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3 3 A Computational Model of 

Avian Song Learning 

KENJI DOYA AND TERRENCE J. SEJNOWSKI 

ABSTRACT Oscine song learning has an auditory phase dur- 
ing which a tutor song is learned and a sensorimotor phase of 
successive improvement that leads to adult song. A theoretical 
framework for song learning is presented based on the hypoth- 
esis that the primary role of the anteriorforebrainpathway of the 
song system is to transform an auditory template to a motor 
program by a form of reinforcement learning. This framework 
was tested by building a network model of the song-learning 
system including a model of the syrinx, the avian vocal organ. 
The model replicated the spectral envelopes of the syllables 
from zebra finch songs after several hundred trials of learning. 
The performance of the model was even better when trained 
on songs generated by another model having the same archi- 
tecture. Experiments are proposed to further test the biological 
plausibility of the hypothesis, which may lead to a more de- 
tailed model of the song-learning system. Other types of sen- 
sorimotor learning based on mimicry could be implemented 
with a similar type of computational model. 

In comparison with our understanding of the prepro- 

grammed central pattern generators found in many inver- 
tebrates and lower vertebrates responsible for complex 

motor behaviors (Cohen, Rossignol, and Grillner, 1988; 
Harris-Wanick et al., 1992; Kristan, 1992), much less is 

known about the representation of motor patterns ac- 
quired through experience in humans and other verte- 

brates, such as walking, riding a bicycle, or talking. Singing 
in oscine birds is a favorable system for studying the acqui- 

sition of complex motor patterns. Much is known about 
the ethology of birdsong learning and the influence of 

early auditory learning (Marler, 1963; Konishi, 1965; Mar- 
ler, 1991; Catchpole and Slater, 1995). The major brain nu- 

clei involved in song control and learning have been 
identified, as schematically shown in figure 33.1 (Notte- 

bohm, Stokes, and Leonard, 1976; Bottjer et al., 1989). 
New data are accumulating from lesion and recording ex- 
periments on these nuclei (for reviews, see Konishi, 1985; 
Doupe, 1993; Margoliash, 1997; Bottjer and Arnold, 1997). 
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The primary goal of this chapter is to present a theo- 
retical framework and a working model for song learn- 

ing based on recent experimental findings. Specifically, 
we focus on the function of the anteriorforebrain pathway, 

which is not involved in song production in adult birds, 

but is necessary for song learning in young birds (Bott- 
jer, Miesner, and Arnold, 1984). Our main hypothesis is 
that the anterior forebrain pathway works as a reinforce- 

ment learning system that is similar to the adaptive critic 

architecture proposed by Barto, Sutton, and Anderson 
(1983). 

The song template is a key concept in birdsong learn- 
ing. A young male bird listens to a tutor song during the 

critical period and memorizes a template of the song; 
later, the bird learns to sing the stored song by compar- 

ing its own vocalization to the song template using audi- 
tory feedback (Konishi, 1965). However, it is still an 
open question how the song is encoded and where in 
the bird's brain the song template is stored. Recent ex- 

periments in zebra finch suggest that the song control 

system has a hierarchical organization: HVc, the high 
vocal center, is involved in producing a sequence of syl- 

lables, whereas its downstream nucleus RA is responsi- 
ble for the subsyllabic components (Vu, Mazurek, and 

Kuo, 1994; Yu and Margoliash, 1996). 
If we assume that a song is learned in such a hierarchi- - 

cal fashion, the problem of song learning can be decom- 

posed into the following three subproblems: 

1. Sensory encoding: How to encode the acoustic fea- 
tures of syllables in such a way that they are reliably rec- 

ognized. 
2. Sequential memory: How to organize the network so 

that syllable sequences are stably memorized and repro- 
duced. 

3. Motor decoding: How to find the motor command 

patterns needed to replicate the acoustic features of each 
syllable. 

Existing experimental evidence does not provide 
straightforward solutions to these problems. A compu- 
tational approach could help in exploring the biologi- 
cal solutions and, in particular, in providing functional 
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FIGURE 33.1 Schematic diagram of the major songbird brain 
nuclei involved in song control. The thinner arrows show the 
direct motor control pathway, and the thicker arrows show the 
anterior forebrain pathway. Abbreviations: Uva, nucleus uvae- 
formis of thalamus; NIf, nucleus interface of neostriatum; L, 
field L of forebrain; HVc, high vocal center (formerly called hy- 
perstriatum ventrale, pars caudale); RA, robust nucleus of arch- 
istriatum; DM, dorsomedial part of nucleus intercollicularis; 
nXIIts, tracheosyringeal part of hypoglossal nucleus; AVT, ven- 
tral area of Tsai of midbrain; X, area X of lobus parolfactorius; 
DLM, medial part of dorsolateral nucleus of thalamus; LMAN, 
lateral magnocellular nucleus of anterior neostriatum. 

constraints on the organization of the learning system. 
For example, theories of unsupervised learning (von 
der Malsburg, 1973; Amari, 1977; Linsker, 1986; Bell 
and Sejnowski, 1995) suggest several possible solutions 

to sensory encoding problems. Studies of associative 

memory networks (Fukushima, 1973; Sompolinsky and 
Kanter, 1986; Dehaene, Changeux, and Nadal, 1987; 

Amari, 1988; Morita, 1996) provide constraints on rep- 

resentation and architectures that enable stable storage 
of temporal sequences. There have been extensive 
studies on the "inverse problem" of finding the control 
input for a nonlinear system to realize a given target 

output (Miller, Sutton, and Werbos, 1990; Gullapalli, 

1995). 

