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Abstract

In this paper, a new generalized exponential rational function method is employed to

extract new solitary wave solutions for the Zakharov–Kuznetsov equation (ZKE). The

ZKE exhibits the behavior of weakly nonlinear ion-acoustic waves in incorporated hot

isothermal electrons and cold ions in the presence of a uniform magnetic field.

Furthermore, the stability for the governing equations is investigated via the aspect of

linear stability analysis. Numerical simulations are made to shed light on the

characteristics of the obtained solutions.
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1 Introduction

Nonlinear evolution equations (NLEEs) have been very important aspects owing to their

very wide range of applicability in nonlinear science. In science nonlinear physical phe-

nomena are one of the most significant areas of study and they appear in various fields of

science and engineering, such as plasma physics, fluid mechanics, gas dynamics, elastic-

ity, relativity, chemical reactions, ecology, optical fiber, solid state physics, biomechanics,

to mention few. All these equations are fundamentally controlled by NLEEs [1–6]. NLEEs

are often used to illustrate the motion of separated waves. Ever since the arrival of soli-

tary wave in scientific work, it has been getting more concentration. Thus, it is vital to

extract exact traveling wave solutions to NLEEs. This is because obtaining exact solutions

to NLEEs gives us the liberty to present information on the characteristics of a complex

physical phenomenon. Thus, the construction of exact traveling wave solutions to NLEEs

has become a priority in the analysis of nonlinear physical phenomenon. A lot of analyti-

cal approaches have been used to establish traveling wave solutions for NLEEs [7–13]. On

solitons, nonlinear physical phenomena and other novel solutions of NLEEs, there has

been a variety of theoretical work [14–24].

Moreover, it is well known that stability analysis (SA) is very important in the investiga-

tion of integrability, internal properties, existence and uniqueness of a differential equa-

tion [14–17]. In this paper, new traveling wave solutions using a relatively new technique,

namely the new generalized exponential rational function method (GERFM) [25] and sta-

bility analysis via the concept of linear stability analysis are constructed for the (2 + 1)-
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dimensional ZK equation given by [26–31]

φt +μφφx +
1

2
φxxx +

1

2
(1 + δ)φyyx = 0, (1.1)

where μ and δ are nonzero arbitrary constants and φ = φ(x, y, t). φ(x, y, t) is for the elec-

trostatic wave potential in plasmas, that is, a function of the spatial variables x, y and

the temporal variable t. The ZK equation determines the behavior of weakly nonlin-

ear ion-acoustic waves incorporating hot isothermal electrons and cold ions in the pres-

ence of a uniform magnetic field [32–37]. The ZK equation also involves an anisotropic

two-dimensional generalization of the KdV equation and can be analyzed in magnetized

plasma for a tiny amplitude Alfvén wave at a critical angle to the uninterrupted magnetic

field [32–37]. There has not been a lot of studies on this special form (1.1) of the ZK equa-

tion in the literature. The main aim of the current work is to establish new solutions to

this less studied equation by means of GERFM.

2 Description of the GERFM

The GERFMmay be described as follows [25]:

Step 1. Surmise that there is a nonlinear partial differential equation express by

N(ψ ,ψx,ψt ,ψxx,ψyyx, . . .) = 0. (2.1)

Applying ψ = ψ(ξ ) along with ξ = kx +my –ωt, we obtain

N
(

ψ ,ψ ′,ψ ′′, . . .
)

= 0, (2.2)

where k,m and ω are constants that will be computed later.

Step 2. Next, we surmise that Eq. (2.2) has the formal solution

Φ(ξ ) =
p1e

q1ξ + p2e
q2ξ

p5eq3ξ + p6eq4ξ
, (2.3)

where p1,p2,p3,p4, and q1,q2,q3,q4 represent the complex (or real) numbers provided that

Eq. (2.1) is written as

ψ(ξ ) = A0 +

N
∑

k=1

AkΦ(ξ )k +

N
∑

k=1

BkΦ(ξ )–k . (2.4)

Meanwhile the coefficients A0,Ak ,Bk(1 ≤ k ≤ N) and pn,qn(1 ≤ n ≤ 4) will be obtained

such that (2.4) satisfies (2.2). In addition, N is a positive integer that can be obtained by

applying the homogeneous balance principle.

