(X)) and

about the median (δ2(X)) can be expressed as

δ1(X) = E
(∣∣X −µ′1

∣∣)= 2µ′1F (µ′1)−2T (µ′1) ,

δ2(X) = E(|X −M|) = µ′1 −2T (M), (15)

respectively, where µ′1 = E(X), F(µ′1) comes from (2), M = Median(X) denotes the

median determined from the nonlinear equation F(M) = 1/2, and T (z) =
∫ z
−∞ x f (x)dx.

Setting u = G(x) in (11) yields

T (z) =
∞

∑
r=0

b∗r Tr(z), (16)

where the integral Tr(z) can be expressed in terms of Q(u) = G−1(u) by

Tr(z) =
∫ G(z)

0
ur Q(u)du. (17)

The mean absolute deviations of any KBG distribution can be computed from

equations (15)-(17). For example, the mean absolute deviations of the KBGE (with

parameter λ), KBGL and KBGPa (with parameter ν > 0) are immediately calculated

using

Tr(z) = λ
−1 Γ(r+2)

∞

∑
j=0

(−1) j [1− exp(− jλz)]

Γ(r+2− j)( j+1)!
,

Tr(z) =
1

Γ(z)

∞

∑
j=0

(−1) j Γ(r+ j+1) [1− exp(− jz)]

( j+1)!
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and

Tr(z) =
∞

∑
j=0

j

∑
k=0

(−1) j
(

r+1
j

)(
j
k

)

(1− kν)
z1−kν ,

respectively.

An alternative representation for T (z) can be derived from (12) as

T (z) =
∫ z

−∞

x f (x)dx =
∞

∑
r=0

cr Jr+1(z), (18)

where

Jr+1(z) =
∫ z

−∞

x vr+1(x)dx. (19)

Equation (19) is the basic quantity to compute mean absolute deviations of Exp-G

distributions. Hence, the KBG mean absolute deviations depend only on the quantity

Jr+1(z). So, alternative representations for δ1(X) and δ2(X) are

δ1(X) = 2µ′1F (µ′1)−2
∞

∑
r=0

cr Jr+1 (µ
′
1) and δ2(X) = µ′1 −2

∞

∑
r=0

cr Jr+1(M).

A simple application is provided for the KBGW distribution. The exponentiated Weibull

pdf with parameter r+1 is given by

vr+1(x) = (r+1)dβd xd−1 exp
{
−(βx)d

} [
1− exp

{
−(βx)d

}]r

for x > 0. Then,

Jr+1(z) = (r+1)dβd

∫ z

0
xd exp

{
−(βx)d

}[
1− exp

{
−(βx)d

}]r
dx

= r dβd
∞

∑
k=0

(−1)k

(
r

k

) ∫ z

0
xd exp

[
−(k+1)(βx)d

]
dx.

We calculate the last integral using the incomplete gamma function γ(α,x)=
∫ x

0 wα−1 e−wdw

for α> 0. Then,

Jr+1(z) = (r+1)β−1
∞

∑
k=0

(−1)k
(

r
k

)

(k+1)1+d−1
γ
(
1+d−1,(k+1)(βz)d

)
.
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Equations (16) and (18) are the main results of this section. These equations can be

applied to Bonferroni and Lorenz curves defined for a given probability p by

B(p) =
T (q)

pµ′1
and L(p) =

T (q)

µ′1
,

where µ′1 = E(X) and q = F−1(p).

6. Entropies

An entropy is a measure of variation or uncertainty of a random variable X . The most

popular measures of entropy are the Shannon entropy (Shannon, 1951) and the Rényi

entropy.

6.1. Shannon entropy

The Shannon entropy (Shannon, 1951) is defined by E{− log[ f (X)]}. Let X has the pdf

(3). We can write

E{− log [ f (X)]} = − log(K)−E{log [g(X)]}+(1−a)E{log [G(X)]}
+(1−b)E{log [1−G(X)]}+ cE [G(X)]

= − logK −E{log [g(X)]}+(a−1)
∞

∑
k=1

1

k
E
{
[1−G(X)]k

}

+(b−1)
∞

∑
k=1

1

k
E
[
Gk(X)

]
+ cE [G(X)]

= − log(K)−E{log [g(X)]}+(a−1)
∞

∑
k=1

K(a,b+ k,c)

k K(a,b,c)

+(b−1)
∞

∑
k=1

K(a+ k,b,c)

k K(a,b,c)
+

cK(a+1,b,c)

K(a,b,c)
, (20)

where K = K(a,b,c) is given by (1). The only unevaluated term in (20) is E{log[g(X)]}.