In this chapter, we propose a working hypothesis for 
the functions subserved by song-related brain nuclei in 

songbirds (figure 33.1), with an emphasis on the role of 
anterior forebrain pathway in solving the motor decod- 

ing problem. 
Figure 33.2 illustrates various schemes for solving 

inverse problems using neural networks. In the first 
scheme (figure 33.2a), the desired output is con- 

verted to a desired motor command by an inverse 
model of the motor system that enables replication 

of the desired output in one shot. Although attrac- 
tive as a model of vocal learning in other species like 

humans, this is not an appropriate model for vocal 

learning in songbirds because they require many rep- 
etitions of singing trials with auditory feedback. An- 
other possible scheme is error correction learning 
(figure 33.213) that uses a linear approximation of the 
inverse model to convert motor output error into the 
motor command error for incremental learning of 
the control network. The problem is that the learn- 

ing schemes proposed to date either use a biologi- 
cally implausible algorithm (Jordan and Rumelhart, 

1992) or assume the preexistence of an approximate 

inverse model (Kawato, Furukawa, and Suzuki, 1987; 
Kawato, 1990). Furthermore, in order to calculate 
the error in the acoustic output, a replica of the tar- 

get output, or the tutor song, has to be available. 
The third scheme (figure 33.2~) is based on the para- 

digm of reinforcement learning (Sutton and Barto, 

1998). It does not use an inverse model and uses a critic 
that evaluates the motor output by comparing the 

present vocal output with the tutor song. Learning is 
based on the correlation between stochastic changes in 
the motor command and the increase or decrease in the 

evaluation (Barto, Sutton, and Anderson, 1983; Gulla- 
palli, 1995). There is no need to maintain a replica of the 

tutor song. Activation levels of auditory neurons that 
have selective tuning to the tutor song can be used as the 

evaluation signal. 

Among these alternatives, we argue that the reinforce- 
ment learning scheme (figure 33.2~)  is the most likely 
for birdsong learning. We will further propose a hypoth- 

esis about how this reinforcement learning scheme can 
be implemented in the known circuitry of the song con- 

trol system with the constraints given by anatomy, phys- 

iology, and the results of lesion studies. We then 
describe a neural network model that replicates song 

learning behavior based on these constraints. Experi- 
mental tests of the model and limitations are addressed 
in the "Discussion." 

Earlier versions of this model have appeared else- 

where (Doya and Sejnowski, 1994, 1995). - 

Model of the song control system 

ANATOMY OF THE SONG CONTROL SYSTEM The 

principal brain nuclei involved in song learning are 
shown in figure 33.1 (Nottebohm, Stokes, and Leonard, 
1976; Bottjer et al., 1989). There are two major path- 

ways: the direct motor pathway and the indirect, 
anterior forebrain pathway. The direct pathway is 

composed of Uva, NIf, HVc, RA, DM, and nXIIts. Le- 
sions to these nuclei immediately disrupt singing, 

although the effects of lesions in Uva and NIf are vari- 
able (Nottebohm, Stokes, and Leonard, 1976; Mc- 
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FIGURE 33.2 Different schemes for solving sensorimotor in- 
verse problems. (a) One-shot learning by an inverse model of 
the motor system. (b) Error correction learning by an approxi- 

Casland, 1987; Williams and Vicario, 1993; Vu, Kuo, 

and Chance, 1995). In a recent microstimulation exper- 
iment on singing birds, stimulation of HVc produced 
disruption of the sequence of syllables, whereas stimu- 
lation of RA only disrupted the pattern of individual 

syllables (Vu, Mazurek, and Kuo, 1994). Furthermore, 

recent study of extracellular recording from singing 
birds revealed that the activity patterns in HVc are 

uniquely associated with syllable identity, while pre- 
cisely timed burst activities in RA are uniquely associ- 
ated with subsyllabic components (A. C. Yu and 
Margoliash, 1996). These data suggest that HVc is a 

candidate site for representing sequences of syllables 

and that RA is a possible site where the motor patterns 

for each syllable are stored. 

The indirect pathway consists of area X, DLM, and 
LMAN, forming a bypass from HVc to RA. This path- 
way is not directly involved in song production because 

lesions in this pathway in adult birds do not impair their 
"crystallized" songs (Nottebohm, Stokes, and Leonard, 
1976). However, if a lesion is made at any point along 

the indirect pathway in young birds before the end of 

vocal learning, their songs become highly abnormal 
(Bottjer, Miesner, and Arnold, 1984; Sohrabji, Nordeen, 

and Nordeen, 1990; Scharff and Nottebohm, 1991). 

There have been a variety of hypotheses for the function 
of this pathway: comparison of sensory and motor rep- 
resentations of song (Williams, 1989), reinforcement of 

syllable specific activation patterns within RA (Bottjer et 
al., 1989), processing of auditory feedback and modula- 

tion of plasticity (Scharff and Nottebohm, 1991), a mea- 

sure of how well a vocalization matches a particular 
auditory template (Doupe and Konishi, 1991), and selec- 
tive reinforcement of synaptic connections from HVc to 

RA (Mooney, 1992). 

mate inverse model. (c) Reinforcement learning by a stochastic 
controller and a critic. 

FUNCTIONS FOR COMPONENTS OF THE SONG CONTROL 
SYSTEM We propose a functional model of the song 

control system based on the following experimental evi- 
dence: 

1. Sequences of syllables are produced at the level of 

HVc (Vu, Mazurek, and Kuo, 1994; A. C. Yu and Mar- 
goliash, 1996). 

2. RA is a myotopically organized (Vicario, 1991b). 
3. Both the direct and indirect pathways linking HVc 

and RA are unidirectional (Bottjer et al., 1989). 

