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Abstract

This chapter aims to provide a hands-on approach to New Keynesian models and their
uses for macroeconomic policy analysis. It starts by reviewing the origins of the New Key-
nesian approach, the key model ingredients and representative models. Building blocks of
current-generation dynamic stochastic general equilibrium (DSGE) models are discussed in
detail. These models address the famous Lucas critique by deriving behavioral equations
systematically from the optimizing and forward-looking decision-making of households and
firms subject to well-defined constraints. State-of-the-art methods for solving and estimat-
ing such models are reviewed and presented in examples. The chapter goes beyond the mere
presentation of the most popular benchmark model by providing a framework for model
comparison along with a database that includes a wide variety of macroeconomic models.
Thus, it offers a convenient approach for comparing new models to available benchmarks
and for investigating whether particular policy recommendations are robust to model un-
certainty. Such robustness analysis is illustrated by evaluating the performance of simple
monetary policy rules across a range of recently-estimated models including some with fi-
nancial market imperfections and by reviewing recent comparative findings regarding the
magnitude of government spending multipliers. The chapter concludes with a discussion of

important objectives for on-going and future research using the New Keynesian framework.

Keywords: ~ Monetary macroeconomics, Keynesian models, New Keynesian models, dynamic
stochastic general equilibrium models, New Neoclassical synthesis, model
comparison, rational expectations, policy evaluation, policy robustness, monetary
and fiscal policy.
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1 Introduction

What is New Keynesian Economics? In their 1991 introduction to a collection of seminal contri-
butions Greg Mankiw and David Romer gave the following answer: (i) New Keynesian theories
of business cycles posit that fluctuations in nominal variables like the money supply influence
fluctuations in real variables, like output and employment; and (ii) real market imperfections
such as imperfect competition or imperfect information also have an important influence on eco-
nomic fluctuations. At the time, they contrasted New Keynesian thought with real business cycle
theory that emphasized technological disturbances and perfect markets (cf. Kydland and Prescott
(1982)). Constraints on price or wage adjustment constituted a central element of New Keyne-
sian models of the economy. A first wave of New Keynesian models following the 1970s rational
expectations revolution, such as Fischer (1977), Phelps and Taylor (1977) and Taylor (1979a.b),
used long-term nominal contracts to explain how demand shifts cause real fluctuations even if
expectations are rational and the shifts are anticipated.

The ensuing debate between real business cycle and New Keynesian theorists, and the succes-
sive extension and empirical application of both types of models, eventually triggered a second
wave of New Keynesian models or monetary business cycle models that aimed to marry key
ingredients of both approaches. The small-scale model of Goodfriend and King (1997) and
Rotemberg and Woodford (1997) was quickly extended with additional decision aspects and
constraints. These models, which are frequently referred to as New Keynesian dynamic stochas-
tic general equilibrium (DSGE) models, are exemplified by the medium-scale model of the U.S.
economy of Christiano et al. (2005). Nowadays, medium- to large-scale DSGE models are
routinely used by economists at central banks and international institutions to evaluate monetary
and fiscal stabilization policies.

The objective of this chapter is to explain how to build current-generation New Keynesian

DSGE models, how to estimate them and how to use them for policy design. Given their in-



fluence on current macroeconomic thinking and policy analysis such a hands-on introduction
should be useful for any reader interested in macroeconomics. However, several of the topics
addressed in this chapter should also be of interest to a wider readership that uses computable
general equilibrium modeling in many other areas of economic policy making. For example, the
systematic handling of optimizing and forward-looking decision-making by economic agents
subject to a variety of constraints that is practiced in the macroeconomic DSGE literature may be
usefully applied in other areas. Furthermore, the methods used for approximating the solutions
of nonlinear dynamic and stochastic models and for estimating them with economic data may
easily be applied elsewhere. Finally, we review a new approach to model comparison that helps
identifying robust policies under model uncertainty (see Wieland et al. (2011)). Comparative
robustness analyses appear particularly urgent to us, as commentators have criticized macroe-
conomists in general and DSGE modelers in particular, for relying too much on a specific model
and failing to foresee or warn of the risk of global financial crisis and recession. Additionally,
such a comparative approach could benefit practical model-based policy making in other fields
including international trade, economic development and climate change.

The remainder of this chapter proceeds as follows. Section 2 offers a brief history of thought
and additional references regarding the development of New Keynesian macroeconomic models.
Section 3 begins with a detailed presentation of a small-scale New Keynesian model. Emphasis
is laid on the microeconomic foundations of the model and the implied cross-equation restric-
tions on the reduced-form system. We then discuss various extensions that improve its empirical
performance and are regularly included in medium- to large-scale DSGE models used for prac-
tical policy analysis. The section concludes with an illustration of the Lucas critique. Section
4 discusses methods for solving dynamic general equilibrium models and provides an introduc-
tion to Bayesian methods for model estimation. An example is given by the estimation of the
small-scale New Keynesian model on data of the U.S. economy. In the last part of this section

we address some remaining challenges for model estimation. Section 5 presents our approach to



model comparison that allows for systematic and straightforward comparison and evaluation of
macroeconomic models and alternative policies. Section 6 applies the comparative approach to
evaluate the performance and robustness of monetary policy rules when the true model underly-
ing the economy is unknown and the policymaker is instead confronted with a range of competing
models. The second part of this section reviews recent comparative findings regarding the effec-
tiveness of government spending stimulus programs such as the U.S. American Recovery and

Reinvestment Act of 2009. Section 7 concludes with an outlook on further research.

2 The New Keynesian Approach to Monetary Economics: A

Brief History of Thought

The common characteristic of New Keynesian monetary models, compared to earlier models, is
the combination of rational expectations, staggered price and wage setting, and policy rules. The
term is also used to contrast such models with traditional Keynesian models that do not allow for
rational expectations. New Keynesian models rather than the traditional Keynesian models are
the ones commonly taught in graduate schools because they capture how people’s expectations
and microeconomic behavior change over time in response to policy interventions and because
they are empirically estimated and fit the data. They are therefore viewed as better for policy
evaluation. In assessing the effect of government actions on the economy, for example, it is
important to take into account how households and firms adjust their spending decisions as their
expectations of future government policy changes.

In the introduction, we have distinguished two waves of New Keynesian modeling in the
last 35 years. Key driving factors of this scientific process included empirical failures of tra-
ditional approaches, intellectual challenges such as the Lucas critique, theoretical innovations
such as the combination of nominal rigidities with forward-looking and optimizing behavior of

economic agents and the invention of new modeling and estimation techniques. The first wave of



New Keynesian models took off in the late 1970s. The apparent failure of traditional Keynesian
models to satisfactorily explain the 1970s stagflation raised many questions about the connec-
tion between inflation and economic activity and the role of monetary policy in stabilizing the
economy. The famous Lucas critique underscored the need to account for the forward-looking
and optimizing behavior of households and firms in macroeconomic models intended to be used
for policy evaluation. Traditional Keynesian models were typically lacking these elements. Ex-
pectations were modeled as backward-looking, that is fixed combinations of past values of the
respective variables, and the models’ behaviorial equations were not being directly related to
individual optimization.

Innovations in the late 1970s and 1980s lead to the development of the first generation of New
Keynesian models with rational expectations and nominal rigidities that allowed for interesting
interactions between (systematic) monetary policy and real economic activity. These innovations
included modeling of menu costs and overlapping wage and price contracts (Fischer (1977), Tay-
lor (1979b), Calvo (1983)), new methods for solving linear and nonlinear dynamic models with
rational expectations as well as successful estimation of such models using maximum likeli-
hood techniques (Hansen and Sargent (1980), Fair and Taylor (1983)). First-generation New
Keynesian models were extended, enlarged and eventually applied rather intensively in practical
monetary policy analysis at central banks. We highlight the following three models from the
1990s that played an important role for U.S. monetary policy: Taylor’s (1993) model of the G-7
economies, Fuhrer and Moore’s (1995) model with relative-real-wage staggered contracts that
helped explain U.S. inflation persistence, and the Federal Reserve’s FRB-US model described,
for example, in Reifschneider, Tetlow and Williams (1999). All three models are available for
comparison and policy evaluation exercises from the model archive that is discussed in more
detail in section 5.

Another challenge for Keynesian-style macroeconomic modeling arose from the real busi-

ness cycle (RBC) approach to macroeconomic fluctuations propounded by Kydland and Prescott



(1982). Their extension of the neoclassical growth model to study the real (rather than mone-
tary) sources of business cycles delivered a modeling approach that stringently enforced all the
restrictions following from the utility maximization of representative households and the profit
maximization of representative firms on the dynamics of macroeconomic variables. At the same
time the RBC approach put technological innovations forth as the main drivers of business cycles.
Monetary policy has no real effects in the real-business-cycle world and therefore, stabilization
policy is of minor concern. Goodfriend and King (1997) and Rotemberg and Woodford (1997)
presented a first monetary business cycle model using the approach to microeconomic foundation
practiced in RBC research but including also nominal rigidities and imperfect competition. In
this manner, New Keynesian research aims to incorporate Keynesian ideas into the dynamic gen-
eral equilibrium frameworks used in the RBC literature. For this reason, the above-mentioned
monetary business cycle model is alternatively referred to as the New Neoclassical Synthesis
model or the New Keynesian DSGE model. The inclusion of nominal rigidities and imperfect
competition had also been motivated by the failure of RBC models - as seen by part of the New
Keynesian literature - to account for certain empirical regularities (Rotemberg and Woodford
(1996), Gali (1999)).

Recent years have witnessed an explosion in New Keynesian modeling. Importantly, Chris-
tiano et al. (2005) developed and estimated a medium-sized dynamic stochastic general equilib-
rium model with capital accumulation, utilization and investment, monopoly power in goods and
labor markets, price and wage rigidities, and a number of additional frictions, that is adjustment
costs or constraints on household and firm decision-making. While Christiano et al. (2005) used
impulse-response function matching techniques in order to choose values of the model parame-
ters, Smets and Wouters (2003, 2007) showed how the parameters can be estimated more easily
and effectively with Bayesian methods. This approach was quickly popularized and lead to wide-
spread New Keynesian model building at central banks around the world. Levin et al. (2003)

and Taylor and Wieland (2011) provide systematic comparisons of these models with earlier



New-Keynesian models and assess their implications for monetary policy rules. New Keynesian
models offer many uses for practical policy analysis. They can be utilized to evaluate the de-
sirability of different policy strategies and of institutional developments such as the creation of
a common currency area in Europe. Medium-scale models exhibiting a wide range of frictions
have been deployed as tools for forecasting, for evaluating the effects of policy changes and for
elucidating the sources of macroeconomic fluctuations by means of historical decompositions,

eg. Christiano et al. (2005), Smets and Wouters (2003, 2007), Adolfson et al. (2007).

3 Building New Keynesian Models

New Keynesian business cycle models are characterized by a set of key assumptions and ingre-
dients. Similar to real business cycle models, modern New Keynesian models are general equi-
librium models. Equilibrium conditions are explicitly derived from the optimization problems
of consumers and producers. A standard assumption is that agents have rational expectations,
that is agents form model-consistent expectations conditional on the information available. Pro-
ducers have market power over prices which facilitates the introduction of short-run nominal
price rigidities. The presence of nominal rigidities is the key ingredient that distinguishes New
Keynesian models from RBC models and that assigns an explicit stabilization role to monetary

policy.

3.1 A Simple Model with Microeconomic Foundations

This section shortly reviews the small-scale stochastic New Keynesian model that has become
a much-used workhorse model and is now widely taught in the first-year macro sequence in
graduate school (see Gali (2008), Gali and Gertler (2007), Goodfriend and King (1997), Walsh
(2010), Woodford (2003)). The model economy is inhabited by households, monopolistically-

competitive firms, the monetary authority and a government sector. Households decide how



much to consume rather than save and how much labor to supply in order to maximize their
lifetime utility. In turn, firms hire labor in order to produce differentiated goods. In contrast to the
RBC literature, firms do not act under perfect competition but under monopolistic competition,
which converts them from price-takers to price-setters. This assumption is necessary to be able to
introduce price stickiness. Specifically, firms can reset prices only once in a while. Due to these
nominal rigidities the monetary authority can affect real activity in the short run because the real
interest rate will no longer be insensitive to movements in the monetary policy instrument, the
short-term nominal interest rate. The government collects lump-sum taxes and consumes part of

the final good. Finally, the model is augmented with a set of stochastic shocks.

3.1.1 Households

The model economy contains a large number of identical households. The representative house-
hold is characterized by the following preferences regarding consumption, labor and real money

balances:

B0 B [U(CMy/B) — 7 (H,)]. (1)
=0

Equation (1) represents households’ expected discounted /ife-time utility, where C; denotes the
household’s consumption of a basket of differentiated goods, M; measures her end-of-period
money balances, P is the price of the consumption good basket in terms of money, and H;
denotes the number of hours worked. The inclusion of real money balances in the utility function
is a standard short-cut to capture their transaction services, see e.g. Woodford (2003).! The

consumption goods basket C; consists of a continuum of differentiated goods

e—1

C = Uolc,(i)sdi]ﬁ, )

! Alternatively, one could model transactions frictions explicitly by introducing a cash-in-advance constraint on
household consumption.



where € > 1 and C; (i) denotes consumption of good i. The price index Z, is then defined as the

minimum expenditure at which the household can buy one unit of C;

H:MEm”ﬂm, (3)

where P, (i) denotes the price of good i. One can show that A,C; = fol P, (i)C; (i) di and

sz(ﬂg)%a. (4)

Thus, household demand for good i depends on its relative price, p; (i) = ]%i), with € representing
the elasticity of demand. A one percent increase in the relative price of good i leads to a reduction
in the demand for this good of € percent.

The period utility function U (C, M/ P) is assumed to be strictly increasing and concave in each of
its arguments, and V' (H ) is assumed to be increasing and convex. Finally, 0 < 8 < 1 denotes the

subjective discount factor. Under rational expectations, the representative household maximizes

(1) subject to a sequence of budget constraints
BC+ M +E Qs B <WH; +M; 1+ B + T + 17, (5

for all 7. B; represents the quantity of a one-period, riskless, nominal government bond paying
one unit of money per bond in period # + 1. Its price is denoted by E,;O; ;1. E/Qy 41 1s equal
to th, where R; is the riskless one-period gross nominal interest rate. The nominal wage rate is
denoted by W;, T; are (possibly negative) lump-sum transfers of the government and I'; denotes

firms’ profits distributed to the household sector. The optimality conditions of the households’



expected utility maximization problem correspond to:

1 Uc (Cry1,mi1) [Pyt

— = BE 6

R, PE Uc (Crymy) /Py (©)

Vi (Hy)

_ = w 7
UC (Cfum[) ! ( )
Um (C,,mt) _ Rt —1 (8)
Uc (Chmt) R; ’

where w, = W, /P, is the real wage. Uc and U,, with m = M/P denote the marginal utility of
consumption and real money balances, respectively, and V' measures the marginal disutility of
labor. We will interpret these optimality conditions when summarizing the complete set of model
equations.

3.1.2 Firms

The economy is inhabited by a continuum of firms of measure one. Each firm i possesses a
production technology

Y, (i) = AN, (i), ©)

where A, denotes a common technology shock and N, (i) denotes labor demand by firm i. In this

simple model, labor is the only production input. Demand for good i is given by
Y (i) = G (i) + Gi (i), (10)
where G; (i) denotes government purchases of good i, satisfying

@@:(5@)8@. (11)

The public consumption good basket G; is defined equivalently to the private consumption good

basket (2).



Firms are price-setters. However, following Calvo (1983), it is assumed that in a given period
each firm can reset its price 7, (i) only with probability 1 — 6. Therefore, each period a fraction
1 — 0 of firms reoptimizes its price while the remaining fraction 6 of firms keep their price un-
changed. Importantly, the probability of a change in the price of a firm 7 is independent of the
time elapsed since its last price change. This price stickiness is an important feature of the model
because it allows monetary policy to affect real variables in the short run.

To produce output ¥; (i), firms have to hire labor. Minimizing production costs for a given de-

mand level subject to the production technology leads to

i

MC[ (Z) — A—,
t

(12)

where MC,; is the Lagrange multiplier representing marginal costs. In equilibrium, marginal
costs of firm i equal the wage divided by the marginal product of labor. Note, that in our model
marginal costs are identical across firms, MC; (i) = MC;. We can then formulate the optimization
problem of firm i that resets its price in period ¢, taking into account that the price set today might

be effective for some time and taking as given the demand for its good, as follows

oo

max Y Q4,07 Yis; (i) [P (i) — MCy)], (13)
0

Pi(i) j=

subject to household and government demand functions, that is equations (4) and (11) respec-

tively. Note,
Uc (Cryjymiyj) [P

=P’ 14
Orivj=B Uc (Coomy) /P, (14)

is the stochastic discount factor. The first-order condition then corresponds to
D EiQp 407 jFE; | B (i) — :MCH—j =0, (15)

J=0

10



where P (i) is the optimal price set by firm i in period 7. Equation (15) reveals that all firms
reoptimizing their price in a given period will set the same price, P (i) = P;. In the case of
flexible prices, equation (15) reduces to P = ﬁMC,. In this case, the optimal price is a constant
markup over contemporaneous marginal costs. In the sticky-price model, the optimal price is
instead a markup over a weighted sum of current and expected future marginal costs. From the
definition of the price index in equation (3) it follows that the aggregate price level is given by

1
1—¢

p=[op e+ (1-0)(B) ] (16)

3.1.3 The Government

The government consumes part of the produced goods. Market clearing of all goods markets
implies
Y, =G +G, (17)

_£€_
€

e—1 —
where ¥, = < fol Y, (i) ¢ di) ', When simulating the model, we will assume that deviations of
government spending from its share in steady state output follow a simple AR(1) process. The

government budget identity is given by

B
P,G,+Bt_1=5’—T,+Mt—M,_1. (18)
t

Hence government spending is financed by a combination of one-period nominal government
bonds, lump-sum taxes (negative transfers) and seigniorage revenues. Note, since optimizing
households base their consumption and savings decision only on the expected present value of
life-time income and taxes are raised in a lump-sum fashion, this model exhibits Ricardian equiv-
alence. In other words, household decisions and government solvency only depend on the present
discounted values of household income and government revenues, respectively, and not on the

particular path of taxes and government debt. Thus, the modeler does not need to keep track of

11



the timing of taxation and the path of government debt. Assuming that the government adjusts
the present value of lump-sum tax revenue to ensure that its intertemporal budget constraint is
satisfied taking as given government spending, nominal prices and seigniorage from money cre-
ation, it follows that the central bank is free to set money growth independently from fiscal policy

considerations.

3.1.4 Monetary Policy

Rather than assuming that the monetary authority controls money growth directly, it is more
consistent with standard policy practice to model monetary policy with an operating target for
the short-term nominal interest rate, R;. The central bank then conducts open market operations
to achieve the operating target for the interest rate in the money market. Here, we define this

interest rate target by means of a simple monetary policy rule that depends on inflation and the

R /m\T= (VPN
Et:<5t> (Ytgap) v (15)

m; = P,/ P, denotes the gross inflation rate between period # — 1 and ¢, and Y** the output gap,

output gap.

that is the deviation of actual output from some natural level, which will be defined explicitly
further below. Variables without a time subscript denote steady state values of the respective
variable. Unsystematic components of interest rate policy are captured by the monetary policy
shock v;. This interest rate rule is assumed to be known by all agents in the economy. As to
the stock of money in the economy, the central bank supplies money to the extent demanded by

households at the current levels of the nominal interest rate, income and prices.

3.1.5 Log-linearized System of Equations

It remains to impose market clearing also on the labor market and the markets for money balances

and government bonds. Then, all model equations may be summarized to discuss the solution

12



of the model and its implications for aggregate fluctuations and macroeconomic policy design.
For convenience, we proceed directly to a log-linear approximation of the model. Nonlinear
approximation methods will be discussed in section 4.