6.2. Rényi entropy

The Rényi entropy is given by

JR(ξ) =
1

1−ξ log

[∫ ∞

−∞

f ξ(x)dx

]
, ξ> 0 and ξ 6= 1.
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The integral can be expressed as

∫ ∞

−∞

f ξ(x)dx = Kξ
∫ ∞

−∞

gξ(x)Gξ(a−1)(x) [1−G(x)]ξ(b−1)
exp [−ξcG(x)] dx.

Expanding the exponential and the binomial terms and changing variables, we obtain

∫ ∞

−∞

f ξ(x)dx = Kξ
∞

∑
i, j=0

(−1)i+ j(cξ)i

i!

(
ξ(b−1)

j

)
Ii, j(ξ), (21)

where Ii, j(ξ) denotes the integral

Ii, j(ξ) =

∫ 1

0
gξ−1 (Q(u)) ui+ j+ξ(a−1) du,

to be calculated for each KBG-model. For the KBGE (with parameter λ), KBGL and

KBGPa (with parameter ν), we obtain

Ii, j(ξ) = λ
ξ−1B(i+ j+ξ(a−1)+1,ξ) , Ii, j(ξ) = B(i+ j+ξa , ξ) ,

and

Ii, j(ξ) = ν
ξ−1 B

(
i+ j+ξ(a−1)+1, ν−1(ξ−1)+ξ

)
,

respectively. Equation (21) is the main result of this section.

7. Order statistics

Order statistics have been used in a wide range of problems, including robust statis-

tical estimation and detection of outliers, characterization of probability distributions

and goodness-of-fit tests, entropy estimation, analysis of censored samples, reliability

analysis, quality control and strength of materials.

Suppose X1, . . . ,Xn is a random sample from a continuous distribution and let

X1:n < · · ·<Xi:n denote the corresponding order statistics. There has been a large amount

of work relating to moments of order statistics Xi:n. See Arnold et al. (1992), David and

Nagaraja (2003) and Ahsanullah and Nevzorov (2005) for excellent accounts. It is well-

known that

fi:n(x) =
f (x)

B(i,n− i+1)
F(x)i−1 {1−F(x)}n−i ,
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where B(·, ·) denotes the beta function. Using the binomial expansion in the last

equation, we have

fi:n(x) =
f (x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
F(x)i+ j−1. (22)

We now provide an expression for the pdf of KBG order statistics as a function

of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Based

on this result, we express the ordinary moments of the order statistics of any KBG-G

distribution as infinite weighted sums of the PWMs of the G distribution.

Replacing (8) in equation (22), we have

F(x)i+ j−1 =

(
∞

∑
r=0

br ur

)i+ j−1

, (23)

where u = G(x) is the baseline cdf.

We use the identity (∑∞
k=0 ak xk)n = ∑

∞
k=0 dk,n xk (see Gradshteyn and Ryzhik, 2000),

where

d0,n = an
0 and dk,n = (ka0)

−1
k

∑
m=1

[m(n+1)− k] am dk−m,n

(for k = 1,2, . . .) in equation (23) to obtain

F(x)i+ j−1 =
∞

∑
r=0

dr,i+ j−1 G(x)r, (24)

where

d0,i+ j−1 = bi+k−1
0 and dr,i+ j−1 = (kbr)

−1
r

∑
m=1

[(i+ j)m− r] bm dr−m,i+ j−1.

For real non-integer a, inserting (11) and (24) into equation (22) and changing

indices, we rewrite fi:n(x) for the KBG distribution in the form

fi:n(x) =
g(x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
∞

∑
u,v=0

b∗u du,i+ j−1 G(x)u+v. (25)

For an integer a, we obtain from equations (10), (22) and (24)

fi:n(x) =
g(x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
∞

∑
p,q,u=0

w∗
p,q du,i+ j−1 G(x)a+p+q+u−1. (26)
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Equations (25) and (26) immediately yield the pdf of KBG order statistics as a func-

tion of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Hence,

the moments of KBG-G order statistics can be expressed as infinite weighted sums of

PWMs of the G distribution. Clearly, equation (26) can be expressed as linear combi-

nations of Exp-G pdfs. So, the moments and the mgf of KBG order statistics follow

immediately from linear combinations of those quantities for Exp-G distributions.

8. Extreme values

If X = (X1 + · · ·+Xn)/n denotes the mean of a random sample from (3), then by the

usual central limit theorem
√

n(X −E(X))/
√

Var(X) approaches the standard normal

distribution as n → ∞ under suitable conditions. Sometimes one would be interested in

the asymptotics of the extreme values Mn = max(X1, . . . ,Xn) and mn = min(X1, . . . ,Xn).