Step 3. Plugging (2.4) into Eq. (2.2) and organizing all terms yield the polynomial equa-

tion P(eq1ξ , eq2ξ , eq3ξ , eq4ξ ) = 0. Equating every coefficient of P to zero, a set of algebraic

equations for pn,qn(1 ≤ n ≤ 4), and k,m,ω,A0,A1,B1 will be derived with the help of

Maple.

Step 4. Solving the outcomes in Step 3 and then putting non-trivial solutions in (2.4), we

obtain the soliton solutions of Eq. (1.1).
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3 Application of GERFM to ZK

In order to construct explicit travelingwave solutions to Eq. (1.1), we propose the following

traveling wave transformation:

φ(x, y, t) = u(ξ ), ξ = kx +my –ωt. (3.1)

Applying Eq. (3.1) to Eq. (1.1) and integrating once with respect to ξ yield

–ωu +

(

k3

2
+
km2

2
(1 + δ)

)

u′′ +
μk

2
u2 = 0. (3.2)

Applying the balance principle to the terms of u2 and u′′ in Eq. (3.2) gives 2N = N + 2 so

N = 2. So (2.4) will turn into

u(ξ ) = A0 +A1Φ(ξ ) +A2Φ
2(ξ ) +

B1

Φ(ξ )
+

B2

Φ2(ξ )
, (3.3)

where Φ(ξ ) is giving by (2.3). Substituting (3.3) into (3.2) and, following the method de-

scribed in Sect. 2, we obtain non-trivial solutions of (1.1) as follows.

Family 1: For p = [i, –i, 1, 1] and q = [i, –i, i, –i], (2.3) turns into

Φ(ξ ) = –
sin(ξ )

cos(ξ )
. (3.4)

Case 1:

k = k, m = –

√
6
√

6k2 +μB2

6
√
–δ – 1

, ω =
4

3
μkB2,

A0 = 2B2, A1 = 0, A2 = B2, B1 = 0, B2 = B2.

Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:

φ1(x, y, t) =
B2

cos2(ξ ) sin
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μB2

6
√
–δ – 1

y –
4

3
μkB2t.

Case 2:

k = k, m = –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

, ω = ω, A0 = –
ω

kμ
,

A1 = 0, A2 = –
3ω

kμ
, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:

φ2(x, y, t) =
(2 cos

2(ξ ) – 3)ω

kμ cos2(ξ )
,
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where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

y –ωt.

Case 3:

k = k, m = –

√
6
√

6k2 +μB2

6
√
–δ – 1

, ω = –
1

3
μkB2,

A0 =
1

3
B2, A1 = 0, A2 = 0, B1 = 0, B2 = B2.

Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:

φ3(x, y, t) =
(2 cos

2(ξ ) + 1)B2

3 sin
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μB2

6
√
–δ – 1

, ω = –
1

3
μkB2y +

1

3
μkB2t.

Case 4:

k = k, m = –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

, ω = ω, A0 =
3ω

kμ
,

A1 = 0, A2 =
3ω

kμ
, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:

φ4(x, y, t) =
3ω

kμ cos2(ξ )
,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

y –ωt.

Family 2: For p = [1 + i, 1 – i, 1, 1] and q = [i, –i, i, –i], (2.3) turns into

Φ(ξ ) =
– sin(ξ ) + cos(ξ )

cos(ξ )
. (3.5)

Case 1:

k = k, m = –

√
3
√

12k2 –A1μ

6
√
–δ – 1

, ω =
1

6
μkA1,

A0 = –
2

3
A1, A1 = A1, A2 = –

1

2
A1, B1 = 0, B2 = 0.
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Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:

φ5(x, y, t) =
(2 cos

2(ξ ) – 3)A1

6 cos2(ξ )
,

where, for δ < –1, we have

ξ = kx –

√
3
√

12k2 –A1μ

6
√
–δ – 1

y –
1

6
μkA1t.

Case 2:

k = k, m = –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

, ω = ω,

A0 =
6ω

kμ
, A1 = 0, A2 = 0, B1 = –

12ω

kμ
, B2 =

12ω

kμ
.

Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:

φ6(x, y, t) = –
6ω

kμ(2 sin(ξ ) cos(ξ ) – 1)
,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

y –ωt.

Case 3:

k = k, m = –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

, ω = ω,

A0 = –
4ω

kμ
, A1 = 0, A2 = 0, B1 =

12ω

kμ
, B2 = –

12ω

kμ
.

Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:

φ7(x, y, t) =
4ω(sin(ξ ) cos(ξ ) + 1)

kμ(2 sin(ξ ) cos(ξ ) – 1)
,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

y –ωt.