These facts imply the following constraints on the local- 

ization of the computational processes suggested in the 
preceding list: 

1. The representation of syllables suitable for auditory 

recognition and sequential memory is constructed in the 
ascending auditory pathway up to the level of HVc. 

2. The memory and production of syllable sequences 
are performed within HVc. 

3. The syllable representation in HVc needs to be 

transformed into muscle-oriented representation in 

RA. 

Figure 33.3 illustrates our current working hypothesis 

about the functions of song-related nuclei. The ascend- 
ing auditory pathway from the cochlea through the audi- 
tory thalamus and the forebrain auditory nucleus field L 
to HVc performs hierarchical processing of auditory in- 

put, leading to some internal representation of syllables 

that is useful for recognition and memory. On one hand, 
it is known that field L has a tonotopical organization 

(Bonke, Scheich, and Langner, 1979) and that the neu- 
rons respond to pure tone or band-limited noises (Mar- 
goliash, 1986). On the other hand, no tonotopical 

organization is found in HVc, whose neurons have more 
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FIGURE 33.3 Schematic diagram indicating the proposed 
functions for each of the major nuclei of the song system. The 
direct pathway is shown at the top, starting with auditory input 
into field L. The anterior forebrain pathway starts at HVc and 

selective response properties to complex acoustic fea- 

tures, such as frequency modulation, combination of 
harmonics, sequence of notes, and sequence of syllables 
(Margoliash, 1983; Margoliash and Fortune, 1992; 

Lewicki and Konishi, 1995; Lewicki, 1996). Many cells 
are strongly tuned to the bird's own song (Margoliash, 
1986). It has recently been found that the auditory re- 

sponses of HVc neurons to different syllables have dis- 
tributed and overlapping spatial patterns (Sutter and 

Margoliash, 1994), but the functional implication of such 

a representation remains to be studied. 
HVc is regarded as the main center for memory and 

generation of syllable sequence (Vu, Mazurek, and Kuo, 
1994; A. C. Yu and Margoliash, 1996). Sequence pro- 
duction in HVc is probably controlled by timing cues 

from NIf and Uva (McCasland, 1987; Williams and Vi- 
cario, 1993). Neurons in HVc show both auditory and 

motor responses (McCasland and Konishi, 1981; Mc- 
Casland, 1987), but neither tonotopical or myotopical 

organization is seen in HVc. Nor has any simple correla- 
tion been reported between the auditory and motor re- 

sponses for the same syllable (McCasland and Konishi, 
1981; McCasland, 1987; C.-H. Yu and Margoliash, 

1993). There appears to be a drastic change in the oper- 
ation of HVc during singing: The spontaneous activity 

increases (C.-H. Yu and Margoliash, 1993; A. C. Yu and 

Margoliash, 1996), and the auditory response is sup- 

pressed for a few seconds afterward (McCasland and 
Konishi, 1981). 

RA has topographic connection to nXIIts, which 

topographically projects to the muscles in the syrinx (Vi- 
cario, 1988; Vicario, 1991b). The dorsal part of RA 
projects to DM, which projects to the respiratory control 
system. Since no myotopical organization is apparent in 

HVc, the syllable representation in HVc would have to 
be transformed into a more muscle-oriented representa- 
tion in the connection from HVc to RA. The anterior 

makes a side loop to RA through area X and LMAN. The bul- 
lets in each balloon give the proposed function of the corre- 
sponding nucleus. See text for more details. 

forebrain pathway forms a side path to this motor de- 

coding pathway. Lesions in area X or LMAN in adults 

do not affect crystzllized songs, but disrupt song learning 
in young birds (Bottjer, Miesner, and Arnold, 1984; So- 

hrabji, Nordeen, and Nordeen, 1990; Scharff and Notte- 
bohm, 1991). Neurons in area X, DLM, and LMAN 
have highly selective response to the bird's own song in 

adult birds (Doupe and Konishi, 1991), but some of 
them are selective to the tutor song in young birds (Solis 

and Doupe, 1995). Synaptic connections from LMAN to 

RA are formed prior to those from HVc (Konishi and 
Akutagawa, 1985) and are mediated mainly by NMDA- 
type glutamate receptors (Kubota and Saito, 1991; 

Mooney and Konishi, 1991), which are involved in de- 
velopment and learning in the mammalian central ner- 

vous system (Malenka and Nicoll, 1993; Fox and Zahs, 
1994). These facts suggest that the function of the ante- 

rior forebrain pathway is to set up appropriate synaptic 
connections from HVc to RA that lead to a better match 

between the bird's own vocalization and the song tem- 

plate (Bottjer et al., 1989; Mooney, 1992; Doupe and 
Konishi, 1991; Doupe, 1993). 

Based on these previous suggestions, we hypothesize 

that the anterior forebrain pathway functions to be a spe- 

cific reinforcement learning system called an adaptive 

mitic, as shown in figure 33.4 (Barto, Sutton, and Ander- 
son, 1983). In a reinforcement learning paradigm, a sto- 

chastic perturbation is given to the motor commands, 
and if it results in better performance, the perturbed mo- 

tor command is reinforced; that is, the perturbation is 
made permanent. In order for this learning scheme to 

work efficiently, it is necessary that the positive and nega- 
tive reinforcement be balanced. An important role of the 

critic is to evaluate the present performance relative to 
the recent average performance, a method known as rein- 
forcement comparison (Sutton and Barto, 1998). In the con- 

text of syllable vocalization learning, we propose that 
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FIGURE 33.4 A block diagram showing the actor-critic archi- 
tecture for a feedback control task (Barto, Sutton, and Ander- 
son, 1983). The direct control pathway is the closed loop 
between the actor and the environment. The control policy is 
learned through interaction with the critic, which evaluates the 
sensory feedback caused by the action of the actor. A scalar re- 
inforcement signal generated by the critic is used by the actor to 
modify its future action. The critic receives information used for 
the evaluation from a primary reinforcer. In the birdsong litera- 
ture, the term "template" is used for the information used by the 
critic to perform the evaluation. 

