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Abstract: The creation of green areas within urban centers was born as a response to profoundly
different problems, such as the demographic increase and the progressive urbanization of landscapes.
Moreover, up to date, the genetics of plants has not been considered for urban contexts. The purpose
of this review is to discuss the state of the art and the advantages in planning genetic improvement
for plants for urban destinations, also providing technical information, that may contribute in a
concrete way. Firstly, recent genomic sources and their potential contribution to breeding programs
are discussed. Then, dividing the urban scenarios into four macro areas (i.e., urban/metropolitan
parks, urban gardens, road verges and roofs/terraces/balconies), we described the role of genetics in
the adaptability and sustainability of plants in these different contexts. In addition, we analyzed the
genetic traits plants need to provide services for a city environment and population (e.g., pollution
reduction, biodiversity conservation, soil stability, and food production).

Keywords: urban area; plant breeding; ideotype; plant genetics; plant genomics urban vegetation;
adaptability; sustainability; marker-assisted selection; marker-assisted breeding

1. Introduction

Several examples document the inevitable and continuous interaction between hu-
mans and plants, primarily characterized by the human interest in using them for con-
sumption, materials production, medical purposes, decoration, and bioremediation. An
example of the most striking human manipulations on the plants’ life and environment is
the establishment of urban green spaces, for instance, public parks and/or private residen-
tial gardens, with surfaces more or less limited, where plants are grown with objectives
often different from those of agriculture [1]. In fact, if agriculture has aims that are almost
exclusively at production, the creation of green areas within urban centers was born as
a response to profoundly different problems, such as the demographic increase and the
progressive urbanization of landscapes. The latter is among the dominant anthropogenic
factors influencing the natural and adaptive evolution of living populations [2], and for
this reason, it is the most important phenomenon affecting the environments in the 21st
century [3–6].

Considering the multitude of urban contexts, purposes, and needs for which green
spaces in cities are created, it is today very challenging to provide an exhaustive definition of
‘urban area’ and its relative ‘urban vegetation’, since the geographic, climatic, and resource-
related opportunities, and constraints, are not equally distributed factors across the world
and specific for each context. Furthermore, urban vegetation can also include cultural plant
typology with agricultural interest related to food production, such as the horticultural
species. Starting from these considerations, the present review aims to provide a general
overview of how genetics and genomics notions can help in the selection and improvement
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of plant species and/or suitable varieties for specific urban contexts. In detail, after a brief
overview of the genomic tools available and potentially usable in genetic improvement
plans, we focused on the evaluation of particular genetic traits for the selection of plants in
relation to the urban area in which they are used and the environmental stress to which
they are generally subject. Finally, we took into consideration the contribution of genetics
in achieving specific goals that are usually set in urban contexts.

Processing Criteria

With a univocal classification of urban green spaces not being present [7–9], in order
to allow a better understanding of some of the aspects covered, we judged it appropriate to
simplify the classification of these environments by empirically dividing them into four
macro areas, according to their surface availability per plant and their intended usage
as follows:

(i) Urban/metropolitan parks: these are green areas in cities, and other incorporated places,
that offer recreation and green spaces to residents of and visitors to the municipality;

(ii) Urban gardens: these are areas where urban vegetation is exploited to provide food
products, especially employing horticultural species. Urban food production can
be carried out by citizens or administrations in private buildings and public spaces
for self-consumption, or can be performed by farms with commercial purposes, also
using innovative outdoor or indoor growth systems;

(iii) Road verges: these are small, vegetated areas composed of grass or plants and some-
times also trees, mainly located between a roadway and a sidewalk or within round-
abouts;

(iv) Roofs/terraces/balconies: these are small green areas located in private or public build-
ings. They include both surfaces partially or completely covered with vegetation
(e.g., green roofs) and container gardens where plants are maintained in pots.

Each of these four categories is set up according to different purposes (ornamental,
urban planning, bioremediation, soil consolidation purposes, etc.), that, in turn, affect the
choice of the species/varieties to be used (i.e., woody perennial plants, meadows and turf
grasses, horticultural and floricultural ornamental plants), and their adaptive characteristics
(resistance to biotic, abiotic stress, hypogeal and epigeal habitus, minimum maintenance
requirement, etc.). For this reason, as previously indicated, it is not easy if not impossible
to define specific and common breeding programs for urban vegetation, since it includes
both agricultural and not species with different genetic and physiological properties, and
agronomical needs (Figure 1).

The bibliographic analysis for this work has been performed exploiting Scopus® in
order to search for articles and reviews of interest written in English by integrating different
combinations of selected keywords for every paragraph, including terms defining:

(a) The environment of interest: “urban areas”, “cities”, “green areas, “green gardens”
“public green”, “public parks”, “urban agriculture”;

(b) The plant typologies: “plant”, “ornamental”, “flowering”, “horticultural”, “woody”,
“trees”, “meadows”, “turfgrasses”;

(c) The genetic subject: “breeding” “molecular markers”, “marker-assisted selection”
“marker-assisted breeding” “molecular selection” “genomic selection” “genomics”
“genetic improvement” “variety” “cultivar”;

(d) Specific goals: “abiotic stress”, “heat shock”, “biotic stress”, “pathogen stress”, “water
stress”, “drought”, “dwarf” “compacted”, “growth habit”, “edible flowers” “food
production”, “leafy vegetation”, “baby leaf”, “phytoremediation”, “air purification”,
“biodiversity”, “soil erosion”, “soil stability”, “psychosocial”, “ecosystem services”.
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Figure 1. Schematic representation of the multilayered framework of the most common contexts, here
defined as Macro Areas, found in an urban environment. In each macro area, the goals to achieve are
multiple and specific, depending on the characteristics and needs of every specific zone, and specific
vegetation type that is desired to use. However, under all conditions, the need to use specific cultural
plant typology able to cope and tolerate environmental stresses is a fundamental requirement. In
addition, the potential environmental and social benefits deriving from them are indicated. Details
are described in the text.

The lists of documents found have been then manually screened to select the most
relevant works. In addition, the research has been deepened with a snowball sampling
approach, exploiting citations and references included in the already screened papers.

2. Genetic Information as a Genomic Tool That Is Potentially Helpful in Breeding
Approaches for Urban Contexts

Plant breeding is a science-driven creative process that involves the evaluation, se-
lection and propagation of plant populations characterized by a combination of specific
desirable traits [10]. Originally, conventional breeding was exclusively based on time-
consuming and expensive phenotyping observations: plant selection was accomplished
through massive screening of phenotypic parameters mainly related to the morphology of
the plant (fruits, flowers, stem), to its tolerance to both biotic (insects, molds and viruses),
and abiotic stresses (temperature, drought, salinity, heavy metals) [11].

