

MAYA OCEM 8 OBTEM CENTER

F m noweme cart unt

ATMINISTEA*:VF ; NFTRMATIUN

ACK WOMLEDGEMENTS

The authers wish to ecknowleage contributions to MINIWEC made by Dr. Don wilor, witt tre liniversity of Houston; Todd Poston of Kershner. Wright and Heganar: anc fermer mOSC emplopees Alfredc J. Julian and Cr. Mickel Porter whe is ron witt tre Noval Research lishoratory).

T. sumemewtair motanom
or macnetic tane, see

17 cosanicoses			
fifio	anoup	sue cmour	
MININEC te a mothod of momente computer pregran for the anahoin of thin wire abtenae problome. MININEC mece apece or perfocty conductiag ground. MININEC in writest la the BASIC lamgege competible with IBM PC DOS.			

\square

UNCLARATETED

1.0 INTRODUCTION pase
1.1 Backeround 1
1.2 Computer Requirements 2
2.0 THE THEORY OF MIMIMEC 4
2.1 The Electric Field Integral Equation and Its Solution 4
2.2 Wire Junctions 11
2.3 The Ground Plane 14
2.4 Lumped Pareneter Loading 15
2.5 Near Fields 15
2.6 Far Zone Radiation Patterns 17
3.0 VALIDATION AND MODELING GUIDANCE 22
3.1 Dipole Antennas 22
3.2 Loop Antennas 42
3.3 Monopoles and Antennas Above Ground 42
3.4 Mear Fields 47
3.5 Far Fields 51
3.6 Memory, Disk Storage and Run Time 61
4.0 EXAMPLES AND USER GUIDAMCE 66
4.1 Getting Started 66
4.2 Change Geometry 74
4.3 Change Environment 74
4.4 Change Excitation 75
4.5 Change Loads 75
4.6 Change Frequency 77
4.7 Compute/Display Currents 77
4.8 Compute Far-Field Patterns 77
4.9 Compute Near-Fields 78
4.10 QUIT 78
References 79
Appendix A. A Pre-processor for MININEC
Appendix B. A Post-processor for MININEC
Appendix C. MININEC Progran Listing
Appendix D. Notes on Compilation of MININEC

1.0 Intmoduction

The "MIWI" Electromesnetics Code. or MIWIMEC, is a method of moments computer proget for analysis of enin wire antennas (reference $1 /$. A celerkin procedure is epplied to an electric field intearal equation to solve for the wire currents following an approsch suscested oy wilton (reference 2). This formulation results in an unuevally short computer program suitable for implementation on microcomputer. Hence, MIMIMEC is uritten in baSIC lencuage competible with meny popular microcomputers.

MIWIMEC solves for impedance and currents on arbitrarlly orlented wires. including configurations with multiple wire jusctions. in free space and over - perfectly conducting eround plane. Options include lumped parameter impedance loading of wires and calculation of near zone and far zone fielas. Both near electric fields and near masnetic fielda can de determined for free space and over a perfectly conducting tround. The far zone electric fields and radition pattern (power pettern) can also be determined for free space and perfectly conducting ground.

Additional radiation pattern options include aresnel reflectior coefficient correction to the patterns, for finite conducting grounds (reai earth surface impedance). Up to five changes in surface impedance due to reai eround are allowed in a linear or circular "cliff" model. The ciliff may take on any elevation (incluting zero. l.e.. flat surface), however, there is no correction for diffraction from cliff edses. In the case of a circular ciaff model. the first media may include a correction for the surface impedance of a densely spaced, buried, radial wire ground screen.

The first version of MININEC given by mOSC TD 516 (reference 1), calcum lated currents and radiation patterns for wire antennas in free space and over a perfectly conducting ground plane. Wires attached to ground were required to intersect at right angle and could not be impedance loaded at the connection point. Subsequent revisions corrected these shortcomings culminating ir version 2 or MIMINEC(2). given by Li, et al. (reference 3). All previous versions of MININEC require user specification of wire end connections. However. MIMIMEC(3) determines connection information for itself from user defined wire end coordinater. MININEC(3) also displays the currents wire ty wire, and at all wire ends. including wire junctions. MINIMEC(3) reatures ar improved, faster solution routine and has been completely restructured using a more modular programing style, including the use of helpful comment statements.

1.1 BACKGROUND

The Numerical Electromagnetics Code (NEC) found in reference 4 is the most advanced computer code available for the analysis of thin wire antennas. It is a highly user-oriented computer code offering a comprehensive capability for analyais of the interaction of electromagnetic waves with conducting structures. The program is based on the numerical solution of integral equations for the currents induced on the structure by an exciting field.

NEC combines an integral equation for smooth surfaces with one for wires to provide conventent and accurate modeling for a wide range of applications. A NEC model may include nonradiating networks and transmission lines, perfect and imperfect conductors, lumper element loading, and ground planes. The

Eround plenea mey te perfecty or imperfectiy conducting. Encitatiop may te va en apiled voltege source or incitent piane wae. Jre jutfut mey iric. we induced currents and charges. near or far zone edectric ur agnetic fiedas and inpedence or adititance. many other comonly seec per ateters guct as ialr. and Jirectivity, power oricet. and antenne tc antenna coupling are aja availatle
wer. is a powerfui tool for many engineering opfibiotioris. it is dated
 antenna and environent zennct te lenorec. In may protions. ricuever. itie extensive ful: copoliliy of $W E t$ ls not realy required uecaue the antenna and dts enviroment are not very compley or tre information sount requires oniy siepilfied maini. In adition. meC requires the supprt af and access tc a corge maln-freme somputer systen. These computer systeas are eapersive and not aimays readiay avaliatie ot remote fieda activities. Ever. wher. trie - onfuter facilities are avallatle, neavy demand usace may resuit ir siow iur ro arcund, even for relativeiy slaple or smali, met runs. one vatie sciutior 13 a "stripped town versior of Nec trat would retain only the taste scivticr and the most frequentiy used options and winitr could te implemented ur a mirijr microcomputer witr ari advanced FCRTAAM banguage capati:dty. MIMIMECV: offers meny of the required MEC options. tut mokes use cf a EASIC iangule Ptiat 13 rampatibie witr many popliar macrocomouters. MINIMEC: j, is uniy sultarie for smai: protiems less than 75 unknowrs and tr wires. depenaing or trie computer memory and BASIC complier,.

-. \because OMPUTER REQUIREMENTS

Cccasionaliy a technology develups whict is destined to produce significant changes in the way people trink and conduct their tusiness. for many tecades. scientists and engineers strugled witr unmanageatle equations and jata using tria: and error techniques. employing iogaritinic iaties and ariadequate slide ruie caicuiations. Trien cane tre didita: compuer.

In the 9 gros and 60, physically iarge and expensive computing mactiries that mere reiativeiy slow. witr limited capatidity compared tc today s stariLards, became avai.able tc a few. At first, stored prograns were accessitie trircugt direct connection of andividual terminals a short aistance away. tre revolution nad tegun.

In the "Os. technologists rustied ic convert prover aiguritrins ir.t. iumpla ter frograms or ic develof nem aigorithms suitatle for eff:iert romputer programing for use as analysis and synthesis tocis ty irie scieritilcummunity. These tools. for the most part, required the support ui iarge centrad machines. Meanwhile. slide rules were teing repiaced ty rand-rield calculaturs witr trigonometric functions. some of whicr couid te frogranmed for simple repetative algoratrms

Today, large central processing systems are teing supfiemented witr. sma.. powerfui mini- and microcomputers. Ttie develcpment cif ine iom cost macroprocessor crip means that computers witr capatidities trat equai or excec those of the earlier malr. frane martines of the ros are nom availatiae ir compact size. Jizes range from suitcase, rir deskicl. mactipies ite mitri-
 configured to meet specialized needs. The microcomputer is tecoming mure arid
eore affordeble as aersonal compuing tool. The alcrocomputer, or mome computer", is caerging es today's most ieportent engineering and scientific tool. allowing widespread networking. Anyone with e microcomputer or terminal with an acoustic coupler and telephone has access to a wide variety of computing facilities around the country. as wil es an almet limitless source of information.

MIMIMEC has been written with the aicrocomputer in aind. But, it can also be limplemented on mini- or larger computers that have the BASIC language capability. However, sowe changes in the programay be required. Progremaing has been kept simple. with few eachinedependent progre statements, so that it will be compotible with most BaSIC lenguages.