LMAN provides stochastic perturbation to the HVc-to- 
RA connection and that area X evaluates how well the 

resulting syllable matches the template. The raw similar- 
ity index is compared to the recent average similarity in- 

dex for the syllable, and the relative evaluation signal 
then determines whether the temporary change in the 

HVc-to-RA connection is made permanent or not. In this 
scheme, the evaluation and perturbation modules are on 
a side path to the main motor control pathway and are 
not necessary for control when learning is completed. 

Several lines of evidence support this hypothesis. Le- 
sions in area X and LMAN in young birds result in con- 

trasting deficits (Scharff and Nottebohm, 1991). Early 
area X lesion results in unstable singing in the adulthood 

when songs are normally crystallized. This effect is simi- 
lar to that of early deafening. Early lesion in LMAN re- 

sults in stable but poorly structured song with fewer 
syllables than normal. These observations are nicely ex- 

plained if we assume that area X serves as the critic, 

which provides evaluation of vocalization based on au- 
ditory feedback, and that LMAN modulates the connec- 

tion strengths from HVc to RA and provides a random 
element to the controller. 

The hypothesis that area X functions as a critic is sup- 
ported by the fact that it receives dopaminergic input 

from a midbrain nucleus AVT, the avian homologue of - 
mammalian ventral tegmental area (Lewis et al., 1981; 
Casto and Ball, 1994). Activity of the dopamine system 

is related to reward in many species (Schultz, Apicella, 
and Ljungberg, 1993). During auditory learning, this 
dopaminergic input can be used for selection of auditory 

input that is to be memorized as song template. It has 

been shown that a young bird does not indiscriminately 

memorize all of its auditory experience as its song tem- 
plate. When a young zebra finch is caged with several 
adult birds, it selects most of its song syllables from the 
adult that had most frequent interaction with the bird, 
especially feeding interactions (Williams, 1990). We pos- 
tulate that this selection of auditory input that is to be 

memorized as song template happens in area X by asso- 
ciation of auditory input from HVc and reward input 

from AVT. In other words, whereas the auditory tuning 
of HVc cells should simply reflect auditory experience, 

responses of area X cells are tuned to the specific songs 
to be learned. Although the majority of neurons in both 

HVc and area X in young birds are tuned to the bird's 

own developing song rather than to the tutor song (Vol- 
man, 1993; Doupe, 1993), some of the neurons in area X 
have preferred tuning to the tutor song (Solis and 
Doupe, 1995). During the sensorimotor learning phase, 
the activation level of those neurons could be used to 

evaluate the match between the vocalization of the bird 
and that of the tutor. Furthermore, if the function of area 

X is not simply to detect a match to the stored template 
but also to provide "relative" evaluation based on recent 

level of performance, then there should be many cells 

that are tuned more to the bird's current song than to 

the tutor song. 
As mentioned earlier, synaptic input from LMAN to 

RA is predominantly mediated by NMDA-type gluta- 
mate receptors, whereas input from HVc to RA is main- 

ly mediated by non-NMDA-type receptors (Kubota and 
Saito, 1991; Mooney and Konishi, 1991). The NMDA- 

type input from LMAN may enable both short-term and 
long-term changes in the HVc-to-RA synaptic efficacy 

during sensorimotor learning. It has been observed in 
slice preparations that simultaneous stimulation of both 

HVc and fibers originating in LMAN results in a re- 

sponse larger than the linear summation of individual 
responses (Mooney, 1992), consistent with some nonlin- 
ear interaction between these two inputs. For example, 

when there is a tonic NMDA-type input, the postsynap- 
tic response to the same non-NMDA-type input is am- 

plified, which effectively modulates the synaptic 

conductance of the non-NMDA inputs (Thomson and 
Deuchars, 1994). Although long-term changes of synap- 
tic strengths have not yet been found in RA, activation 
of NMDA-type receptors triggers plastic synaptic 

change in many other central nervous systems (Malenka 

and Nicoll, 1993). 

Computer simulations of vocalization learning 

We focus on only one of the three computational prob- 
lems in song learning, namely that of finding the mo- 

tor commands needed to produce a desired auditory 
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FIGURE 33.5 The model of the syrinx used in the song learn- 
ing model. The sound output was controlled by four input va- 
iables: A, gain of the amplifier; F, fundamental frequency of the 
sound source; P, peak frequency; and 4 sharpness of the band- 
pass filter. In addition to these parameters, the output was gov- 
erned by units with a range of temporal responses (see figure 
33.6). 

impression. The question we asked is whether the rein- 

forcement learning scheme that we have outlined can 
be implemented within the known biological con- 
straints and whether such a system can perform sen- 

sorimotor learning within a realistic number of trials. 
We required the model to produce sound that could be 
compared to real birdsong. 

The outline of the simulation system is as follows. We 
built a simple model of the syrinx, the avian vocal or- 

gan, and then constructed a neural network model of 

RA and HVc that sends a series of motor commands to 
the syrinx model. We implemented the adaptive critic 
learning system by assigning the stochastic perturbation 

to LMAN and the syllable evaluation to area X. Since it 
was beyond the scope of the present investigation to 
model the detailed mechanisms of auditory encoding - 
and sequential memory, we used simplified spectro- 
graphic template matching for syllable templates and 

unary encoding of syllables in HVc, which are not nec- 
essarily biologically realistic. 