Genetics made it possible to overcome many of the limitations associated with con-
ventional breeding, facilitating, and speeding up the process of varietal constitution. New
opportunities for crop improvement were generated thanks to the increasing availability
of whole genome data that, in turn, enabled the discovery of candidate genes related to
traits of interest, mutations responsible for phenotypic variability (e.g., single nucleotide
polymorphisms, SNP or insertion/deletion, Indel) and molecular markers associated with
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traits of interest (e.g., simple sequence repeats, SSR) [12]. Overall, these molecular data are a
powerful predictive tool for the targeted selection of superior genotypes. However, as their
discovery is strictly dependent on the availability of sequenced genomes, for many years,
their application in breeding processes has been limited to a few sequenced species of great
agricultural and economic importance, such as rice, barley, tomato, and grapevine [13].
Moreover, before the advent of single molecule real-time (SMRT) sequencing (better known
as third-generation sequencing platforms), the complex architecture of a genome repre-
sented another major obstacle to the assembly process. The set of sequenced genomes
belonging to ornamental species and some tree families still only represents a small fraction
of all genomes sequenced thus far for three main and often coexisting reasons [14]. First,
in this category of plants, the high level of heterozygosity along with the abundance of
GC and repetitive sequences represent a significant source of ambiguity during genome
reconstruction. Second, some fruit tree species are often widespread in urban areas (e.g., the
Citrus genus) [15], and several ornamental plants (e.g., Rosa, Chrysanthemum, Lilium, Man-
devilla, and Primula) [16] are the result of intraspecific and interspecific crosses and ploidy
manipulation. These aspects increase the probability of chimeric assemblies because of
incorrect connections between scaffolds belonging to homologous chromosomes [17]. Fi-
nally, technical problems in the assembly phase are frequently encountered in species
characterized by mega-genomes (i.e., genomes > 10 Gb), such as ornamental plants (e.g.,
peony, 13.79 Gb) [18] and tree genera typical of the urban context (e.g., Cedrus, 15–16 Gb,
and Pinus, 31 Gb) [19].

The progressive collapse of sequencing costs and the release of tools able to overcome
part of the technical challenges previously mentioned made HTS (High-Throughput Se-
quencing) platforms accessible also to minor crop species (also known as orphan crops, for
review, see for example Simko et al. [20] and Bohra et al. [21]) and ornamental plants (for
review, see Zheng et al. [14]). As a matter of example, the number of sequenced genomes
completed yearly for ornamental plants significantly increased from 1 in 2012 to 17-20 in
the last five years, and currently, the genome sequences of more than 70 ornamental species
have been released [14]. Conversely, most of the tree species frequently found in urban
green areas of the Mediterranean basin (e.g., Carpinus betulus, Tilia cordata, Acer platanoides,
and Pinus pinea) remain unsequenced today.

Genomics and transcriptomics open a wealth of opportunities not only for large-scale
plant breeding but also for small-scale cultivations, such as those in an urban environment.
In Table 1 we reported the main molecular approaches currently used to connect phenotype
to genotype. In fact, the ultimate goal in plant breeding is to use the genotypic information
to predict phenotypes and select improved cultivars [22,23].

Table 1. Overview of the main genomics and transcriptomics techniques useful for breeding purposes.

Techniques General Description To Learn More about

Whole Genome Sequencing (WGS)

The genome of a species is assembled for the first time into
chromosomes with high coverage and it is functionally annotated to

produce a reference assembly and to predict hundreds of loci
underlying agronomic traits

[24]

RNA-seq analysis

RNA-seq can be used to examine the RNA sequences that are
present in a sample (transcriptome). This is crucial for linking the

information contained within the genome with the functional
proteins that are expressed. RNA-seq can be used to elucidate which

genes are turned on or off within a cell under specific conditions

[25]

Whole genome resequencing (WGR)
The genome is fully sequenced with low or modest coverage and is

aligned against the reference genome assembly to predict allelic
variants

[26]

Reduced
Representation

Sequencing (RRS)

GBS A fraction of the genome is sequenced and aligned against the
reference genome assembly to predict allelic variants. For GBS,

ddRAD-seq, 2bRAD-seq and ezRAD-seq the regions to be
sequenced are randomly chosen using restriction enzymes, for

target-seq the regions to be sequenced are selected through PCR

[27]
ddRAD-seq [28]
2bRAD-seq [29]
ezRAD-seq [30]
target-seq [31]

Regardless of the methodology used, if the allelic variant(s) is responsible for a favor-
able trait, it can be subsequently introgressed into an elite variety through a combination of
conventional breeding and molecular marker-assisted selection (MAS). MAS is defined as a
process where molecular markers associated with a specific trait of interest are used for the
selection of the trait itself. In this sense, the use of molecular markers is particularly indi-
cated when the phenotypic evaluation of the trait is hardly doable (e.g., disease resistance)
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or expensive (e.g., male sterility) [24]. MAS is also effective in selecting desirable gene
alleles independently from possible confounding environmental, pleiotropic or epistatic
effects, in monitoring the introgression of a desirable allele in backcrossing events, or in
identifying and avoiding linkage drag effects [32].

Considering the ratio between extragenic and genic regions, most variants identified
through WGR or RRS are unlikely to underlie phenotypic effects. However, the combina-
tion of hundreds of noncoding allelic variants produces molecular profiles able to identify
uniquely a given genotype. Such information is extensively used for screening populations
and selecting parental genotypes in breeding programs (marker-assisted breeding, MAB),
testing the purity and uniformity of commercial varieties, evaluating the stability of culti-
vars through generations, registering new varieties and for assessing their distinctiveness
from preexisting varieties [33].

For large-scale crop breeding (open-field and greenhouses), the marker-assisted genetic
improvement techniques mentioned above are well documented [34]. The development
and incorporation of molecular markers in breeding processes could also be adopted for
small-scale cultivation approaches (from urban parks to small private allotments). In the
latter case, the goal would be the development of varieties with a genetic background
suitable for urban needs. In this context, the contribution of genomics in identifying
markers and genes responsible for plant adaptability in urban environments will play a
crucial role.