MEC is suitable for both anall and large numerical models. The upper 1iait 1 s determined by the cost factors and momory size of the mainframe on wich it resides. A model containing up to 2000 unknown (segments) seeas to be the practical upper limit. On the other hand. MIMIMEC is auitable only for sald probleas. The upper limit is determined by the memory size and speed of the microcomputer employed. Practical limits sean to be 30 to 40 unknowns (current pulses) wen uaing interpreter BASIC, due to the time required to obtain a solution. However. If one is willing to wait an hour or more tor the solution, a model with 65 to 75 unknowns is possible. Serious antenna modeline requirea the use of basic compiler. In addition, ath co-processor board is recomended. Present microcomputer memory size limits MIMIMEC to models with less than 100 unknowns. For probleas of 100 or more unknown, aninframe is recomended, and in that case. the use of MEC is the notural cholce.

2.0 THE THFORY OF MININEC

The MININEC program is based on the numerical solution of an integral equation representation of the electric fields. Discussion of similar formulations can be found elsewhere, for example, see Harrington (reference 5). The real advantage is that the solution technique as implemented in MININEC results in a relatively compact (i.e., short) computer code. The discussion that follows in this section is condensed from reference 2.

2.1 THE ELECTRIC FIFLD INTEGRAL EQUATION AND ITS SOLUTION

It has become customary in solving wire antenna problems to make several assumptions which are valid for thin wires. They are that the wire radius, a, is very small with respect to the wavelength and the wire length. Because it is necessary to subdivide wires into short segments, the radius is assumed small with respect to the segment lengths as well, so that the currents can be assumed to be axially directed; i.e.. there are no azimuthal components of current.

Figure, gives the geometry of a typical, arbitrarily oriented wire. Assume that the wire is straight, even though the theory applies equally to bent configurations. The same wire is also shown broken into segments or subsections.

In equations (1), (2), and (3) belcw, the vector and scalar potentials are given by

$$
\begin{equation*}
\lambda=\frac{\mu}{4_{n}} \int_{c} I(s) s(s) k\left(s-s^{\prime}\right) d s \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
1=\left.\frac{1}{4 \pi \varepsilon}\right|_{\left.c^{q(s) k(s-s}\right) d s} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& k s-s^{\prime}=\left.\frac{,}{\alpha^{\prime}}\right|_{-\pi} ^{r} \frac{e^{-j k r}}{r} d o . \\
& r=\cos ^{i}+4 a^{\dot{\gamma}} \sin \mathrm{i}^{\dot{\alpha}} \frac{1}{\alpha^{\prime}} \\
& \text { and Phe i inear tharge density via the continuity equatiori is } \\
& \because \quad-\frac{\square}{\square 5} \\
& \text { The kerif. "eromes the "exart kerpej" wher } \bar{r} \cdot \bar{r} \text { or } c \text {, but can be }
\end{aligned}
$$

(a) An arbitrarily oriented wire.

(b) Segmentation scheme for the same wire.

Figure 1. Definition of the position vectors with respect to the global origin O .

The integral equation relating the incident field, Enc, and the vector and scalar potentials is

$$
\begin{equation*}
-\bar{E}_{\text {inc }} \cdot \hat{s}=-j \bar{\omega} \cdot \hat{s}-\hat{s} \cdot \nabla \bullet \cdot \tag{4}
\end{equation*}
$$

Equation (4), above, is solved in MININEC by using the following procedure.
The wires are divided into equal segments, and, as shown in Figure 1, the vectors $\bar{r}_{n}, n=0,1, \ldots . N+1$ are defined, with respect to the global coordinate origin, σ^{n}. The unit vectors parallel to the wire axis for each segment shown are defined as

$$
\begin{equation*}
\dot{s}_{n+1 / 2}=\frac{\bar{r}_{n+1}-\bar{r}_{n}}{\left|\bar{r}_{n+1}-\bar{r}_{n}\right|} \tag{5}
\end{equation*}
$$

Pulse testing and pulse expansion functions used in MININEC are defined as

$$
p_{n}(s)=\left\{\begin{array}{l}
1, s_{n-1 / 2}<s<s_{n+1 / 2} \tag{6}\\
0, \text { otherwise }
\end{array}\right.
$$

where the points $s_{n+1 / 2}$ designate segment midpoints,

$$
\begin{equation*}
s_{n+1 / 2}=\frac{s_{n+1}+s_{n}}{2} \tag{7}
\end{equation*}
$$

r ir terms of the global coordinates,

$$
\begin{equation*}
\bar{r}_{+12}=\frac{\bar{r}_{n+1}+\bar{r}_{n}}{2} . \tag{8}
\end{equation*}
$$

\therefore is assumed that the components of the vectors $\bar{E}_{i n c}$ and \bar{A} in equation - are sufficiently smooth over each segment that their respective values on *. segment may be replaced by those taken at the point s_{m}. The pulse fund-- r: if 6 are then used as testing functions on (4), resulting in

$$
\begin{align*}
& \left.E_{i n c} s_{m} \cdot\left(\frac{s_{m}-s_{m-1}}{2}\right) s_{m-1 / 2}+\left(\frac{s_{m+1}-s_{m}}{2}\right) \quad s_{m+1 / 2}\right]= \\
& \left.A \cdot\left(\frac{s_{m}-s_{m-1}}{2}\right) \quad s_{m-1 / 2}+\left(\frac{s_{m+1}-s_{m}}{2}\right) s_{m+1 / 2}\right]+ \\
& \left.0^{\left(s_{+1}+2\right.}\right)-\left(s_{m-1 / 2}\right) \tag{9}
\end{align*}
$$

\cdots...or quantities in brackets are simply $\left(\bar{r}_{m+1 / 2}-\bar{r}_{m-1 / 2}\right)$, so (9) can be - Per as

$$
\begin{align*}
& E_{i n c}\left(s_{m}\right) \cdot\left(\bar{r}_{m+1 / 2}-\bar{r}_{m-1 / 2}\right)= \\
& \quad j \omega \mathbb{A}\left(s_{m}\right) \cdot\left(\bar{r}_{m+1 / 2}-\bar{r}_{m-1 / 2}\right)+\left(s_{m+1 / 2}\right)-\bullet\left(s_{m-1 / 2}\right) \tag{10}
\end{align*}
$$

The currents are expanded in pulses centered at the junctions of adjacent segments as illustrated in Figure 2(a). Note that pulses are omitted from the wire ends. This is equivalent to placing a half pulse of zero amplitude at each end, thus imposing the boundary condition for zero current at unattached wire ends. The current expansion can be written as

$$
I(s)=\sum_{n=1}^{N} I_{n} P_{n}(s)
$$

A difference approximation is applied to equation (3) to compute the charge. Thus, as shown in Figure 2(b), the charge can be represented as pulses displaced from the current pulses by a half pulse width.

(a) Unweighted current pulses

(t) Unweigried tharge eporegentitit.

Substituting (11) into (10) produces system of equations that can be expressed in matrix form. Each matrix element. Z associated with the n-th current and the s observation point involves scalar and vector potential terms with integrals of the form

$$
t_{m, u, v}=\int_{s_{u}}^{s_{v}} k\left(s_{m}-s^{\prime}\right) d s^{\prime}
$$

where

$$
\begin{equation*}
k\left(2-s^{\prime}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{-j k r}}{r_{m}} d \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{m}=\left(\left(8-s^{\prime}\right)^{2}+4 a^{2} \sin ^{2} \frac{1}{2}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

Equation (12) does not lend itself to straightforward integration because of the singularity at $r=0$. The $1 / r$ can be subtracted from the integrand and then added as a separate term to yield

$$
\begin{equation*}
k\left(s-s^{\prime}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d s}{r_{m}}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{-j k r} m-1}{r_{m}} d v . \tag{15}
\end{equation*}
$$

The first term of (15) can be rewritten as an elliptic integral of the first kind (reference 6).

$$
\begin{equation*}
\frac{B}{\pi \pi} F\left(\frac{\pi}{2}, B\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \theta}{r_{m}} \tag{16}
\end{equation*}
$$

where

$$
B=\frac{2 a}{\left[\left(s_{m}-s^{\prime}\right)^{2}+4 a^{2}\right]^{1 / 2}}
$$

$F\left(\frac{1}{2} .8\right)$ has an approximation (reference 6).

$$
\begin{align*}
F\left(\frac{1}{2} \cdot B\right) \equiv & {\left[a_{0} m+a_{1} m+a_{2} m^{2}+a_{3} m^{3}\right] } \\
& {\left[b_{0}+b_{1} m+b_{2} m^{2}+b_{3} m^{3}\right] \ln (1 / m) } \tag{17}
\end{align*}
$$

where

$$
=1-a^{2}=\frac{(8-3)^{2}}{\left(3-s^{\prime}\right)^{2}+4 a^{2}}
$$

$$
\begin{array}{ll}
a_{0}=1.38629436112 & b_{0}=.5 \\
a_{1}=.09666344259 & b_{1}=.1249859397 \\
a_{2}=.03590092383 & b_{2}=.06880248576 \\
a_{3}=.03742563713 & b_{3}=.03328355346 \\
a_{4}=.01451196212 & b_{4}=.00441787012
\end{array}
$$