SYRINX: SOUND SYNTHESIZER In order to test the per- 
formance of the model of the vocal control system, we de- 
signed a computer program that mimics the function of 

the syrinx, the avian vocal organ located near the junc- 

tion of the trachea and the bronchi (Brackenbury, 1982; 

Vicario, 1991a). The sound source for the syrinx is the os- 
cillation of a pair of tympaniform membranes on the me- 

dial side of the bronchi. Depending on the tension of the 
membrane and the airflow around it, which are con- 
trolled by the activity of six pairs of syringeal muscles, the 

syrinx can produce pure tones, harmonic sounds, and 

nonharmonic sounds with complex frequency modula- 
tion (Casey and Gaunt, 1985). Activation of the dorsal sy- 
ringeal muscles coincides with the air flow in the 

bronchus, and activation of the ventral syringeal muscles 
correlates well with the fundamental oscillation fre- 

quency of the sound (Goller and Suthers, 1995). The 

spectral profile of the sound is also affected by the reso- 

nance property of the vocal tract (Nowicki, 1987). 
A simple model of the syrinx, shown in figure 33.5, 

consisted of a variable-frequency sound source, a band- 
pass filter, and an amplifier. A triangular wave form was 
used for the sound source because it includes all the inte- 
ger harmonic components. The output of this sound 

synthesizer was controlled by the following four vari- 

ables: the fundamental frequency of the harmonic sound 
source F, the peak frequency P, the sharpness S of the 
band-pass filter, and the gain of the amplifier A. The 

output sound waveform x(t) was calculated from the 
time course of the variables (A(t),J(t),qt),S(t)), which had 

values between zero and one: 

4(t> = fO + O/; -fO>m 
z(t) = [$(t)modl] x 2 - 1 

w(t> = Wfi + (f3 -fi)P(t)l 

Mt) = CL0+(CL1-CLo)S(t) 

44 = w(t)[z(t) - ~ ( 0 1 -  p ( t )  

i(t) = pu(t) - w(t)v(t) 

x( t) = A( t) u( t) 

where $(t) and dt) are the phase and the output of the 

harmonic oscillator, and w(t) and p(t) are the angular fre- 

quency and damping factor of the band-pass filter, re- 

spectively. The values of the parameters were fo = 

0.4 kHz, fi = 1.2 kHz, & = 2 kHz, f3 = 8 kHz, po = 

1.0 ms-l, and pl = 0.1 ms-l. The system was numeri- 
cally integrated by the Euler method using a time step of 

ms. The model could produce "birdlike" chirps and 
warbles with the time courses of the input variables cho- 

sen appropriately (figure 33.9). 

RA: SYLLABLE PATTERN GENERATOR RA is capa- 

ble of producing a variety of temporal responses in 
order to produce command outputs for syllables with 

various spectral features. Several constraints are avail- 

able from experimental studies. First, RA has a myo- 
topical organization (Vicario, 1991b). Second, in slice 

preparations, HVc input to RA evokes fast non-NMDA- 

type, slower NMDA-type, and delayed polysynaptic 
inhibitory responses (Mooney, 1992). Third, neu- 

rotransmitters mediated by second-messenger systems 
such as norepinephrine and GABAB agonists also have 
effects on neurons in RA on slower time scales (Perkel, 

1994). Although the details of the local circuits in RA 
are not yet known, the observed cellular and synaptic 
time courses could produce the complex temporal re- 
sponses needed to produce syllables in response to com- 
mand inputs from HVc. 

To mimic myotopical organization, the model of RA 
had four subnetworks, each of which could exert control 
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FIGURE 33.6 Model of the direct motor pathway. Syllables 
were unary coded in HVc, and their sequential activation trig- 
gered syllable pattern generation networks in RA. The RA units 
were divided into four groups corresponding to the four motor 
command variables (A, P, 4. Within each group, there were k 
exponential temporal kernels with different time constants. The 
sum of their response profiles served as the motor command for 
the syrinx model. 

on one of the four output motor command variables (A, 
F, P, S). Within each subnetwork, there were k= 5 "tem- 
poral response kernels," where each unit had a different 

time course, as shown in figure 33.6. The temporal re- 

sponse of an RA unit $t) to the input from HVc sit) ( i= 
1, . . . , n) was 

where pjt) is the input sum, ${t) is delayed inhibition or 

adaptation, and ~j is the time constant of the jth unit. 
The motor command output was synthesized from a 
combination of these responses: 

where index C denotes one of the command variables 
(A, F, P, S), f is a sigrnoid function f (x) = 1/[1 + exp 

(-441, and b is the bias. The time constants of the k = 

5 kernels were 71 = .o [(i.e., rj(t) = pj(t)], 72 = 80, 73 = 

40, 24 = 20, and 71 = 10 (ms). In order to assure clear 
syllable onset and offset, the bias for the sound ampli- 
tude was bA = -1, and the weight for the first kernel was 
initially set as wf2. = 1. Other biases and initial weights 
were set to zero. The weights wji were initialized at the 

beginning of learning to random values generated with 
a Gaussian distribution having a standard deviation of 

0.1. The reinforcement learning algorithm given in the 
next subsection incrementally changed the weights cor- 
responding to each syllable. 