Let X, = log(x;) — log (x), for some variable x;, where x denotes the corresponding steady
state level. Thus, the variable is expressed in terms of percentage deviations from its steady state.
Section 4.1.1 provides an introduction to the method of (log)-linearization. We log-linearize
equations (6), (7), (8), (9), (15), (16), (17) and (19) around the non-stochastic steady state with
zero inflation, that is a gross steady state inflation rate of # = 1. In this manner we obtain the
following set of linear equations that define a local approximation of the complete model near its

steady-state.

. R 1, i
G = EGun—— (R — Eiftys) (20)
N 1 O
A= 26 1)
A 1 A
w = —C—-—————R 22
my oo t (B_I—I)Gm t (22)
Y, = 4 +H, (23)
A C .
o= JG+& (24)
R = BEifys+ kI (25)
R, = tafty+ VP + 7, (26)
The parameters o, 11,0,, and K are defined as follows: ¢ = —Ugcc(( ))C n= Vi, }g( ))H On =

_ Unm (Cym)
Un(C.m)

mand K = w (& + n). We assumed that Uy (C,m) = Upc (C,m) =0,
meaning that utility is separable between consumption and real money balances.

Equation (20) is the log-linearized consumption Euler equation (6). It states that consumption
increases when expected future consumption increases or the ex-ante real interest rate, R; —

E; 7,11, decreases. It is often referred to as the New-Keynesian IS curve once consumption is

13



substituted with aggregate demand. Equation (21) can be interpreted as a labor supply equation.
It indicates that the number of hours worked depends positively on the equilibrium real wage
and negatively on the level of consumption. Equation (22) defines the demand for real money
balances. In this model, the money demand function only serves the purpose to determine the
amount of money that the central bank has to supply at the nominal interest rate implied by the

monetary policy rule. Equation (23) represents the production technology aggregated over all

firms. Equation (24) is the resource constraint, where g, = G’; < Equation (25) results from
combining the optimal price set by adjusting firms, that is equation (15), with the aggregate price
defined by equation (16). This is the so-called New Keynesian Phillips curve. It indicates that
current inflation depends on expected future inflation and the contemporaneous output gap. The
gap is defined as Y2 = ¥, — ¥/ that is the percentage deviation of output from its natural level,
which would be obtained under price flexibility in the absence of the Calvo-constraint on price

adjustment. This natural output level is given by

Fpet = @7

~ o

Finally, equation (26) is the log-linearized monetary policy rule. The percentage deviation of
government spending from its steady state level (as a share of total output), aggregate technology

and the monetary policy shock are assumed to follow AR(1) processes

& = Peli1+¢& (28)
4, = PA/at—l‘f’gtA (29)
O = pud1+ef, (30)

where €/, j € {g,4,R}, are zero mean, constant variance iid innovations. The above set of

linear equations can then easily be solved to obtain the solution functions describing the equi-
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librium dynamics of the endogenous variables. Importantly, unlike the structural equations these
reduced-form solution functions are not independent of monetary policy. Methods for model
solution are discussed in section 4.1. Here we proceed instead with an analysis of the model

dynamics.

3.1.6 Model Dynamics

The mechanisms by which random innovations propagate into persistent fluctuations in endoge-
nous model variables may be illustrated by impulse response functions. They isolate the impact
of a particular shock throughout the economy. In the following we present impulse responses for
a specific parameterization of the linear approximation of the small-scale New Keynesian model
presented in the preceding subsection. The values of the model parameters are chosen as follows.
Assuming that the period length is one quarter, the subjective discount factor is set to f = 0.99
which implies a steady state annualized interest rate of around 4 percent. The parameters in the
consumption demand and labor supply equations are set to ¢ = 1.5 and 1 = 1 as in Ravenna and
Walsh (2006). The preference parameter regarding real money balances is set to a rather high
value of ¢, = 110, consistent with the empirical evidence presented in Andres et al. (2006).
The Calvo parameter is fixed at 6 = 0.75, implying that prices are reset on average every four
quarters. Steady-state government spending as a share of GDP is set to 0.2. Finally, the response
parameters in the monetary policy function, 7, = 1.5 and 7y = 0.5/4, are chosen in accordance
with Taylor’s rule (see Taylor (1993b)). The AR-coefficients of the three structural shocks in
our model are fixed at p, = 0.85, py = 0.9 and p,, = 0.5.

Figure 1 displays the dynamic responses of output, inflation, hours, real money balances,
nominal and real interest rates to a monetary policy shock. Since prices are sticky, the increase
in the nominal interest rate fosters an increase in the real rate as well. Higher real interest rates
induce households to reduce current consumption. Faced with reduced household demand, firms

in turn require less labor. As a result, equilibrium marginal costs decline and create downward-
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pressure on inflation. Note that monetary policy only affects the deviation of economic activity
from its natural level. Thus the responses of the output gap and output (not shown) are identical.
Finally, the rise in the nominal interest rate and the reduction in output both serve to decrease

households’ demand for real money balances.

Figure 1: Monetary policy shock
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Figure 2 reports the dynamic responses to a technology shock. In this case, both, the de-
viation of output from steady state and the output gap, that is the deviation of output from the
flexible-price level, are shown. The improvement in firms’ production technology reduces pro-
duction costs. However, due to price stickiness, only a share of the firms can lower their prices
immediately. Hence, the increase in aggregate demand and output is less than proportional to

the improvement in technology. Therefore, equilibrium hours of work decline temporarily and
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the output gap turns negative. The reductions in inflation and the output gap induce the mon-
etary authority to lower interest rates. However, interest rates do not fall by as much as would
be needed in order to completely offset the decline in the two target variables. In the empirical
literature, the directions of the effects of exogenous changes in technology on various macroe-

conomic variables are controversial, see e.g. the literature overview by Gali and Rabanal (2004).

Figure 2: Technology shock
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Figure 3 displays dynamic responses to a government spending shock. The increase in gov-
ernment demand for the composite consumption good stimulates aggregate demand. However,
we observe that private consumption is partially crowded out and hence total output rises by
less than government spending. The fall in private consumption results from anticipated higher

taxes that reduce life-time household income and from an intertemporal substitution effect due
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to the increase in interest rates following the greater need for financing of government spending.
The interest rate response, however, is not aggressive enough to prevent small increases in the
output gap and inflation. The empirical literature is characterized by an active debate on the
size of government spending multipliers. Gali et al. (2007) have shown that an extension of
the small-scale New Keynesian model of this section with rule-of-thumb consumers can induce
a temporary increase in household consumption following a government spending shock. The
consumption of the rule-of-thumb consumers is simply determined by current income. We will
return to the question of the magnitude of government spending multipliers in section 6, where
we will review recent findings with empirically-estimated DSGE models regarding the impact of

the 2009 U.S. fiscal stimulus program.

Figure 3: Government spending shock
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3.2 Medium-Scale Models for Policy Analysis

While the small-scale model described in the previous section forms a useful starting point for
understanding some of the principal ingredients of New Keynesian modeling, more elaborate
models are needed to perform forecast exercises and policy simulations. In particular, the small
baseline model does not capture the high degree of persistence observed for many macroeco-
nomic variables. It has long been noted that many macroeconomic variables appear to exhibit
hump-shaped responses to shocks. For example, the well-known graduate macroeconomics text-
book of Blanchard and Fischer (1989), which was widely used in the 1990s, motivated theoret-
ical modeling of business cycles by pointing out that U.S. GNP deviations from trend are well
described by an ARMA(2,2) process that implies hump-shaped output fluctuations following
random shocks. Such hump-shaped dynamics also arose naturally in traditional Keynesian-style
empirical macroeconomic models that included multiple lags of endogenous variables in esti-
mated behavioral equations.

More recently, structural vector autoregression (SVAR) models have been employed to iden-
tify specific economic shocks on the basis of minimal structural assumptions. Again, such em-
pirical methods revealed that many macroeconomic variables exhibit hump-shaped responses to
demand-side shocks such as monetary policy innovations, see Christiano et al. (1999). In fact,
the New Keynesian DSGE model of Christiano et al. (2005), which was the first medium-scale
model to fully incorporate recent advances in terms of microeconomic foundations, was esti-
mated by minimum distance methods using an empirical SVAR model as benchmark. Specif-
ically, they minimized the distance between the model and the empirical impulse response to
a monetary policy shock. Thus, their model’s impulse response function to a monetary policy
shock exemplifies the empirical SVAR evidence on hump-shaped dynamics for the U.S. econ-
omy (shown in section 3.2.6). Altig et al. (2005) extend the impulse response function matching
approach to include general technology and investment-specific shocks along with the monetary

policy shock. Again, most empirical dynamic responses of U.S. macroeconomic variables follow
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a hump-shaped pattern. For recent evidence on the dynamic persistence in euro area macroeco-
nomic aggregates see Smets and Wouters (2003) and Coenen and Wieland (2005). Smets and
Wouters (2003,2007) employed Bayesian estimation techniques to estimate medium-scale mod-
els similar to the Christiano et al. (2005) model for the euro area and the United States, respec-
tively. This Bayesian likelihood approach rather than the impulse response function matching
method has become the estimation tool of choice among academics and central bank economists
working with DSGE models.

Recently, Taylor and Wieland (2011) have compared impulse responses of the current-
generation New Keynesian models of Altig et al. (2005) and Smets and Wouters (2007) with
those of an influential first-generation New Keynesian model by Taylor (1993a). While both
types of models deliver hump-shaped dynamics of macroeconomic aggregates after a variety of
structural shocks, the most striking finding is that the U.S. output response to a monetary pol-
icy shock is almost identical across the three models. Apparently, the impact of an unexpected
change in the U.S. federal funds rate on GDP is the same in spite of 15 years of additional data,
new estimation methods and structural assumptions. The model archive and software presented
in section 5 of this chapter allows readers to explore and compare impulse responses and serial
correlations in all of the above-mentioned models and many more.

In the remainder of this section, we present the additional frictions that are typically intro-
duced in medium-scale New Keynesian DSGE models to account for the empirical dynamics
of key macroeconomic aggregates. For example, the model of Christiano et al. (2005) features
additional nominal rigidities not present in the small baseline model such as staggered wage con-
tracts and price and wage indexation. Indexation implies that firms that cannot re-optimize their
prices in a given period instead let their prices evolve with a pre-specified aggregate index such
as the preceding period’s rate of inflation. Additionally, Christiano et al. (2005) employ real
frictions. They introduce capital accumulation along with investment adjustment costs and vari-

able capital utilization. Furthermore, household preferences are modeled with habit formation in
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consumption. These frictions and others are described in the following.

3.2.1 Capital and Investment

In medium-scale models, production of the consumption good typically uses not only labor but
also capital services as inputs. Here, we follow the assumption of Christiano et al. (2005) that
households own the economy’s capital stock and rent capital services to firms in an economy-
wide rental market for capital. Thus, the simple production function of the small-scale model,
equation (9), is replaced with

Y, (i) = A,F (N, (i) K (i) - (31)

Here, K denotes capital services rented from households and F represents a Cobb-Douglas
production function, F (N, (i) ,K? (i)) = N, (i)' ~* (K3 (i)) %, where o € (0,1) denotes the capital

services share in production. The stock of physical capital, K;, follows
Ki=(1-08)K1+S(is,is—1), (32)

where the parameter 6 denotes the capital depreciation rate, i, refers to purchases of the invest-
ment good and the function § represents the technology for the production of new capital goods
as a function of current and past investment. The latter function is meant to capture invest-
ment adjustment costs. Christiano et al. (2005) assume S (ir,i;,—1) = <1 -8 (ljf’l)) iy, where
S(1) =8 (1) =0 and §”(1) > 0. New capital becomes productive with a lag of one period.

Thus, the amount of capital services in the current period can only be varied by changing the

utilization rate of capital, u;, which is set by the representative household

KS =uK,_;. (33)
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Variation in the utilization rate is subject to a cost, a (#;) K;—1. a is an increasing, convex function
with a (1) = 0. The steady-state utilization rate is given by u = 1. R¥ denotes the rental rate of
capital. Ultilization costs and household’s earnings from renting capital services to the firms,
Ri‘u,K,,l, both, enter the budget constraint. Cost minimization by the household then requires
that the marginal benefit of raising the utilization rate equals marginal costs, that is R = o’ (u,).
Log-linearization then implies Gialéf‘ = i, where 0, = % > 0. Empirical estimates of o, tend
to be fairly small (see Christiano et al. (2005)). In turn, the elasticity of the capital utilization
rate with respect to the rental rate of capital tends to be large. Christiano et al. (2005) find that
variable capital utilization is crucial to allow their model to generate the desired inertia in the
inflation response to a monetary policy shock together with a persistent output response. Without
variable capital utilization, firms’ cost of capital would be more sensitive to an expansionary
monetary policy shock, resulting in stronger inflationary pressures and weaker effects on real
output. In the literature, modeling assumptions such as a variable utilization rate are referred to
as real rigidities.

Some studies replace the assumption of competitive markets for production inputs, with the
assumption that these inputs are firm-specific. For instance, if capital is firm-specific, then each
individual firm accumulates capital only for its own use. This specificity represents another real
rigidity. It is used, for example, in Sveen and Weinke (2005) and Woodford (2005). With an
economy-wide market for capital, an increase in demand in a part of the firm sector will increase
the rental price for capital for all firms. By contrast, with firm-specific capital, the individual
firm’s variable production costs are less affected by an increase in demand for some other firms’
products. Importantly, firm-specific production inputs help dampen the effect of an expansionary
shock on inflation as shown by Eichenbaum and Fisher (2007).

Turning to the evolution of investment, the introduction of investment adjustment costs im-

plies that the household’s first order condition with respect to investment involves lagged as well
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as expected future investment
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in addition to the real value of the existing capital stock, which is denoted by 13,". The lag
of investment helps generate endogenous persistence that is not present in the purely forward-

looking baseline New Keynesian model presented earlier. Specifically, investment and therefore

output exhibit hump-shaped responses to an expansionary monetary policy shock.

3.2.2 Habit Formation in Consumption

When consumers form habits, their preferences depend not only on current but also on past lev-
els of consumption. Specifically, we assume that household period utility from consumption
depends on the difference between the level of current consumption and previous period’s con-
sumption.> Modelers distinguish between external and internal habits. External habits relate the
current level of consumption to aggregate past consumption, internal habits refer to individual
past consumption. Assuming internal habits, the representative household’s objective function
(1) is replaced with

B 3, B (U (G = bCio1,M/B) ~V (D). (35)

—

where b € [0, 1] is referred to as the habit parameter. In the case of b = 0, (35) reduces to the
standard utility function without habits. With b > 0, aggregate current consumption no longer
depends solely on expected future consumption but also on past consumption. Consequently,
the consumption Euler equation of the baseline model (20) has to be modified to include past
consumption. Christiano et al. (2005) report a point estimate of » = 0.65. Similar to investment

adjustment costs, consumption habits help to increase the degree of endogenous model persis-

2 Alternatively, some models assume that the ratio between current consumption and previous period’s consump-
tion enters the utility function. See Schmitt-Grohe and Uribe (2005) for an overview of modeling approaches to
habit formation.
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tence. Specifically, the response of consumption to exogenous shocks becomes more inertial and
exhibits a hump-shaped pattern. Without habit formation, impulse responses of consumption
to a monetary policy shock peak in the initial period and then decline monotonically towards
the steady state as in the small-scale model.> To gain intuition, reconsider the Euler equation
from the small baseline model, equation (20), with expected future consumption brought on the
left-hand-side:

ECrr == (R~ Eifyn) (36)

Here, A denotes the first difference operator. Equation (36) indicates that expected consumption
growth in the small baseline model is low, whenever interest rates are low, for example due to
an expansionary shock. This relationship requires that the response to an expansionary shock
starts from a high consumption level and then decreases monotonically in subsequent periods.
Instead, with habit formation, it is the change in the growth rate of consumption that is related to
the interest rate. In this case, low interest rates are consistent with an expectation of a decline in
an initially positive growth rate of consumption. This expectation translates into a hump-shaped

pattern of the impulse response of consumption.

3.2.3 Price Indexation

In the small-scale model, the rate of inflation in the New Keynesian Phillips curve (25) (NKPC)
is a purely forward-looking variable. It depends on the current output gap and expected future
inflation. Solving forward, it is easy to show that current inflation is a function of current and
expected future output gaps. Absent substantial inertia in the output gap or ad-hoc shocks, the
baseline model cannot replicate the empirical degree of inflation persistence. Empirical estimates
of Philips curves support the inclusion of a lagged inflation term on the right-hand side of (25) as

shown, for example by Gali and Gertler (1999). However, such hybrid backward- and forward-

3The response of consumption to a monetary policy shock in the small-scale model is qualitatively equivalent to
the response of the output gap shown in Figure 1.
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looking Phillips curves have been suggested at least since the early 1990s. As it became apparent
that the staggered contracts suggested in the first wave of New Keynesian modeling by Taylor
(1980) and Calvo (1983) did not match the inflation persistence in the data, researchers such as
Fuhrer and Moore (1995) proposed structural interpretations of staggered relative price contracts
that introduced additional lags of the price level in standard contracting specifications.

A rationale for including lagged inflation in the small-scale New Keynesian model of the pre-
ceding section is obtained by introducing price indexation as in Christiano et al. (2005). Under
(partial) price indexation, firms that do not receive a Calvo signal to reoptimize their price in a

given period instead increase previous period’s price mechanically by an amount proportional to

past inflation. Thus, indexation gives rise to the following NKPC:

A Y

o = e, (37)
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where the parameter y represents the degree of price indexation to past inflation. A similar
expression can be derived under the assumption that a share of the firms follow simple rules
of thumb when setting their price as in Gali and Gertler (1999). While price indexation helps
to produce additional inertia in the rate of inflation, there is little microeconomic evidence that
firms change prices continuously as pointed out by Klenow and Malin (2010) and the references

therein.

3.2.4 Sticky Wages

In the baseline model presented before, households and firms interact in a perfectly competitive
labor market. This assumption has rather unrealistic implications for wage dynamics. In fact,
the earliest New Keynesian contributions cited in the introduction to this chapter tended to focus

on staggered wage rather than price contracts motivated by wide-spread use of nominal contracts

4Coenen and Wieland (2002) and Coenen and Wieland (2005) contrast estimates of these different specifications
with U.S., euro area and Japanese data.
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in labor markets. Medium-scale DSGE models therefore generally feature some form of stag-
gered wage setting. Erceg et al. (2000) introduced sticky wages into the small-scale model of
the preceding section. They assumed that households supply differentiated labor services over
which they exhibit some monopolistic power. While each household supplies one type of labor
service, firms employ all types of labor to produce consumption goods. As in Calvo (1983) each
period a randomly drawn fraction of households is allowed to reset their nominal wage while the
remaining fraction demands the same wage as in the previous period. The optimization problem
of a household that is allowed to reset its nominal wage in the current period then consists of
choosing the nominal wage that maximizes her expected discounted lifetime utility, taking into
account that she might not be able to reoptimize her nominal wage for some time in the fu-
ture.’ The optimality condition for the wage setting decision results in a Phillips curve for wage
inflation

) = BEA + kw VT — S, (38)

where #)” = W, — W,_1 is the wage inflation rate, and W$“" denotes the real wage gap, i.e. the
deviation of the actual real wage from its natural level that would be obtained in the absence of
price and wage rigidities. The wage inflation equation replaces the labor supply equation (21) in
the baseline model. The presence of sticky wages induces a more muted response of real wages

to monetary policy shocks.