Thus

$$
\begin{equation*}
\frac{8}{\pi a} F\left(\frac{1}{2}, 8\right) \frac{}{s+s^{0}}>-\frac{1}{10} \ln \left[\frac{\left|s_{m}-s \cdot\right|}{80}\right] \tag{18}
\end{equation*}
$$

and this singularity is also subtracted from $k\left(s_{m}-s^{\prime}\right)$.
Thus

$$
\begin{align*}
& k\left(s_{m}-s^{\prime}\right)=-\frac{1}{\pi a} \ln \left[\frac{1 s_{m}-s^{\prime} \mid}{8 a}\right]+\frac{B F\left(\frac{\pi}{2} \cdot B\right)+\ln \left[\frac{l^{3} m-s^{\prime}}{8 a}\right]}{1 a} \\
& \quad+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{-j k r}-1}{r} d . \tag{19}
\end{align*}
$$

This equation is substituted into equation (12) and written as

$$
\begin{equation*}
\int_{s u}^{s} k\left(s-s^{\prime}\right) d s^{\prime}=I_{1}+I_{2}+I_{3} \text {. } \tag{20}
\end{equation*}
$$

I_{1}, I_{2}, and I_{3} are defined as

$$
\begin{aligned}
I_{1} & =-\frac{1}{12} \int_{s_{u}}^{s_{v}} \ln \left[\frac{1 s-s^{\prime} \mid 1}{8 a}\right] d s^{\prime} \\
& =\frac{8}{8} u(1-\ln |u|) \left\lvert\, \begin{array}{l}
u_{2} \\
u_{1}
\end{array}\right.
\end{aligned}
$$

where

$$
u_{1}=\frac{s_{u}-s}{8 a} \text { and } u_{2}=\frac{s_{v}-s}{8 a} \text {. }
$$

Similarly,

$$
\begin{equation*}
I_{2}=\int_{s_{u}}^{s_{v}} \frac{B F\left(\frac{\pi}{2}, B\right)+\ln \frac{1 s-s^{\prime} \mid}{8 a}}{\pi a} d s^{\prime} . \tag{22}
\end{equation*}
$$

This integral has a well behaved integrand and can be integrated numerically. The integration is broken up into two integrals over the ranges (s_{y},s) and (s, s_{y}) for best accuracy. Gaussian quadrature is used for the numerical integrat lon (reference 7). The number of points used in the integration routine is automatically selected by consideration of the pulse accuracy required for the source to observation distance. The final integral is

$$
\begin{equation*}
I_{3}=\frac{1}{2 \pi} \int_{s_{u}}^{s} \int_{-\pi}^{\pi} \frac{e^{-j k r}-1}{r} d \tag{23}
\end{equation*}
$$

The integrand is nonsingular and can be integrated numerically. To obviate the need for double integration, it is convenient to approximate the integral by replacing r by a reduced kernel approximation of equation (14).

Thus

$$
\begin{equation*}
I_{3}=\int_{s_{u}}^{s^{v}} \frac{e^{-j k r_{a}}-1}{r_{a}} d s^{\prime} \tag{24}
\end{equation*}
$$

where

$$
r_{a}=\sqrt{\left(s_{v}-s^{\prime}\right)+a^{2}}
$$

The integral can be integrated numerically by the same procedure as for I_{2}.
Thus, equation (12) with its singularity problem is evaluated by adding I, of equation (21), I_{2} of equation (22), and I_{3} of equation (24).

This approach to evaluate (12) is accurate for a wide range of wire radii but breaks down when the radius becomes very small. For very small radil. equation (12) may be expressed as a single integral and evaluated using two terms of a Maclaurin series, after Harrington (reference 5). This approximation for the terms is:

$$
\begin{align*}
& =\frac{1}{2 \pi \Delta s} \ln \left(\frac{\Delta s}{a}\right)-j \frac{k}{4 \pi} \text { for } m=n \tag{25}\\
& \\
& =\frac{e^{-j k r} m}{4 \pi r m} \text { for } m \not n
\end{align*}
$$

Figure 3 demonstrates the range of validity with and without the small radius correction. Withgut the cqrection, MININEC gives acceptable answers for wire radii between 10^{-2} and 10^{-5} wave lengths. Note that MININEC is within 10% or bettyer of the data published by King (references 8 and 9), for radii between 10^{-3} and 10^{-2} wave lengths. The small radius correction provides correct results for radil of 10^{-9} wave lengths or smaller. In MININEC, the switth to the small radius approximations occurs automatically for radif of 10^{-4} and smaller.

By substitution, the matrix equation to be solved is

$$
\begin{equation*}
\left[Z_{m n}\right]\left[I_{n}\right]=\left[V_{m}\right] \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
z_{m n}= & \frac{-1}{4 \pi j \omega \varepsilon}\left[k^{2}\left(\bar{r}_{m+1 / 2}-\bar{r}_{m-1 / 2}\right) \cdot\left(s_{n+1 / 2} \psi_{m, n, n+1 / 2}+s_{n-1 / 2} \psi_{m, n-1 / 2, n}\right)\right. \\
& \left.-\frac{\psi_{m+1 / 2, n, n+1}}{s_{n+1}-s_{n}}+\frac{\psi_{m+1 / 2, n-1, n}}{s_{n}-s_{n-1}}+\frac{\psi_{m+1 / 2, n, n+1}}{s_{n+1}-s_{n}}-\frac{\psi_{m+1 / 2, n-1, n}}{s_{n}-s_{n-1}}\right] \tag{27}
\end{align*}
$$

and

$$
\begin{equation*}
v_{m}=E_{i n c}\left(s_{m}\right) \cdot\left(\bar{r}_{m+1 / 2}-\bar{r}_{m-1 / 2}\right) \tag{28}
\end{equation*}
$$

$\left[Z_{m n}\right]$ is a square matrix and $\left[I_{n}\right]$ and $\left[V_{m}\right]$ are column matrices with $n=1,2 \ldots \ldots$ and $^{n}{ }_{m=1,2 \ldots N}$ for N total unknown ($N i^{m}$ the total number of current pulses). The extension of these equations to two or more coupled wires follows the same line of development and will not be covered here.

The column vector [V_{f}] represents an applied voltage that superimposes a constant tangential electric field along the wire for a distance of one segment length centered coincident with the location of the current pulses. Hence, for a transmitting antenna, all elements of [V_{m}] are set to zero except for the element(s) corresponding to the segment(s) located at the desired feed point(s). For an incident plane wave, all elements of [V] must be assigned a value depending on the strength, polarization (or orientition), and angle of incidence of the plane wave. The applied voltage source (transmit case), however, is the only ready-made, or programmed, option in MININEC.

As stated above, the $\left[Z_{m n}\right]$ matrix in equation (26) is filled by the evaluation of an elliptic integral and use of Gausian quadrature for numerical integration. The solution of (26) can be accomplished by using any one of number of standard matrix solution techniques. MININEC(3) uses a triangular decomposition (LU decomposition) with the Gauss elimination procedure with partial pivoting (reference 7).

2.2 WIRE JUNCTIONS

The theory developed thus far for straight wires is equally applicable to bent wires. However, for coding simplicity in MININEC, bent wires are treated
mil11mHOS TEST FOR RADIUS DEPENDENCE

Figure 3 Variation of dipole admittance with wire radius for MININEC with and without the small radius correction. Data from King (references 8 and 9) is also shown.
in the same way as the junctions of multiple numbers of wires. That is, a bend in an otherwise straight wire is treated as the junction between two straight wires.

It has been generally accepted that the currents at junctions of thin wires conform to Kirchoff's current law (reference 10). Rather than explicitly enforcing this condition in MININEC, an overlapping segment scheme (reference 11) is employed at junctions of two or more wires. A detailed discussion of this approach, including arguments for validity, appears in both references 8 and 9. Only those aspects essential to the use of MININEC are discussed here.

Consider a wire having no connections at either end. The wire is subdivided into segments and the current is expanded in pulses centered at adjacent segment junctions as described above and illustrated in Figure 4(a). The end points have no pulses, or alternatively the end points have half pulses with zero amplitude. A second wire is to be attached to one end of the first. The second wire is subdivided into segments with pulses for currents located as in the first case. However, a full pulse is located at the attachment end, with half the pulse extending onto wire two, and half onto wire one, as illustrated in Figure $4(b)$. The half on wire one assumes the dimensions (length and radius) of the half segment on wire one. while the half on wire two assumes the dimensions appropriate to wire two. Wire two overlaps onto wire one with a full pulse centered at the junction end. Note that the free end of the wire has a zero half pulse. A third wire may be assumed to also overlap onto wire one, as illustrated in Figure $4(c)$. It can be shown (see references 8 and 9) that for a junction of N wires, only $N-1$ overlapping pulses are required to satisfy Kirchoff's current law. Alternatively, wire three could have overlapped onto wire two (not illustrated here).