HVC: SEQUENCE GENERATOR In recordings from 
HVc in awake birds, some neurons became activated 

preceding specific syllables (McCasland, 1987; A. C. Yu 
and Margoliash, 1996). A simple syllable coding was 

adopted in which all the neurons that become active for 
the ith syllable were aggregated as the state of a single 

"unit," sk The onset and offset of each syllable in a tutor 
song was detected by thresholding the sound amplitude 
and storing the interval in an event table. During the 

course of a song, each syllable coding unit si, was turned 
on (si = 1) and off (si = 0) at the stored onset and offset 
time. This "unary encoding" scheme is oversimplified, 

and there is evidence that the motor encoding of sylla- 
bles has overlaps, so that a single HVc unit would be ac- 

tive during more than one syllable (A. C. Yu and 
Margoliash, 1996), as in the case of auditory encoding 
(Sutter and Margoliash, 1994). A distributed encoding 

could have been used to model HVc, but this was not 
included in the present model for simplicity. 

LMAN: STOCHASTIC GRADIENT ASCENT The vo- 

cal output is determined by the connection weight ma- 
F P S  trix W = {$, wji, wji, wji} based on the preceding 

models of HVc, RA, and the syrinx. The goal of mo- 
tor learning then is to find a point in this 4kn-dimen- 

sional weight space that produces a vocalization that 
maximizes the evaluation of the template-matching 
measure. In the reinforcement learning algorithm used 

here, this goal was accomplished by a stochastic meth- 

od for optimizing the evaluation function. 
In the first step of the learning algorithm, the output mo- 

tor command from RA was stochastically perturbed by 
temporarily changing the input connection strengths from 
HVc. Such perturbations in the output of RA units could 

be produced by the modulation of the HVc-to-RA connec- 
tion weights by NMDA-type synaptic input from LMAN. 

The perturbation of the weights was implemented as a 
static weight change Fwi during each song trial. This pro- 

duces a perturbation in the RA: 
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The second step was to evaluate this perturbed song 
by comparing it with the song template. By the proce- 
dure mentioned in the next section (on area X), a sylla- 
ble-specific value ^r, the "effective" reinforcement, was 
derived. Finally, the weights were permanently changed 
based on correlations among the inputs, outputs, and the 
evaluation (Barto and Jordan, 1987; Barto, 1995): 

With the unary encoding scheme of HVc adopted here, 

this expression reduces to 

since only one syllable unit i is active (si = 1). In other 

words, the temporary synaptic modulation 6wji ppe~sists 
as a plastic change A wji if the effective evaluation is pos- 

itive, which is a kind of "weight perturbation" optimiza- 

tion algorithm (Alspector et al., 1993; Unnikrishnan and 
Venugopal, 1994). 

A refinement of this basic reinforcement algorithm 

was used that improved the convergence of the learning. 
For each trial T, the temporary weight perturbation 
6wjAT) was the sum of the evaluation gradient estimate 

GjAT) defined subsequently and a random perturbation 

of size q: 

The network with perturbed weights wji(T) + G7At)  

was used to produce a vocal output, and its evaluation 
h ~ )  was given by the model of area X described in the 

next subsection. The weights were then permanently 
changed only if the trial was successful: 

The estimate of gradient in the weight space GjAT) was 

updated by the sum of the perturbations 6 7 A T )  multi- 
plied by the effective evaluation: 

where the constant 0 < a < 1 controls the influence of 

the new trial on the running average over trials. A geo- 
metrical interpretation of this learning algorithm is illus- 

trated in figure 33.7. The weighted running average of 
the weight change is like the "momentum" that is com- 

monly used in other neural network learning algorithms 
(Rumelhart, Hinton, and Williams, 1986). We used a = 

0.2 and q = 0.02 in all the simulations reported here. 

AREA X: EVALUATION BY SPECTROGRAPHIC EMPLATE 
MATCHING The activation levels of the neurons selec- 

tive for the tutor song that have been observed in area X 

FIGURE 33.7 Estimate of evaluation gradient Gfrom weighted 
summation of perturbation vectors. The vertical axis is the eval- 
uation F, and each point in the Wplane represents a choice for 
two of the weights (there were many more in the actual model). 
The gradient G (central arrow) gives the running average of the 
evaluation function over the recent history of stochastically cho- 
sen weights, represented by the thin vectors from the central 
thick arrow. 

(Solis and Doupe, 1995) could represent the similarity of 
the recently produced syllable to the corresponding tutor 

syllable (Doupe and Konishi, 1991). The evaluation of 
each syllable was assumed to be available separately, and 

a simple spectrographic template-matching method was 
used for evaluating its similarity to the tutor syllable, as 

follows. 
First, the sound waveform from the bird was trans- 

formed into a spectrogram, which had 80 frequency 
channels in steps of 100 Hz, sampled every 1 ms. The on- 

set and offset of the syllable were detected by appropri- 
ately setting a threshold for the sound amplitude. The 
spectrographic pattern of each syllable was down-sam- 
pled with a Gaussian filter having 40 frequency bins and 

20 temporal bins, to accommodate slight variations in 

both frequency and time domains. The resulting 800-di- 

mensional vector was normalized and then stored as the 

template vector for each syllable. A sample vector for a 

synthesized syllable was made in the same way. The cor- 

relation 0 I r I 1 between the template and sample vector 
was used as the raw evaluation score. 

We further assumed that area X functions as an "adap- 
tive" critic that provides the evaluation in a form relative 

to currently expected level of performance. The running 

average r of the evaluation r was updated at each time 

step: 

;(T+ 1 )  = p r ( T ) + ( l - p ) i ( ~ )  

where 0 < p < 1 is the smoothing constant for the aver- 
?. 

aging. The "effective evaluation" r that was used for 

learning in LMAN was given by 

The squashing function tanh was used to regulate the 

learning process. We used P = 0.1 and y = 0.1 in all 
simulations. 