3. The Role of Genetics in the Adaptability and Sustainability of Plants in Different
Urban Contexts

In the development of any plant breeding program, it is necessary to define the desired
variety’s ideotype, i.e., the ideal plant model endowed with every trait of interest for the specific
aims and destinations [35]. While some adaptive characteristics of plants are shared by all
types of urban vegetation, there are others that must respond to specific context conditions;
thus, the ideotype can change according to the macro area considered. For example, the soil
requirements of a tree grown on a roadside must necessarily be distinct from those of a tree
grown in an urban park. This is both to allow the plant to grow by bypassing the stress of soil
deficiency and to prevent it from causing damage to the road surface as it grows. Generally,
plants must be able to cope with the environment in which they are introduced, not suffering
from abiotic or biotic stresses. In fact, urban areas represent environments characterized by
restrictive growing conditions due to a high density of buildings, infrastructures, and heavy
traffic, which cause negative effects such as soil compaction, pollution, high temperatures,
drought, lack of light, presence of heavy metals, high salinity, and nutrient deficiency [36]. The
ability to cope with different kinds of stress has become even more important, considering the
increasing impact that environmental changes and global warming have on plants [37]. In past
years, it has been reported that abiotic stresses reduced by as much as 50% the yields of most
major crops worldwide [37–39]. Providing varieties able to adapt to several different types of
environments and resilient to stress factors is in general a major challenge in the immediate
future for breeders to guarantee cultivation [40–42]. Moreover, plants must also be resilient
to stresses to limit the usage of agronomic inputs. Modern cultivars have been mainly bred
for performance under a high supply of factors such as irrigation water, fertilizers, pesticides,
and interventions such as tillage and manutention [43]. Hence, the need to provide varieties
environmentally and economically sustainable stands with a view of limiting costs and energy
exploited for their cultivation, reducing limited resource usage, and avoiding the introduction
of polluting chemical compounds into the environment [44,45]. In addition, to guarantee plant
sustainability, it is important that they do not present potentially harmful traits for ecosystems
and human health, such as invasiveness and high-allergenic compound production [46]. An
important strategy to cope with the adaptability and sustainability problem is to recur to wild
or traditionally used populations, diffused in areas with environmental conditions similar to
those of the destination of interest. This is a key factor because, generally, these accessions are
resilient to the biotic and abiotic stress typical of their diffusion area [47,48]. In addition, not
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or lowly genetically improved populations present a higher genetic variability in comparison
to commercial varieties, allowing to have a wider range of alleles to be drawn on for the
specific breeding aims. From this point of view, the creation and maintenance of germplasm
banks containing wide collections of plant material (seeds or plants conserved in vivo, in vitro
or cryo-conserved) derived from wild populations and local varieties is a strategy of great
relevance for having a continued availability of genotypes with useful traits [49,50]. With regard
to germplasm collections, it is important to point out that presenting a high genetic variability
also means an increase in the possibility of having in the selected genotypes alleles linked to
undesirable or even harmful traits, e.g., the susceptibility to a pathogen or the production of a
toxic compound. These alleles can segregate with traits of interest (linkage drag), therefore,
during the breeding process, careful work of selection against them is necessary [51–53].

To analyze more in detail the adaptability of plants to the environment, the subsequent
sections provide a specific discussion about two of the most impacting abiotic stresses in
urban areas as examples, high temperatures and drought, in addition to the pathogen stress.

3.1. Abiotic Stresses: Heat and Water Stress

In urban areas, the average temperature can be recorded as up to 10 ◦C warmer than
the surrounding rural areas due to impervious surface cover, anthropogenic heat sources,
and low vegetation cover. Warmer temperatures increase vapor pressure deficits, creating
a greater atmospheric demand for water via transpiration and reducing soil moisture,
which limits the amount of water available to roots. In addition, heat stress negatively
influences plant physiology as a consequence of protein damage, enzyme inactivation,
photosynthesis inhibition, cell membrane deterioration, cell division interruption, and
disturbance of reproductive phases [54–56]. Heat stress responses include the involvement
of heat shock proteins (HSPs), which have a chaperone function, hence assisting the correct
conformational folding of misformed proteins and helping in damaged protein movement
and degradation [57]. In recent years, the molecular bases of high-temperature defense
have been studied in the species of greatest horticultural interest and potentially usable in
an urban context, including tomato (Solanum lycopersicum L.) [58,59], lettuce (Lactuca sativa
L.) [60,61], spinach (Spinacia oleracea L.) [62,63], identifying specific transcription factors
(heat stress factors—HSFs), HSPs or molecular markers related to them. Considering
ornamental species, analogous results were obtained with Rododendron hainanense Merr. [64]
and carnation (Dianthus caryophyllus L.) [65]. However, the use of molecular markers
associated with HSPs or HSFs for breeding aims has received little attention outside of
cereals. In chili pepper (Capsicum annuum L.) a study reported the introgression of two
genes encoding HSP70 and HSP24 from a heat-tolerant breeding line to an elite commercial
variety using markers and backcrosses with the ladder, without genetic transformation.
For the tolerance-related gene selection, a MAS approach was conducted with two markers
that were closely linked to the genes; while for the recovery of the recurrent parent line’s
genome, to obtain the agronomic traits of interest, a MAB strategy was followed with a set
of 250 paired SSRs [66].

An increase in global warming leads to enhanced evapotranspiration, reduced rainfall,
and consequent water stress [67,68]. The resulting water shock for plants can also be a
serious issue for urban cultivation. The solution cannot consist of more frequent irrigation
due to a need in reducing water withdrawals for agriculture and in ensuring the supplies
of this limited resource all over the world in the future [69]. To select plant species and
to develop drought-tolerant varieties, hence requiring minor irrigation, it is important to
identify the correct traits of interest, since resorting to the right phenotyping strategies can
be onerous, and resistance mechanisms are plentiful and well-differentiated among species
through evolution [70,71]. An important drought-resistance plant type is represented
by xeromorphic succulent species, such as Cactaceae, Orchidaceae and Bromeliaceae, which
endure hydric deficiency through water-storing tissues with high vacuoles (hydrenchyma),
the CAM (Crassulacean Acid Metabolism) carbon fixation pathway, or waxes and cuticles
on the top page of leaves [72]. These plants are often used in urban areas for ornamental
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purposes; hence, the introduction of breeding programs for these non-genetically improved
species can be an interesting choice for breeders. For other plant types, traits of interest for
drought tolerance comprehend high leaf mass per area unit, leaf thickness, unit leaf area,
and leaf water potential at the turgor loss point [20,73–76]. In addition to morphological
parameters, biochemical analysis of the osmoprotectant content has assumed importance if
used as metabolic markers, as well as assays for the enzymes and proteins most involved in
signaling drought and other abiotic pathways related to stress response, such as superoxide
dismutase (SOD), ascorbate peroxidase (APX) or LEA proteins [77]. Often, morphological
and physiological responses to water deficiency are in common with those for other abiotic
stresses, mainly derived from heat, salinity, and coldness, but in other cases, they can be in
opposition. For example, a high accumulation of proline can protect against wilting but
can also lead to toxic effects in the presence of high temperatures [70,78]. Hence, attention
to these possible relations must be paid if the goal is plants’ genetic improvement for
multiple sources of stress. To date, the genetic bases of water deficiency tolerance have
been investigated through genomic, transcriptomic, and metabolomic approaches also in
species of the greatest horticultural interest but suitable in urban areas [48,79–82], and in
sunflower [83–85]. This led to the identification of QTLs (Quantitative Trait Loci), single
genes, specific sequences such as miRNAs, or genome-wide marker collections potentially
related to drought traits.