3.2.5 Financial Market Frictions

The recent global financial crisis has drawn attention to the need for an explicit modeling of finan-
cial market imperfections in New Keynesian DSGE models. Fortunately, this research need not
start from ground zero. A prominent starting point for integrating financial frictions into micro-

founded models of the macroeconomy is the so-called financial accelerator model of Bernanke

3Since labor income differs across households, individual private consumption need not be the same across all
households. A short-cut for avoiding this source of heterogeneity that is often used in the literature, is to assume
that households have access to complete asset markets that allow for full consumption risk sharing.
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etal. (1999). We first present its main features and then discuss some more recent extensions.
Bernanke et al. (1999) introduce credit market imperfections into an otherwise standard
New Keynesian model with variable capital and demonstrate that these frictions contribute to
propagating and amplifying the response of key macroeconomic variables to nominal and real
shocks. Specifically, they consider an agency problem that is due to information asymmetries
in borrower-lender relationships. Their model of the economy is inhabited by three types of
agents, risk-averse households, risk-neutral entrepreneurs and retailers. Entrepreneurs use capital
and labor to produce wholesale goods that are sold to the retail sector. The retail market is
characterized by monopolistic competition. Each period, entrepreneurs accumulate capital that
becomes productive one period later. Bernanke et al. (1999) assume that entrepreneurs have
finite horizons thereby precluding the possibility that aggregate entrepreneur wealth increases
without bounds. Entrepreneurs have to borrow from households via a financial intermediary
to finance part of the new capital. The agency problem arises because the return to capital is
prone to idiosyncratic risk and can only be observed by the financial intermediary if it pays
an auditing cost.® Therefore, the entrepreneurs’ net worth becomes a crucial determinant of
their borrowing costs. If net worth is high, less of the capital acquisition has to be financed via
external borrowing, thereby reducing the severity of the agency problem. The optimal contract in
this environment turns out to be similar to a standard debt contract. The contract is characterized
by a non-default loan rate, th , and a threshold value for the idiosyncratic shock, @/, denoted by
@/. This threshold is defined as the minimum realization of the idiosyncratic shock required in

order for the entrepreneur to be able to repay the loan

o'Rf,\ OiK] = Z/B], (39)

This framework refers to the so-called costly state verification problem of Townsend (1979).
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where Rf is the gross return to capital averaged across firms, Q; is the price per unit of capital
and K,j denotes the amount of capital acquired by entrepreneur ;j in period ¢ for production in
period 7+ 1. The funds that have to be borrowed equal B{ = Q,Ktj — N,J , where N,J is net worth of
entrepreneur ; at the end of period 7. Entrepreneurs accumulate net worth primarily from profits
from capital investment and to a minor extent also from the supply of labor. If the realization of
the idiosyncratic shock lies below the contractual threshold level, the entrepreneur defaults, the
financial intermediary pays the auditing cost and takes over the entrepreneur’s remaining wealth.
Since the idiosyncratic loan risk can be diversified perfectly, the opportunity cost of the financial
intermediary equals the risk-free nominal interest rate. Any aggregate risk is absorbed by the
risk-neutral entrepreneurs as specified in the contract. Each entrepreneur then has to choose the
amount of capital to buy. The optimality condition relates the ratio of external finance costs to
the riskless rate and the ratio of capital expenditures to net worth. The aggregated log-linearized

condition corresponds to

E(Rby) =R = (Or+Ki =) (40)

where the parameter ¥ > 0 is a function of the structural model parameters.” Equation (40)
indicates that the so-called external finance premium, that is the difference between the cost
of external funding and the opportunity cost of internal funds, rises with the amount of external
borrowing. As Bernanke et al. (1999) have shown, unexpected movements in the price of capital
can have considerable effects on entrepreneurs’ financial conditions. The entrepreneurs’ net
worth affects borrowing conditions, which in turn influence investment decisions. For instance,
an unexpected drop in the return to capital reduces net worth of a leveraged entrepreneur by more
than one-for-one. The external finance premium rises, demand for capital decreases, investment
decreases and the price of capital falls, which reduces entrepreneurial net worth even further.
Importantly, the credit market feeds back into the real economy. The counter-cyclical movement

in the external finance premium serves to amplify the response of macroeconomic aggregates

"See Bernanke et al. (1999) for the details of the derivation and conditions that permit aggregation.
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such as output and investment to economic shocks.

In recent years, a number of extensions of the basic financial accelerator model have been
developed in response to the observation of the global financial crisis. These extensions include,
for example, the consideration of nominal instead of real financial contracts, (e.g. Christensen
and Dib (2008)), the incorporation of the financial accelerator in a small open economy model,
(e.g. Gertleretal. (2007)) and in a medium-scale New Keynesian DSGE model, (e.g. De Graeve
(2008)). Meh and Moran (2010) consider the role of financial frictions in a DSGE model that
introduces an agency problem between banks and entrepreneurs as in Bernanke et al. (1999),
together with an agency problem between banks and their creditors, that is households. In this
two-sided agency problem, not only entrepreneurs’ wealth influences business cycle movements
but also the capital position of banks. Furthermore, lacoviello (2005) has developed a financial
accelerator model with financing constraints at the household level in form of collateral con-
straints tied to housing values (see also Kiyotaki and Moore (1997)). Allowing for nominal debt
contracts, he shows that the feedback of the financial market friction on the economy depends
on the type of shock. Responses of output and consumer price inflation to a demand shock get
amplified and propagated whereas the output response to supply shocks is mitigated. In the case
of an unexpected increase in aggregate demand, goods prices and housing prices rise, which in-
creases borrowers collateral value and reduces the real value of their debt. Since the borrowers
in the model have a higher propensity to consume than the lenders, the net effect of this resource
transfer from creditors to debtors is positive and serves to amplify the output response. By con-
trast, a negative supply shock decreases inflation and therefore raises borrowers’ real value of

debt leading to a mitigated output response.

3.2.6 Model Dynamics

How are model dynamics affected by these additional frictions? In order to answer this question

we compare impulse responses in a prototypical medium-scale model estimated by Smets and
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Wouters (2007) with Bayesian methods on U.S. data to the impulse responses in the small scale
model of section 3.1. displayed in Figure 1. The Smets-Wouters model of the US economy in-
corporates capital accumulation with investment adjustment costs and variable capital utilization,
habit formation in consumption, partial price indexation and sticky wages. Figure 4 displays the
dynamic responses of several variables to a monetary policy shock in the Smets-Wouters model.
To facilitate the comparison with the baseline model, monetary policy is assumed to follow
the policy rule defined by equation (26) in both models. In other words, we have replaced the

estimated rule from the Smets-Wouters model with equation (26)%: Indeed, we observe hump-

Figure 4: Monetary policy shock in the Smets-Wouters (2007) model
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shaped impulse responses of consumption and investment. The responses of the output gap and

inflation are more persistent than in the small-scale model, respectively. In fact, the effect of the

8The model archive and software presented in section 5 allows readers to conduct such comparisons rather easily
with a range of different policy rules and many more macroeconomic models.
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policy shock on the considered variables persists beyond the effect on the nominal interest rate.
Also, the inflation response is particularly subdued, being much smaller in magnitude than in the

small-scale model.

Figure 5: Monetary policy shock in two medium-scale DSGE models
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Figure 5 compares the impulse responses of output and inflation in the Smets-Wouters model
to those from another medium-scale DSGE model estimated by Altig et al. (2005). This com-
parison is particularly interesting because Altig et al. (2005) selected the values of the model
parameters in order to minimize the differences between the model’s impulse responses and cor-
responding impulse responses from a structural vector autoregression on U.S. data. Thus, the
impulse responses of the Altig et al. (2005) model are close to the empirical responses to such
shocks when they are identified with minimal structural assumptions. However, it is important

to note that in order to obtain impulse responses to a particular shock, say a monetary policy
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shock, from a vector autoregression one has to make identifying assumptions. Thus, also a vec-
tor autoregression is not free of structural assumptions when it comes to shock identification.
Altig et al. (2005) choose identification assumptions for the SVAR model that are consistent
with the structure of their DSGE model. Finally, note that we have used the monetary policy rule
estimated by Christiano et al. (2005) in the Smets-Wouters model and the Altig et al. (2005)
model. Any differences in the impulse response to a monetary policy shock between the two
models must be due to the other structural equations and parameters. Figure 5 shows that except
for the response in the first period, the impulse response of output in the Smets-Wouters model is
very close to the response in the Altig et al. (2005) model. The impact on inflation is somewhat
different though small in magnitude in both models.

While the government sector is fairly rudimentary in the models considered so far, it is worth
noting that a number of DSGE models have been built with much more detailed characteriza-
tions of the government sector in order to allow more extensive analysis of fiscal shocks and
fiscal rules. Examples are the QUEST III model of the European Commission described in Ratto
etal. (2009) or the European Central Bank’s New Area Wide Model described in Coenen et al.
(2008). Such models include not only lump-sum taxation but also distortionary labor income,
capital income and value-added taxation. Furthermore, they differentiate between government
consumption and government investment and include reaction functions for tax and debt dynam-

ics. We will return to a more detailed discussion of fiscal shocks and policy issues in section

6.

3.3 Using Structural Models for Policy Analysis: The Lucas Critique

Two key ingredients of New Keynesian modeling that distinguish it from the traditional Keyne-
sian paradigm are that (i) the decision rules of economic agents are based on optimization subject
to constraints and that (ii) agents’ view of the future behavior of variables is formed under ratio-

nal expectations. Importantly then, agents’ decision rules inevitably vary with changes in policy.
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This dependence becomes explicit in the system of reduced-form equations. The Lucas critique,
named after economist Robert E. Lucas and formulated in Lucas (1976), questions the validity
of policy evaluation exercises based on estimated reduced-form relationships that - while poten-
tially successful in short-term forecasting - fail to recognize this dependence. Lucas argues that
such econometric models are not suitable for policy analysis because the estimated parameters
are not policy-invariant.

To give an example, let us reconsider the hybrid New Keynesian Phillips curve introduced in
section 3.2.3

K . 1
———Ef, yEp & 41
tt+l+1+ﬁK_t +1+BK“ (41)

where we have added a zero mean, constant variance iid shock €. For simplicity, let us assume
that the policymaker can directly control the output gap ¥**” and monetary policy is described
by the following rule

V8P = 17, (42)

where T < 0. Substituting the policy rule into (41), we obtain

- Y . B 5 KT |
=Tt —F BT+ 43
We guess the following solution for inflation
iy = afty + bef, (44)

where the solution function parameters a and b remain to be determined. This guess implies
E;, 11 = am;. Substituting this expression for inflation expectations into equation (43) and

collecting terms, one can show that a(7) is defined by the stable solution of the polynomial
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a* — % (1+By—x7)a+ % = 0, and the second parameter is defined by b (1) = m

As the notation emphasizes, the coefficients a (7) and b (7) depend on the policy rule parameter
T.
If we use the solution function to substitute out the expected inflation term in (41) and collect

terms, we arrive at

7%; - d] 7%[_] +d2?tgap +d38tﬂ:, (45)
where

Y

d 46

'S T B —a(0)] (46)
K

dy = 47

2 = 15 Bly—a(o)] 47
1

dy = . 48

) 48)

Equation (45) is reminiscent of a traditional Phillips curve. However, equation(45) is a reduced-
form relationship, not a structural equation. Policy analysis based on empirical estimates of d;,
j =1,2,3, that fails to recognize the parameter restrictions imposed by (46) - (48) is misleading,
because the parameters d;, j = 1,2, 3, are not invariant but will change in response to changes
in the policy rule parameter 7. By contrast, when using structural models to analyze changes in
systematic monetary policy, one incorporates the parameter restrictions on the optimal decision
rules of economic agents and therefore automatically takes into account changes in behavioral

reduced-form parameters resulting from changes in policy making.
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4 Methods for Model Solution and Estimation

4.1 Solving New Keynesian Models

This subsection aims to inform the reader of some commonly used approaches for obtaining ap-
proximate solutions of New Keynesian DSGE models such as log-linearization, first- and second
order numerical approximation and certain nonlinear methods. References to available software
are also provided.

Consider a particular model m defined by the following system of nonlinear difference equa-

tions

Et [Wm (x;n+17x;n7 vtm7.um):| = 07 (49)

where the x™'s are n x 1 vectors of endogenous model variables. The model may include current
values, lags and leads of endogenous variables. Such higher-order systems can be written as a
first-order system by augmenting the x” vectors accordingly. The model variables are functions
of each other, of structural shocks, v/, and of model parameters u”'. A variety of approaches
exists to approximate and solve the model in (49). We present three different solution procedures.
The first procedure consists of two steps, namely constructing a linear approximation of the
system of nonlinear equations and then obtaining the exact solution of the linear system. The
second procedure presented is the extended path solution method which does not require prior
linearization of the nonlinear system. Finally, the value function iteration procedure is presented

in the context of a linear quadratic dynamic programming problem.

4.1.1 Linear Approximation

In presenting the derivation of the linear approximation of system (49) we abstract from the

stochastic model components:

ll/m (x;n+1’x;n,‘um) =0. (50)
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A first-order Taylor series approximation around the non-stochastic steady state yields

Al (X) X (X141 —X%), (51)

oy _
0~ W(x)+8—x,(x) X (x; —X) + o

where we have simplified notation in that the model index m and the dependence of v (x4 1,x;)
on the model parameters, U, are suppressed for the moment. The 7 X n matrix ‘;—;’f (X) constitutes
the Jacobian matrix of y (x;1,x;) with respect to x; evaluated at the steady state X. In order to
derive such a log-linear approximation for the case of the small-scale New Keynesian model in

section 3.2, we define

W (x) x diag (X) , B= _3_‘/’ (%) x diag (X) ,

A=
axt+1 Xt

where diag (X) is an n X n matrix with the elements of X on the main diagonal. The log-linear

approximation of the nonlinear system then corresponds to

A1 = B%,. (52)

Following the notation in section 3.2, X; denotes the percentage deviation of variable x; from its

steady state.

4.1.2 Solving a System of Linear Difference Equations

Various methods are available for solving a system of linear (stochastic) difference equations
such as (52) exactly. References include Blanchard and Kahn (1980), Uhlig (1999), Klein
(2000), Sims (2001), and King and Watson (1998, 2002). In the following we use the well-

known method of Blanchard and Kahn (1980). Their method requires that the system of linear
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difference equations may be reformulated as

X1,t+1 X1t
b} :Q 9

Etxz,t+1 X2t

+T'f, (53)

where the vector of possibly (log-)linearized endogenous variables x; has been divided into an
ny x 1 vector of predetermined endogenous variables, x1 ;, and an n, x 1 vector of free endoge-
nous variables, x, ;, with n = 1| +n,. The vector f; contains exogenous forcing variables such as
the exogenous technology variable in the small-scale model presented in section 3.2. The idea is
to transform the variables in a way that facilitates the solution of the system. First, one applies a

Jordan decomposition to the matrix €

Q=A"1JA, (54)

Matrix J is called the Jordan canonical form of €2 and contains the eigenvalues of € on its
diagonal. Then matrix J is partitioned such that J; contains the eigenvalues that lie inside or on

the unit circle and J, contains the eigenvalues that lie outside the unit circle

Ji 0
J= ) (55)
0

The matrices A and I are then partitioned conformably

Al A I
A= . TI'= : (56)

A1 Ap I
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A unique solution of the model exists if the number of eigenvalues outside the unit circle equals
the number of free endogenous variables, n,.2 1If this condition is satisfied, the vector X; =

!/
[x’w x’zJ may be transformed according to
Zy = A)C;. (57)
Then, the linear system (53) can be rewritten as

Z1 441 Ji 0 Zly I
= + Jts (58)
Eizp 141 0 L) \z2s I,

where T = AI". The system of the transformed variables is diagonal.! Therefore, one can
consider the subsystem related to the vector z; separately from the rest of the system. Solving
for z, ;, one obtains

4 :JZ_IE,ZZ’,+1 —J;lfzﬁ. (59)

Iterating forward on this equation, one arrives at

2s= 5" Y (L) DE S, (60)
j=0

by application of the Law of Iterated Expectations. If one transforms again the endogenous

variables in (60), one obtains the solution functions for the free endogenous variables

5}

324 =~y Morxiy = Ay Ly Y () ToE S (61)
j=0

9See Blanchard and Kahn (1980) for further details.
101f the number of distinct real eigenvalues is smaller than 7 so that Q is not diagonalizable, then the superdiagonal
elements corresponding to repeated eigenvalues are ones rather than zeros.

38



Finally, the solution functions for the predetermined endogenous variables can be obtained by

substituting (61) into (53)

5}

X1 = (Qu _QIZAZ_QIAZI)XIJ + (T —leAEZIJZIfz)ﬁ — QAL ! D (Jg_l)jszrfrH-

j=1
(62)
Here, matrix €2 has been partitioned conformably
Qp Qp
Q= : (63)
Q1 Qo

4.1.3 The Extended Path Solution Method for Nonlinear Models

In certain cases, linear approximations are not even locally accurate. An example would be the
zero floor on nominal interest rates that arises from the availability of cash as a zero-interest-
paying asset to savers and limits the central bank’s ability to cut interest rates in deep recessions.
In this case, it is essential to use a method that respects the nonlinearity of interest rates. An
example of such a method, is the extended path (EP) method of Fair and Taylor (1983). It can be
used to obtain a numerical solution without prior linearization of the model equations and allows
for the correct consideration of nonlinear equations such as the above-mentioned non-negativity
constraint on nominal interest rates.!'. Thus, it avoids the approximation error that would arise
in the context of the log-linearization method that allows for negative nominal interest rates. The
basic idea of the approach is to solve (49) iteratively for # = 1,..., T, each time setting future
innovations to their expected value of zero.

The EP solution method proceeds according to the following five steps:

1. Begin by choosing the initial length of a forecast horizon » and the initial conditions for

We will discuss an application of this method in an analysis of implications of the zero bound on nominal interest
rates for the effectiveness of fiscal stimulus in section 6.2.. For an early application regarding the effectiveness of
monetary policy in deep recessions, the reader is referred to Orphanides and Wieland (1998)
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the state variables. Then, set the innovations v;; =0, fori=1,...,n.

. Next, guess values %, ; for x,4, i =0,...,n.

. Solve the resulting nonlinear equation system

1//<)E£+l,xs,vs,u) =0 (64)

forxs, s =t,...,t +n—1, for example, by iterative methods. Standard methods for nonlinear
equation solution that can be used are described in Judd (1998) and Heer and Maussner

(2005).12

. Check whether the obtained values for x;; are within a selected tolerance criterion of the

guesses )E{ 4 fori=0,...,n—1. If not, return to step 2 and update your guesses )E{Ll = X¢4i

Otherwise, continue with step 5.

. Denote the values obtained for x; by x¥, where k counts how many times step 5 has been

reached. If k£ = 1, increase the forecast horizon n by one period and return to step 2.

Otherwise, check whether the values x* are within a selected tolerance criterion of the
values xi‘*l. If so, xf is the numerical approximate solution for x;. If not, increase the

forecast horizon n by one period and return to step 2.

Given a sequence of innovations {v,}L , a time series {x;}_, can then be generated using the

described algorithm forz =1,2,...,T.

Approximation error arises due to the assumption of setting future shocks equal to zero.

This assumption is also made in the context of the log-linearization method. However, in that

case it does not add further measurement error because the resulting linear approximate solution

exhibits certainty equivalence. In the case of the EP method, which respects the nonlinearity of

2 Jyillard (1996) describes the version of the method that is implemented in DYNARE and may be used together
with the model archive and software presented in section 5.
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the model equations, setting future zero-mean shocks equal to zero introduces an approximation
error because it neglects Jensen’s inequality. For example, in the presence of the zero bound
on nominal interest rates, the expected mean interest and inflation rates will exhibit a positive
bias that increases with the variance of future shocks.!3 The magnitude of this error depends on
the degree of non-linearity in the model. Examinations of the accuracy of numerical solutions
obtained with the EP algorithm are documented in Gagnon (1990) and Taylor and Uhlig (1990)
for the case of the stochastic neoclassical growth model. For a numerical approximation method

that accounts for Jensen’s inequality in nonlinear models see subsection 4.1.5..