Family 3: For p = [1,–1, 1, 1] and q = [–1, 1,–1, 1], (2.3) turns into

Φ(ξ ) = – tanh(ξ ). (3.6)

Case 1:

k =
1

6

√

–6μA2 – 36(δ + 1)m2, m =m,
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ω = –
2

9
μA2

√

–6μA2 – 36(δ + 1)m2,

A0 = –2A2, A1 = 0, A2 = A2, B1 = 0, B2 = A2.

Putting these results in Eqs. (3.3) and (3.6), the exact solution of Eq. (1.1) is obtained:

φ8(x, y, t) =
A2

cosh
2(ξ ) sinh

2(ξ )
,

where

ξ =
1

6

√

–6μA2 – 36(δ + 1)m2x +my +
2

9
μA2

√

–6μA2 – 36(δ + 1)m2t.

Case 2:

k =
1

6

√

–6μB2 – 36(δ + 1)m2, m =m,

ω =
1

18

√

–6μB2 – 36(δ + 1)m2μB2,

A0 = –
1

3
B2, A1 = 0, A2 = 0, B1 = 0, B2 = B2.

Putting these results in Eqs. (3.3) and (3.6), the exact solution of Eq. (1.1) is obtained:

φ9(x, y, t) = –
B2(tanh

2(ξ ) – 3)

3 tanh
2(ξ )

,

where

ξ =
1

6

√

–6μB2 – 36(δ + 1)m2x +my –
1

18

√

–6μB2 – 36(δ + 1)m2μB2t.

Case 3:

k =
1

6

√

–6μB2 – 36(δ + 1)m2, m =m,

ω = –
1

18

√

–6μB2 – 36(δ + 1)m2μB2,

A0 = –B2, A1 = 0, A2 = 0, B1 = 0, B2 = B2.

Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:

φ10(x, y, t) =
B2

sinh
2(ξ )

,

where

ξ =
1

6

√

–6μB2 – 36(δ + 1)m2x +my +
1

18

√

–6μB2 – 36(δ + 1)m2μB2t.
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Family 4: For p = [–2,–3, 1, 1] and q = [1, 0, 1, 0], (2.3) turns into

Φ(ξ ) =
–2eξ – 3

1 + eξ
. (3.7)

Case 1:

k = k, m = –

√
6
√

6k2 +μA2

6
√
–δ – 1

, ω =
1

12
μkA2,

A0 =
37A2

6
, A1 = 5A2, A2 = A2, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:

φ11(x, y, t) = –
A2(–e

2ξ + 4eξ – 1)

6(1 + eξ )2
,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μA2

6
√
–δ – 1

y –
1

12
μkA2t.

Case 2:

k = k, m = –

√
k3 – 2ω

√
k
√
–δ – 1

, ω = ω,

A0 = –
72ω

μk
, A1 = 0, A2 = 0, B1 = –

360ω

μk
, B2 = –

432ω

μk
.

Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:

φ12(x, y, t) =
72ωeξ

μk(2eξ + 3)2
,

where, for δ < –1, we have

ξ = kx –

√
k3 – 2ω

√
k
√
–δ – 1

y –ωt.

Family 5: For p = [–3,–1, 1, 1] and q = [1,–1, 1,–1], (2.3) turns into

Φ(ξ ) =
–2 cosh(ξ ) – sinh(ξ )

cosh(ξ )
. (3.8)

Case 1:

k = k, m = –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

, ω = ω,

A0 = –
9ω

μk
, A1 = 0, A2 = 0, B1 = –

36ω

μk
, B2 = –

27ω

μk
.
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Putting these results in Eqs. (3.3) and (3.8), the exact solution of Eq. (1.1) is obtained:

φ13(x, y, t) =
9ω

kμ(5 cosh
2(ξ ) + 4 cosh(ξ ) sinh(ξ ) – 1)

,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

y –ωt.

Case 2:

k = k, m = –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

, ω = ω,

A0 =
11ω

μk
, A1 = 0, A2 = 0, B1 =

36ω

μk
, B2 =

27ω

μk
.

Putting these results in Eqs. (3.3) and (3.8), the exact solution of Eq. (1.1) is obtained:

φ14(x, y, t) =
ω(18 cosh

4(ξ ) – 33 cosh
2(ξ ) + 36 cosh(ξ ) sinh(ξ ) + 11)

kμ(3 cosh
2(ξ ) + 1)2

,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 +ω

2
√
k
√
–δ – 1

y –ωt.