The convention in MININEC(3) is that the overlap occurs onto the earliest wire specified at a given junction. It is assumed that a wire can overlap onto another wire, provided that another wire was previously specified. It cannot overlap onto a wire not yet specified. Either end of a wire may overlap onto either end of another wire. All that is required to impose the continuity conditions at the junction is that there be $N-1$ overlaps for a junction of \mathbf{N} wires.

Current reference directions are assumed to be based on the order in which the coordinates of a wire are specified. A positive wire current is from the end first specified, end one, towards the other end, end two. By use of Kirchoff's current law and the current reference direction, the currents at the junction can be found. For example, suppose the wires in Figure $4(\mathrm{c}$) are all specified from left to right. Let the pulse amplitudes for the first pulse on wires two and three be I_{2} and I_{3}, respectively. Then the currents out of the junction into wires two and three are the complex amplitudes of the first pulses, the overlapping pulses, on wires two and three, respectively. Hence, the current on wire one into the junction is the sum of these currents; i.e.. $I_{1}=I_{2}+I_{3}$.

(a) Wire one with no end connections.

(b) Wire two overlaps onto wire one.

(c) Wire three overlaps onto wire one.

Figure 4. Illustration of the overlap scheme used at multiple wire junctions.
MININEC(3) automatically determines, during geometry input, whether there is a connection on either end of a wire, and if so, to which wire and wire end it is connected. After solving for the current pulse amplitudes. MININEC(3) then computes the junction currents, if any, for each wire end. The final display indicates free ends by the letter E (for free end) and junction ends by the letter J . The geometry and currents are displayed wire by wire.

2.3 THE GROUND PLANE

The method of images is used in MININEC to solve for currents in wires located over a perfectly conducting ground plane.

Consider a wire structure represented by N segments. In the presence of a perfectly conducting ground plane, by image theory, the structure and ground plane may be replaced by the original structure and its image. Hence, there are now $2 N$ segments and $2 N$ unknowns to be determined. Equation (26) can be written as

The image current, $I_{N+\ldots} \ldots I_{2 N}$, are equal to the currents on the original structure, $I_{1} \ldots I_{N}$, so that $I_{n}^{N}=I_{2 N-n+1}$. Half the equations represented in
(29) contain redundant information and may be discarded. It may be reduced to a square matrix again by adding appropriate coluans; i.e., by using the current identity. Hence. (29) becomes

$$
\begin{equation*}
V=\left[z_{i j}\right] I \tag{30}
\end{equation*}
$$

where $Z_{i j}=Z_{i j}+Z_{i} 2 N-j+1$.
For a wire attached to ground, a current pulse is automatically added to the wire end point connected to ground so that current continuity with its image is observed; i.e., a non-zero half pulse is placed on both the wire end and its image. The voltage in equation (30) is divided by two in this case. Either end of a wire may be attached to ground.

2.4 LUMPED PARAMETER LOADING

The wire structures discussed so far consist of perfectly conducting wires. If an impedance due to a fixed load, $Z=R+j X$, is added to the structure so that its location coincides with that of one or more of the non-zeromecurrent pulse functions (i.e., a lumped load is placed on the wire at the junction of two segments). then the load introduces an additional voltage (a voltage drop) equal to the product of the current pulse magnitude and Z_{L}. Hence, equation (26) becomes

$$
\begin{equation*}
\left[Z_{m n}^{\prime}\right]\left[I_{n}\right]=\left[V_{m}\right] \tag{31}
\end{equation*}
$$

Where $Z_{m n}^{\prime}=Z_{m n}$ for $m \notin n$ and $Z_{m n}^{\prime}=Z_{m n}+Z_{\text {m }}$ for $m=n$. Hence, a specified impedance represented as the sum of a resistance and a reactance, and located on a wire coincident with a current pulse is simply added to the diagonal impedance element or self-term corresponding to that pulse. A distributed impedance such as wire conductivity can be treated in the same way by use of an equivalent, lumped-circuit, element-impedance relationship.

2.5 NEAR FIELDS

The electric near fields and the magnetic near fields can be determined from the current distribution obtained in the solution of equation (26).

The near electric fields are computed by the method described by A. T. Adams, et al.. (reference 12). Using MININEC, the current on the wire structure is approximated using the computed current pulses. To determine the electric field at a given point in the near field, a small, virtual thin-wire dipole is placed at the point with its axis parallel to the appropriate vector component. The open-circuit voltage at the near rield point can be calculated from a knowledge of the current distribution over the wire structure and the mutual impedance between the wire structure and the virtual dipole. In other words.

$$
v_{d}=\sum_{i=1}^{N} z_{d i} I_{i} .
$$

The virtual dipole is open-circuited. V is the open-circuit voltage. I, are the MININEC computed current pulses of the wire structure. Z are the atual impedances between the wire structure and the virtual dipofe. The mutua: impedances are calculated using the MININEC mothod of equation (27). The electric field strength along the direction of the virtual dipole is given by

$$
\begin{equation*}
E_{d}=-\frac{v_{d}}{\text { length of dipole }} \tag{35}
\end{equation*}
$$

This equation is evaluated once for each electric field vector component in the x, y and z directions at the near field point of interest. In MININEC, a virtual dipole of length. 001 wave length is used.

MININEC calculates the three vector components, $E_{\text {, }} E_{y}$ and E, as real and imaginary terms, from which the magnitude and ptiase are determined. The average value is determined by

$$
\begin{equation*}
E_{\text {ave }}=\frac{1}{2}\left(E_{x}^{2}+E_{y}^{2}+E_{z}^{2}\right)^{1 / 2} \tag{34}
\end{equation*}
$$

which is a conservative estimate of the maximum value. The maximum or peak electric field is determined by the method described by adans and Mendelovicz (reference 13). The peak electric field is

$$
\begin{equation*}
E_{\text {peak }}=\left[\frac{1}{2}\left(E_{x}^{2}+E_{y}^{2}+E_{z}^{2}\right)+\frac{1}{2}\left(A^{2}+B^{2}\right)^{1 / 2}\right)^{1 / 2} \tag{35}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=E_{x}^{2} \cos 2 \theta_{x}+E_{y}^{2} \cos 2 \theta y+E_{z}^{2} \cos 2 \theta_{z} \\
& F=E_{x}^{2} \sin 2 \theta_{x}+E_{y}^{2} \sin 2 \theta_{y}+E_{z}^{2} \sin 2 \theta_{z}
\end{aligned}
$$

and where C_{x}, C_{y}, and C_{z} are the phase angles for the corresponcing faeic component.

The near magnetic fields are computed by a comparatie metricd. As is the case for electric near flelds, the currents or the wires are afproximatec ty the current pulses of the MININEC solution. A virtual, thin-wire dipcie is placed at the near field point with its axis parallel tc the appropriate vector component. The near magnetic field is then calculated using the MININEC current distribution and the difference tieqwer the apfofriate components of the vector potential.

The vector potential is generally defined suct. that

$$
\dot{H}=\frac{1}{u} \nabla \times \vec{A}
$$

expressed in rectangular coordirates. tecomes

$$
\omega H=\left(\frac{\partial A^{\prime}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \quad i \cdot\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A^{\prime}}{\partial x}\right) \therefore\left(\frac{\partial A}{\partial x}-\frac{\partial A}{\partial y}\right)
$$

where $1 . j, k$ are the unit vectors paraiaei ic the $\quad y, z$ cocriariate axis.

 near field point:. If trie virtwal aipoles are eiectricai.ib stor: eficug si
 partial derlvatives of equaticr an car terepiacec ty differerces

 for botr the near electrir aric near magnetic ide.a aicuatiurs

 as trey are for treeiectri: rear f:e:cs. irus.

$$
r_{\text {ave }}=H_{x}^{\prime}+b_{y}^{\prime} \cdot r_{i}
$$

ar. :
pear
wtere

$$
\begin{equation*}
\bar{E} \bar{r}_{c}=\int \frac{2 k r}{4 i} \cdot \frac{e^{-j k r} c}{r_{c}} \cdot: \hat{k} \cdot \bar{I} s i \hat{I}(s): e^{i \bar{R} \cdot \bar{r}} d s \tag{49}
\end{equation*}
$$

where \bar{r}_{c} is the position vector at the observation point. $k=\bar{r}_{0} /\left|\bar{r}_{0}\right|$. and $\bar{K}=$ $k k=\frac{2 \pi}{} k$. The integra: $1 s$ evaluated in closed form over each straight wire segment for eacr current pu:se and $1 s$ reduced ic a sumation over the wire segments. The fieids are ther evaluated as reai and inaginary parts of the o anc components at specified radial distance. If the radial distance is - jiner
zers. ine factor ${ }^{c}$, defauits ic undty.
$-j k r c$
Tre vener gair ir minime is evaiuated witr the e cofor set to re or ar apprcact sim: ior tc that ir WE reference 4. The power gain in a e:ver atrecticr, \quad ir spherica: coordinates is

$$
0\left(\frac{-F y_{1}}{F i n}\right)
$$

 oresucricing reec inire ditrerts as

defined by circular boundaries concentric about the origin or linear boundaries parallel to the y-axis and spaced along the positive x-axis. Thus, in the latter case, the ground surface is divided into "strips" at user defined x-axis intercepts. In the former case, the ground surface is divided into concentric rings at user specified radii. In this case, the first ring, or zone, may include a radial wire ground screen. For both circular and linear zone grounds, each zone may have a different surface impedance and each zone may have a different height (Z-coordinate) relative to the first zone. In MININEC, the number of zones is limited by an array dimension and is currently set to 5 .