ZEBRA FINCH SONG SAMPLES Songs of male adult ze- 

bra finches were recorded and digitized at 12 bits and 
with a 32-kHz sampling rate by Michael Lewicki at the 
California Institute of Technology. 

Computer simulation was performed on Sparc Station 
10 (Sun Micro Systems) with an audio interface to facili- 
tate evaluation of songs by human ears. The simulation 

system was programmed in the C language and took ap- 
proximately 30 minutes to simulate 500 learning trials. 
The results reported in the next subsection were con- 

firmed in at least five simulation runs using different ran- 

dom seeds for the stochastic learning. 

LEARNING A ZEBRA FINCH SONG Figure 33.8 shows 

an example of how the song learning simulator per- 
formed. The spectrogram of a song motif of a zebra 

finch is displayed in the top row. Ten syllables in the mo- 
tif were identified (shown in boxes), and their spectro- 

graphic patterns were stored as syllable templates. Ten 

syllable-coding HVc units were alt ern ately turned on 
and off at the syllable onset and offset times of the origi- 
nal song motif (upper middle panel). RA units in the 
model were driven by the HVc output through the syn- 
aptic connection strengths wj+ For each of the four mo- 
tor command variables (A, 4 P, S), there were five units 
with different time constants (middle panel). The sum of 

the different temporal response profiles determines the 
time course of the motor command output (lower mid- 
dle panel), which was sent to the syrinx model. The 

waveform of the synthesized song was then converted 
into a spectrogram (bottom panel). The spectrographic 

patterns of syllables (marked by boxes) were sampled 

and compared to the templates, yielding an evaluation r 
for each syllable that was then used for changing the 

weights wj+ 

Initially, the connection weights wji were set to small 
random values, so the syllables did not resemble the orig- 
inal song. After about 500 trials, the average correlation 

200 400 he.? BQCi l C 2 3  
r i m :  

FIGURE 33.8 Input and outputs of the song learning model. HVc units. (middle panel) Responses of the units in RA. (lower 
(top   an el) Spectrogram of the tutor song motif, which consisted middle   an el) Four motor command variables. (bottom   an el) 
of five syllables. (upper middle panel) Activation pattern of Spectrogram of the synthesized song produced by the network. 
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FIGURE 33.9 Sonograms. (A) The original zebra finch song 
motif. (B) A song produced by the model after 500 trials using 

between the original and synthesized syllables reached 
about 0.8 (figure 33.10). The final synthesized song motif 

sounded more similar to the tutor song than the random 
initial song. As shown in the spectrograms (figure 33.9), 

the overall frequency profiles of the syllables were simi- 
lar, although the detailed features in the spectrogram, 

such as harmonic structures and frequency modulation 
patterns, were not accurately reproduced. 

the zebra finch song A as the template. (C) A song produced af- 

ter 500 trials using the model song B as the template. 

LEARNING A SYNTHESIZED SONG There are two possi- 

ble reasons for the imperfect replication of the zebra 
I 

finch song syllables. One is that our model of the syrinx 
and the motor control network were much more primi- 

tive than those of a real zebra finch, and therefore pre- 
cise mimicry was impossible. Another is that the 

reinforcement learning procedure converged to a subop- 
timal solution. In order to differentiate these possibilities, 
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FIGURE 33.10 Learning curves for the song learning model. 
Two different learning curves are shown, one using a zebra 
finch song as the tutor (dashed line) and the second using a syn- 
thesized song generated by another model as the tutor (dotted 
line). On each trial, a new set of weight perturbations was cho- 
sen, a song produced, and an evaluation carried out as de- 
scribed in the text. The evaluation shown here is the correlation 
between the syllable and its corresponding template. The 
curves represent the average evaluation of 50 syllables (10 sylla- 
bles per song; 5 simulation runs). 

we tested the performance of the model when the target 
song could be exactly reproduced by taking a set of syl- 

lable templates from a synthesized song motif and train- 
ing another model from a random start. The correlation 
after 500 trials was 0.94 (dotted line in figure 33.10) and 
the song sounded quite similar to the tutor model as 

judged by human ears (see figure 33.9B,C). This result 
implies that the relatively low performance using a real 

zebra finch song as a template was mainly due to the dif- 
ferences between the vocal system of the real bird and 

that of the model. However, even with the synthesized 
song, the reinforcement learning algorithm did not con- 

verge to the optimal solution with a correlation of 1.0. 
Note that imperfect replication of syllables and the re- 

sulting individual variability of songs are also seen in real 

birds. 

Discussion 

The primary question addressed by our model of song 
learning is whether a relatively simple reinforcement 

learning system could converge to a tutor song within 
the number of trials that are available to a real zebra 

finch. The model is based on specific hypotheses for 

how the computational problems could be solved in a 
way that is consistent with the neural responses that 
have been observed in song control nuclei. The simula- 
tions demonstrate that the proposed learning system 
can satisfy these constraints and imitate birdsong. 

Many simplifying assumptions were made in the 
present network model: Syllables were unary coded in 
HVc; the sound synthesizer was much simpler than a 

real syrinx; simple spectrographic template matching 
was used for syllable evaluation. However, it is possible 
to replace these simplified modules with more biologi- 
cally accurate ones as warranted by further experimen- 

tal data. Since the number of learning trials needed to 
reach convergence in the present model was many 
fewer than the number of vocaIizations that occur dur- 

ing real birdsong learning, which have not been counted 
in the zebra finch but number many thousand, there is 

adequate margin for elaboration. 
Additional experiments are needed to test and im- 

prove the model, as outlined in the following subsec- 

tions. 