3.2. Pathogen Stress

Developing plants able to resist pathogens is a very important goal for breeders since
biotic stresses are among the main limiting factors for world agriculture [25,86–88]. In addi-
tion, there is a need to reduce the use of harmful pesticides [89–92], an important aspect,
especially in urban areas where human presence is considerably high and where people
are more likely to come into contact with treatment residues that pollute the environment.
Compared to other traits, pathogen resistance was more often found to be controlled by a
single gene than by multilocus interactions. Qualitative resistances are mostly inherited
dominantly; they concern biotrophic pathogens and are effective only against particular
races of pathogen species [93]. This monogenic inheritance has allowed the fixing of the
trait in many varieties of species commonly found in urban areas using traditional breeding
methods, but the main issue remains that the durability of the resistance is low: fungi,
oomycetes, bacteria and viruses can rapidly mutate in the gene coding for the product
recognized by the host, making plants return susceptible. In addition, resistant plants exert
a selection pressure that favors virulent mutations in pathogens [94–96]. Consequently,
the time required for traditional breeding is often too long to provide new resistant vari-
eties before pests adapt to the current ones. Possible methods to overcome this problem
include the use of multiline cultivars, in which every line presents different resistance genes
(R genes) [97], combined with the pyramiding approach, which consists of the transfer
of several R genes into the same plant [98]. MAS can be very helpful in facilitating the
R gene transfer from wild or local populations, often presenting resistance as showing
adaptation to the environment, to the commercial lines and hence reducing breeding times.
Many diagnostic markers are available for the horticultural species of highest commercial
importance, such as tomato (Solanum lycopersicum L.), and they are currently used in pri-
vate breeding programs (reviewed by Foolad and Panthee [99], Lee et al. [100], Bhardwaj
et al. [101], Simko et al. [20]). On the other hand, it is rare for pathogens to adapt in a
short time to quantitative resistance, but it is also true that this kind of plant resistance is
often difficult to introduce into commercial varieties, even by using MAS. This is because
quantitative resistance has been shown to be dependent on a great number of QTLs, each
with a small effect [20,97]. A modern tool that could be helpful in future breeding programs
for quantitative traits and particularly for pathogen resistances is genomic selection (GS). It
refers to the exploitation of high-density molecular marker collections (produced exploiting
the modern NGS technologies and mapping approaches such as GBS), with statistical
models to predict the breeding value for complex traits of interest [102,103].
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3.3. Limited Surface Availability

The surface availability, often limited, may be the most important aspect influencing
the subsequent genetic improvement programs of the chosen cultural typology. This aspect
is not always transversal for all habitats since it strongly depends on the subarea considered
and is specific to the different cultural typologies: for example, the surface can be high
in an urban park, medium in an urban garden and/or roadside/traffic islands, and low
in the roof/terrace/balcony context. In urban parks, it is possible to plant those species
that have high dimensions of aerial parts and roots, such as arboreal ones; however, in
roadsides, traffic islands or buildings’ terraces and balconies, the choice is more oriented
toward plants able to grow in limited surfaces and, consequently, toward the selection of
varieties with limited size [104,105].

To reduce the typical large sizes of trees, dwarf rootstocks were selected for the
orchard species of greatest interest [106–108], with dwarfism being linked to reduced
levels or perception of gibberellins (GA) and brassinosteroids (BR). Hence, genes related to
the biosynthesis, and signaling of these phytohormones, in particular, the Wound-induced
Receptor-like protein Kinase (WRK) and NAC transcription factors [109,110], are of main
interest. An additional aspect that should be considered when developing varieties suitable
for tight places is the growth habit. Indeed, also in the case of plants presenting dwarfism,
great development of lateral shoots would require additional horizontal space, thus limiting
the plant density. Studies on shoot architecture have allowed, for example, to characterize
the LAZY1 gene, which is involved in the transport and signaling of auxins, promoting
the upward orientation in shoots and the narrowed angles in branches [111,112], or the
Tiller Angle Control 1 (TAC1) gene, which induces the outward orientation in branches [113],
or genes, e.g., WEEP, leading to a weeping growth habit [111,114,115]. In addition, it
is important, mainly on roadsides, to select plants in relation to the architecture of the
underground parts. This is not only to facilitate nutrient uptake and to limit competition
between plants, but also to avoid the risk of ruining and deforming the soil surfaces because
of overgrown roots, which is a major issue in many cities’ road management [46,116,117].

Because of their generally small dimensions, the herbaceous plants for meadows and
turfgrasses can be suitable for several surface availabilities, including buildings. Moreover,
given the possibility of walking on them, the use of these species does not prohibit addi-
tional uses of the occupied space. The plant varieties that are the most selected for these
uses generally belong to species of the Poaceae family and can be pure or derived from
interspecific hybridizations [118]. Among the most common microthermal species, Lolium
perenne L., Poa spp., Agrotis spp., and Festuca spp. can be found, while among macro therms,
Buchloe dactiloides Nutt., Cynodon spp., Eremochloa ophiuroides Munro, and Paspalum vagina-
tum Sw. are present [119]. Traits of interest for turfgrasses varieties selection regard leaf
fineness, rapidity in covering the surface, tolerance to trampling and mowing, slowness in
sprout growing, and aesthetic aspects such as greenness and covering uniformity. Breeding
programs regarding the species destinated for this use started in the 1970s and until today
were carried out with continuous selection schemes, tests of progenies and intercrosses
between the best-performing genotypes. For warm-season grasses, selection programs
have been dominated by clonal propagation because stolons are easy for most species and
interspecific progeny sterility is common [120]. Advances in genetic improvement have
been relevantly focused on reducing the turf height increment rate, in finessing leaves,
in wear tolerance, in environmental adaptation to different conditions and in crown-rust
resistance. In contrast, the improvements that remain to be achieved are related to tolerance
to other diseases, the preservation of greenness in winter and summer, and ground cover
rapidity, all traits that seem to have high plasticity determined by genotype per environ-
ment (G × E) interactions. Sampoux et al. reported that the selection of plants to lessen
the growth rate has probably limited the availability of the genetic resources necessary to
improve the ground cover velocity and winter greenness [121].
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4. What Are the Achievable Goals with the Help of Genetics?