In the Fresnel reflection coefficient method, the far field is obtained by summing the contributions of a direct ray and a reflected ray from each current pulse. The field, due to the reflected ray, is modified by the Fresnel plane wave reflection coefficient, which depends on the ground surface impedance at the bounce point, or specular point, and the angle of incidence.

The Fresnel reflection coefficients have not been applied to the MININEC current calculation. When a real ground is specified, the currents are calculated by using the perfectly conducting image theory (described in section 2.3). The real ground corrections are applied to the far field calculations only. This compromise is designed to keep MININEC relatively compact and provide accurate results whenever the ground directly beneath the antenna is a good conductor.

Following along the lines of the development given by Burke and Poggio (reference 4), a wave incident upon a finite ground (i.e., a real ground) yields a reflected field, \bar{E}_{r}, given by

$$
\begin{equation*}
\bar{E}_{R}=R_{H}\left[\left(\bar{E}_{I} \cdot \hat{\therefore}\right) \hat{P}\right]+R_{V}\left[\bar{E}_{I}-\left(\bar{E}_{I} \cdot \hat{P}\right) \hat{P}\right] \tag{45}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{E}_{R}=R_{V} \bar{E}_{I}+\left(R_{H}-R_{V}\right)\left(\bar{E}_{I} \cdot \hat{P}\right) \hat{P} \tag{46}
\end{equation*}
$$

where \hat{P} is a unit vector perpendicular to the plane of incidence, \bar{E} is the incident field and R_{y} and R_{H} are the vertical and horizontal reflection coefficients, respectively.

The two terms in square brackets in equation (44) correspond to horizontally and vertically polarized waves. The reflected field is obtained by decomposing the incident field into horizontally and vertically polarized waves. computing a reflected wave for each, and recombining the two.

The vertical and horizontal coefficients are

$$
\begin{equation*}
R_{V}=\frac{\cos \theta-z \sqrt{1-z^{2} \sin ^{2} \theta}}{\cos \theta+z \sqrt{1-z^{2} \sin ^{2} \theta}} \tag{47}
\end{equation*}
$$

aver. - .s in e angle of incidence and Z is the relative impedance of the of and in race relative to the free space impedance).
: . Given observation direction (0.0). the P vector normal to the plane ma:1ence: 3

$$
\begin{equation*}
\cdot 3 \cdot+\quad \cos \tag{49}
\end{equation*}
$$

-... seer ir Figure $5: c$. In addition, the \hat{r}_{0} vector, pointing in the se*. *. r : : - Prior. is

$$
\begin{equation*}
\operatorname{s.-} \cdot \sin \sin e \sin \cdot \cos \theta) \tag{50}
\end{equation*}
$$

To obtain the fer fields, the integral in equation (40) implies the sumetion over all the current pulses. For the direct field, the currents and vectors pointing to the current pulse centers are calculated and atored in arrays by MIMIMEC during the matria solution process. The incident field on the ground aurface is also computed from anmetion over the currenta. but this requires the coordinates of the speculer point (the bounce point). For the ecoetry illustrated in Figure 5. the speculer point is iven by

```
\(r_{\text {bounce }}=\sqrt{x^{2} \text { bounce }} y^{2}\) bounce
\(x_{\text {bounce }}=x_{1}+d \cos \quad 52\)
\(y_{\text {bounce }}=y_{1}+0 \sin \rightarrow \quad\) a
\(d=2_{1} \tan 6\).
```

f 52

44

The value of mounce or rpounce la used appropriately for the case of infer or circular zoine fofunderfos fif determine in wich medis the bounce occurs. The neicht of the cround at this point is used to locate the inage of the source.

The ground surface impedance in eny one is given by

The surface impedence, then eround screen is present and the specular pcint lies on the cround screen. is given by wait in reference, 4 adsee see reference 4). The impedance of the ground screen by itself is

$$
Z_{g s}\left(r_{\text {bounce }}\right)=\left\{\bar{s}_{0}^{H_{0}} \frac{\text { Founce }}{N} \text { in } \frac{{ }^{\text {bounce }}}{W_{0}}\right.
$$

where M is the number of wires in the eround acreen and C is ithe radius if each wire. The effective ground lepedme is formed ty compui:ng the peralie: impedance of the ground without the ground acreen anc ithe impedance of ine ground screen without the ground. or

$$
\begin{equation*}
z=\frac{2^{2} e^{2}}{2_{6}+2_{5}} \tag{4}
\end{equation*}
$$

(where $Z=2$ if no tround screen is present
The total field ot point e.t.r is the vector sue of ine airect anc reflected flelds as described. fthen the range. .. is set ic zero or the power cein option is selected. the efrir ter is git ic unity. The totai resulting field is used in equation (3) to celculate the power gair.

Fre sc.oticr is ar antenna protief generatec ty emetroc al moments
 -eadity jepenas ir par: r. ire nuerica; metrods empicyed in the code and mow we: . these metrods are impiemented, i the interent accuracy i.e., the mater significan isgis ut the computer. i how wei: the antenna telng

 aser e eferience. Nonetre.ess. tigris accurate arswers far te otalnec ty


```
be. at.e. ac brate arswe:s are itiainec mier ire user rias accumbated
```



``` -ecifize ;rite arems be must te fuidy aware of potentia: difficuities
```



``` ! - emeriary ir iems. omfaring ite resudis tc independent sciutions or rea: ar: : measuremerts. orit: Pe as ere achfidence tc appiy the code tc aprotef
```



``` ;.a. - Star.
```


 a rufter t simpie ontepria structures rounc dristandard texts on antenna : Pecry tre resui:s may te used as suidelines to model more compiex entenna Amomeries Natura. firsi rrcices are dipcies dn free spare and over ground

 erer. ar: rac: . wiming : mbr for eact antennafrctien a numer uf times.

 wer ata: atie. ir tis merrer. mcdeiang euide:ines are derived and updated - \quad - - ber arterra ir tiers icr wip trere is reidatie measured data cr afera..; arerta: trecre: ira. iata
$A N=E A M$.

Figure 7. Convergence test for an electrically short dipole showing the percent difference in admittance between MININEC and R.W.P. King (references 8 and 9). (Part b).

Figure 9. Corivergence test for a half wave dipole showing the percent difference in admittance between MININEC and R.W.P. King (references 8
and 9). (Part b)

Figure 10. Convergence test for an antiresonant dipole when admittance is given (Part a).
$\boldsymbol{\infty}$
x

[^0](7. 9, and 11) give the percent difference between MININEC and the values published by R.W.P. King, references 8 and 9.

The electrically short dipole, Figures 6 and 7 , and the half wave dipole. Figures 8 and 9, show definite signs of convergence and stability. No sign of convergence is seen for the antiresonant dipole, Figures 10 and 11 . The authors also have seen similar convergence problems near antiresonance for other method of moments codes (notably NEC). Figures 6 through 11 can be used as guidance for selection of the segmentation density. An antenna is modeled as a collection of wires. Each wire is divided into a numter of short segments selected by the user. The number of segments to achieve a desirable confidence level can be based on the results of figures t through 11 . depending on the wire length in wave lengths. Using this data does not guarantee convergence or the percent accuracy for a more complicated antenna, but it does provide a starting point. Convergence testing is always advisatile.

Given the convergence properties of MININEC, how well does it predict dipole properties? Figure 12 is a comparison of a single, $30-s e g m e n t ~ M I N I N E C$ model to the theory given by King (reference 9). Shown is the admittance-versus-dipole length for both MININEC and King. The difference is less than .5 millimho for most of the range, with the greatest difference of about 1.5 millimhos in the susceptance at a dipole length of .64 wave length. For longer or shorter antennas, the user is advised to perform suitatie convergence tests.

The accuracy of the method of moments solution depends also on meeting the thin wire criterion. To illustrate. Figure 13 shows the variation of admittance versus the wire radius. 3 The data given by King (reference 9) are also shown for radii between 10^{-3} and 10^{-2} wave lengths. The segment to radjus ratio, Δ / a, is 25 at 10^{-3} and 2.5 at 10^{-2}. For thicker wires than 10^{-2}. the thin wire criteria is not achieved and the results are expected to be not as gogd. The data show valid behavior for thin wires with $\Delta / a>2.5$ or radii of 10^{-2} wave lengths and smaller.