4.1.4 Linear Quadratic Dynamic Programming: Value Function Iteration

Linear quadratic dynamic programming procedures are useful for solving problems that can be
recast as an optimization problem with quadratic objective function and linear constraints. For

example, consider the following optimization problem

max Y B'x,0x, (65)
{u}o =0
s.t. Si+1 = As; + Buy, (66)

where (65) represents a quadratic objective function or a quadratic approximation to the nonlinear
non-quadratic objective function. The (n —m) x 1 vector u, contains the control variables and
the m x 1 vector s, the state variables. Let x, = [s) u]]' and Q a conformable n x n matrix.
Maximization takes place subject to the linear constraints in (66). An appropriate guess regarding

the functional form of the value function is that it is quadratic. The Bellman equation for the

linear quadratic optimization problem is

sTVs = max {xTQx +p (s') g Vs'}, (67)

13See Orphanides and Wieland (1998) for this example and for a discussion how to reduce this type of approxi-
mation error by means of repeated stochastic simulation.

41



subject to (66), where we have changed notation in line with the literature on dynamic program-
ming. Notably, we ignore the time subscript. Leads are marked by a prime and a transpose is
denoted by a T superscript. Matrix ¥ of value function s Vs is negative semidefinite. Let us

rewrite the Bellman equation as

X 0 X
max{ 0 e }, (68)
s Omxn BV s

subject to (66). Define

In><n
C:<A B), R= : (69)
C

Matrix /,x, denotes the identity matrix of dimension n. We can then incorporate the linear

constraints (66) as follows

0
max{xTRT o e Rx} (70)
! Omxn BV
Define
0
wor| ¢ "k (71)
Omxn BV

and differentiate (70) with respect to the control vector u to get the first-order condition for the

maximization problem. Solving the resulting condition for u, we obtain

U= _Wv[;zfrlzn]x[m+1:n] VV[m—H:n}X[l:m}S' (72)
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Let
= _W/[r:z—lb—lzn}x[m—i-l:n] VV[’”JFIW]X“:’”]' (73)

Substituting the feedback rule (72) into (70), we obtain the following algebraic matrix Riccati

equation
T
v R I Bl P R (74)
F Opmxn BV F
Value-function iteration involves iterations on
T
pusn [T | g [ €@ Oman ) [ e (75)

FU) Omsxn BV FU)

Under particular conditions, (75) converges to a unique solution as j — oo, (see Ljungqvist and
Sargent (2004) and the references therein). In practice, one iterates until \V(j ) _pU )| < g, for
some small € > 0. This procedure also provies an approximation of the solution for the policy

function F.

4.1.5 Perturbation Methods for Higher-Order Approximations

Perturbation methods constitute a generalized approach to obtain linear or higher-order local
approximations of the true model solution. As in the case of the linear approximation method
presented above, the true solution is approximated in the neighborhood of a particular point. The
basic idea consists of finding a special case of the general problem for which the exact solution is
known. The special case and its known solution is then used to compute approximate solutions
of the general problem for points in the neighborhood of the special case with known solution.

The following illustration of the approach is based on Judd (1998), chapter 13. Consider the
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univariate problem

f(x76) =0,

(76)

where ¢ denotes some known parameter. It is assumed that for each value of o, there exists a

solution of (76) for x. Hence, (76) describes a system of equations in x, for which the solution is

unknown. Suppose however, that this equation can be solved for a specific value of o, say o = 0.

Let x (o) be an unknown function that satisfies /' (x(c),0) = 0. If f is differentiable, implicit

differentiation of (76) leads to

fe(x(0),0)x' (0) + fo (x(0),0) =0.

For 0 =0, we can find

Furthermore, differentiating (77) leads to

fux (x(0),0) (¥ (0))* + /i (x(0),0)x" (6) + 2 fro (x(0) ,0) X' (0)

+f00' (x(G),G) = 07

from which we obtain

S (0(0),0) (¥ (0))* + 216 (x(0),
f:(x(0),0)

x//(o) — O)xl(0)+f0'0 (X(O),O)

(77)

(78)

(79)

(80)

This allows us to compute a quadratic approximation to the solution using a second-order Taylor

series expansion around o =0

£(0) =x(0)+x'(0)o+ %x" (0) 62,
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with X’ (0) and x” (0) given by (78) and (80), respectively. Similarly, one can find higher-order
approximations of x (o) using higher-order derivatives of x (o) obtained from further differenti-
ation.

Judd (1998) contains a detailed treatment of perturbation methods. Algorithms for quadratic ap-
proximations and corresponding applications can be found in Collard and Juillard (2001), Kim
et al. (2005) and Schmitt-Grohe and Uribe (2004). A ready-to-use computer implementation
for Matlab programmed by Michel Juillard and his collaborators is available within DYNARE

and may be downloaded from www.dynare.org.

4.2 Estimating New Keynesian Models

Medium-size New Keynesian DSGE models are typically developed with the objective of taking
them to the data. Nowadays, the most prominent method for estimating DSGE models is the
Bayesian approach. A convenient software implementation is also available within DYNARE.
This section aims to provide a short introduction to Bayesian estimation and an illustration with
respect to the small-scale New Keynesian model of section 3.2. Examples for the estimation of
small-scale New Keynesian models by means of impulse-response-function matching or max-
imum likelihood methods are available from Rotemberg and Woodford (1997) and Ireland
(2004b), respectively. This section then concludes with an overview of prevailing challenges

for model estimation.

4.2.1 Bayesian Methods

Bayesian methods allow us to estimate model parameters, to construct model forecasts and to
conduct model comparisons. Here, we focus on model estimation. Typically, Bayesian estima-
tion is implemented as a full information approach, that is, the econometrician’s inference is
based on the full range of empirical implications of the structural model that is to be estimated.

In the Bayesian context, a model is defined by a likelihood function and a prior. The likelihood
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function represents the data generating process, more specifically, it is the density of the data
conditional on the structure of the model and conditional on the model parameters. Under the
maximum likelihood approach the model parameters are interpreted as fixed and the observed
data represents a particular draw from the likelihood function. Parameter estimation then requires
the maximization of the likelihood function. By contrast, the Bayesian approach interprets the
parameters as random variables. Let u represent model parameters, and let y be a sample of
data observations to be explained by a model M. Employing the rules of probability, the joint

probability of (y, i) conditional on model M is given by

p M) = L(ylu, M) p(u|M), (82)
or, alternatively by
p O, M) = p (uly, M) p (y|M). (83)

Here, L (y|u, M) denotes the likelihood function. Combining both equations in order to eliminate

the joint probability terms, results in Bayes’ rule

L) p(p)

keeping in mind that here this expression refers to a particular model M. The term p (i[y) denotes
the posterior distribution and p (i) is the prior distribution. The posterior distribution may be
used to make probabilistic statements with respect to the model parameters conditional on the

model, the data and the prior. The posterior kernel is given by

p(uly) e L(ylw)p(u), (85)
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where the prior p (1) contains any information about the parameters py available to the econo-
metrician that is not based on the sample of data observations. Thus, equation (85) may be
interpreted as an updating rule that uses data observations to update the econometrician’s prior
belief regarding the model parameters.

In practice, the posterior distribution does not have a simple known form for most applica-
tions of interest. Suppose, we are interested in a point estimate of the model parameters y. One

candidate would be the mean of the posterior distribution

E(w)= [ up(ub)du. (86)

In most cases, it is not possible to derive an analytical expression for this integral. Instead,
one has to rely on computational methods. Markov Chain Monte Carlo (MCMC) methods are
particularly popular in the context of the estimation of DSGE models. The goal is to generate
a Markov chain {;} that has the ergodic distribution p (u|y), that is the posterior. Various
algorithms exist to generate {1, }. Here, we present the Metropolis-Hastings (MH) algorithm. A
more detailed description can be found in Chib and Greenberg (1995). As it is not possible to
draw directly from the posterior distribution, instead a stand-in density, ¢ (/.L\ M ) , needs to be
used. Let the candidate draw from this stand-in density be denoted by u*. The candidate draw is

accepted to be the next drawing (1; with probability

p(uly)q (-1 |m*) } (87)

o (u*{pi—1) =min< 1,
(0" 1j-1) { p(Li-1ly) g (ue(p—1)

Importantly, it is sufficient to employ the posterior kernel (85). Let T denote the draw from a uni-
form distribution over the interval [0, 1]. The candidate draw u* is then accepted if o (1*|u;—1) >
T, otherwise we set t; = ;1. This procedure is repeated J times. Note, that the acceptance

probability will be relatively low if ¢ (,LL* | j,l) is rather high and vice versa and it will be rel-
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atively high if p (u*|y) is rather high. The acceptance probability therefore adjusts for the fact
that the stand-in density is different from the posterior density. If the stand-in density equals
the posterior density, the acceptance probability will be unity. To initialize the algorithm, one
needs to specify a starting value py. Typically, numerical optimization is used to determine the
maximizer of the (log-)posterior kernel which is then used as a starting value.

Having obtained a sequence of accepted draws {1}, one can approximate the mean of the

posterior distribution by

I
Ly=— W (88)
J &~

More generally, let /(i) be a function of the model parameters. The conditional expected value

of this function can then be approximated by

. J

Fr=53 rw). (89)

Jj=1

Various instruments exist to assess the convergence of f,. For a comparison of different con-
vergence diagnostics the reader is referred to Cowles and Carlin (1996). A remaining question
1s how to choose the stand-in density ¢ ([,L |u j_l). A widely-used variant of the algorithm is the
Random Walk Chain MH algorithm. The idea is to explore the neighborhood of an accepted

draw. In this case, the candidate draw is generated from

W=y te, (90)

where & ~ iid (0,X). This implies ¢ (1*|tt;—1) = ¢ (;—1|1*), hence (87) simplifies to

oD

o (¥ |pj—1) :min{l,M}.

p (.ujfl b’)

The choice of X is crucial for the efficiency of the sampler. A common approach is to use an
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estimate of the posterior covariance matrix scaled by some constant.

Another variant of the MH algorithm is called the Independence Chain MH algorithm. In
this case, the stand-in density has the property g (1|tt;—1) = ¢ (1). In practice, it is important to
select a stand-in density that has fatter tails than the posterior. For more detailed expositions of
the Bayesian approach in the context of DSGE models see An and Schorfheide (2007) and Del
Negro and Schortheide (2010).

4.2.2 Estimating a Small New Keynesian Model

To demonstrate the Bayesian approach for estimating DSGE models, we estimate the small New
Keynesian model of section 3.2. We start by consolidating the log-linearized model equations as

follows. First, we combine the dynamic IS equation (20) with the aggregate resource constraint

(24)
A N A 1 Y A
Yi=EY 1 —EAg 1 — 5 (R — Eifty 1), (92)
1 _ 1 . . .
where = = ~C/Y. This IS relation may also be expressed in terms of the output gap

. . | . 5
TEP = EBEY — = (Ri— i —R)). ©3)

Equation (93) contains a composite shock term
R =6 [E (T — ) — (17 = &1)], (94)

which represents the natural rate of interest.!* Next, we consider the New Keynesian Phillips
curve

e = BE Ry + K (6 +n) V57, (95)

14Equation (93) reveals that if the policymaker keeps the real interest rate equal to the natural rate of interest, real
output, ¥, will always equal the natural level of output, Y. Given the New Keynesian Phillips curve, equation
(25), inflation will also be fully stabilized in this case. A trade-off between output and inflation arises in the presence
of cost-push shocks or when wages are also sticky.
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(1-B6)(1-6)

where K = ~—=—5—. Finally, we use a slightly modified version of the interest rate rule (26)
R =R+ (1 — ) (tafy + w¥57) + &F, (96)

which includes an interest rate smoothing term. The vector of endogenous model variables then
consists of the inflation rate, the nominal interest rate, output and the output gap. The exogenous
variables g, and A4, are again specified as AR(1) processes as in equation (28) and (29). The
natural level of output and the natural rate of interest are defined by (27) and (94), respectively.

We estimate this version of the model using quarterly data on the U.S. economy for 1966:1 to
2007:2. The three data series employed comprise real per-capita quarter-to-quarter GDP growth
(in percent), the average effective federal funds rate (in percent) and the quarter-to-quarter in-
flation rate based on the GDP Implicit Price Deflator (in percent). Real GDP per capita is con-
structed by dividing Real GDP by the level of the civilian non-institutional population over 16
from the FRED database of the St. Louis Fed. Prior to estimation the mean has been removed
from all three data series. A detailed description of the construction of the data series is provided
in the appendix.

As discussed before, the Bayesian approach allows specifying particular prior distributions.
To the extent the priors provide information, they add curvature to the likelithood function. In
principle, economic theory is a valuable source of priors. Thus, an important advantage of struc-
tural models relative to reduced-form specifications is that a priori information regarding the
structural model’s parameterization is more readily available. Additionally, prior distributions
may also be based on pre-sample data or on microeconomic data.

Turning to the application, we start by imposing fixed values for some of the parameters ex
ante. Specifically, the subjective discount value is pegged at B = 0.99, which is consistent with
a steady state real interest rate of 4 percent in annualized terms. Furthermore, the data employed

for estimation is unlikely to contain much information about the inverse of the elasticity of labor
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supply, . We impose 1 = 1, which is a value often used in model calibrations.

Table 1: Prior distribution

Parameter Density Mean Stand. deviation
K Gamma 0.08 0.1
o Gamma 1 0.5
Tr Gamma 1.5 0.25
Ty Gamma 0.5 0.25
TR Beta 0.5 0.2
Pg Beta 0.8 0.2
P4 Beta 0.8 0.2
OR InvGamma 1 4
Oy InvGamma 1.5 4
oy InvGamma 1.5 4

With regard to other parameters we pick particular prior distributions. A complete summary
of the chosen priors is given by Table 1. We assume K ~ Gamma (0.08,0.1) centered around a
value in line with a Calvo parameter of 8 = 0.75 as in our baseline calibration. For the inverse
of the intertemporal elasticity of substitution, we assume 6 ~ Gamma (1,0.5), where the prior
mean is in line with a log-utility specification for consumption and zero steady state government
spending. The priors for the policy rule parameters are loosely centered around values often
used in the literature. A normal distribution is used for the response coefficients to inflation
and the output gap and a Beta distribution for the response coefficient to the lagged interest
rate. Relatively uninformative priors are used for the standard errors of the three exogenous
innovations, each being described by an Inverse Gamma distribution.

The estimation is conducted using the DYNARE software package.!> The MH algorithm is
used to generate 250,000 draws of which 33 percent are discarded as burn-in replications. We
select the step size of the algorithm in line with an average acceptance ratio of around 35 percent.

Table 2 shows the resulting mean and the 5 and 95 percentiles of the posterior distribution of the

SWe employ DYNARE version 4.1.3, see Juillard (1996) and Juillard (2001) for a general description of the
software package.
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model parameters.

Table 2: Posterior distribution

Parameter Mean 5Sth percentile 95th percentile

K 0.0375 0.0133 0.0615
(] 5.4574 3.9660 6.9018
Tr 1.2607 1.1248 1.3881
Ty 0.3117 0.0666 0.5412
TR 0.7730 0.7311 0.8161
Pg 0.9492 0.9145 0.9861
P4 0.9308 0.9003 0.9616
ORr 0.2851 0.2541 0.3144
Oy 0.9760 0.8749 1.0798
Oy 1.6186 1.1403 2.0933

The mean of the posterior estimates of K and G deviates quite substantially from the mean
of the prior, which lies outside the reported confidence interval in both cases. The means of the
estimated monetary policy rule parameters reflect a high degree of interest rate smoothing, a more
than one-for-one long-run response to inflation and a positive response coefficient on the output
gap. However, the latter is estimated less precisely than most of the other parameters. The two
exogenous processes for the government spending shock and the technology shock are estimated
to be very persistent with AR(1) coefficients 0of 0.95 and 0.93, respectively. Finally, the estimated
standard errors of the government spending shock and the technology shock are much larger than
the standard error of the monetary policy shock. Overall, the data appears to be quite informative
regarding the model parameters not fixed prior to the estimation procedure. However, much of
the persistence in the data is attributed to the serial-correlation in exogenous shock processes that
was introduced into the model in an ad-hoc manner, rather than to the behaviorial dynamics of
endogenous variables. The standard deviation of the posterior distribution is lower than the one
of the prior distribution for all estimated parameters except of the inverse of the intertemporal

elasticity of substitution, &.
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Additional estimation output from DYNARE is shown in Figure 6. It shows the prior (solid
gray line) and posterior (solid black line) distributions together with the posterior mode (dashed
grey line) for all parameters. In each case, the posterior distribution has a single peak which is

always close to the posterior mode.

4.3 Challenges for Model Estimation

Despite the enormous progress in the development of computational methods that allow for in-
creasing complexity of macroeconomic models, several important issues remain to be resolved.
First, it is important to recognize that any DSGE model represents at best an approximation of the
law of motion of the economy. An important source of misspecification are the cross-equation
restrictions imposed by the structural assumptions of DSGE models. Consider for instance the
point estimate of the Phillips-curve parameter K in our small-scale model. From Kk = w
it follows that a point estimate of ¥ = 0.0375 is consistent with 8 = 0.99 and 6 = 0.8279. This
value of the Calvo parameter 0 implies that firms reoptimize their prices on average about ev-
ery 6 quarters. Unfortunately, microeconomic evidence on price setting points towards much
more frequent average changes in prices as shown by the survey of Klenow and Malin (2010).
Many of the frictions in medium-scale New Keynesian models have been introduced to improve
model fit. In this manner, the incompatibility of our point estimate for k¥ with micro evidence on
price changes can be partly overcome by the introduction of firm-specific production inputs as

in Eichenbaum and Fisher (2007). However, one should not conclude that less abstraction and

adding more detail should in general be preferred. As Kydland and Prescott (1996) put it

To criticize or reject a model because it is an abstraction is foolish: all models are
necessarily abstractions. A model environment must be selected based on the ques-

tion being addressed.
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Even so, it is important to keep in mind when engaging in policy experiments, that structural pa-
rameter estimates obtained via Bayesian or maximum likelihood estimation will only be invariant
to changes in the policy regime if the model is not misspecified. From a practical perspective,
the parameter estimates of models used for policy analysis should be approximately invariant to
shifts in policy parameters as computational power is in any case limited. An example is provided
by Cogley and Yagihashi (2010). They consider two New Keynesian models, one being the true
data-generating model and the other representing an approximating model, and show that pol-
icy analysis based on the approximating model can still provide sensible recommendations for
monetary policy.

A second problem that typically arises when estimating DSGE models is the lack of iden-
tification of some of the structural parameters. Identification problems arise if different param-
eterizations of a model generate the same probability distribution. Since the elements of the
coefficient matrices of the model solution are usually highly nonlinear functions of the structural
parameters, identification problems are of practical relevance. Canova and Sala (2009) catego-
rize these problems as follows. First, observational equivalence occurs if the objective function,
for example the likelihood function, does not have a unique maximum given the mapping of
structural parameters. Second, under-identification arises when structural parameters do not ap-
pear in the solution such that the objective function is independent of these parameters. Third,
structural parameters may enter the objective function only proportionally, thereby rendering
them individually unidentifiable. This case is labeled partial identification by Canova and Sala
(2009). Fourth, weak identification occurs when the objective function exhibits a unique maxi-
mum but is rather flat in some regions of the parameter space. In this case it is rather difficult to
identify the values of these parameters.

A comparison of the prior and posterior distributions of model parameters can provide some
first insights regarding identification problems. However, even if the posterior is shifted away

from the prior, identification problems cannot be definitely ruled out as the shift might be due
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to some stability constraints. Canova and Sala (2009) recommend to consider a sequence of
prior distributions with increasing variances to detect evidence of identification problems. In the
literature, it is common practice to fix a subset of parameters in the estimation step as we did with
the stochastic discount factor and the inverse of the elasticity of labor supply when estimating
the small New Keynesian model. However, in the case of partial identification of this parameter
together with another one, estimates of the latter parameter will depend on the calibration of
the former. For a recent overview of techniques to determine conditions for identifiability, see

Schortheide (2011).