Anthropogenic activities lead urban environments to be affected by many ecological
issues of different natures, starting from pollution, which has an impact on soils as well as on
water and air [122–125]. Plants, in addition to withstanding environmental conditions and
not contributing to pollution, can directly reduce the contamination already present and in
general provide ecosystem services that, consequently, improve the environmental state and
human health [126,127]. The ability to offer a beneficial effect on the territory is an aspect
of great interest for urban contexts that should be considered in breeding programs and
urbanistic management [123]. Indeed, the setting of green areas can improve slope stability
reducing erosion [128], it can favor faunal resettlement enhancing biodiversity [129], and
can reduce rainfall water surface runoff favoring infiltration into the soil [130]. In addition,
it has been demonstrated that plants can limit the phenomenon of urban heat islands
by mitigating thermal changes, by increasing evapotranspiration, shadowing, radiation
reflection and moisture traps, hence saving energy used for cooling [131,132], keeping
lower noise pollution [133] and reducing the CO2 emissions absorbing the gas through
leaves [134]. Another important aspect influencing the choice of a precise cultural species
for specific purposes is the ability to provide plant products, particularly food, and their
intended use, whether commercial or for private self-consumption. Strongly related to
this last factor, surface availability is above the main determinants that can influence
the possibility of having an adequate level of productivity. This is in general the largest
bottleneck, as space in urban areas is often very limited and indirectly forces specific use
choices and selection priorities [104]. Last, although it is not a primary concern for genetic
selection plans, the supply of the psychosocial benefits that are derived from the creation of
green urban spots assumes an important role in cities, where the high human presence and
the reduced availability of cultivated areas are typical [135].

4.1. Phytoremediation

Regarding the causes of pollution in urban areas, the major responsibilities are heavy
metals, such as cadmium, lead and zinc, mainly found near roads [136], and organic
compounds, such as petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons
(PAHs), chlorinated solvents, explosives and polychlorinated biphenyls (PCBs) [137–139].
For a long time, it has been known that several woody and herbaceous ornamental species
are able to reduce the presence of these molecules in the environment, a process that is
called phytoremediation, with methods including the accumulation (phytoextraction) or con-
version to harmless forms (phytodegradation) of pollutants [140]. The higher dimensions
allow woody plants to absorb larger quantities of pollutants by roots and from deeper
soils. In contrast, herbaceous plants can be used in small spaces and can be replaced
more frequently, which is a useful aspect to avoid the risk of dispersion of the absorbed
pollutants [141]. Instead, more difficulties can be seen in the use of food plants for phy-
toremediation, unless in the case of total contaminant degradation or if the accumulation
occurs in completely separate organs from those related to commercial products. Regarding
woody plants, species of the genera Populus and Salix are the most interesting for phytore-
mediation. Nevertheless, other species, such as Ailanthus altissima (Mill) Swingie, Betula
pendula Roth, Carpinus betulus L., Platanus × hispanica Mill. Ex Muenchh. “Acerifolia” and
Robinia pseudoacacia [142], have been recognized as promising choices for phytoremediation
purposes, although in some cases, as for Ailanthus altissima, some of their physiological
properties make them invasive species. Among herbaceous ornamentals for which the
capacity of pollutant presence reduction has been assessed, there are Dianthus chinensis L.,
Impatiens balsamina L., Portulaca grandiflora Hook., Portulaca oleracea L., Tagetes spp., and
Vinca rosea L. [141]. Although many suitable species for phytoremediation in urban areas
have been selected, genetic improvement programs, including phytoremediation capacity
as a trait of interest, have not yet been carried out with either classical or MAB approaches.
Important information on the molecular bases has been obtained in the model species
not employed in urban areas Arabidopsis and rice, identifying several responsible genes



Horticulturae 2022, 8, 761 10 of 25

of heavy metal uptake, translocation, vacuolar sequestration, and genic regulation [143].
Using nontransgenic techniques, in rice genotypes with mutations in genes related to this
aspect were identified after irradiation with mutagenic agents, and varieties of this cereal
were selected with MAB methods only for low accumulation of cadmium or arsenic to
avoid the risk of toxic molecules’ presence in the edible products [18,144,145]. Nonetheless,
these goals highlight the potential of using the same approaches to the opposite objective,
hence, to obtain consistent heavy metal accumulation, and to extend this methodology also
to plants suitable for urban areas. In addition to high toxic molecule uptake, accumulation,
and degradation capacity, other traits of interest for future plant breeding programs for phy-
toremediation are size, surface and architecture of roots. They ideally would be designed
to have the maximum pollutant interception capacity, given space restrictions and without
incurring the risk of soil failure, especially along roadways [46]. Another important factor
to consider in breeding varieties destinated to phytoremediation is avoiding the return
of the absorbed pollutants to the environment. Therefore, for species that accumulate
pollutants in their leaves, selecting genotypes without leaf scattering can be relevant [141].

4.2. Air Purification

The removal of CO2 and gaseous pollutants, such as carbon monoxide, ozone and
nitrogen dioxide, is performed by plants through interception by their stomata, while
particulate matter (PM10 and PM2.5) adheres to leaf surfaces with the aid of wind currents,
where it is then absorbed [146,147]. The effects of plants in reducing atmospheric pollution
in cities were studied, demonstrating their potential, particularly that of trees, in improving
air conditions [148,149]. It has been reported, for both woody and herbaceous species, that
plants with a high presence of leaf hair or wax cover are the most performant in capturing
PMs [150,151]. Indeed, wax layers facilitate PM adhesion, while hair greatly extends the
surface available to intercept composts, a factor influenced also by leaf morphology, leaf
area index (LAI), and, in general, aboveground parts’ sizes. Leaf fineness and porosity
are also important to favor air movement through the structure without being thrown
away. In addition, the maintenance of the leaves for the entire life cycle is relevant to
always guarantee pollutant removal services; hence, choosing deciduous trees can be
limiting [46,152]. Finally, another aspect to consider is the single species’ susceptibility
to pollutants. In fact, there are plants, such as some conifers, that are evergreen and very
efficient in particulate absorption, due to their complex shoot spatial structures, but they
are also particularly susceptible to these pollutants, making them possibly unsuitable for
the most polluted urban areas [122,148,150]. The reported traits are very interesting in
species selection and genetic improvement for air purification purposes. Among the most
performative woody and shrub species, Albizia julibrissin Durazz., Betula pendula Roth.,
Cinnamomum camphora (L.) J. Presl, Nerium oleander L., Pinus mugo Turra, Pinus sylvestris L.,
Stephanandra incisa (Thunb.) Zabel, Taxus x Media Rehder, and Taxus baccata L. have been
considered for their air pollution tolerance and PM absorption capacity per leaf surface
unit [150,153]. As previously reported, despite their small dimensions and their low unit
absorption of pollutants, herbaceous plants have anyway raison d’être, considering the high
plant density for a given surface and the possibility of coupling them with trees, allowing
for a synergic effect due to the absorbance of harmful molecules at different height levels
and of different types [46]. As potentially interesting herbaceous species for PM removal
from the atmosphere, Sisymbrium loeselii L., Polygonum aviculare L., Convolvulus arvensis L.,
Chenopodium album L., Achillea millefolium L., Berteroa incana (L.) DC., and Galinsoga parviflora
Cav. have been reported [151].