Numerical problems may occur in the solution when quantities become too small for the inherent accuracy of the computer. An example is the erroneous results that can occur for very short segments. Figure 14 shows the results of a test designed to identify the short segment limit. Shown is the admittance-versus-dipole length in wave lengths for a 10 -segment dipole in free space. The conductance and susceptance displays the proper behavior for a dipole length greater than 10^{-3} wave lengths. This corresponds to a segment length of 10^{-4} wave lengths and longer. Below 10^{-3}, the conductance oscillates about the expected values as the segment length is reduced, and at times displays negative, non-physical values. A change from singie precision to double precision extends the validity range to even shorter segments, but significantly increases the solution time beyond acceptable run times for a 16-bit microcomputer. For MININEC, on a $16-b i t$ maghine in single precision, the segment length should always be greater than 10^{-4} wave lengths.

Antennas are often constructed of wires and towers or other conductors with vastly different radii. Even simple dipoles may have tapered elements. A typical MININEC model may therefore involve the connection of wires witt.
SOHWI: itim

millimmus , ., 1.0 TEST FOR RADIUS DEPENOENCE

large step changes in radii. The stepped-radius wire junction has been extensively studied by Glisson and Wilton (reference 17). Figure 15 is the stepped wire geometry used in their study. They adapted a body of revolution computer code, PEC, to solve very accurately for currents and charges along the stepped wire antenna. The results were compared to NEC in this study.

Figure 15. Geometry for the stepped radius antenna problem.

Abstract

Figures $16,17,18$, and 19 show the current distribution predicted by PEC, NEC and MININEC for radii steps of $1: 1.25,1: 5,1: 10$ and $1: 100$, respectively. The NEC data are from their report. The MININEC results follow the PEC data surprisingly well for all step ratios. (We believe the difference between NEC and PEC may be an error in the data in the Glisson report. We have not otserved this difference in NEC data.) Further investigation of MININEC for different stepped radius problems should be conducted. Suggestions include moving the feed cioser to the step and switching the radii a_{1} and a_{2}.

\footnotetext{ Multiple wire antenna structures may often require very close spacing. Wher: the spacing is very small, the currents may not be adequately represented ty a trin filament on the wire axis as it is represented in MININEC. Figures 20. 21. 22, and 23 show MININEC data for a parallel wire test used to investigate the close spacing limit. The test consists of evaluating the self and mutua: admittance between two parallel half wave dipoles. One antenna is driven (i.e., the source is in the center pulse) while the second is not. The seif admittance is the feed point cuirent on the first wire if the applied voltage is 1 + $j 0$ volts and the mutual admittance is the current for the center pulse on the second wire.

Figure 20 shows the self admitance compared to the theory by R.W.P. King reference 9) for dipole center to center spacings between . 1 and .5 wave iengtr. Figure 21 shows a similar comparison for the mutual admittance over the same range. The differences between MININEC and R.W.P. King are mostly less than .2 millimho and are no greater than .4 millimho in the worst case over the range show for both self and mutual admittance. }

miJIIAMPERES
n MININEC AND THE STEPPED RADIUS WIRE
-
\vdots
\vdots
$\underset{\sim}{u}$
MININEC AND THE STEPPED RADIUS WIRE
\qquad
\qquad

mIIIIAMPERES

Figure 18 Curients for a stepped redius junction of $\mathbf{a}_{2} / \mathbf{a}_{1}=10$

m1111MHOS
12
MININEC TEST FOR PARALLEL WIRES

MINJNEC TEST FOR PARALLEL WIRES

G-Re(Yil)

0 $\rightarrow-\cdots-\cdots-\cdots$ OLE

DI

+ J8)

炭
$B=\operatorname{Im}(Y 11)$

-9-1)

3コNV11IWaV 1735

m1111MHOS

Figure 21. Mutual admittance computed by MININEC compared to the theory of R.W.P. King for two parallel dipoles.

DEGREES
100
8

9
잉

Given the good agreement with theory down to a spacing of .1 wave length, how does MININEC fare for closer spacing? Figures 22 and 23 show the magnitude and phase of the mutual admittance for spacings down to the point of contact of the two parallel dipoles. Keep in mind the good agreement between MININEC and theory for spacings of .1 wave length and greater. (Reference 9 does not provide data for spacings less than . 1, no comparison is shown.) It can be seen that the magnitude and phase continue smoothly as the spacing is reduced. Although these data are not conclusive, it can be implied that MININEC can model antenna configurations with wire spacings less than .1 wave length. Whenever a model has close spacing, however, it is advisable to examine the results very closely to ensure proper behavior.

3.2 LOOP ANTENNAS

A circular wire loop antenna may be modeled by connecting a number of wires to form a polygon approximation to the circular loop. A simple model has one segment per wire, with each wire forming one side of the polygon model, so that the number of sides and the number of segments are equal. For a given circumference, the number of wires, and hence the number of segments, can be increased until the solution stabilizes, indicating the number of sides required to model the circular loop. Figure 24 shows the results of this procedure for a loop, one wave length in circumference. The polygon model is circumscribed by a circle whose circumference is one wave length. The wire radius ($a=.00674$ meter) is chosen to correspond to the published data given by R.W.P. King (reference 9). At best, the real part of the MININEC admittance comes to within 38 of King's data and the imaginary part approaches to within 68. For 22 segments (and 22 sides) the percent difference in real and imaginary admittance is about equal, and less than 68 for each.

Figure 25 compares MININEC and R.W.P. King admittance data for a range of loop diameters from. 1 to 2.0 wave lengths. The MININEC model is the 22 segment or 22 sided polygon loop. The agreement is excellent. The difference between King and MININEC is no greater than .4 millimho over the entire range. From . 1 to .8 wave length, the MININEC data and King data are virtually identical.

Figures 26 and 27 show MININEC data for small loops with a circumference from 10^{-3} to just above. 4 wave length. Keep in mind the excellent agreement with King's data for loops of .1 and greater (Figure 25). The real and imaginary parts of the admittance -2η Figures 26 and 27 , respegtively, are well hehaved for loops greater than 10^{-2} wave lengths. Below 10^{-2}. the real part of the admittance becomes unstable due to numerical problems encountered at the limits of single precision. Note that at 22 segments, the segment size at a circumference of 10^{-3}, is very nearly the same short segment length ilmit displayed by the dipole test in Figure 14. The data in Figures 25, 26, and 27 suggest a small_doop limit for MININEC (on a $16-b i t$, single precision microcomputer) of 10^{-2} wave lengths in circumference. This corresponds to a loop 18 inches in diameter at 2 MHz (about the size of a basketball goal).

3.3 monopoles and antennas above ground

Simply stated, an antenna above a perfectly conducting ground plane is equivalent to the original antenna and its mirror image in free space. Hence.
LOOP ANTENNA CONVERGENCE TEST
m1111MHOS
10

all the modeling results and guidelines presented so far are directly applicable to monopoles. Specifically, the convergence properties illustrated in Figures 6 through 11 can be used for the initial selection of the segmentation required for a monopole. However, this should not preclude convergence testing whenever possible.

Figure 28 illustrates the geometry of a TEE-antenna. The antenna is driven or fed at its base from a coaxial termination at the ground plane. The dimensions for two TEE-antenna designs ($K_{0} h=.2$ and $K_{0} h=.5$) are also given. A convergence test was performed for each antenna using the segmentation scheme in the table. The results of these tests are given in Figures 29 and 30 for $K_{h} h=.2$ and $K_{h} h_{1} .5$, respectively. A comparison of the "best" results t 8 the measurements of Prasad and King (reference 18) for MININEC and several other codes is given in Figure 31.

Figure 31 compares five computer programs including MININEC for the two TEE-antennas. In each case, the programs were tested for convergence and the best answer with respect to Prasad's measurements is given. NEC is the code previously described (reference 4). TGP (Triangular-Galerkin Procedure) is the code written by Chao and Straight (reference 11) using triangular expansion and testing functions in a Galerkin procedure (i.e., triangles for both testing and expansion functions). PSRT (Piece-wise Sinusoidal Reaction Technique) is a sinusoidal Galerkin code written by Richmond (reference 19). TWTC (Thin Wire Time Domain) is a time domain method of moments code written by Van Elaricum and Miller (reference 20). TWTD uses subsection collocation (quadradic interpolation with point matching) to solve for the time-dependent induced currents and time-dependent radiated fields. Admittance data are obtained from a discrete Fourier transform of the source current. All codes except MININEC are in FORTRAN and require mainframe (large) computers. The data show that MININEC can provide equally accurate answers.