S A New Approach to Model Comparison and Policy Evalua-
tion

The two waves of New Keynesian modeling have generated a plethora of models. And more
recently, efforts to better understand the causes of the global financial crisis and recession have
induced a further surge of macroeconomic model building. Model builders include not only
academics but also researchers at many central banks, treasuries and international organizations.
Not surprisingly, the available models differ in terms of economic structure, estimation method-
ology and parameter estimates. Yet, systematic comparisons of the empirical implications of a
large variety of available models are rare. One reason for the small number of significant model
comparison projects surely has been that they required the input of many teams of researchers
and multiple meetings to obtain a limited set of comparative findings. Examples include Bryant,
Hooper and Mann (1993), Taylor (1999) and Hughes-Hallett and Wallis (2004). In this sec-
tion,we present a new systematic approach to macroeconomic model comparison developed by
Wieland et al. (2011). This approach is based on a common computational platform that includes
many well-known empirically estimated models and enables individual researchers to conduct

model comparisons easily and on a large scale.
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The financial crisis and subsequent world recession has triggered much criticism of modern
macroeconomics, including the New Keynesian approach and the stringent microeconomic foun-
dations with representative agents and homogeneous expectations that are embodied in modern
New Keynesian DSGE models. In this situation, taking a comparative approach is particulary
useful as an avenue for setting different models against each other and for checking whether new
modeling approaches perform equally well or better than existing approaches in fitting empirical
benchmarks.

In section 4, we have defined a model m by a system of nonlinear difference equations

Et [‘I/m (x;n+l,x;n’ vtm,‘umﬂ =0. (97)

The letter m is used to refer to a specific model that we would like to compare to other models.
The endogenous model variables are denoted by x”, the structural shocks by v/”, and the model
parameters by ™. For any model m, we distinguish between two types of equations. Policy rules
are denoted by g,,, and the other model equations and identities by f,,. Similarly, we distinguish
between policy shocks, 1/, and other shocks, &/, with v/" = (n/", &), and between policy-rule
parameters, y”, and the rest of the model parameters, B, with u” = (y”, ). Thus, (97) may

be rewritten as

Et [gm (xﬁ-lvx;n?ntm?}/n” =0 (98)

Et [fm (x;n+17x;n7€tm7ﬁm)} = 0. (99)

Of course, a particular model may include lags and further leads of endogenous variables. In this

case, x;" has to be augmented accordingly. The innovations v;” have a zero mean and a constant
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covariance matrix 2" which can be partitioned as follows

m  ym
= Mo e , (100)
.
where we distinguish the covariance matrices of policy shocks, 7', and other economic shocks,
2¢'. Unless policy shocks are correlated with the other shocks, we set 2 . = 0.

In general, the endogenous model variables, x}”, the structural shocks, v/, and the model pa-
rameters, (", are not defined in a comparable manner across models. Thus, a comparison of the
empirical implications of two different models, say m € {1,2}, cannot be based directly on either
(97) or (98) and (99). First, it is necessary to augment all models with a set of common, com-
parable variables, parameters, shocks and equations. Table 3 summarizes our notation referring

to such common comparable elements. These common objects are not indexed by m, because

Table 3: Common comparable variables, shocks, equations and parameters

Notation Description

Z common variables in all models

Ny common policy shocks in all models
g(.) common policy rules

Y common policy rule parameters

they are defined coherently across all models included in a comparison exercise. The common
policy rules, g(.), replace the model-specific policy rules g, (.) so that model implications can
be compared conditional on a particular common policy specification.

The model augmentation step also involves the definition of a set of additional model-specific
equations. These equations define the common variables, z;, in terms of the model-specific vari-
ables, x}", and are denoted by /,, (.). Importantly, the notation and definitions for all the other

equations, variables, parameters and shocks is preserved. Consequently, an augmented model
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m consists of three components: First, the original set of model equations, f, (.), determining
endogenous variables, excluding the model-specific policy rules, g, (.). Second, a set of new
model-specific equations, /,, (.), that define the common variables in terms of original model-
specific endogenous variables with parameters 6”. Third, the common policy rules g(.) ex-
pressed in terms of common variables, z;, common policy shocks 1, and common policy rule
parameters Y. These three components comprise the system of difference equations defining the

augmented model m

Et [fm (x;n+17x;nagtmaﬁm>:| =0 (101)
E[ |:hm (Z[,x:n+1,x;71,8m>:| = 0 (102)
E; [g(Zt+lvzt7nt7}/)] = 0. (103)

Models augmented in this manner can be used for comparison exercises. For instance, one can
compare the implications of a policy rule across models by constructing certain metrics based on
the dynamics of the common endogenous variables in the different models. Before we consider
such objects for comparison, we illustrate the model augmentation step with an example.

Let us suppose the vector of common comparable variables, z;, consists of six variables, the
annualized quarterly money market rate, i7, discretionary government spending expressed as a
share in GDP, g7, the year-on-year rate of inflation, 77, the annualized quarter-to-quarter rate of
inflation, p7, quarterly real GDP, 7, and the output gap, ¢7. The notation and the definitions for
the common variables are also summarized in Table 4.

The common monetary and fiscal policy rules are assumed to be subject to random inno-
vations 1, = [/ 1f] ', We are now ready to introduce the small-scale New Keynesian model
that we have estimated in the previous section into our comparison framework. Let us denote
this model by m = 1. The original model and the augmented model are presented in Table

11 in the appendix. In the augmented version of the model the original equations, fj (.), are
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Table 4: Comparable common variables

Notation  Description

i annualized quarterly money market rate

feed discretionary government spending (share in GDP)
o year-on-year rate of inflation

)z annualized quarter-to-quarter rate of inflation

Vi quarterly real GDP

q; quarterly output gap (dev. from flex-price level)

unchanged except for the original policy rule which is replaced by a common rule g(.). The
additional model-specific equations /; (., 61) define the common comparable variables in terms
of the model-specific variables. In the case of this small-scale model, this augmentation step may
seem rather trivial, but it is nevertheless necessary to avoid comparing apples and oranges.

In order to illustrate how to conduct a model comparison, we need at least one more model.
Here, we take the business cycle model from Ireland (2004a) presented in Table 12 in the
appendix and abbreviated henceforth by m = 2. It represents a stylized New Keynesian model
with real money balance effects and quadratic adjustment costs in price setting. The model is
estimated by maximum likelihood methods using quarterly U.S. data from 1980:1 to 2001:3.
It consists of a dynamic IS equation, a New Keynesian Phillips curve, a demand equation for
real money balances, 77, an interest-rate rule, and AR(1) specifications for three non-policy
shocks. All variables are log-linearized around the non-stochastic steady state.The version of the
model we consider here is the one with household utility being non-separable in consumption and
money balances.'® The augmented model is shown in the lower part of Table 12. The original
Ireland model does not feature an output gap and a government spending shock. The natural
level of output and therefore the output gap can be derived in the common variables block based

on the microeconomic foundations of the model. However, the model remains silent with regard

161t is the case of the constrained estimate in Ireland (2004a) with the parameter @, fixed to a value of 0.25.

60



to the common variable g;.
The two augmented models can then be solved conditional on a range of common policy
rules using the methods outlined in section 4. The solution function for an augmented model m

can be written as

=Kn(7) + D (7) : (104)

The reduced-form matrices K, (y) and D,, () are functions of the common policy parameters,
¥, and the model-specific non-policy parameters, ™. Having obtained the solution functions for
models m € {1,2}, one can construct objects for comparison based on the common comparable
variables z;. For example, we could compare dynamic responses of the common variables to a
common policy shock across models. The impulse response functions of an augmented model m

to a common monetary policy shock, n,i , in period  + j, j > 0, are defined as

E; (Zt+j‘Zt—1,x;n_1,nti> — L (Zt+j‘Zt—1,x;n_1>

. (105)
E; (xflj\zf—hx:”,l,m’) —E <x;n+j|zt—17x;71])

For some 1/ >0, IR}, ; (,1/) represents the impulse responses of the estimated small-scale New

Keynesian model to a positive monetary policy shock and similarly IR,2 '+ (}/, n/ ) for the Ireland
(2004a) model. Comparisons of impulse responses from different augmented models should be
limited to common variables and common shocks. The could be based on common or on different
policy rules. Such comparisons can provide interesting insights into the monetary policy trans-
mission channels of the included models. One may evaluate the distance between several models

for a given characteristic of the model dynamics by defining some metric s. For instance, one

might consider the difference in the cumulative sum of the response of some common variable
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to a monetary policy shock

S(%Z) = 2 []Rt1+] (% ntivz) _[Rt2+j (% 77;72)] ) (106)
j=0

where the index z serves as a caveat that we can compare only the impulse responses of the
common variables. To give an example, we impose the following common monetary policy rule

from Smets and Wouters (2007) written in terms of common variables
=081, +0.39p7 +0.97¢7 —0.90¢° |, +n/, (107)

and compare impulse responses of the output gap, ¢°, to a unitary monetary policy shock. For
the two models m = 1,2 we obtain a cumulative difference in the impact on the output gap of
s(Y,¢4°) = 1.14. Further examples and a more detailed presentation of the formal approach to
model comparison are provided in Wieland et al. (2011). We have also built a computational
platform together with a model archive that includes many well-known empirically estimated
models and allows individual researchers to conduct model comparisons and quantitative anal-
ysis of stabilization policies easily and on a large scale. The Macroeconomic Model Data Base
software and model archive can be downloaded from http://www.macromodelbase.com. The ap-
pendix to this chapter contains a complete list of the 50 models available in version 1.2 of the
model archive from October 2011. In addition, users may download information and software

regarding the replication of published findings of the original model authors.

6 Policy Evaluation and Robustness under Model Uncertainty

In a situation where no model’s structure is considered completely satisfactory from a theoretical
perspective and many competing models fit the historical data of key aggregates reasonably well,

it is not advisable to base real-world policy recommendations on a single preferred model. In-
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stead, researchers should help policy makers to develop robust policies. This strategy for policy
advice is well expressed by McCallum (1999), who proposes “to search for a policy rule that
possesses robustness in the sense of yielding reasonably desirable outcomes in policy simula-
tion experiments in a wide variety of models.” In this vein, we will demonstrate how to use the
above-mentioned model comparison platform for investigating the robustness of policies under

model uncertainty.

6.1 Simple and Robust Monetary Policy Rules

We start by applying McCallum’s advice to the design of simple rules for monetary policy.
Specifically, we focus on rules for setting central banks’ preferred policy instrument, that is the
short-term nominal interest rate.!” Such rules prescribe that the nominal interest rate responds
systematically to a small number of variables. They are often referred to as Taylor-style rules,
citing the influential contribution of Taylor (1993b), who proposed a simple rule for the U.S.
federal funds rate with only two variables, inflation and the output gap, and response coefficients
of 1.5 and 0.5, respectively. Interestingly, Taylor (1993b) credits the model comparison project
summarized in Bryant, Hooper and Mann (1993) as the crucial testing ground for this rule. The
interest rate rules specified earlier in this chapter by equations (26) and (96) also belong to the
class of simple monetary policy rules.

In principle, economic models can also be used to evaluate much more complex rules that
respond to a large number of state variables, employ different instruments and may also take
nonlinear functional forms. They could even be used to derive fully optimal but model-specific
policies by means of optimal control methods. However, there are several reasons to focus on
simple interest rate rules. First, there is a broad consensus in the literature that an interest rate

instrument is superior to a money supply instrument at least in normal periods when the central

17See Wieland (2009) for a recent discussion of the implications of the New Keynesian approach for the science
and practice of monetary policy.
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bank has a non-negative operating target for the interest rate (see for example the survey of
Taylor and Williams (2010)). Second, earlier comparative research such as Levin et al. (1999)
and Levin et al. (2003) suggests that the gains from increasing either the number of leads and
lags or the set of variables to which the instrument responds are rather small. Third, this work
also suggests that simple monetary policy rules are more robust to model uncertainty than more

complicated model-specific rules.

6.1.1 Interest Rate Rules and Central Bank Objectives

We begin with the consideration of rules that specify the interest rate as a linear function of two
variables, the year-on-year inflation rate and the output gap. The above-mentioned research on
simple rules suggests that responding to a smoothed inflation rate like the the year-on-year rate is
more desirable in terms of stabilization performance than the one-period inflation rate even if the
latter is the one that enters the central bank’s policy objective. Using the definition of common

variables introduced in the preceding section, this rule corresponds to:

I = Tl + Tyq;, (108)

where 77 is the annualized quarterly nominal interest rate, 7r; denotes the annual inflation rate and
g7 is the output gap. Empirical estimates of policy rules typically indicate a substantial degree of

interest rate smoothing of monetary policy in practice. Including the lagged interest rate as in

was also found to improve stabilization performance in several of the models studied in Taylor
(1999).

We assume that the central bank’s objective is represented by the following quadratic loss
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function

L =Var(n®) + AJVar () + AniVar (AF), (110)

where Var (.) denotes the unconditional variance operator. The parameters A, > 0 and A; > 0
represent the central bank’s preferences for reducing the variability of the output gap and of
changes in the nominal interest rate relative to inflation variability. There are a number of ar-
guments for choosing such an objective function for the central bank. First, the form as well as
the targets entering the loss function have been widely used in previous model-based analyses
of monetary policy rules, especially in the context of policy experiments based on competing
models.!® Second, stabilizing the rate of inflation and, in the short-run, also reducing output
volatility tend to be at the forefront of central banks’ concerns in actual policy practice and
feature prominently as objectives in central bank laws and strategies, and central banks have a
well-documented tendency to smooth interest rates. Third, in the particular case of the small-
scale model of Rotemberg and Woodford (1997), equation (110) corresponds to a second-order
approximation of household utility (for Ay; = 0 and the limiting case with the discount factor
approaching unity, see Woodford (2003)).!® With real money balances entering the utility func-
tion, also the level of the nominal interest rate appears in such a linear-quadratic approximation.
To be sure, in more elaborated medium-size models, additional variables will enter a welfare-
based loss function. Thus, an alternative approach would be to evaluate policy performance
against the particular model-specific approximations of household utility. However, such an ap-
proach would restrict the permissible set of models to those that contain a well-defined measure

of (representative) household welfare.

18See for example Taylor (1999), Levin et al. (1999), Levin et al. (2003), Levin and Williams (2003), Taylor
and Wieland (2011), and Taylor and Williams (2010).

9The magnitude of the implied value of A, is very sensitive to the particular specification of staggered nominal
contracts: random-duration Calvo-style contracts imply a very low value not far from zero, whereas fixed-duration
Taylor-style contracts imply a value near unity (see Erceg and Levin (2006)).
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6.1.2 A Range of Estimated Models of the U.S. Economy

In the following we build on a recent comparison exercise by Taylor and Wieland (2011) which
evaluated the performance of simple policy rules in three well-known models that are also avail-
able from the Macroeconomic Model Data Base. The first model, which is a multi-country model
of'the G-7 economies built more than 15 years ago, has been used extensively in the earlier model
comparison projects. It is described in detail in Taylor (1993a) (labeled 74Y model in the fol-
lowing). The other two models are the best-known representatives of the most recent generation
of empirically estimated New Keynesian models, the Christiano et al.  (2005) (CEE/ACEL)
model?? and the Smets and Wouters (2007) (SW) model. We extend this analysis by including
three recently-built medium-scale New Keynesian DSGE models with financial frictions, namely

the models of De Graeve (2008), lacoviello (2005) and Rabanal (2007).

1. De Graeve (2008): This model incorporates the financial accelerator of Bernanke et al.
(1999) as discussed in section 3.2.4 into a New Keynesian model with nominal price and
wage frictions, habit formation in consumption, price and wage indexation, variable capital
and investment adjustment costs. The model, henceforth referred to as the DG model, has
been estimated on quarterly U.S. data from 1954:1 to 2004:4 using Bayesian techniques.
We also consider a second variant of the model, labeled DGnoff, in which we shut down

the financial accelerator mechanism.

2. Tacoviello (2005): This model, labeled /4AC in the following, incorporates housing into
a New Keynesian framework. A financial accelerator arises in the IAC model due to the
presence of borrowing constraints. The value of housing serves as collateral for firms and
for part of the households. Unlike in Bernanke et al. (1999), debt contracts are denom-

inated in nominal terms. The model also features variable capital and adjustment costs

208pecifically, they use the version of this model estimated by Altig et al. (2005). This version, which was
also compared to the Smets-Wouters model in section 3.2.6, incorporates additional economic shocks other than the
monetary policy shock.
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for housing and for capital. Model estimation has been conducted using calibration and

impulse response function matching based on quarterly U.S. data from 1974:1 to 2003:2.

3. Rabanal (2007): This model, termed RB is similar to the model of De Graeve (2008) in
that it exhibits nominal rigidities in price and wage setting, price and wage indexation, vari-
able capital utilization, investment adjustment costs and habit formation in consumption.
Unlike the DG model, there is no financial accelerator present in the RB model. However,
part of the firms have to pay their wage bill prior to their sales receipts, which forces them
to borrow from a financial intermediary. A cost channel of monetary policy transmission
arises where changes in the nominal interest rate have a direct effect on firms’ marginal
costs. The model has been estimated on quarterly U.S. data from 1959:1 to 2004:4 using

Bayesian techniques.

6.1.3 Model-Specific Rules

Table 5 reports the model-specific optimized response coefficients of the two policy rules (108)
and (109) for the three models considered in Taylor (2011) and the four additional models listed
above: that is the TAY-, CEE/ACEL-, SW- ,DG-, DGnoff-, IAC- and RB-model.

The left panel reports results for the case of equal weights on the variance of inflation and the
change in the nominal interest rate and no weight on the output gap variance in the central bank
loss function (110) whereas the right panel shows results for the case of equal weights on the
variances of all three variables. All two-parameter rules satisfy the so-called Taylor principle,
which postulates that the nominal interest rate should respond more than one-for-one to changes
in inflation, 7, > 1. In many New Keynesian models the Taylor principle is a necessary and
often also sufficient condition for the existence of a unique rational expectations equilibrium.
A second characteristic common to all optimized two-parameter rules with one exception is a
strictly positive response coefficient to the output gap. The one exception is the SW model with

a negative but near-zero coefficient when the central bank loss function assigns no weight to
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Table 5: Characteristics of simple rules optimized in different models

Rule/Model | A, =0, =1 =1 =1
Ti Tr T T; Tr T

2 parameters

TAY 2.54 0.19 3.00 0.52
SW 2.33 -0.10 2.04 0.26
CEE/ACEL 445 0.28 2.57 045
DG 1.45 0.70 1.46  1.60
DGnoff 1.82  0.47 1.39  1.99
IAC 2.12 0.07 1.31 049
RB 243 0.27 244 120
3 parameters

TAY 098 037 0.09 | 098 021 053
SW 1.06 049 0.01 | 1.13 0.012 0.015
CEE/ACEL | 097 099 0.02 |2.84 7.85 -2.12
DG 1.00 0.28 0.01 | 0.90 046 0.68
DGnoff 1.01 022 0.01 | 098 0.16 0.87
IAC 1.14 0.75 -0.01 | 1.49 052 0.59
RB 1.05 0.66 0.12 | 1.07 0.54 0.56

Note: Optimized response coefficients for the two-parameter rule i; = 7,77 + 7,q; and the three-parameter rule
Iy = Til;_| + Ta7; + T4q; are reported. The parameters 4, and A5; denote the weight on the variance of the output
gap and on the variance of the change in the nominal interest rate in the central bank’s loss function, respectively.

output stabilization. In all other cases, the interest rate is increased in order to dampen aggregate
demand whenever it exceeds the natural level of output and vice versa. In all cases, the coefficient
on the output gap increases with a positive weight on output in the loss function. Despite these
similarities of optimized simple rules across models, the response coefficients can differ quite
substantially in terms of magnitude. The results for the 3-parameter rules reveal that in most
of the cases a response coefficient to the lagged interest rate near unity is desirable. Rules with
7; > 1 are often referred to as super-inertial rules in the literature. Rules that respond to the
lagged interest rate introduce history dependence because future policy actions will depend in
part on current economic conditions. It should be noted, however, that super-inertial rules can

lead to instability in models with primarily backward-looking dynamics.
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In order to compare the stabilization performance of the two-parameter and three-parameter
rules, Table 6 reports the increase in absolute loss when moving from the three-parameter to
the two-parameter rule. Here we restrict attention to the DG-, DGnoft-, IAC- and RB-model
and refer the reader to Taylor and Wieland (2011) for the TAY-, CEE/ACEL- and SW-model
results. The increase in absolute loss when moving from three- to two-parameter rules is mea-
sured in terms of the implied inflation variability premium (IIP). The IIP, proposed by Kuester
and Wieland (2010), translates the increase in the absolute loss into an equivalent increase in the

standard deviation of inflation.?! For instance, the entry in the third row and second column of

Table 6: Loss increase when reducing the number of parameters in the rule: 1P

Model ;LqZO,)LAi: 1 ;qu I,QLAI'Z 1
DG 0.41 0.49
DGnoff 0.51 0.75
IAC 0.58 1.43
RB 0.96 0.76

The increase in absolute loss when monetary policy follows the optimized two-parameter rule instead of the opti-
mized three-parameter rule is reported in terms of the implied inflation variability premium. The IIP corresponds to
the required increase in the standard deviation of the annual inflation rate that would imply an equivalent increase
in absolute loss.