4.3. Improving Soil Stability

Soil erosion, especially on slope surfaces, is a well-known issue in urban environments
and is favored by high compaction and limited drainage capacity. This phenomenon induces
hypoxia, water runoff and flooding, and increases the risk of landslides that are potentially
dangerous for viability and construction [154,155]. Plants can improve soil stability mainly
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through the root system, which helps in several ways, such as by anchoring the ground
to provide physical support, creating additional pores for oxygen and water infiltration,
or supplying organic matter, which induces stable aggregate formation [156–159]. Hence,
species must be selected and varieties developed researching high root dimensions, number
and stiffness, as useful traits to support the soil because of hardness and tensile strength [160].
Regarding growth habits, roots that grow parallel and close to the surface improve the soil
in-plane tensile strength, while roots penetrating deeper and perpendicular to the surface en-
hance shear strength [161]. However, it is not possible to determine the best habit regardless
of soil conditions: in the case of rocky slopes with limited soil availability, plants with superfi-
cial root systems must be rewarded; in contrast, if there are adequate soil depths, deeper roots
guarantee more stability, and hence, plants having them should be preferred [158]. Attention
must also be paid to the canopy, which is important to avoid erosion by rainfall water. High
leaf area, elevated branch presence, dense and compact growth habits allowing high plant
density can lead to homogeneous soil cover, intercepting more water and gradually reaching
the soil. In this context, as already reported, focusing not only on trees but also on turfgrass
and shrub selection can be interesting, since different vegetation types, when combined in
the same place, can provide synergic benefits, such as multiple levels of canopy to intercept
water at different heights [162]. Not including Poaceae, the available literature evaluating
suitable species for erosion control, such as Lantana montevidensis (Spreng.) Brinq., Lavandula
lanata L., Origanum vulgare L., Rosa abyssinica R. Br. ex Lindl., and Rosmarinus officinalis L.,
were reviewed by Francini et al. [163].

4.4. Food Production

Plants grown with food productive aims must be subjected to different standards if
their production is for commercial purposes, in the context of farms, or if they are intended
for self-consumption, as in the case of public spaces and private gardens cultivations.
In the first case, it is more important to develop cultivars selecting them for their yield
amount and specific qualitative aspects related to products’ shelf life and subjection to
food processing [164–166]. Many breeding plans focusing on crop productivity have been
carried out during the last century by means of conventional methods. Recently, genomic
information about coding regions related to production traits and associated molecular
markers has become available, particularly in horticultural species [167–169]. This can help
breeders enhance the constitution of modern varieties. Compared to productivity traits,
factors such as low maintenance requirements, environmental benefits, and decorative
aspects are of greater interest in horticultural species to be used in home gardens or
public urban spaces than in urban commercial farms [170]. Currently, there is no evidence
that horticultural cultivars destinated for self-consumption are genetically different from
those employed in farms, hence there is a need in developing the former by rewarding
specific traits.

As previously reported, even more in the case of commercial destinations, surface avail-
ability can be the most limiting factor in planning an urban plantation. Strategies such as
vertical farming, possibly coupled with artificial lights and soilless cultivation systems, could
provide solutions to obtain an adequate product quantity for farms while limiting the surface
needs [171]. Instead, not having high production level requirements, the possibilities to use
horticultural plants are greater when considering private and community gardens, also ex-
ploiting simple growth systems such as pots and planters. In any of the mentioned cases, it is
important to adopt small-sized plants in terms of roots, shoots, or low lateral growth. For the
most important horticultural species, selections for dwarf or compact phenotypes have been
made. As an example, in tomato (Solanum lycopersicum L.), which is one of the most cultivated
horticultural crops worldwide, bush varieties with determinate growth were selected and are
some of the most common cultivar types on the market [172–174], even if breeding programs
mainly focused on enhancing yield, abiotic and biotic tolerances, product shelf life, organoleptic
properties and nutritional values [99,175,176]. A cultivar that combines small-sized mutations,
SP (SELF-PRUNING), d (dwarf ) and mnt (miniaturize) [177], is represented by Micro-Tom, which
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has attracted much attention as a model phenotype for plant studies, as it reaches 10–20 cm
in height, has a short life cycle with fruits suitable for harvesting 70–90 days after sowing,
and bears plant densities up to 1357 plants/m2 [178]. Even if it was originally bred for home
garden purposes [178,179], the Micro-Tom variety is now commonly used in laboratory appli-
cations for dwarfism studies, as it is particularly suitable to be transformed [180] and to study
its possible application for cultivation in space vehicles [181,182]. Crosses between dwarfed
varieties and others characterized by high sensory qualities of the products (i.e., sweetness) can
represent a possible solution to combine the organoleptic characteristics with little dimensions,
as demonstrated by Scott et al. [183].

Regarding innovative indoor production systems, such as vertical farming, soilless
cultivations and plant factories with artificial lighting (PFALs) [171], the breeding pri-
orities strictly differ from outdoor systems. The controlled environments make plants
less affected by pathogens and pedoclimate conditions, allowing stress resistance to be
of minor importance [184]. On the contrary, high productive capacity in quantitative and
qualitative terms under low light intensities or specific wavelengths can be of primary
importance, being the energetic costs a big limit for artificial lighting systems [185,186].
Light-related aspects, such as photoperiod, also influence several phenological stages,
such as stem elongations and flowering. Hence, developing genotypes responsive to
specific manipulation of these factors can lead to advantages such as shorter productive
cycles, better harvesting synchronization, and growth habits suitable for the growth sys-
tem spaces [186,187]. For the obtainment of food products derived from insect-mediated
fertilization, the settle of pollinators is often conducted opening the growth environments,
hence enhancing the risk of pathogen introduction. For this, it can be of interest for the
plant species involved, to develop apomictic cultivars, i.e., able in producing fruits without
requiring fertilization [188,189].