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a strictly positive function, say h(t), such that

lim
t→∞

1−G(t + xh(t))

1−G(t)
= exp(−x)

for every x ∈ (−∞,∞). But, using L’Hopital’s rule, we note that

lim
t→∞

1−F (t + xh(t))

1−F(t)
= lim

t→∞

[1+ xh
′
(t)] f (t + xh(t))

f (t)

= lim
t→∞

[1+ xh
′
(t)]g(t + xh(t))

g(t)

[
G(t + xh(t))

G(t)

]a−1

×
[

1−G(t + xh(t))

1−G(t)

]b−1

exp{cG(t)− cG(t + xh(t))}

= exp(−bx)

for every x ∈ (−∞,∞). So, it follows that F also belongs to the max domain of attraction

of the Gumbel extreme value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp{−exp(−bx)}

for some suitable norming constants an > 0 and bn.

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a β > 0 such that
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lim
t→∞

1−G(t x)

1−G(t)
= xβ

for every x > 0. But, using L’Hopital’s rule, we note that

lim
t→∞

1−F(t x)

1−F(t)
= lim

t→∞

x f (t x)

f (t)

= lim
t→∞

xg(t x)

g(t)

[
G(t x)

G(t)

]a−1[
1−G(t x)

1−G(t)

]b−1

exp{cG(t)− cG(t x)}

= xbβ

for every x > 0. So, it follows that F also belongs to the max domain of attraction of the

Fréchet extreme value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp
(
−xbβ

)

for some suitable norming constants an > 0 and bn.

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a α> 0 such that

lim
t→−∞

G(t x)

G(t)
= xα

for every x < 0. But, using L’Hopital’s rule, we note that

lim
t→−∞

F(t x)

F(t)
= lim

t→−∞

x f (t x)

f (t)

= lim
t→∞

xg(t x)

g(t)

[
G(t x)

G(t)

]a−1[
1−G(t x)

1−G(t)

]b−1

exp{cG(t)− cG(t x)}

= xaβ .

So, it follows that F also belongs to the max domain of attraction of the Weibull extreme

value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp{−(−x)aα}

for some suitable norming constants an > 0 and bn.

The same argument applies to min domains of attraction. That is, F belongs to the

same min domain of attraction as that of G.
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9. Inference

Let γ be the p-dimensional parameter vector of the baseline distribution in equations

(2) and (3). We consider independent random variables X1, . . . ,Xn, each Xi following a

KBG-G distribution with parameter vector θ = (a,b,c,γ). The log-likelihood function,

ℓ= ℓ(θ ), for the model parameters is

ℓ(θ ) = n log(K)+
n

∑
i=1

logg(xi;γ)− c
n

∑
i=1

G(xi;γ)

+(a−1)
n

∑
i=1

log{G(xi;γ)}+(b−1)
n

∑
i=1

log{1−G(xi;γ)} . (27)

The elements of score vector are given by

∂ℓ(θ )

∂a
=

n

K

∂K

∂a
+

n

∑
i=1

log{G(xi;γ)} ,

∂ℓ(θ )

∂b
=

n

K

∂K

∂b
+

n

∑
i=1

log{1−G(xi;γ)} ,

∂ℓ(θ )

∂c
=

n

K

∂K

∂c
−

n

∑
i=1

G(xi;γ) ,

and

∂ℓ(θ )

∂γ j

=
n

∑
i=1

[
1

g(xi;γ)

∂g(xi;γ)

∂γ j

− c
∂g(xi;γ)

∂γ j

+
(a−1)

G(xi;γ)

∂G(xi;γ)

∂γ j

+
(b−1)

1−G(xi;γ)

∂G(xi;γ)

∂γ j

]

for j = 1, . . . , p, where

∂K

∂a
=−

{
[ψ(a)−ψ(a+b)] 1F1(a,a+b,−c)+ ∂ 1F1(a,a+b,−c)

∂a

}

B(a,b) [1F1(a,a+b,−c)]2
,

∂K

∂b
=−

{
[ψ(b)−ψ(a+b)] 1F1(a,a+b,−c)+ ∂ 1F1(a,a+b,−c)

∂b

}

B(a,b) [1F1(a,a+b,−c)]2
,

∂K

∂c
=

a 1F1(a+1,a+b+1,−c)

(a+b)B(a,b)1F1(a,a+b,−c)
,
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∂ 1F1(a,a+b,−c)

∂a
= − [ψ(a)−ψ(a+b)] 1F1(a,a+b,−c)

−
∞

∑
k=0

(a)k(−c)k

k!(a+b)k

[ψ(a+b+ k)−ψ(a+ k)] ,

and

∂ 1F1(a,a+b,−c)

∂b
=ψ(a+b) 1F1(a,a+b,−c)+

∞

∑
k=0

(a)k(−c)k

k!(a+b)k

ψ(a+b+ k).