Table 6 indicates that if the central bank objective considers inflation and output gap volatility
equally and the TAC model represents the economy, then employing the optimized two-parameter
rule instead of the three-parameter rule will result in an absolute increase in the central bank’s
loss that is equivalent to an increase in the standard deviation of inflation of 1.43 percentage
points. An increase in the standard deviation of inflation of this magnitude is of economic rel-
evance. While the numbers are somewhat smaller for the other models, the results confirm the

earlier finding that including the lagged interest rate in the policy rule leads to non-negligible

improvements in the central bank’s stabilization performance.

21In the literature, the analysis of policy rules is often based on the percentage increase in the central bank’s loss
instead of the absolute increase. This measure of relative policy performance can lead to misleading signals, as
demonstrated by Kuester and Wieland (2010) and Taylor and Wieland (2011).
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A natural question then is whether one should raise the number of parameters in the policy
rule further. Taylor and Wieland (2011) consider 4-parameter rules that include the lagged out-
put gap in addition to the three variables already included in our 3-parameter rules and find small
gains in stabilization performance. Also, one might ask whether policy rules should respond
to expectations of future inflation and the output gap instead of contemporaneous realizations.
Levin et al. (2003) show that the benefits of such policy rules are in general limited. Further-
more, if the forecast-horizon is too long, the models become highly susceptible to equilibrium
indeterminacy under this class of rules. Instead of exploring these questions further with the
additional DSGE models with financial frictions, we proceed to investigate the robustness of

model-specific rules.

6.1.4 The Robustness of Model-Specific Rules

So far, we have implicitly assumed that the central bank knows the true model of the economy
with certainty. What if the reference model of the central bank used for policy analysis is not a
good representation of the economy and one of the other models constitutes a more valid rep-
resentation? To address this question we evaluate each rule optimized for a particular model in
the competing models. We start by considering the performance of the two- and three-parameter
rules optimized in the TAY-, CEE/ACEL- and SW-model, in the new models with financial fric-
tions. Table 7 reports the loss increase in terms of IIPs when a rule optimized for model Y is
evaluated in the distinct model X relative to the performance of the model-consistent optimal
rule in X of the same class.

The I1Ps document that rules optimized for one model may exhibit poor performance in other
models. Optimized model-specific rules may even lead to disastrous outcomes when the true
model turns out to be different from the reference model. In the case of the two-parameter rules
the SW rule leads to equilibrium indeterminacy in the DGnoff model allowing for a multiplicity

of possible equilibria. In the case of the 3-parameter rules and equal weights on all three target
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Table 7: Robustness of model-specific rules: 1P

Model 2-parameter rules 3-parameter rules
A=02=1 A =1LA=1 A =0,A=1 A, =1, =1

TAY rule
DG 0.26 0.90 0.07 0.06
DGnoff 0.12 0.95 0.07 0.06
IAC 0.42 0.36 0.26 0.18
RB 0.01 0.31 0.11 0.55
CEE rule
DG 0.79 0.92 0.16 14.19
DGnoff 0.71 1.01 0.17 18.18
IAC 0.87 0.24 0.05 12.00
RB 0.60 0.20 0.17 18.45
SW rule
DG 0.53 1.29 0.04 1.12
DGnoff IND 1.45 0.04 1.65
IAC 0.01 0.26 0.02 0.40
RB 0.07 0.24 0.12 0.77

The increase in absolute loss under optimized rules from Taylor and Wieland (2011) relative to the model-specific
optimized rule is reported in terms of the implied inflation variability premium. The IIP corresponds to the required
increase in the standard deviation of the annual inflation rate that would imply an equivalent increase in absolute
loss. IND refers to the case where a rule induces equilibrium indeterminacy in a particular model.
variables in the loss function, the rule optimized for the CEE model induces IIPs of tremendous
size (between 12 and 18 percentage points) in the four models.

Table 8 reports the performance of optimized model-specific rules from the DG-, DGnoff-
, IAC- and RB-model. The evaluation is restricted to the performance within this set of four
models leaving out the TAY-, SW- and CEE/ACEL- model. In this case, the IIPs tend to be
somewhat smaller due to the greater similarity of these four models. Even so, among the two-

parameter rules with equal weights on inflation and output gap variation, 5 of the 12 1IPs exceed

one percentage point.
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Table 8: Robustness of model-specific rules from the DG-,DGnoff-,IAC- and RB-models

Model 2-parameter rules 3-parameter rules
A=02=1 A =1LA=1 A =0,A=1 A, =1, =1

DG rule
DGnoff 0.04 0.05 0.00 0.09
IAC 1.37 1.36 0.08 0.27
RB 0.82 0.85 0.19 0.23
DGnoff rule
DG 0.06 0.06 0.00 0.18
IAC 0.93 1.80 0.10 0.34
RB 0.24 1.20 0.28 1.38
IAC rule
DG 0.52 1.04 0.19 0.71
DGnoff 0.14 1.19 0.19 0.88
RB 0.05 0.92 0.31 0.24
RB rule
DG 0.21 0.28 0.11 0.12
DGnoff 0.09 0.31 0.10 0.21
IAC 0.56 0.93 0.22 0.13

The increase in absolute loss when the policy rule optimized for one model is evaluated in the other models is
reported in terms of the implied inflation variability premium. The IIP corresponds to the required increase in the
standard deviation of the annual inflation rate that would imply an equivalent increase in absolute loss.

Turning to the three-parameter rules, the corresponding IIPs turn out to be somewhat lower
than under the two-parameter rules for the majority of experiments, though there are exceptions.
Two three-parameter rules, the DG rule and the RB rule, turn out to be relatively robust to model
uncertainty, leading only to small increases in the absolute loss when implemented in competing
models.

For both types of rules and both parameterizations of the loss function we find that the rule
optimized for the DG model with the financial friction shut down leads to almost no performance

loss in the full DG model relative to the rule optimized in that model. The same result holds
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true when evaluating the rule optimized for the full DG model in the model variant without
financial frictions. The IIP never exceeds 0.18 percentage points. Interestingly though, the rules
optimized for the DG model with and without financial frictions do not perform equally well in
other models. For instance, the DGnoff rule performs much worse in the RB model than the DG

rule, when the central bank cares about output gap stabilization.

6.1.5 Robustness and Model-Averaging

The lack of robustness of model-specific rules, suggests that one should take model uncertainty
explicitly into account when designing a simple rule for monetary policy. This may be achieved
by adopting a Bayesian perspective on the design of robust rules, following the approach pro-
posed by Levin et al. (1999, 2003) and Brock et al. (2003). Under this approach the policy rule

parameters are optimized by minimizing a weighted average of losses across models

Y Oulm =Y, @y [Var(m}) + AVar (4;,) + AnVar (Af,)] (111)
meM meM

where M refers to the set of models considered by the policy maker and the parameters ®,, denote
the weights on the models. Under a Bayesian perspective these weights would correspond to the
central bank’s priors on model probabilities.

Taylor and Wieland (2011) computed model-averaging rules using the TAY-, CEE/ACEL-
and SW-models. Here we replicate this exercise with the other four models. Thus, in our exercise
the set of models in equation (111) is M = {DG,DGnof f,IAC,RB}. We consider flat priors,
WOy = % for all m, so that (111) effectively implies simple model averaging. Table 9 reports the
optimized response coefficients of the 2-parameter and 3-parameter model averaging rules for the
case when output, inflation and interest volatility receive the same weight in the loss function.
For the two-parameter rule, the optimized response coefficient to inflation lies close to 2, being

somewhat smaller than the optimal response coefficient in the RB model but larger than the
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Table 9: Characteristics of model-averaging rules, (A, = 1,45, = 1)

Rule T; Tr Ty
M= {DG,DGnoff,IAC,RB}

2 parameters 2.06 091
3 parameters 1.05 0.49 0.60
M= {TAY,CEE/ACEL,SW}

3 parameters 1.05 0.41 0.23

Note: Optimized response coefficients for the two-parameter rule 7; = 777 + 7,97 and the three-parameter rule
I; = Tii;_| + Txm; + T,q; in case of equal weights on the variance of the output gap and the variance on the change

in the nominal interest rate, A, = 1,A4; = 1, are reported.

optimal parameter value in the remaining three models. The optimized three-parameter rule has
a response coefficient to the lagged interest rate near unity and (short-run) response coefficients
to inflation and the output gap which are smaller than under the two-parameter rule and near
0.5. Comparing this model-averaging rule with the corresponding model-specific optimal rules
in Table 5 it turns out that the parameter values of the model-averaging rule are relatively close
to the rule that is optimal in the RB model. This is not too surprising given that our earlier
experiments showed that the RB rule performs quite well in the DG-, DGnoff- and IAC-model.

What about the TAY-, CEE/ACEL- and SW-model considered by Taylor and Wieland (2011)?
Interestingly, the three-parameter model averaging rule reported in that study (shown in the bot-
tom row of Table 9) is almost identical to the model averaging rule obtained here. Only the co-
efficient on the output gap is a bit smaller. Thus, we refrain from extending the model-averaging
exercise to the full set of 7 models.

In a final exercise, we check the differences between the model-averaging rule and the model-
specific rules in the DG-, DGnoff-, RB- and IAC-model. Table 10 reports the corresponding
IIPs for the two classes of rules. Not surprisingly, the IIPs are strictly positive, i.e. the model
averaging rule always performs worse than the model-specific rules when those are applied in

the correct model. However, the magnitude of this difference is very small. Even more so, in the
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Table 10: Optimized model-averaging rules: 1P

Model  2-parameter rule 3-parameter rule

DG 0.35 0.07
DGnoff 0.43 0.15
IAC 0.55 0.14
RB 0.05 0.02

Note: The increase in absolute loss in each model under a rule optimized by averaging over all models relative to
the model-specific optimized rule of the same class is reported in terms of the implied inflation variability premium.
The IIP corresponds to the required increase in the standard deviation of the annual inflation rate that would imply
an equivalent increase in absolute loss.

case of the more effective three-parameter rules. In this case, the maximum IIP amounts to 0.15
percentage points.

In sum, our findings emphasize that rules fine-tuned to a particular model may lead to poor
or even disastrous outcomes in other models. Policy recommendations should therefore be based
on a broad range of alternative models. Here, we have focused on models with financial frictions
but in general it is desirable to consider substantial diversity in terms of modeling approaches to
ensure that policy recommendations are robust. Our conclusion should not be understood as a

proposal to maximize the number of potential models considered. Rather, we have focused on

models that pass stringent tests in terms of empirical fit and economic theory.

6.2 Robustness of Impact Estimates of Discretionary Fiscal Stimulus

New Keynesian DSGE models are not only useful for monetary policy analysis, but can also
be employed for evaluating fiscal policy. In fact, many medium- and large-scale models used
at policy institutions now contain a rather detailed treatment of the fiscal sector with various
types of distortionary taxes and explicit modeling of the different components of government
spending and transfers. These models can be used to evaluate discretionary as well as rule-based

fiscal policy initiatives. They are best used to investigate questions concerning business cycle
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stabilization and the interaction of monetary and fiscal policy measures in the short to medium
run. Of course, there are many fiscal policy questions that focus on distributional issues and
longer-term impacts. Other computable general equilibrium models that are more appropriate
for such questions are described in other chapters of this Handbook.

In this subsection, we focus on a well-known Keynesian idea with great relevance for short-
run fiscal policy, namely the Keynesian multiplier effect. This effect has been used as a justi-
fication for initiating major discretionary stimulus packages in the aftermath of the 2008-2009
recession. The Keynesian multiplier implies that an increase in government spending leads to a
greater than one-for-one increase in overall GDP. It arises in the text-book IS-LM model because
the Keynesian consumption function implies a fixed relationship between consumption and cur-
rent household income. Because additional government spending boosts income it also induces

additional private consumption, and thus an effect on overall GDP that is greater than unity.

6.2.1 The Debate on the GDP Impact of the 2009 ARRA stimulus package

Specifically, we review evidence from New Keynesian models regarding the GDP impact of the
American Recovery and Reinvestment Act (ARRA) legislated in February 2009 in the United
States. In a prominent paper from January 2009, Christina Romer, then-Chair of the President’s
Council of Economic Advisers, and Jared Bernstein, Chief Economist of the Office of the Vice-
President, presented model-based evidence that a lasting increase in government purchases of
one percent of GDP would lead to a rapid rise in real GDP of 1.6 percent persisting for at least
five years. On this basis, they estimated that the full stimulus package proposed would induce
an increase in U.S. GDP of 3.6 percent by the end of 2010 over a baseline without stimulus.
However, Cogan et al. (2010) (first public working paper version issued on March 2, 2009)
showed that the estimates of Romer and Bernstein (2009) were not robust. They estimated only
1/6 of the GDP impact of the stimulus package expected by Romer and Bernstein. While, Romer

and Bernstein based their analysis on results from Keynesian-style models used by private sector
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forecasters and the Federal Reserve, Cogan et al. (2010) considered state-of-the-art medium-
scale DSGE models estimated on U.S. data.

Cogan et al. (2010) first evaluated the impact of the additional government spending an-
nounced with the ARRA legislation in the Smets-Wouters model of the U.S. economy. This
model, which was also part of the monetary policy exercise of the preceding section, features
forward-looking, optimizing households as in the small-scale model presented in section 3.1. As
discussed in that section and confirmed by Figure 3, an increase in government spending leads
to crowding out of private consumption spending in that model. Higher expected interest rates
and the anticipation of a greater future tax burden induce forward-looking, rational households
to reduce their expenditures. Cogan et al. (2010) showed that the announced ARRA spending
would reduce private consumption and investment in the Smets-Wouters model even if one takes
into account that interest rates might remain constant for up to two years. The assumption of
constant interest rates was meant to capture the anticipation that the Federal Reserve’s notional
operating target for the federal funds rate would remain negative for some time during the re-
cession and thereby suppress the upward pressure on interest rates due to increased government
debt.??

In a further step, Cogan et al. (2010) extended the Smets-Wouters model to allow for the
presence of rule-of-thumb households. Such households consume their current income as pre-
scribed by the Keynesian consumption function. As a consequence, Ricardian equivalence fails
and it is necessary to account explicitly for tax and debt dynamics. They re-estimate the complete
model together with a reaction function of taxes in response to government spending and debt
with Bayesian methods. Their estimate of the share of rule-of-thumb households is 26.5 percent.
Even so, the estimate of the government spending multiplier and the GDP impact of announced

ARRA spending remain far below the estimates used by Romer and Bernstein (2009).

22Technically, they solve the model with the extended-path method reviewed in section 4.1.3 of this chapter so as
to respect the nonlinearity resulting from the zero-lower-bound on nominal interest rates.
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6.2.2 Recent Findings from a Major Model Comparison Exercise

Rather than conducting additional simulations in other models, we review instead findings from
a major comparison exercise sponsored by the International Monetary Fund and reported in Co-
enen et al. (2011). Interestingly, the published version of this study by 17 authors also includes
a robustness analysis of the Cogan et al estimates of the GDP impact of the announced ARRA
spending, which was not part of the initial IMF exercise. They simulate the time profile of ARRA
spending documented by Cogan et al in seven macroeconomic models which are currently used
at the IMF, the Federal Reserve, the ECB, the Bank of Canada, the OECD and the European
Commission, respectively. Then, they compare their results with those obtained in the models
estimated by Cogan et al. (2010) and Christiano et al. (2005).

Figure 7 displays their findings. It reproduces Figure 7 from Coenen et al. (2011).2> The
bars shown in each panel are identical and indicate the time profile of ARRA government spend-
ing. The simulations are carried out under the assumption that market participants anticipate
the execution of the announced purchases over coming years. Other measures included in the
ARRA such as tax rebates and certain transfers are not included. The different lines displayed in
the panels indicate the estimated GDP impact of the additional government spending in different
macroeconomic models. Because some of the models are estimated with euro area data, there are
two columns of panels. The left column reports the GDP impact in models of the U.S. economy
while the right column labeled ”Europe” refers to euro area models.?*

The models shown in the left column are the following: (1) Christiano et al (CEE), solid black
line, (2) Cogan et al (CCTW), dashed black line, (3) the IMF’s Global Integrated Monetary and
Fiscal Policy model (GIMF), dashed-dotted black line, (4) the Federal Reserve’s U.S. model
(FRB-US), solid grey line, (5) the Federal Reserve’s international model (SIGMA), dashed grey

line, (6) the Bank of Canada’s Global Economic Model (GEM), dashed-dotted grey line. The

23We are grateful to the authors for supplying the simulation data for replicating this figure from their paper.
24For an evaluation of the euro area stimulus packages in a range of models see Cwik and Wieland (2011).
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Figure 7: Estimated GDP effects of announced ARRA spending
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Note: Shown are estimated output effects of government purchases in the February 2009 US stimulus legislation for
nine macroeconomic models. Left column: CEE (solid black), CCTW (dashed black), IMF GIMF (dashed-dotted
black), Fed FRB-US (solid grey), Fed SIGMA (dashed grey), BoC GEM (dashed-dotted grey). Right column: EC
QUEST (solid black with plus signs), ECB NAWM (solid black with circles), OECD (solid grey with crosses).
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models shown in the right column are: (7) the European Commissions QUEST model (EC-
QUEST), solid black line with plus signs, (8) the European Central Bank’s New Area-Wide
Model (ECB-NAWM), solid black line with circles, and (9) the OECD’s macroeconomic model
(OECD), solid grey line with crosses.

Coenen et al. (2011) consider three alternative assumptions regarding monetary policy. The
first row displays results for the case of no monetary accommodation, that is, monetary policy
in each model is set according to an interest rate rule. Thus, interest rates will rise along with
the increase in GDP and dampen the stimulative impact of the additional government spending.
In this scenario, all the models considered deliver an increase in GDP over the first two and half
years of the stimulus. However, the increase in GDP remains well behind the associated increase
in government spending. Thus, the Keynesian multiplier effect is not working. Instead private
demand is crowded out and declines all throughout the period of government stimulus. Some of
the models even predict an overall negative effect on GDP in the fourth year of the stimulus. The
extended Smets-Wouters model estimated by Cogan et al (dashed black line) lies well within the
range of other model outcomes (left panel). This finding is particularly interesting because these
other models are used at major policy institutions and contain much more thoroughly detailed
fiscal sectors than the models considered in Cogan et al. The IMF’s GIMF model is especially
noteworthy as it contains overlapping-generation households with finite planning horizons. This
level of heterogeneity is rare in New Keynesian DSGE models, but relevant for many fiscal
policy considerations (see Freedman et al. (2010)). As to the stimulative effect of planned
ARRA spending, however, the model’s predictions remain close to the pessimistic assessment of
Cogan et al.