4.4.1. Leafy Vegetables

Aiming at exploiting limited urban spaces for commercial food production or pri-
vate consumption, high attention should be given to leafy vegetables, which can provide
food products needing on average less surfaces and in shorter times compared to fruit
species [184,190,191]. A commercial typology of great interest nowadays and for which
leafy vegetables are the most popular cultures is fresh-cut production. It consists of fruits
or vegetables which have undergone minimal processing after harvest (e.g., trimming,
washing, decontaminating, packaging), in order to provide ready-to-eat products main-
taining their fresh state. The main issue, being the processing made before passage to the
distribution chain, is the higher perishability compared to non-fresh-cut products [192].
The leafy vegetables most commonly used for fresh-cut production are spinach (Spinacia
oleracea L.), kale (Brassica oleracea L. var. acephala D.C.), salad rocket (Eruca sativa Mill.),
wild rocket (Diplotaxis tenuifolia L.), corn salad (Valerianella locusta L.), chicory (Cichorium
intybus L.), curly endive (Cichorium endivia L. var. crispum), and lettuce, especially looseleaf
varieties (Lactuca sativa L. var. acephala) [193,194]. To date, lettuce is the most popular
species also in vertical farming [195]. In the last decade, breeding for fresh vegetables was
mostly based on improving yields and postprocessing performance in terms of shelf life,
leaving other aspects to lower priority, such as biotic and abiotic resistance. Moreover, the
attention was focused mainly on tolerance to high plant density and hypoxia, post-cutting
recovery ability, low core length, solid midrib and good organoleptic and nutritive pro-
files [192,196,197]. To select cultivars with less browning susceptibility after cutting, the
use of browning activity-related enzymes and volatile molecules responsible for off-odors
as metabolic markers have been proposed [196]. The market increment of the ready-to-eat
products allows farms to harvest leafy vegetables at a very early maturation stage, even
further reducing the crop cycle, strongly enhancing the sown density and obtaining higher
yields per surface unit [194]. Baby leaf lettuces such as Green Leaf, Red Leaf, and Lollo
Red, hence cultivars particularly suitable in providing quality products in a very limited
growth time, have been developed and demonstrated to be better than whole-head lettuce
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in terms of harvest index, simplicity of being processed, oxidation after cutting reduction
due to smaller stem diameter and appreciation by consumers [198]. Developing new baby
leaf varieties can be very interesting to farms but also to private urban gardens for their
cultivation in pots and planters, especially in balconies and other tight spaces.

4.4.2. Edible Flowers

Innovative food production species suitable for urban areas, whose products are hav-
ing a continuously increasing commercial interest, are edible flower plants [174]. Edible
flowers present innovative and original organoleptic characteristics and can be highly
nutritive for their nutraceutical values, such as the elevated content of health molecules
such as antioxidants, e.g., flavonoids, phenolic acids, and alkaloids [199]. Flowering plants
are already one of the first choices for small spaces in cities due to their high aesthetic effect,
but species able to provide edible flowers can combine ornamental value with the supply
of innovative food products. These species include begonia (Begonia x tuberhybrida Voss),
rose (Rosa spp. L.), chrysanthemum (Chrysanthemum spp. L.), pansy (Viola × wittrockiana
Gams), lilac (Syringa vulgaris L.), elder (Sambucus nigra L.), and Japanese wisteria (Wiste-
ria floribunda (Willd.) DC.) [200,201]. Breeding of flowering species has focused almost
uniquely on quantitative, morphological, and aesthetic aspects of flowers [45], aside from
biotic and abiotic stress tolerance. Good values for these traits were mainly reached using
hybridization, also the interspecific trait, followed by vegetative propagation of the most
performative individuals [202,203]. This has made the genetic background of varieties
highly heterozygous and, in some cases, allopolyploid or aneuploid. The genomic complex-
ity, coupled with a relatively low economic importance for single species in comparison
to that of open-field crops, led to severe difficulties in molecular marker development
attempts and hence in starting MAB programs [202,204]. However, in recent years, the
advent of NGS technologies has made it possible to obtain whole-genome sequences or
high-density linkage maps for the most important ornamental species, providing powerful
tools for future genomic-based breeding applications [205–208]. Regarding edible flower
plants, the biochemical characterization of products was made for the most important
species [209–211], but there is no evidence of genetic improvement programs for the obtain-
ment of high organoleptic and health-related molecules content as selection criteria, which
can be detected with the use of specific assays or analyzing molecular markers linked to
genes controlling these aspects. The improvement of these traits in cultivars, coupled with
that of products’ shelf life, with flowers being particularly delicate and their appearance
preservation being significantly important, is a key factor in promoting edible flower plant
diffusion in cities [200].

4.5. Biodiversity Conservation

Urban environments are known to be characterized by low levels of biodiversity,
and the increase in urbanization inevitably leads to a reduction in the variability of life
in ecosystems [212]. On the contrary, the setting of green areas plays an important role
in conserving and also improving biodiversity, favoring the resettlement of wild plants,
enhancing their local genetic diversity [213], and providing the right habitat for many
animal species through the supply of suitable places for nesting and sheltering or to find
food sources [214]. Improving biodiversity can positively influence the ecosystem services
provided in the long term, strengthening the resilience to environmental changes [215].

One of the most endangered animal categories in cities without plants is that of
pollinating insects, being nectar and pollen primary sources for their sustenance [216,217].
To set plants in green spaces capable of attracting insects, first, it is important to focus on
allogamous species with entomophilous pollination. Flower ornamental plants are the
most effective, given the attractiveness they have to pollinators due to their flowers. Traits
to be considered in plant breeding programs for developing varieties aimed at enhancing
insect biodiversity comprehend flower size, morphology, color and scent, pollen and
nectar production quantity, and flowering period longevity [129,218,219]. An important
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aspect on which many studies have focused is the role of native plants in attracting insects
in comparison to exotic species, but researchers have not reached a consensus on the
matter [220]. The traits reported can be good indicators of insect resettlement, but to assess
the potential of a variety in improving pollinator biodiversity in a specific environment, it is
necessary to count and recognize flowering-visiting individuals for a few years. Garbuzov
and Ratnieks [129] evaluated the ability to attract pollinators of 32 garden flowering plant
varieties, counting them over two summers in different experimental gardens in Sussex.
They noted that Agastache foeniculum (Pursh) Kuntze, Lavandula x intermedia Emeric ex
Loisel. var. Gros Bleau, Edelweiss and Hidcote Giant, and Nepeta x faassenii Bergmans ex
Stearn var. Six Hills Giant are the most performant plants for the aim. Although works on
varietal improvement related to this aspect are not available in the literature yet, providing
traits of interest and putative suitable species can favor their insertion into plant breeding
plans aimed at enhancing biodiversity.