These partial derivatives depend on the specified baseline distribution. Numerical maxi-

mization of the log-likelihood above was accomplished by using the RS method (Rigby

and Stasinopoulos, 2005) available in the R contributed gamlss package (Stasinopoulos

and Rigby, 2007; R Development Core Team, 2009).

For interval estimation of each parameter in θ = (a,b,c,γT )T , and tests of hypothe-

ses, we require the expected information matrix. Interval estimation for the model pa-

rameters can be based on standard likelihood theory. The elements of the information

matrix for (27) are given in the Appendix. Under suitable regularity conditions, the

asymptotic distribution of the MLE, θ̂ , is multivariate normal with mean vector θ and

covariance matrix estimated by {−∂ 2ℓ(θ )/∂θ∂θT} at θ = θ̂ . The required second

derivatives were computed numerically.

Consider two nested KBG-G distributions: a KBG-GA distribution with parameters

θ1, . . . ,θr and maximized log-likelihood −2ℓ(θ̂A); and, a KBG-GB distribution contain-

ing the same parameters θ1, . . . ,θr plus additional parameters θr+1, . . . ,θp and maxi-

mized log-likelihood −2ℓ(θ̂B), the models being identical otherwise. For testing the

KBG-GA distribution against the KBG-GB distribution, the likelihood ratio statistic (LR)

is equal to w =−2{ℓ(θ̂A)− ℓ(θ̂B)}. It has an asymptotic χ2
p−r distribution.

We compare non-nested KBG-G distributions by using the Akaike information

criterion given by AIC =−2ℓ(θ̂)+2p∗ and the Bayesian information criterion defined

by BIC = −2ℓ(θ̂) + p∗ log(θ ), where p∗ is the number of model parameters. The

distribution with the smallest value for any of these criteria (among all distributions

considered) is usually taken as the one that gives the best description of the data.

10. Application-Ball bearing fatigue data

In this section, we shall compare the fits of the KBGW, beta Weibul (BW), Birnbaum-

Saunders (BS) and Weibull distributions to the data set studied by Lieblein and Zelen

(1956). They described the data from fatigue endurance tests for deep-groove ball

bearings. The main objective of the study was to estimate parameters in the equation

relating bearing life to load. The data are a subset of n = 23 bearing failure times for

units tested at one level of stress reported by Lawless (1982). Because of the lower
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Table 1: MLEs and information criteria for the ball bearing data.

Model d β a b c AIC BIC

KBGW 1.5040 0.0456 15.9411 0.1972 12.7943 223.9 229.6

BW 1.5254 0.0435 3.3335 0.2032 0 233.7 238.3

Weibull 2.1018 0.0122 1 1 0 231.3 233.6

α β - - -

BS 0.5391 62.9794 - - - 230.2 232.5

bound on cycles (or time) to fail at zero, the distributional shape is typical of reliability

data.

Firstly, in order to estimate the model parameters, we consider the MLE method

discussed in Section 9. We take initial estimates of d and β as those obtained by fitting

the Weibull distribution. All computations were performed using the statistical software

R. Table 1 lists the MLEs of the parameters and the values of the following statistics:

AIC and BIC as discussed before. The results indicate that the KBGW model has the

smallest values for these statistics among all fitted models. So, it could be chosen as the

most suitable model.

A comparison of the proposed distribution with some of its sub-models using LR

statistics is shown in Table 2. The p-values indicate that the proposed model yields the

best fit to the data set. In order to assess if the model is appropriate, we plot in Figure 3

the histogram of the data and the fitted KBGW, BW, Weibull and BS pdfs. We conclude

that the KBGW distribution is a suitable model for the data.
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Figure 3: Fitted KBGW, BW, Weibull and BS pdfs for the ball bearing data.
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Table 2: LR statistics for the ball bearing data.