BLOCKING DA INPUT FROM AVT We have suggested 
that dopaminergic input from AVT to area X could be 

used for selection of a particular auditory input as a song 
template. Lesion or reversible block of the dopaminer- 

gic system in AVT should disrupt memory of tutor sylla- 
bles if this hypothesis is true. Injection of dopaminergic 
agonist or antagonist into area X during tutor song pre- 

sentation should affect selection of songs to be learned. 
If confirmed, this method would provide strong evi- 

dence that the song templates are stored in the anterior 
forebrain pathway. 

-ST OF MODULATION AND PLASTICITY INDUCED BY 

LMAN We assumed that NMDA-type synaptic input 

from LMAN to RA modulated the non-NMDA-type 

synaptic input from HVc to RA. There has been no di- 
rect experimental evidence for plastic changes in RA 

synapses induced by input from LMAN. Further experi- 
ments in slice preparations could reveal when and how 
such plasticity is induced, or could indicate that such 

plasticity is not plausible. Another approach is electric 
stimulation of LMAN in young, singing birds. If altered 

activity in LMAN results in perturbation of ongoing 
song or plastic change in the song after perturbation, 

that would suggest the existence of modulatory or plastic 

mechanisms in vivo. 

SUPPRESSION OF AUDITORY RESPONSE IN HVC DURING 

SINGING In HVc neurons that have both auditory and 

motor responses, the auditory responses are suppressed 
during and soon after the bird is singing (McCasland 
and Konishi, 1981; McCasland, 1987). If the suppres- 

sion is complete and occurs in young birds, we would 
have to reconsider the use of auditory feedback in the 
model. One possibility is that the suppression is due to 
the same mechanisms that induce hyperpolarization in 
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HVc neurons with the auditory stimulus of the bird's 

own song (Lewicki, 1996). This may help in narrowing 
the auditory selectivity of the HVc neurons. 

DELAY IN AUDITORY FEEDBACK We assumed that 
each vocalized syllable was evaluated separately, but 
this approach may not be possible if there is significant 
overlap in the motor and auditory responses to adjacent 

syllables. The auditory response latency is about 30 ms 
in HVc and 50 ms in LMAN in anesthetized birds (Will- 

iams, 1989). If the latency is similar in awake birds, by 
the time the anterior forebrain pathway processes the 

auditory feedback, the motor units in HVc and RA 
should be generating the next syllable. In order to utilize 
the delayed evaluation signal, the synapses from HVc to 
RA have to use an "eligibility trace" for plasticity (Barto, 

Sutton, and Anderson, 1983). Examples of possible bio- 

logical implementation of eligibility traces can be seen 
in Houk, Adams, and Barto, (1994), and Schweighofer, 

Arbib, and Dominey (1996). 
Recently, a new hypothesis was proposed for a "for- 

ward model" within HVc that predicts the auditory out- 

come from the HVc motor output. The predicted 
auditory outcome is then used for immediate reinforce- 
ment of ongoing motor activity instead of the actual au- 

ditory feedback (Troyer, Doupe, and Miller, 1996). 

However, it may be difficult for such prediction of audi- 

tory outcome to be reliably performed within HVc 
while the connection from HVc to RA is changed by 
learning. 

FEEDBACK CONNECTION IN THE ANTERIOR FOREBRAIN 

PATHWAY Recently, novel axonal connections were 

found from RA to DLM (Wild, 1993) and from LMAN 

to area X (Vates and Nottebohm, 1995; Nixdorf-Berg- 
weiler, Lips, and Heinemann, 1995). Although we did 

not take into account these possible feedback connec- 
tions within the AFP, they are still consistent with our 

basic assumption that there is no feedback connection 
back to HVc in the AFP. 

The finding of the novel connection from LMAN to 

area X raises a possibility that correlation between per- 
turbation and evaluation, which is the main factor of sto- 

chastic learning, is taken at the level of area X instead of 
in LMAN as we assumed. It has been shown that the 

connections from LMAN through area X to DLM 
(Vates and Nottebohm, 1995) and from DLM through 

LMAN to RA (Johnson, Sablan, and Bottjer, 1995) are 
topographically organized. This organization would en- 

able the activity pattern in LMAN to be correlated with 
the syllable evaluation in area X and then sent back to 
LMAN through DLM to alter the next activity pattern in 

LMAN. Together with the finding that the ventral and 

middle parts of RA differentially control the dorsal and 
ventral syringeal muscles and that these muscles control 
the air flow and the fundamental frequency, respectively 
(Goller and Suthers, 1995), it is possible that there are 
distinct channels within the AFP that are involved in 

evaluation and modulation of different aspects of vocal- 
ization. However, data on the activity of AFP neurons 
during singing would be necessary to test these possibili- 

ties. 

Conclusions 

In this chapter, we have identified computational mech- 
anisms that could account for birdsong learning and 

shown how these mechanisms could be supported by 
the known anatomy of the avian brain. We then focused 

on the issue of sensorimotor learning and tested our spe- 

cific hypothesis that the anterior forebrain pathway 
works as a reinforcement learning system. The current 

theory and simulation results given here could be re- 
garded as an "existence proof' for one solution to the 

song-learning problem, but it does not exclude other 
possible solutions. Nevertheless, this is the first computa- 
tional model of the entire song-learning system that is 

able to replicate realistic birdsongs. Because the model 
was based on the recent experimental findings, espe- 

cially those from the anterior forebrain pathway, experi- 

mental tests of the proposed model should provide a 
better understanding of the mechanisms of song learn- 
ing and, more generally, the neural principles underly- 

ing the acquisition of novel motor patterns based on 
sensory experience. 
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