3.4 NEAR FIELDS

MININEC can calculate the near fields for antennas in free space and over perfectly conducting ground. Only antennas over perfectly conducting ground are considered in this section.

Figure 32 shows a comparison of MININEC to NEC and to measurements. The data are the near electric fieids of a 10.67 -meter monopole over a good conducting ground screen at 2 MHz . The fields are for 1 KW radiated power. The measurements were made using an E-field sensor (EFS-1) manufactured by Instruments for Industry (reference 21). The NEC data are from a single precision version (NEC-1) running on a VAX 11780 computer. The agreement between both codes and the measurements is acceptable over the range shown. The accuracy of the measurements is 5 to 10\%, with the greatest error occurring for distances of 10 meters and greater, due to the effects of nearby structures. The differences between NEC and MININEC are due in part because the NEC data is from a single precision version.

Figures 33 and 34 are a comparison of MININEC and NEC near field data for a quarter wave monpole over perfect ground. The NEC data are from a double precision version (NEC-3) running on a VAX 11780 computer. Figure 33 gives the vertical and radial components of the electric field and Figure 34 gives the phi-component of the magnetic field. The MININEC data has been scaled to

- Emtical mine SErinENTS	MORIZONTAL WIPE SEGMENTS	TOTAL SEGMENTS
	7	15
;	14	30
	21	45
4	28	50
	2	5
\because	4	10
	6	15
4	8	20
.	10	25
*	12	30
	14	42

Figure 31. Comparison of TEE-antenna impedance computations with the measured values of Parsad.
the power level of the NEC data. The NEC and MININEC data are essentially identical. Figures 35 and 36 show the percent difference between the NEC and MININEC fields of Figures 33 and 34 . The greatest difference occurs very close to the monopole within a segment length.

If the near fields are calculated along the surface of the monopole, the differences between MININEC and NEC are much more pronounced. Figures 37 and 38 show the electric fields along the wire surface of the monopole and Figure 39 shows the magnetic fields. The MININEC data were scaled to the same power radiated as the NEC data. The differences are due to the approximation used by MININEC to determine the fields since the current distribution (not illustrated) is nearly the same for both codes. The impedance calculated by each code is a measure of this agreement. MININEC predicts an impedance of 42.170 +J 21.478 ohms and NEC predicts $42.387+\mathrm{J} 24.873$ ohms.

The accuracy of the MININEC near fields has been illustrated. MININEC near fields are sufficiently accurate for well converged solutions at distances greater than a segment length.

3.5 FAR FIELDS

The correct pattern shape can often times be calculated using a coarse approximation to the antenna current distribution. However, since the antenna input impedance is used to determine gain, it is necessary to use a wellconverged solution to obtain accurate gain data. Figure 40 illustrates both these points. Shown is a comparison between MININEC and the classical solutions from Schelkunoff (reference 22) and Jasik (reference 23). The coarse solutions are represented by the Schelkunoff and Jasik data. Their data are obtained by assuming sinusoidal currents as noted. The MININEC data are obtained by reference to the convergence data of the previous sections and by adjusting the frequency to obtain the exact resonance condition of near zero reactance. The agreement in gain and impedance data (when available) is fairly good. Data given by Schelkunoff for antennas longer than one wave length cannot be trusted because of the assumptions he employs for the current distribution.

Figure 32. Comparison of near field data from MININEC and NEC to measurements.

Figure 33. Near electric fields of a quarterwave monopole computed by MININEC and NEC.

Figure 34. Nea, meynetic fiald; of a quarterwave monopole computed by MININEC and NEC.
PERCENT
$n \quad$
$+$

D	
I	
F	3
E	
R	
E	2
N	
C	

PERCENT

Figure 37. Vertical component of the electric field at one radius distance for a quarterwave monopole

Figure 38. Horizontal component of the electric field at one radius distance for a quarterwave monopole.

Figure 39. Phi-component of the magnetic field at one radius distance for a quarterwave momowhle

3.6 MEMORY, DISK STORAGE AND RUN TIME

Computer memory, disk storage capacity, and solution time are key limiting factors in the use of all method of moments thin wire antenna codes because of the need to store and manipulate (solve or invert) a matrix of complex numbers. These limits are particularly acute when using a microcomputer. Mega-byte hard disks and compilers can partially alleviate these limits.

MININEC has been written specifically for use in the personal computer environment. Hence the choice of the BASIC language, and the choice of the simple pulse expansion and testing functions (to keep overhead down). Every effort has been made to produce a fast compact computer code. Earlier versions of MININEC were written to minimize program size (length). The present version, however, has sacrificed size for improved internal documentation. modularity and increased capability.

Figure 41 is a comparison of the run times between MININEC version 2 and MININEC version 3. Both codes were compiled for comparison using a Microsoft BASIC compiler. Use of a math co-processor will significantly reduce the run times. The co-processor was not used to obtain the data in Figure 41. For comparison, some other attributes of the codes are as follows:

MININEC(2)
INTERPRETER COMPILED INTERPRETER COMPILED

No. of lines	543	--	1607	--
Max. no. of wires 10 75 10				
Max. no. of segments	50	75	30	50
Disk storage (k bytes)	13	57	44	108

The solution time and size of the executable is a function of the compiler and the compiler/linker options used.

The significant increase in speed of MININEC(3) is attributable to ar. improved solution routine. The matrix fill time, the time to compute al: terms of the matrix, is virtually the same for both versions of MININEC. For large problems. the fill time is usually longer than the factor time, the time to solve the matrix. Figure 42 co...pares the matrix fill time, factor time ams total solution time for MININEC(3) to solve a dipole in free space. Matrax fill time dominates for problems above 20 segments.

The solution time not only increases with the number of segments, tut also increases with the number of wire junctions. This effect can be seen if: the data in figure 43. Shown is the total solution time (rill time fius factor time) for a half wave dipole and a loop antenna in free space. The loop is an extreme case in which the number of wire junctions equals the

ε pue τ uo!ssan JJNINIW to sam! und a
1
0
180
8
0
OST
sonojas
$\stackrel{\sim}{N}$

$$
\frac{8}{8}+x^{8}
$$

蛧

St CONAS
12 CL
8

- tee antenna compared to
a duarter vave monopale 8
a malf bave monopale \&IN F

售
number of segments. Also shown in Figure 43 is the total solution time for a quarter wave monopole and a TEE-antenna (previously described) over perfect ground. The wire junction in the TEE-antenna is responsible for the longer solution time compared to the monopole. The solution time is also longer for antennas over perfect ground compared to free space. For comparison, the monopole is equivalent to a dipole in free space with twice the number of segments. Even so, the dipole solution time is a little shorter than the monopole.

The brute force approach to circumvent memory and solution time limits is to seek out ever larger, faster computers. The logical extension is to rewrite MININEC in a more powerful language such as FORTRAN and use a mainframe computer. But if a mainframe is available, one really should be using the more powerful NEC program. NEC is written in FORTRAN and is designed for efficient mainframe use. The concept of MININEC is to use a personal computer (PC). In time, as PCs become more powerful, then MININEC, too, will expand in capability. In the meantime. MININEC is appropriate for application to small problems (less than 100 segments). Larger problems should be solved with NEC on an appropriate size computer.

4.0 EXAMPLES AND USER GUIDANCE

This section is intended to be used both as a reference and as a means for first-time users to become familiar with the input and output (1/0) options of MININEC. The first-time user should spend a few minutes at the computer terminal while following along with the simple two-wire example in section 4.1. A few more minutes at the terminal (perhaps with a simpler four segment dipole) exploring all of the MININEC options should be enough to master this skill. However, the art of actually modeling a wire antenna, i.e., composing the model and properly interpreting MININEC output, is acquired through considerable study of antenna theory and properties, study of the data of section 3.0 , and equally important, accumulating experience by using MININEC.

4.1 GETTING STARTED

First, gather up all the known information on the antenna to be modeled, including measurements or reliable analytical data, if aiailable. It is helpful to make a sketch of the antenna using any convenient cartesian coordinate system. For this example, please consider the inverted L-antenna in Figure 41. You will need to know the X, Y, Z location for each wire end of each wire relative to the origin of your choice. And you will need to know the radius of each wire. All dimensions must be in meters. This information for the example can be found in Figure 44.

You will need to decide how many segments to use on each wire. This may be done initially by calculating the length of each wire in wave lengths at the desired frequency. Then refer to Figures 6 through 11 as appropriate for the initial choice. This will not guarantee that the MININEC solution will be well converged, but it provides a good place to start. A convergence test is always a good idea. A possible segmentation scheme for the inverted L-antenna is suggested in Figure 44. Alternatively, using your prior experience on a similar antenna, you may be able to come closer to the converged solution the first time. For example, the inverted L-antenna is one wire short of being a TEE-antenna similar to the ones in section 3.3 (see Figures 28 through 3i). For the purpose of this discussion, however, we will use a minimal number of segments in order to keep the solution time reasonably short.