Model Hypotheses Statistic w p-value

KBGW vs BW H0 : c = 0 vs H1 : H0 is false 11.85 0.00057

KBGW vs Weibull H0 : a = b = 1 and c = 0 vs H1 : H0 is false 13.45 0.00375

Secondly, we apply formal goodness-of-fit tests in order to verify which distribution

gives the best fit to the data. We consider the Cramér-Von Mises (W ∗) and Anderson-

Darling (A∗) statistics. In general, the smaller the values of the statistics, W ∗ and

A∗, the better the fit to the data. Let H(x;θ ) denote a cdf, where the form of H

is known but θ (a k-dimensional parameter vector, say) is unknown. To obtain the

statistics, W ∗ and A∗, we proceed as follows: (i) compute νi = H(xi; θ̂ ), where the

xi’s are in ascending order, yi = Φ−1(·) is the standard normal quantile function and

ui =Φ{(yi−y)/sy}, where y= n−1 ∑
n
i=1 yi and s2

y = (n−1)−1 ∑
n
i=1(yi−y)2; (ii) calculate

W 2 = ∑
n
i=1{ui − (2i− 1)/(2n)}2 + 1/(12n) and A2 = −n− n−1 ∑

n
i=1{(2i− 1) log(ui)+

(2n+ 1− 2i) log(1− ui)} and (iii) modify W 2 into W ∗ = W 2(1+ 0.5/n) and A∗ into

A∗ = A2(1+ 0.75/n+ 2.25/n2). For further details, the reader is referred to Chen and

Balakrishnan (1995). The values of the statistics, W ∗ and A∗, for all fitted models are

given in Table 3. Thus, according to these formal tests, the KBGW model fits the data

better than other models. These results illustrate the flexibility of the KBGW distribution

and the necessity for the additional shape parameters.

Table 3: Goodness-of-fit tests for the ball bearing data.

Model Statistic

W ∗ A∗

KBGW 0.00507 0.19916

BW 0.20587 0.57785

Weibull 0.13587 0.34791

BS 0.02298 0.34791

11. Conclusions

Following the idea of the class of beta generalized distributions and the distribution due

to Ng and Kotz (1995), we define a new family of Kummer beta generalized (KBG)

distributions to extend several widely known distributions such as the normal, Weibull,

gamma and Gumbel distributions. For each continuous G distribution, we define the

corresponding KBG-G distribution using simple formulae. Some mathematical proper-

ties of the KBG distributions are readily obtained from those of the parent distributions.

The moments of any KBG-G distribution can be expressed explicitly in terms of in-

finite weighted sums of probability weighted moments (PWMs) of the G distribution.
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The same happens for the moments of order statistics of the KBG distributions. We

discuss maximum likelihood estimation and inference on the parameters. We consider

likelihood ratio statistics and goodness-of-fit tests to compare the KBG-G model with

its baseline model. An application to real data shows the feasibility of the proposed class

of models. We hope this generalization may attract wider applications in statistics.
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Appendix: elements of the information matrix

The elements of this matrix for (27) can be worked out as:
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(
−∂ 2ℓ(θ )

∂a2

)
=− n

K
E

[
1

K

(
∂K

∂a

)
− ∂ 2K

∂a2

]
,

E

(
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∂b∂c
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− ∂ 2K

∂c2

]
,

E

(
−∂ 2ℓ(θ )
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)(
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,
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=− n

K
E

[
1
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(
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∂b

)
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]
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E

(
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E
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G(xi;γ)

∂G(xi;γ)

∂γ j
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,

E

(
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∂b∂γ j
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=−

n

∑
i=1

E

[
1

1−G(xi;γ)

∂G(xi;γ)

∂γ j

]
,
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E

(
−∂ 2ℓ(θ )

∂c∂γ j

)
=

n

∑
i=1

E

[
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∂γ j

]
,
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E
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1
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for j = 1, . . . , p, where
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Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. (1953). Higher Transcendental Functions, vol-

ume I. McGraw-Hill Book Company, New York.

Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications. Communication

in Statistics-Theory and Methods, 31, 497-512.

Gordy, M. B. (1998). Computationally convenient distributional assumptions for common-value actions.

Computational Economics, 12, 61-78.

Gradshteyn I. S. and Ryzhik I. M. (2000). Table of Integrals, Series, and Products. Academic Press, San

Diego.



180 The new class of Kummer beta generalized distributions

Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments:

Definition and relation to parameters of several distributions expressible in inverse form. Water Re-

sources Research, 15, 1049-1054.

Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives.

Communications Statistics-Theory and Methods, 27, 887-904.

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull

distributions. Biometrical Journal, 43, 117-130.

Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley and Sons, New York.

Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1987). Extremes and Related Properties of Random Se-

quences and Process. Springer Verlag, New York.

Lieblein J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings.

Journal of Research National Bureau of Standards, 57, 273-316.

Mudholkar, G. S, Srivastava, D. K. and Friemer, M. (1995). The exponential Weibull family: A reanalysis

of the bus-motor failure data. Technometrics, 37, 436-445.

Nadarajah, S. and Gupta, A. K. (2004). The beta Fréchet distribution. Far East Journal of Theoretical
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