Family 6: For p = [1, 1, 1,–1] and q = [1,–1, 1,–1], (2.3) turns into

Φ(ξ ) =
cosh(ξ )

sinh(ξ )
. (3.9)

Case 1:

k =
1

6

√

–6μA2 – 36(δ + 1)m2, m =m,

ω =
2

9
μA2

√

–6μA2 – 36(δ + 1)m2,

A0 =
2

3
A2, A1 = 0, A2 = A2, B1 = 0, B2 = A2.

Putting these results in Eqs. (3.3) and (3.9), the exact solution of Eq. (1.1) is obtained:

φ15(x, y, t) =
A2(3 coth

4(ξ ) + 2 coth
2(ξ ) + 3)

3 coth
2(ξ )

,

where, for δ < –1, we have

ξ =
1

6

√

–6μA2 – 36(δ + 1)m2x +my –
2

9
μA2

√

–6μA2 – 36(δ + 1)m2t.
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Case 2:

k = k, m = –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

, ω = ω,

A0 =
3ω

kμ
, A1 = 0, A2 = 0, B1 = 0, B2 = –

3ω

kμ
.

Putting these results in Eqs. (3.3) and (3.9), the exact solution of Eq. (1.1) is obtained:

φ16(x, y, t) =
3ω

kμ cosh
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
2
√
2k3 –ω

2
√
k
√
–δ – 1

y –ωt.

Family 7: For p = [–2,–1, 1, 1], q = [0, 1, 0, 1], and r = [0, 0], (2.3) turns into

Φ(ξ ) =
–eξ – 2

1 + eξ
. (3.10)

Case 1:

k = k, m = –

√
k3 + 2ω

√
k
√
–δ – 1

, ω = ω,

A0 =
26ω

kμ
, A1 = 0, A2 = 0, B1 =

72ω

kμ
, B2 =

48ω

kμ
.

Putting these results in Eqs. (3.3) and (3.10), the exact solution of Eq. (1.1) is obtained:

φ17(x, y, t) =
2ω(e2ξ – 8eξ + 4)

kμ(eξ + 2)2
,

where, for δ < –1, we have

ξ = kx –

√
k3 + 2ω

√
k
√
–δ – 1

y –ωt.

Case 2:

k = k, m = –

√
k3 – 2ω

√
k
√
–δ – 1

, ω = ω,

A0 = –
24ω

kμ
, A1 = 0, A2 = 0, B1 = –

72ω

kμ
, B2 = –

48ω

kμ
.

Putting these results in Eqs. (3.3) and (3.10), the exact solution of Eq. (1.1) is obtained:

φ18(x, y, t) =
24ωeξ

kμ(eξ + 2)2
,
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where, for δ < –1, we have

ξ = kx –

√
k3 – 2ω

√
k
√
–δ – 1

y –ωt.

Family 8: For p = [2, 0,–1, 1] and q = [–1, 0,–1, 1], (2.3) turns into

Φ(ξ ) =
cosh(ξ ) – sinh(ξ )

cosh(ξ )
. (3.11)

Case 1:

k = k, m = –

√
6
√

6k2 +μA2

6
√
–δ – 1

, ω =
1

3
μkA2,

A0 =
2

3
A2, A1 = –2A2, A2 = A2, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.11), the exact solution of Eq. (1.1) is obtained:

φ19(x, y, t) =
(2 cosh

2(ξ ) – 3)A2

3 cosh
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μA2

6
√
–δ – 1

y –
1

3
μkA2t.

Family 9: For p = [2, 0, 1,–1] and q = [1, 0, i, –i], (2.3) turns into

Φ(ξ ) =
– sin(ξ ) + cos(ξ )

sin(ξ )
. (3.12)

Case 1:

k = k, m = –

√
6
√

6k2 +μA2

6
√
–δ – 1

, ω = –
1

3
μkA2,

A0 =
4

3
A2, A1 = 2A2, A2 = A2, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.12), the exact solution of Eq. (1.1) is obtained:

φ20(x, y, t) =
(2 cos

2(ξ ) + 1)A2

3 sin
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μA2

6
√
–δ – 1

y +
1

3
μkA2t.