For the simulations shown in the second row of Figure 7, nominal interest rates are held
constant for one year and follow a nominal interest rate rule thereafter, and for the results shown
in the third row, nominal interest rates are held constant for two years. These simulations illus-

trate the role of the monetary policy stance for the effectiveness of fiscal stimulus. If nominal
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interest rates are initially held constant, fiscal multipliers increase. With one year of anticipated
monetary accommodation, multipliers remain below one in all of the models. With two years,
GDP exceeds government spending a little bit in some of the models, due to crowding-in of pri-
vate consumption. There is one outlier. The CEE model exhibits a massive boost for two years,
followed by a recession. As suggested in Christiano et al. (2011) with this model government
spending multipliers may be large. However, in the case of the ARRA stimulus, this finding is not
robust to model uncertainty. All other models considered by Coenen et al. (2011) induce much
smaller GDP eftects. Thus, their comparative findings support the scepticism regarding Romer
and Bernstein’s recommendation of an extensive sustained fiscal stimulus program expressed by

Cogan et al and others in 2009.

7 Open Questions and Future Research

In conclusion of this chapter, we point out some research questions that need to be addressed in
New Keynesian modeling and list selected recent articles that suggest new avenues for extending
the methodology. The New Keynesian approach to business cycle analysis initially benefitted
tremendously from the concise modeling of imperfect competition, nominal rigidity and mone-
tary policy in a context with optimizing households and firms. The clarity that rendered the type
of small-scale model we presented in section 3.1. so popular was made possible by some dras-
tic short-cuts. Subsequent medium-size DSGE models built to explain the persistence in major
macroeconomic aggregates mostly continued to employ these same simplifications. They ig-
nored questions regarding the endogeneity of technology and long-run growth that had featured
so prominently in the new growth theory and growth empirics of the 1980s and 1990s. They
suppressed consumer and producer heterogeneity that is treated as a central issue in most of the
other chapters in this handbook. Imperfections in expectations formation were typically given

short shrift. And perhaps most importantly, even DSGE models built at central banks prior to
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the global financial crisis did not contain a detailed formal treatment of the sources of disrup-
tion in financial markets and financial intermediation that eventually became widely apparent in
the course of the financial crisis. Going forward, these deficiencies of current-generation New
Keynesian DSGE models offer tremendous opportunity for productive innovation.

Long-run growth. Typically business cycle models are either written without reference to the
growth factors and then estimated on de-trended data, or they are stationary with respect to a bal-
anced growth path and estimated as linear approximations around the deterministic steady-state.
More sophisticated versions take into account that the presence of shocks in nonlinear models
induces a difference between the deterministic and the stochastic steady-state. For example,
they employ perturbation methods for second-order approximation of the stochastic steady-state.
More generally, market participants’ expectations of long-run growth have important implica-
tions for their current choices. Similarly, policy makers’ decisions are based on deviations from
perceived long-run equilibrium values. Thus, perceptions regarding long-run growth will influ-
ence short-run dynamics and policy responses. To give a recent example, changing estimates of
U.S. productivity growth in the context of advances in information technology as documented in
Jorgenson et al (2008) led to shifts in the perceived neutral setting of monetary policy. Further
investigation of the interaction between perceived growth trends and the formulation of mone-
tary and also fiscal policy is an important area of application for DSGE modeling. Central bank
misperceptions regarding potential output and growth may induce trends in inflation (see Beck
and Wieland (2008)). Similarly, changes in distortionary labor or capital income tax rates will in-
fluence long run growth opportunities. Finally, incorporating advances from endogenous growth
theory in DSGE models will help shedding new light on the interaction of short-run fluctuations,
investment and technological change.

Consumer and producer heterogeneity. While the baseline New Keynesian model assumes a
single representative agent, more elaborate models allow for different types of economic agents.

As noted in the preceding section on fiscal stimulus, many medium-size DSGE models addition-
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ally include consumers that spend according to a rule-of-thumb rather than solving an intertem-
poral optimization problem. The IMF’s GIMF model even incorporates overlapping generations
of households with finite planning horizons. Furthermore, certain models with financial fric-
tions feature households with different degrees of impatience that separate them into borrowers
and lenders. For instance, lacoviello (2005) develops a model where lenders are borrowing-
constrained and their collateral is tied to the value of housing. These frictions amplify the con-
sequences of certain macroeconomic shocks while attenuating others. Other studies do away
with the assumption of perfect risk sharing between different households. Consider for example
a New Keynesian model with staggered wage setting. Labor income then differs among house-
holds. The standard approach is to assume that households engage in complete risk sharing
across households to simplify aggregation. By contrast, a recent paper by Lee (2011) develops a
simple New Keynesian model in which households cannot perfectly insure against idiosyncratic
labor income risk because of costs of moving resources between households. He finds that this
real rigidity improves the model’s ability to reconcile macroeconomic estimates of the slope of
the New Keynesian Phillips curve with microeconomic data on the frequency of price changes.
Financial intermediation and regulatory policy. DSGE models used prior to the financial cri-
sis typically did not include a realistic treatment of the banking sector and the involved macroe-
conomic risks. The crisis and ensuing criticism of macroeconomic modeling, however, has pro-
duced a burst of creative research from economists interested in the impact of a breakdown in
financial intermediation and the integration of traditional monetary policy with financial regula-
tion. Some of these advances have already been incorporated in DSGE models. Here are some
examples. Meh and Moran (2010) consider the role of financial frictions in a DSGE model that
introduces an agency problem between banks and entrepreneurs as in Bernanke et al. (1999),
together with an agency problem between banks and their creditors, that is households. In this
two-sided agency problem, not only entrepreneurs’ wealth influences business cycle movements

but also the capital position of banks. Gerali et al. (2010) introduce an imperfectly competi-
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tive banking sector in a DSGE model with financial frictions and study the role of credit supply
factors in business cycle fluctuations. They estimate this model with euro area data. Gertler and
Kiyotaki (2009) also present a framework for studying credit market frictions in DSGE models
and use it to analyze the impact of the type of credit market interventions by the central bank and
the Treasury seen in the recent crisis. Lambertini et al (2011) study the performance of mon-
etary and macro-prudential policies that lean against news-driven boom-bust cycles in housing
prices and credit. Further extensions of DSGE models that incorporate recent advances in partial
equilibrium modeling on the interaction of default in the credit sector and market liquidity will
be of great interest.

Rational expectations versus learning. New Keynesian DSGE models typically impose ra-
tional expectations, as we do throughout this chapter. Agents are treated as if they are able to
calculate expectations under complete knowledge about the economic structure. Critics correctly
point out that market participants do not have access to such information and may never form
expectations that achieve this level of rationality. A range of different approaches for modeling
less-than-fully rational expectations have been proposed in the literature. A well-known case
is adaptive learning. Under adaptive learning agents in the model economy estimate simple
reduced-form specifications of model variables to form expectations of future variables. The
parameter estimates of these reduced-form specifications are then updated as new data becomes
available. In this sense the economic agent acts like an econometrician. Examples of recent
examinations of the implications of adaptive learning for policy performance and business cycle
dynamics in New Keynesian models include Orphanides and Williams (2006), Slobodyan and
Wouters (2008) and Wieland (2009).

Heterogenous expectations and endogenous uncertainty. While adaptive learning relaxes the
assumption of rational expectations, it maintains homogeneity across agents. By contrast, survey
data from professional forecasters exhibits substantial diversity. Theoretical studies show that

such heterogeneity of expectations can amplify economic fluctuations and may therefore have
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important implications for policy design. Recent contributions include Branch and McGough
(2011), Branch and Evans (2011), De Grauwe (2011), Kurz et al. (2005) and Kurz (2009).
An explicit treatment of belief diversity makes it possible to decompose the sources of economic
volatility into exogenous uncertainty due to shocks and endogenous uncertainty due to disagree-
ment in forecasts. Kurz (2011) constructs a New Keynesian model with diverse but rational
beliefs and analyzes the implications of belief heterogeneity for monetary policy.

In sum, New Keynesian modeling is a thriving field of research. The global financial crisis has
raised many questions that generate demand for improvement and modification with potentially

important lessons for the design of monetary, fiscal, macro-prudential and regulatory policies.

A Appendices

A.1 Data Sources and Treatment

The data series used for estimation of the small New Keynesian model in section 4.2 are defined

as follows

YGR = (1—L)In(GDPC1/CNP160V)* 100
INFL = GDPDEF

INT = FEDFUNDS/4,

where L denotes the lag-operator. The original data sources are

e GDPCI: Real Gross Domestic Product (Billions of Chained 2005 Dollars, Seasonally
Adjusted Annual Rate)
Source: U.S. Department of Commerce - Bureau of Economic Analysis (via St. Louis Fed

FRED database)
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e CNP160V: Civilian Non-institutional Population (Thousands, Not Seasonally Adjusted,
Average of Monthly Data)
Source: U.S. Department of Labor - Bureau of Labor Statistics (via St. Louis Fed FRED

database)

e GDPDEF: Gross Domestic Product Implicit Price Deflator (Percent Change, Seasonally
Adjusted)
Source: U.S. Department of Commerce - Bureau of Economic Analysis (via St. Louis Fed

FRED database)

e FEDFUNDS: Effective Federal Funds Rate (Percent, Averages of Daily Figures)
Source: Board of Governors of the Federal Reserve System (via St. Louis Fed FRED

database)

The data variables are related to the model variables via the following measurement equations:

YGR, = Y;—Y,_|+mean(YGR,)
INFL, = #f;,+mean(INFL,)

INT, = R,+mean(INT;)
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A.2 Augmented Models
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Table 11: The small-scale New Keynesian model

Description Equations and definitions

Original Model
variables xi=[R @ Y, ¥EP e Rrat g, /i,}/
shocks g =¢', n' = [S,R s,g}/
parameters Bi=B k¥ & n pe pa, n=lm = wl

model equations
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Augmented Model

Zty Ny
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Table 12: The New Keynesian model of Ireland (2004a)

Description Equations and definitions
Original Model
variables x>=1[F & P w4 & 2,]’
shocks & =tw €u €4, NP =¢n
parameters Bo=[o1 @ 1 » B WV T F pa Pe P
vn=I[pr Pz py]/
model equations
2(.) Fr = Prfr—1+pPyPi—1+Prafti—1+Ex
£2() Ve =Ed1— o (7 — Efyy)

+an (1 — &) — (Eiiy 1 — Erér41)]
+o1 (d4; — Eidr41)

iy = TE R +y [wil);t — a2 iy —é) —2
ny = Y1Vt — Vaf't + V36

&t = pa&t—l + Ex

ét = peét—l + &t

Zt = Poii—1 + &

Augmented Model
Zt; M z=1 m pi v g, n=n
7,g(.) i =0.81# | +0.39p; +0.97¢; — 0.90¢° | +n;
£(0) as defined above in original model
hz(zt,EtxtzH,x,Z, 02) i; =47,
T =T+ 1+ R+ M3
p; =47
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A.3 A Database of Macroeconomic Models

The following two tables summarize the models currently available in the data base.

MODELS AVAILABLE IN THE MACROECONOMIC MODEL DATABASE (VERSION 1.2)
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1. SMALL CALIBRATED MODELS

1.1 NK_RW97 Rotemberg and Woodford (1997)

1.2 NK_LWWO03 Levin et al. (2003)

1.3 NK_CGG99 Clarida et al. (1999)

1.4 NK_CGGO02 Clarida et al. (2002)

1.5 NK_MCN99cr McCallum and Nelson (1999), (Calvo-Rotemberg model)
1.6 NK_IR04 Ireland (2004a)

1.7  NK_BGG99 Bernanke et al. (1999)

1.8 NK_GMO5 Gali and Monacelli (2005)

1.9 NK_GKO09 Gertler and Karadi (2011)
1.10 NK_CKO08 Christoftel and Kuester (2008)
1.11 NK_CKLO09 Christoftel et al. (2009)

1.12 NK_RWO06 Ravenna and Walsh (2006)

2. ESTIMATED US MODELS

2.1  US_FM95 Fuhrer and Moore (1995)
2.2 US_.OW98 Orphanides and Wieland (1998) equivalent to MSR model in Levin et al. (2003)
2.3 US_FRBO03 Federal Reserve Board model linearized as in Levin et al. (2003)

24 US_FRBOS8 linearized by Brayton and Laubach (2008)
2.5 US_FRBO8mx linearized by Brayton and Laubach (2008), (mixed expectations)
2.6  US_SW07 Smets and Wouters (2007)
2.7  US_ACELm Altig et al. (2005), (monetary policy shock)
US_ACELt Altig et al. (2005), (technology shocks)
US_ACELswm no cost channel as in Taylor and Wieland (2011) (mon. pol. shock)
US_ACELswt  no cost channel as in Taylor and Wieland (2011) (tech. shocks)
2.8 US_NFEDO08 based on Edge et al. (2007), version used for estimation in
Wieland and Wolters (2011)

2.9 US_RS99 Rudebusch and Svensson (1999)
2.10 US_ORO3 Orphanides (2003)
2.11 US_PMO08 IMF projection model US, Carabenciov et al. (2008)

2.12 US_PMO8fl IMF projection model US (financial linkages), Carabenciov et al. (2008)
2.13 US_DGO8 De Graeve (2008)

2.14 US_CDO08 Christensen and Dib (2008)
2.15 US_IACO05 Iacoviello (2005)

2.16 US_MRO7 Mankiw and Reis (2007)
2.17 US_RAO07 Rabanal (2007)

2.18 US_CCTWI10  Smets and Wouters (2007) model with rule-of-thumb consumers,
estimated by Cogan et al. (2010)
2.19 US.IRI11 Ireland (2011)
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3. ESTIMATED EURO AREA MODELS

3.1 EA_CWO5ta
32 EA_CWO5fm
3.3 EA_AWMOS
3.4 EA_SWO03
3.5 EA_SRO7
3.6 EA_QUEST3
3.7 EA_CKLO09
3.8 EA_GEI0

Coenen and Wieland (2005), (Taylor-staggered contracts)

Coenen and Wieland (2005), (Fuhrer-Moore-staggered contracts)
ECB’s area-wide model linearized as in Dieppe et al. (2005)

Smets and Wouters (2003)

Sveriges Riksbank euro area model of Adolfson et al. (2007)

QUEST III Euro Area Model of the DG-ECFIN EU, Ratto et al. (2009)
Christoffel et al. (2009)

Gelain (2010)

4. ESTIMATED/CALIBRATED MULTI-COUNTRY MODELS

4.1 G7.TAY93

42 G3.CWO03

4.3 EACZ_GEMO3
4.4 G2_SIGMAOS8

4.5 EAUS_NAWMOS
4.6 EAES_RA09

Taylor (1993a) model of G7 economies

Coenen and Wieland (2002) model of USA, Euro Area and Japan

Laxton and Pesenti (2003) model calibrated to Euro Area and Czech republic
The Federal Reserve’s SIGMA model from Erceg et al. (2008)

calibrated to the U.S. economy and a symmetric twin.

Coenen et al. (2008), New Area Wide model of Euro Area and USA

Rabanal (2009)

5. ESTIMATED MODELS OF OTHER COUNTRIES

5.1 CL_MSO07
52 CA_ToTEMI10

5.3 BRA_SAMBAOS
54 CA_LS07

5.5 HK_FPPI1

Medina and Soto (2007), model of the Chilean economy

ToTEM model of Canada, based on Murchison and Rennison (2006),
2010 vintage

Gouvea et al. (2008), model of the Brazilian economy

Lubik and Schortheide (2007),

small-scale open-economy model of the Canadian economy

Funke et al. (2011),

open-economy model of the Hong Kong economy

92



References

Adolfson, Malin, Stefan Laséen, Jesper Lindé, and Mattias Villani. 2007. Bayesian estimation
of an open economy DSGE model with incomplete pass-through. Journal of International

Economics 72.

Altig, David, Lawrence Christiano, Martin Eichenbaum and Jesper Lindé. 2005. Firm-specific

capital, nominal rigidities and the business cycle. 2005. CEPR Discussion Papers 4858.

An, Sungbae and Frank Schortheide. 2007. Bayesian Analysis of DSGE Models. Econometric

Reviews 26(2-4).

Andres, Javier, David Lopez-Salido and Javier Valles. 2006. Money in an Estimated Business

Cycle Model of the Euro Area. The Economic Journal 116.

Beck, Guenter and Volker Wieland. 2008. Central Bank Misperceptions and the Role of Money

in Interest Rate Rules. Journal of Monetary Economics 55(1).

Bernanke, Ben, Mark Gertler and Simon Gilchrist. 1999. The Financial Accelerator in a Quan-
titative Business Cycle Framework. In J. Taylor and M. Woodford (editors), Handbook of

Macroeconomics, North-Holland, Amsterdam.
Blanchard, Olivier and Stanley Fischer. 1989. Lectures on Macroeconomics. The MIT Press.

Blanchard, Olivier and Charles M. Kahn. 1980. The Solution of Linear Difference Models under

Rational Expectations. Econometrica 48(5).

Branch, William A. and George W. Evans. 2011. Monetary policy with heterogeneous expecta-
tions. Economic Theory 47(2-3): 365-393.

Branch, William A. and Bruce McGough. 2011. Business cycle amplification with heterogeneous

expectations. Economic Theory 47(2-3): 395-421.

93



Brayton, Flint, and Thomas Laubach. 2008. Documentation of Linearized FRB/US model.

Manuscript.

Brock, William, Steven Durlauf and Kenneth West. 2003. Policy Evaluation in Uncertain Envi-

ronments. Brookings Papers on Economic Activity 1:2003.

Bryant, Ralph, Peter Hooper and Catherine Mann (editors). 1993. Evaluating Policy Regimes:

New Research in Empirical Macroeconomics, Washington, D.C.: The Brookings Institution.

Calvo, Guillermo. 1983. Staggered Prices in a Utility Maximizing Framework. Journal of Mon-

etary Economics 12:383-398.

Canova, Fabio and Luca Sala. 2009. Back to square one: Identification issues in DSGE models.

Journal of Monetary Economics 56.

Carabenciov, loan, Igor Ermolaev, Charles Freedman, Michel Juillard, Ondra Kamenik, Dmitry
Korshunov and Douglas Laxton. 2008. A Small Quarterly Projection Model of the US Econ-
omy. IMF Working Paper 08/278.

Chiarella, Carl, Roberto Dieci and Xue-Zhong He. 2007. Heterogeneous expectations and spec-
ulative behavior in a dynamic multi-asset framework. Journal of Economic Behavior and Or-

ganization 62: 408-427.

Chib, Siddhartha and Edward Greenberg. 1995. Understanding the Metropolis-Hastings Algo-

rithm. The American Statistician 49(4).

Christensen, lan and Ali Dib. 2008. The financial accelerator in an estimated New Keynesian

model. Review of Economic Dynamics 11.

Christiano, Lawrence, Martin Eichenbaum, and Charles Evans. 1999. Monetary Policy Shocks:
What Have we Learned and to What End? in Taylor and Woodford (eds.), Handbook of

Macroeconomics volume 1A, 65-148.

94



Christiano, Lawrence, Martin Eichenbaum, and Charles Evans. 2005. Nominal rigidities and the

dynamic effects of a shock to monetary policy. Journal of Political Economy 113(1).

Christiano, Lawrence, Martin Eichenbaum, and Sergio Rebelo. 2011. When is the Government

Spending Multiplier Large? Journal of Political Economy 119(1): 78-121.

Christoffel, Kai, and Keith Kuester. 2008. Resuscitating the wage channel in models with unem-

ployment fluctuations. Journal of Monetary Economics 55.

Christoffel, Kai, Keith Kuester, and Tobias Linzert. 2009. The role of labor markets for euro arca

monetary policy. European Economic Review 53.

Clarida, Richard, Jordi Gali, and Mark Gertler. 1999. The Science of Monetary Policy: A New

Keynesian Perspective. Journal of Economic Literature 37(4).

Clarida, Richard, Jordi Gali, and Mark Gertler. 2002. A Simple Framework for International

Monetary Policy Analysis. Journal of Monetary Economics 49.

Coenen, Guenter, Christopher Erceg, Charles Freedman, Davide Furceri, Michael Kumhof, René
Lalonde, Douglas Laxton, Jesper Lindé¢, Annabelle Mourougane, Dirk Muir, Susanna Mursula,
Carlos de Resende, John Roberts, Werner Roeger, Stephen Snudden, Mathias Trabandt, and
Jan in ’t Veld. 2011. Effects of Fiscal Stimulus in Structural Models. Forthcoming in American

Economic Journal: Macroeconomics.