Despite the setting of green species is in general linked to biodiversity enhancement
in an urban area, if it regards the introduction of alien plants, there is a risk of negatively
influencing the ecosystem balances due to the risk of invasiveness. In fact, specific traits of the
introduced varieties or species can make these plants not only problematic for environmental
management as a consequence of their high spread but also predominant in the hoarding
of limited resources. This confers them a major fitness advantage in comparison to native
plants, reducing the survival possibilities and the reproductive success of these last [221,222].
The competition effect can influence the present biodiversity at the interspecific level, but it
may be accentuated at the intraspecific one, likely because of the more probable sharing of an
ecologic niche between the introduced varieties and autochthonous populations of the same
species [223]. There is a wide range of genetic traits that can make the plant invasive, and
they differ depending on species and environment characteristics. However, they generally
present a greater capacity for growth under specific environmental conditions (expressible
with parameters, e.g., relative growth rate, leaf area index, earliness in blooming, root system
development capacity), reproductive and dispersal efficiency (e.g., seed production, flowering
duration, seed dispersal distance) [224,225]. These factors often match with traits of interest;
hence, it may be not possible to completely avoid the risk of enhancing the invasive potential
of selected plants in breeding programs. Another important aspect that can reduce biodiversity
in the case of non-native plant introduction is related to intraspecific or interspecific hybridiza-
tion. In fact, progeny generated through crossing between the introduced plants and native
populations of the same species or of compatible species have more chances than the parental
lines in presenting competitive traits and become invasive, due to higher genetic diversity,
heterosis, trait fixation or trait novelty [226–229]. Therefore, if the fertilization rate within native
populations is lower than that between native plants and non-native plants or hybrids, the
survival of the former is threatened. Regarding ornamentals or species for which reproductive
capacity is not of interest, a possible strategy to counteract this risk is to develop sterile varieties,
such as exploiting odd ploidy levels, canceling their possibility of colonizing the surrounding
environment [230].

4.6. Psychosocial Benefits

Finally, other important services supplied by green urban areas are the psychosocial
benefits derived from their establishment. The sense of being in contact with nature due to
the presence of plants in the surrounding environment indeed has several psychological
effects on urban communities. For example, making people feel more relaxed and restored,
enhancing social cohesion, and improving fitness through the promotion of outdoor physi-
cal activities as well as improvement of health through the reinforcement of the immunity
system [135]. In general, it is very difficult to define which of the plant traits are useful to
provide specific psychosocial benefits to urban communities, but it is known that visual
factors such as flower color, morphology, and sizes, as well as the emission of scents, are
appreciated not only for their decoration potential but also because of their contribution to
the perception of higher psychological well-being. This regards most of all flowering orna-
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mental plants, for which these traits are some of the most researched in current breeding
programs [45].

5. Summary and Outlook

The first real difficulty of an urban context lies in the definition and list of diversified
typologies of green spaces coexisting often in neighboring areas, created with purposes
ranging from niche food production to pure ornamental appearance. For these reasons,
a simplification of the system itself, with the definition in macro areas, is of primary
importance to focus the attention on the various factors characterizing and influencing
such environments. As mentioned in the above sections, genetic/genomic approaches have
largely contributed to the development of improved varieties with resilient traits of interest,
and the use of molecular markers has amply demonstrated its potential, making it one of
the most useful predictive tools in genetic improvement, not only for major plants or in
crop science. In fact, in the post-genomics era, there is a striking abundance of genomic
resources, such as genome sequence assemblies, germplasm sequencing data and gene
expression atlases, for species potentially employed as urban vegetation [14].

This review is intended to evaluate the potential genetic aspects that must be consid-
ered in a breeding program for varieties or species to be grown in an urban context. These
characteristics must take into account both the adaptability of the plant to the specific area
where it must grow and to the purposes for which it is used. As suggested by Henderson
and Salt [231], studies on biodiversity, for example, through the genetic characterization
of plant germplasm collections and a correct hierarchy of selectable physiological and
environmental parameters, can provide a potential genetic resource from which to appeal
for targeted planning. Generally, the selection and use of favorable effect alleles in breeding
programs are required to enhance genetic variance and to improve the rate of genetic gain
in all environmental landscapes, but even more so in an urban scenario, an integrated ap-
proach is required to realize genetic gain through the modernization of breeding programs.
Thus, in such a context, the appropriate choice of parents and optimized breeding pipelines
for the fixation of target alleles present potential ways to enhance breeding efficiency and
developing modernized breeding programs will help realize higher genetic gains in urban
contexts for developing climate changes-resilient species.

Furthermore, a research improvement in the horti-floricultural sector with new va-
rieties to be entered into the urban market can lead to a boost in socioeconomics that
encourages the spread of vegetable, flower, and ornamental species in public and private
spaces, with particular reference to environments where the presence of vegetation has so
far been limited. In addition, as previously described, it turns out to be an investment in
terms of reduction in greenhouse gas emissions and pollution, enhancement of territorial
biodiversity, protection of ecosystems, etc. More efficient development of plant varieties
can also promote breeding and nursery companies, leading them to increase and diversify
the range of products and initiate innovative genetic progress plans. The certification of the
products obtained through registration in the official variety registers also guarantees the
economic benefit, certifying the intellectual property and safeguarding against fraud.

In conclusion, as summarized in Figure 2, the characterization of the urban vegetation
with the best genetic profiles represents the new green challenge in urban planning to have
the right genetics in the right place. A simplification and hierarchization of the main aspects
that characterize an urban context, such as the surface availability, productive destination,
adaptability, sustainability, and benefits contribution (details are reported in the text),
play a key role in a breeding program. The identification of more appropriate starting
genetic resources, by phenotype collections and physiological traits, is fundamental for the
identification of appropriate traits/donors/parents and subsequent crossing programs. The
potential application of molecular MAS and MAB and computational tools for performing
genetic and/or genomic-assisted selection. Data generated through these trials can be used
in the selection of specific leader alleles that can be introduced in species improvement
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programs for the constitution of new varieties that respond in a more targeted way to
different needs in an urban area.
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