Family 10: For p = [1 + i, 1 – i, 1, 1], q = [–i, i, –i, i], and r = [0, 0], (2.3) turns into

Φ(ξ ) =
cosh(ξ ) + sinh(ξ )

sinh(ξ )
. (3.13)
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Figure 1 3D plot for φ8 at y = 1 with A2 =μ = δ = 1 and 2D at t = 0

Figure 2 3D plot for φ8 at y = 1 with B2 =μ = δ = 1 and 2D at t = 0

Case 1:

k = k, m = –

√
6
√

6k2 +μA2

6
√
–δ – 1

, ω =
1

3
μkA2,

A0 =
2

3
A2, A1 = –2A2, A2 = A2, B1 = 0, B2 = 0.

Putting these results in Eqs. (3.3) and (3.13), the exact solution of Eq. (1.1) is

obtained and the physical features of some of the solutions are depicted in Figs. 1 to 5:

φ21(x, y, t) =
(2 cosh

2(ξ ) + 1)A2

3 sinh
2(ξ )

,

where, for δ < –1, we have

ξ = kx –

√
6
√

6k2 +μA2

6
√
–δ – 1

y –
1

3
μkA2t.
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Figure 3 3D plot for φ13 at y = 1 with σ =μ = k = δ = 1 and 2D at t = 0

Figure 4 3D plot for φ16 at y = 1 with σ =μ = k = δ = 1 and 2D at t = 0

4 Stability analysis of Eq. (1.1)

The connection for the dispersion in Eq. (1.1) will be analyzed [14–17]. The features of

the real part (Re) of σ show whether the outcome will become larger or disappear in a

given period. When the real part of σ (k) is negative for every k values, the superposition

of solutions of the form e(iσ t+ikx) may subsequently disappear. Put differently, if the the real

part is positive for some values of k, some components of a superpositionwill subsequently

become huge. The former is regarded as the stable case, while the latter is regarded as the

unstable case. Furthermore, if the maximum of the real part is zero, the case is regarded to

be the marginally stable case. It is burdensome to evaluate the long term behavior in this

case. Moreover, in Fig. 6 we plot frequency of the pertubation against the wave number.

Consider the perturbed solution of the form

φ(x, t, y) = P0 + ǫw(x, t, y). (4.1)
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Figure 5 3D plot for φ20 at y = 1 with A2 = k = δ = 1 and 2D at t = 0

Figure 6 Frequency of the perturbation against the wave number when P0 < 0 and P0 > 0, respectively

It is easy to see that any constant P0 is a steady state solution of Eq. (1.1). Inserting Eq. (4.1)

into Eq. (1.1), one gets

2ǫwt + 2μǫP0wx + 2μǫ2wwx + ǫwxyy + δǫwxyy + ǫwxxx = 0, (4.2)

linearizing (4.2) in ǫ gives

2ǫwt + 2μǫP0wx + ǫwxyy + δǫwxyy + ǫwxxx = 0. (4.3)

Suppose that Eq. (4.3) has a solution of the form

w(x, t, y) = ei(k1x+k2y+σ t), (4.4)

where k is the normalized wave number; substituting Eq. (4.4) into Eq. (4.3), we get

(

k31 + k1k
2
2(1 + δ) – 2σ – 2k1μP0

)

= 0. (4.5)
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Solving for σ from the above equation yields

σ (k1,k2) =
1

2

(

k31 + k1k
2
2 + k1k

2
2δ – 2k1μP0

)

. (4.6)

From Eq. (4.5), one can see that the real part is negative for all k values, then any super-

position of the solutions will appear to decay. Therefore, the dispersion is stable.

5 Conclusion

This research applied GERFM to extracting new solitary wave solutions for the ZK equa-

tion. The ZK equation exhibits the behavior of weakly nonlinear ion-acoustic waves in-

corporating hot isothermal electrons and cold ions in the presence of a uniformmagnetic

field. There have not been a lot of studies on this special form (1.1) of the ZK equation in

the literature. Owing to this, it is of great importance to establish different types of solu-

tions to this equation. We successfully obtained solutions such as exact solutions, exact

periodic wave solutions, soliton solutions and exponential function solutions. GERFMhas

the capacity to generate several types of solutions in different form unlike some of the clas-

sic methods that could only generate a small number of solutions. Thus, GERFM is very

efficient and effective in extracting new types of solutions to varieties of NLEEs. Graphi-

cal features of some of the obtained solutions are presented in order to shed more light on

the characteristics of the obtained solutions. Furthermore, the stability of the governing

equations was investigated via a linear stability analysis.
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