Coenen, Guenter, Peter McAdam, and Roland Straub. 2008. Tax reform and labour-market per-
formance in the euro area: A simulation-based analysis using the New Area-Wide Model.

Journal of Economic Dynamics and Control 32(8).

Coenen, Guenter and Volker Wieland. 2002. Inflation Dynamics and International Linkages: A

Model of the United States, the Euro Area and Japan. ECB Working Paper Series 181.

95



Coenen, Guenter and Volker Wieland. 2005. A Small Estimated Euro Area Model with Rational

Expectations and Nominal Rigidities. European Economic Review 49.

Cogan, John, Tobias Cwik, John Taylor, and Volker Wieland. 2010. New Keynesian versus Old

Keynesian Government Spending Multipliers. Journal of Economic Dynamics and Control 34.

Cogley, Timothy and Takeshi Yagihashi. 2010. Are DSGE Approximating Models Invariant to

Shifts in Policy? The B.E. Journal of Macroeconomics (Contributions) 10(1).

Collard, Fabrice and Michel Juillard. 2001. Accuracy of stochastic perturbation methods: the

case of asset pricing models. Journal of Economic Dynamics and Control 25.

Cowles, Mary K. and Bradley P. Carlin. 1996. Markov Chain Monte Carlo Convergence Diag-

nostics: A Comparative Review. Journal of the American Statistical Association 91.

Cwik, Tobias, and Volker Wieland. 2011. Keynesian government spending multipliers and

spillovers in the euro area. Economic Policy, 26(67): 493-549.

De Graeve, Ferre. 2008. The external finance premium and the macroeconomy: US post-WWII

evidence. Journal of Economic Dynamics and Control 32.
De Grauwe, Paul. 2011. Animal spirits and monetary policy. Economic Theory 47(2-3): 423-457.

Del Negro, Marco and Frank Schorfheide. 2010. Bayesian Macroeconometrics. Forthcoming in:
J. Geweke, G. Koop, H. van Dijk (editors), The Oxford Handbook of Bayesian Econometrics,

Oxford: Oxford University Press.

Dieppe, Alistair, Keith Kuester and Peter McAdam. 2005. Optimal Monetary Policy Rules for
the Euro Area: An Analysis using the Area Wide Model. Journal of Common Market Studies
43(3).

96



Edge, Rochelle M., Michael T. Kiley, and Jean-Philippe Laforte. 2007. Natural Rate Measures in
an Estimated DSGE Model of the U.S. Economy. Journal of Economic Dynamics and Control
32.

Eichenbaum, Martin, and Jonas Fisher. 2007. Estimating the frequency of price re-optimization

in Calvo-style models. Journal of Monetary Economics 54.

Erceg, Christopher, Luca Guerrieri, and Christopher Gust. 2008. Trade Adjustment and the Com-

position of Trade. Journal of Economic Dynamics and Control 32.

Erceg, Christopher, Dale Henderson, and Andrew Levin. 2000. Optimal Monetary Policy with

Staggered Wage and Price Contracts. Journal of Monetary Economics 46: 281-313.

Erceg, Christopher and Andrew Levin. 2006. Optimal Monetary Policy with Durable Consump-

tion Goods. Journal of Monetary Economics 53: 1341-1359.

Fair, Ray C. and John B. Taylor. 1983. Solution and Maximum Likelihood Estimation of Dy-

namic Nonlinear Rational Expectations Models. Econometrica 51(4).

Fischer, Stanley. 1977. Long-term contracts, rational expectations and the optimal money supply

rule. Journal of Political Economy 85(1): 191-205.

Freedman, Charles, Michael Kumhof, Douglas Laxton, Dirk Muir and Susanna Mursula. 2010.
Global Effects of Fiscal Stimulus during the Crisis, Journal of Monetary Economics 57: 506-
526.

Fuhrer Jeffrey and George Moore. 1995. Inflation Persistence. The Quarterly Journal of Eco-
nomics 110(1).

Funke, Michael, Michael Paetz, and Ernest Pytlarczyk. 2011. Stock market wealth effects in an

estimated DSGE model for Hong Kong. Economic Modelling 28.

97



Gagnon, Joseph E. 1990. Solving the Stochastic Growth Model by Deterministic Extended Path.

Journal of Business and Economic Statistics 8(1).

Gali, Jordi. 1999. Technology, Employment, and the Business Cycle: Do Technology Shocks

Explain Aggregate Fluctuations? The American Economic Review 89(1).

Gali, Jordi. 2008. Monetary Policy, Inflation, and the Business Cycle. Princeton University Press.

Gali, Jordi and Mark Gertler.1999. Inflation Dynamics: A Structural Econometric Analysis.

Journal of Monetary Economics 44.

Gali, Jordi and Mark Gertler. 2007. Macroeconomic Modeling for Monetary Policy Evaluation.

Journal of Economic Perspectives 21 (4).

Gali, Jordi, David Lopez-Salido and Javier Vallés. 2007. Understanding the effects of govern-

ment spending on consumption. Journal of the European Economic Association 5(1).

Gali Jordi and Tommaso Monacelli. 2005. Monetary Policy and Exchange Rate Volatility in a

Small Open Economy. Review of Economic Studies 72.

Gali, Jordi and Pau Rabanal. 2004. Technology Shocks and Aggregate Fluctuations: How Well
Does the Real Business Cycle Model Fit Postwar U.S. Data? NBER Macroeconomics Annual

19: 225-288.

Gelain, Paolo. 2010. The external finance premium in the euro area: A dynamic stochastic gen-

eral equilibrium analysis. North American Journal of Economics and Finance 21.

Gerali, Andrea, Stefano Neri, Luca Sessa and Federico Signoretti. 2010. Credit and banking in a

DSGE model of the euro area. Journal of Money, Credit, and Banking 42(6).

Gertler, Mark, Simon Gilchrist, and Fabio Natalucci. 2007. External Constraints on Monetary

Policy and the Financial Accelerator. Journal of Money, Credit, and Banking 39(2-3).

98



Gertler, Mark, and Peter Karadi. 2011. A model of unconventional monetary policy. Forthcoming

in Journal of Monetary Economics.

Gertler, Mark and Nobuhiro Kiyotaki. 2009. Financial intermediation and credit policy in busi-

ness cycle analysis. Forthcoming in Handbook of Monetary Economics.

Goodfriend, Marvin and Robert King. 1997. The New Neoclassical Synthesis and the Role of

Monetary Policy. NBER Macroeconomics Annual 231-282.

Gouvea, Solange, Andre Minella, Rafael Santos, and Nelson Souza-Sobrinho. 2008. Samba:

Stochastic Analytical Model with a Bayesian Approach. Working Paper.

Hansen, Lars. P. and Thomas J. Sargent. 1980. Formulating and Estimating Dynamic Linear

Rational Expectations Models. Journal of Economic Dynamics and Control 2: 7-46.

Heer, Burkhard and Alfred Maussner. 2005. Dynamic General Equilibrium Modelling, Berlin,

Springer.

Hughes Hallett, Andrew and Kenneth Wallis (editors). 2004. EMU Macroeconomic Model Com-

parison exercise for the Euroconference 7-8 June 2002, Economic Modelling 21(5).

lacoviello, Matteo. 2005. House Prices, Borrowing Constraints, and Monetary Policy in the Busi-

ness Cycle. The American Economic Review 95.

Ireland, Peter N. 2004a. Money’s Role in the Monetary Business Cycle. Journal of Money, Credit
and Banking 36(6).

Ireland, Peter N. 2004b. A Method for Taking Models to Data. Journal of Economic Dynamics
and Control 28(1).

Ireland, Peter N. 2011. A New Keynesian Perspective on the Great Recession. Journal of Money,
Credit and Banking 43(1).

99



Jorgenson, Dale, Mun Ho and Kevin Stiroh. 2008. A Retrospective Look at the U.S. Productivity

Growth Resurgence. Journal of Economic Perspectives 22(1).
Judd, Kenneth L. 1998. Numerical Methods in Economics, Cambridge, MA, London: MIT Press.

Juillard, Michel. 1996. A Program for the Resolution and Simulation of Dynamic Models with
Forward Variables through the use of a Relaxation Algorithm. CEPREMAP Working Paper

9602.

Juillard, Michel. 2001. A Program for the Simulation of Rational Expectation Models. Comput-

ing in Economics and Finance 213.

Kim, Jinill, Sunghyun Kim, Ernst Schaumburg and Christopher A. Sims. 2005. Calculating
and Using Second Order Accurate Solutions of Discrete Time Dynamic Equilibrium Mod-

els. Manuscript.

King, Robert G. and Mark Watson. 1998. The Solution of Linear Difference Systems under

Rational Expectations. International Economic Review 39(4).

King, Robert G. and Mark Watson. 2002. System Reduction and Solution Algorithms for Singu-
lar Linear Difference Systems under Rational Expectations. Computational Economics 20(1-

2).
Kiyotaki, Nobuhiro and John Moore. 1997. Credit Cylces. Journal of Political Economy 105(2).

Klein, Paul. 2000. Using the generalized schur form to solve a multivariate linear rational expec-

tations model. Journal of Economic Dynamics and Control 24(10).

Klenow, Peter J. and Benjamin A. Malin (2010). Microeconomic Evidence on Price-Setting.

Prepared for the Handbook of Monetary Economics.

100



Kuester, Keith, and Volker Wieland. 2010. Insurance Policies for Monetary Policy in the Euro

Area. Journal of the European Economic Association 8.

Kurz, Mordecai, Hehui Jin and Maurizio Motolese. 2005. The role of expectations in economic
fluctuations and the efficacy of monetary policy. Journal of Economic Dynamics and Control

29: 2017-2065.

Kurz, Mordecai. 2009. Rational diverse beliefs and market volatility. In T. Hens and K. Schenk-

Hoppe (editors): Handbook of Financial Markets: Dynamics and Evolution. North Holland.
Kurz, Mordecai. 2011. A New Keynesian Model with Diverse Beliefs. Manuscript.

Kydland, Finn E. and Edward C. Prescott. 1982. Time to Build and Aggregate Fluctuations.
Econometrica 50 (6): 1345-1370.

Kydland, Finn E. and Edward C. Prescott. 1996. The Computational Experiment: An Economet-

ric Tool. Journal of Economic Perspectives 10(1).

Lambertini, Luisa, Caterina Mendicino and Maria Punzi. 2011. Leaning against boom-bust cy-

cles in credit and housing prices. EP-Lausanne.

Laxton, Douglas and Paolo Pesenti. 2003. Monetary rules for small, open, emerging economies.

Journal of Monetary Economics 50.

Lee, Jaec Won. 2011. Aggregate Implications of Heterogenous Households in a Sticky-Price

Model. Forthcoming in Journal of Money, Credit and Banking.

Levin, Andrew T., Volker Wieland, and John C. Williams. 1999. Robustness of Simple Policy
Rules under Model Uncertainty. In J. Taylor (editor), Monetary Policy Rules, Chicago: Uni-

versity of Chicago Press.

101



Levin, Andrew T., Volker Wieland, and John C. Williams. 2003. The Performance of Forecast-
Based Monetary Policy Rules under Model Uncertainty. The American Economic Review

93:622-645.

Levin, Andrew T., and John C. Williams. 2003. Robust Monetary Policy with Competing Refer-

ence Models. Journal of Monetary Economics 50:945-975.

Ljungqvist, Lars and Thomas J. Sargent. 2004. Recursive Macroeconomic Theory, Cambridge,

MA, London: MIT Press.

Lubik, Thomas, and Frank Schorfheide. 2007. Do central banks respond to exchange rate move-

ments? A structural investigation. Journal of Monetary Economics 54.

Lucas, Robert E. 1976. Econometric Policy Evaluation: A Critique. Carnegie-Rochester Confer-

ence Series on Public Policy 1.

Lucas, Robert E. 1980. Methods and Problems in Business Cycle Theory. Journal of Money,
Credit, and Banking 12:696-715.

Mankiw, Gregory, and Ricardo Reis. 2007. Sticky information in general equilibrium. Journal of

the European Economic Association 5(2-3).

Mankiw, Gregory, and David Romer (editors). 1991a. New Keynesian Economics, vol. 1, Imper-

fect Competition and Sticky Prices, MIT Press.

Mankiw, Gregory, and David Romer (editors). 1991b. New Keynesian Economics, vol. 2, Coor-

dination Failures and Real Rigidities, MIT Press.

McCallum, Bennet. 1999. Issues in the design of monetary policy rules. In J. Taylor and
M.Woodford (editors), Handbook of Macroeconomics, Amsterdam: Elsevier Science, North-

Holland.

102



McCallum, Bennet and Edward Nelson. 1999. Performance of operational policy rules in an es-
timated semi-classical structural model. In J. Taylor (editor), Monetary Policy Rules, Chicago:

University of Chicago Press.

Medina, Juan Pablo, and Claudio Soto. 2007. The Chilean Business Cycles through the Lens of

a Stochastic General Equilibrium Model. Central Bank of Chile Working Papers 457.

Meh, Cesaire and Kevin Moran. 2010. The role of bank capital in the propagation of shocks.

Journal of Economic Dynamics and Control 34.

Murchison, Stephen, and Andrew Rennison. 2006. TOTEM: The Bank of Canada’s New Quar-

terly Projection Model. Bank of Canada Technical Report No. 97.

Orphanides, Athanasios. 2003. The quest for prosperity without inflation. Journal of Monetary

Economics 50.

Orphanides, Athanasios and Volker Wieland. 1998. Price stability and monetary policy effec-
tiveness when nominal interest rates are bounded at zero. Finance and Economics Discussion

Series 98-35, Board of Governors of the Federal Reserve System.

Orphanides, Athanasios and John C. Williams. 2006. Monetary Policy with Imperfect Knowl-

edge. Journal of the European Economic Association 4(2-3): 366-375.

Phelps, Edmund and John B. Taylor. 1977. Stabilizing powers of monetary policy with rational

expectations, Journal of Political Economy 85: 163-190.

Rabanal, Pau. 2007. Does inflation increase after a monetary policy tightening? Answers based

on an estimated DSGE model. Journal of Economic Dynamics and Control 31.

Rabanal, Pau. 2009. Inflation Differentials between Spain and the EMU: A DSGE Perspective.

Journal of Money, Credit and Banking 41(6).

103



Ratto, Marco, Werner Roeger, and Jan in ’t Veld. 2009. QUEST III: An Estimated Open-economy

DSGE Model of the Euro Area with Fiscal and Monetary Policy. Economic Modelling 26(1).

Ravenna, Federico, and Carl Walsh. 2006. Optimal monetary policy with the cost channel. Jour-

nal of Monetary Economics 53(2).

Reifschneider, David, Robert Tetlow and John Williams. 1999. Aggregate Disturbances, Mon-

etary Policy and the Macroeconomy: The FRB/US Perspective. Federal Reserve Bulletin,
85(1).

Romer, Christina, and Jared Bernstein. 2009. The job impact of the American recovery and

reinvestment plan. Manuscript.

Rotemberg, Julio, and Michael Woodford. 1996. Real-Business-Cycle Models and the Fore-
castable Movements in Output, Hours, and Consumption. The American Economic Review

86(1).

Rotemberg, Julio, and Michael Woodford. 1997. An optimization-based econometric framework

for the evaluation of monetary policy. NBER Macroeconomics Annual 12.

Rudebusch, Glenn and Lars Svensson. 1999. Policy rules for inflation targeting. In J. Taylor

(editor), Monetary Policy Rules, Chicago: University of Chicago Press.

Schmitt-Grohe, Stephanie, and Martin Uribe. 2004. Solving dynamic general equilibrium models
using a second-order approximation to the policy function. Journal of Economic Dynamics and

Control 28.

Schmitt-Grohe, Stephanie, and Martin Uribe. 2005. Habit Persistence. In S. Durlauf and L.

Blume (editors), The New Palgrave Dictionary of Economics, second edition.

Schortheide, Frank. 2011. Estimation and Evaluation of DSGE Models: Progress and Chal-

lenges. NBER Working Paper 16781.

104



Sims, Christopher. 2001. Solving Linear Rational Expectations Models. Journal of Computa-

tional Economics 20(1-2).

Slobodyan, Sergey and Raf Wouters. 2008. Estimating a medium-scale DSGE model with ex-

pectations based on small forecasting models. Mimeo.

Smets, Frank and Raf Wouters. 2003. An estimated dynamic stochastic general equilibrium

model of the euro area. Journal of the European Economic Association 1(5).

Smets, Frank and Raf Wouters. 2007. Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach. The American Economic Review 97(3).

Sveen, Tommy and Lutz Weinke. 2005. New perspectives on capital, sticky prices, and the Taylor

principle. Journal of Economic Theory 123.

Taylor, John B. 1979a. Staggered wage setting in a macro model. The American Economic Re-
view, Papers and Proceedings 69 (2). Reprinted in N.G. Mankiw and D. Romer (editors). 1991.

New Keynesian Economics, MIT Press.

Taylor, John B. 1979b. Estimation and control of a macroeconomic model with rational expecta-

tions. Econometrica 47(5).

Taylor, John B. 1980. Aggregate dynamics and staggered contracts. Journal of Political Economy
88(1).

Taylor, John B. 1993a. Macroeconomic Policy in a World Economy. W.W. Norton, New York.

Taylor, John B. 1993b. Discretion versus policy rules in practice. Carnegie-Rochester Conference

Series on Public Policy 39.

Taylor, John B. (editor). 1999. Monetary Policy Rules, The University of Chicago Press.

105



Taylor, John B. and Harald Uhlig. 1990. Solving Nonlinear Stochastic Growth Models: A Com-

parison of Alternative Solution Methods. Journal of Business and Economic Statistics 8(1).

Taylor, John B. and Volker Wieland. 2011. Surprising comparative properties of monetary mod-

els: Results from a new data base. Forthcoming in Review of Economics and Statistics.

Taylor, John B. and John Williams. 2010. Simple and Robust Rules for Monetary Policy. Pre-

pared for the Handbook of Monetary Economics.

Townsend, Robert M. 1979. Optimal contracts and competitive markets with costly state verifi-

cation. Journal of Economic Theory 21.

Uhlig, Harald. 1999. A toolkit for analyzing nonlinear dynamic stochastic models easily. In Ra-
mon Marimon and Andrew Scott (editors), Computational Methods for the Study of Dynamic

Economies, Oxford: Oxford University Press.
Walsh, Carl E. 2010. Monetary Theory and Policy. Third edition. MIT Press.

Wieland, Volker (editor). 2009a. The Science and Practice of Monetary Policy Today, Springer

Science.

Wieland, Volker. 2009b. Learning, endogenous indexation and disinflation in the New Keynesian
model. In C. Walsh and K. Schmidt-Hebbel (editors), Monetary Policy under Uncertainty and

Learning. Central Bank of Chile.

Wieland, Volker. 2011. Model Comparison and Robustness: A Proposal for Policy Analysis
after the Financial Crisis, forthcoming in R. Solow and J.P. Touffut (editors), What’s Right

with Macroeconomics?, Edward Elgar Publishers.

Wiceland, Volker, Tobias Cwik, Gernot Mueller, Sebastian Schmidt, and Maik Wolters. 2011.
A New Comparative Approach to Macroeconomic Modeling and Policy Analysis. Working

Paper.

106



Wieland, Volker and Maik Wolters. 2011. The diversity of forecasts from macroeconomic models

of the U.S. economy. Economic Theory 47(2-3): 247-292.

Woodford, Michael. 2003. Interest and Prices: Foundations of a Theory of Monetary Policy.

Princeton University Press.

Woodford, Michael. 2005. Firm-Specific Capital and the New Keynesian Phillips Curve. Inter-

national Journal of Central Banking 1(2).

107



	Vorlage Working Paper_52
	Schmidt_Wieland-The_NK_Approach_to_DSGE_Modeling_2