MININEC is designed for demand mode execution. Therefore, all you need to do is answer the questions when prompted or provide the required data appropriately. In general, you must define the antenna geometry and define the environment. MININEC can then solve for the currents. Once MININEC has the solution, you may then request near and far fields (patterns).

Now run MININEC. The first question you must answer is:
OUTPUT TO CONSOLE, PRINTER, OR DISK (C/P/D)?
If you enter C for console. all data will be displayed on the monitor. If you answer P for printer, the questions or prompts will still be displayed on the monitor, but all other data will he printed. If you answer D for disk, you will then the prompted to supply the name of a disk file for storage of all MININFC output:

$\beta(h+k)=x$
$\beta=2 \pi / \lambda$
$\beta \mathrm{a}=.025$
LET $\lambda=1$, THEN
$\mathrm{h} \simeq .191 \mathrm{~m}$
$\star \simeq .309 \mathrm{~m}$
$a \simeq .004 \mathrm{~m}$
$Z=263-j 45752$
(PRASAD [18] MEASURED AND CORRECTED FOR SHUNT FEED POINT LOADING)

WIRE END	COORDINATES			WIRE NO.	WIRE RADIUS
	X	Y	Z		004
1	0.	0	0	1	
2	0	0.	0.191		004

SEGMENTATION SUGGESTED CONVERGENCE TEST

WIRE 1	WIRE 2	TOTAL
4	6	10
6	9	15
8	12	20
10	15	25
12	18	30

Figure 44. Inverted Lantenna data for the example in Section 41

OUTPUT TO CONSOLE. PRINTER, OR DISK (C/P/D)? D
FILENAMES (NAME.OUT)?
As with the printer, all questions and prompts appear on the monitor, but the results go to the file you specify.

Next you must supply the frequency in MHz . Enter the desired frequency or simply enter return to select the default value of 299.8 MHz (or a wave length of one meter).

FREQUENCY (MHz)?
WAVE LENGTH $=1$ METER
For the next question, you must select free space or a ground plane by entering 1 or -1 , respectively.

ENVIRONMENT (+1 FOR FREE SPACE, -1 FOR GROUND PLANE)?
If you select -1 for ground, you are then prompted for the number of media, which must be an integer from zero to 5.

ENVIRONMENT (+1 FOR FREE SPACE, -1 FOR GROUND PLANE)? -1 NUMBER OF MEDIA (O FOR PERFECTLY CONDUCTING GROUND)?

A zero selects a perfectly conducting ground plane. See Section 4.3 for further details. Suffice to say at this point that selection of 1 to 5 media does not effect the current distribution or the antenna impedance, but only effects far field calculations. Please select a zero to continue along with this narrative.

Next, you must specify the number of wires. If you specify more than the number allowed, a warning message appears and the question is repeated.

NO. OF WIRES? 100
NUMBER OF WIRES EXCEEDS DIMENSION. . .
NO. OF WIRES?
A zero will place you at the main menu.

[^1]NO. OF HIRES? 0

G - ChaNGE GEOMETRY
E - Change environment
C - COMPUTE/DISPLAY CURRENTS
x - change excitation
P - COMPUTE FAR-FIELD PATTERNS
L - CHANGE LOADS/NETS
F - CHANGE FREQUENCY

COMMAND?
To recover from this point, select G for change geometry and answer the questions on environment again.

NO. OF WIRES? 0

G - CHANGE GEOMETRY

o - Change geonetry
C - COMPUTE/DISPLAY CURRENTS
E - CHANGE ENVIRONMENT
P - COMPUTE FAR-FIELD PATTERNS
X - CHANGE EXCITATION
N - COMPUTE NEAR-FIELDS
L - CHANGE LOADS
Q - QUITE
F - Change friquency

COMMAND? G
ENVIRONMENT (+1 FOR FREE SPACE, -1 FOR GROUND PLANE)? -1 NUMBER OF MEDIA (0 FOR PERFECTLY CONDUCTING GROUND)? 0

NO. OF WIRES?

Let's assume two wires. The next prompt is for the number of segments on wire 1.

WIRE NO. 1
NO. OF SEGMENTS?
You will be prompted for each wire in turn. If you answer zero, you will return to the question for the number of wires. This is a convenient escape mechanisn, sometimes useful when you change your mini.

WIRE NO. 1
NO. OF SEGMENTS? 0
NO. OF WIRES? 2

WIRE NO. 1
NO. OF SEGMENTS?
If at any time you specify too many segments on any one wire, or the total number of segments on all wires specified becomes larger than the maximum allowed by the progra array dimensions, an error message will be displayed. and you will return to the question for the number of wires. In this case, to keep this session short, let's choose 4 sequents for wire 1.

Next, enter the X, Y, Z coordinates, in meters, for end one of the first wire. Then enter the X, Y, Z coordinates for end two: then enter the radius, as prompted.

$$
\begin{array}{rll}
\text { NO. OF SEGMENTS? } 4 & \\
\text { END ONE COORDINATES }(X, Y, Z) ? & 0,0,0 \\
\text { END TWO COORDINATES }(X, Y, Z) ? & 0,0 . .191 \\
& \text { RADIUS? } & .004
\end{array}
$$

COORDINATES							$\begin{gathered} \text { END } \\ \text { CONNECTION } \end{gathered}$	NO. OF SEGMENTS
0		0			0		-1	
0		0			. 099	. 004	0	4
CHANGE	RE	NO.	1	(Y/N)				

After entry of the radius. MININEC responds immediately with a table as shown above. The table gives the coordinates of the wire ends, the radius and the end connection information, so you may verify that you have entered the data correctly. If not, you have the opportunity to start again with this wire. Otherwise, you may continue to the next wire. The end connection information is useful to verify that a connection has been made. In this case, the minus one indicates that end one is connected to ground. A connection to ground is indicated by a negative integer, whose absolute value is the same as the wire number. The zero indicates that end two of this wire is not yet connected to any other wire.

Now, continue on to the next wire and give the appropriate data:
CHANGE WIRE NO. $1(Y / N) ? N$
WIRE NO. 2
NO. OF SEGMENTS? 6
END ONE COORDINATES $(X, Y, Z) ? 0,0 . .191$
END TWO COORDINATES $(X, Y, Z) ?$ 0..309,.091
RADIUS? . 004

The connection data indicates that end one of wire two is connected to the top of wire one. i.e., end two of wire one. The absolute value of the end connection integer is the wire number to which wire two is connected. A plus sign indicates an end one connected to an end two (as in this case), or an end two connected to an end one. A negative sign indicates an end one connected to an end one, or and two connected to an end two. And, of course, a zero means no connection.

By the way, if you happen to give either wire end a negative z-coordinate when ground plane is specified, you will get an error message and will have to reconsider your entry. Likewise. MININEC will not let you get away with a zero redius, or a zero wire length.

If you are now satisfied with the wire two data entry, we may proceed. MININEC will produce a table of the coordinates for the location of each current pulse on each wire. Note that the radius and connection data are also given so that you may verify your data entry.

Change wire no. 2 (Y / N)? N
*** ANTENNA GEOMETRY ***

WIRE NO. 1	COORDINATES			CONNECTION		PULSE
X	Y	2	RADIUS	END	1 END 2	NO.
0	0	0	. 004	-1	1	1
0	0	. 04775	. 004	1	1	2
0	0	. 0955	. 004	1	1	3
0	0	. 14325	. 004	1	0	4
WIRE NO. 2	COORDINATES			CONNECTION		PULSE
X	Y	2	RADIUS	END	1 END 2	NO.
0	0	. 191	. 004	1	2	5
0	. 0515	. 191	. 004	2	2	6
0	. 103	. 191	. 004	2	2	7
0	. 1545	. 191	. 004	2	2	8
0	. 206	. 191	. 004	2	2	9
0	. 2575	. 191	. 004	2	0	10

CHANGE GEOMETRY (Y/N)?
This table is essential to proper location of the feed point (or source excitation point) and location of loads.

You now have one last chance to change the geometry before proceeding.
CHANGE GEOMETRY (Y/N)? N
NO. OF SOURCES?
You must now decide how many feed points to use, where they are located, and what voltages are applied. You will be prompted for this data for each source, in turn. In this case. let's keep it simple.

NO. OF SOURCES? 1
SOURCE NO. 1:
PULSE NO., VOLTAGE MAGNITUDE, PHASE (DEGRFES)? 1,1.0
Sources are always co-located with current pulse runctions. Hence, you may have to refer to the above table of antenna geometry to select an appropriate pulse to apply the source. In this example, the source is at the ground plane, l.e.. pulse number one, located on wire one. I have chosen one volt at zero-degree phase angle for this example.

The next set of questions provide the opportunity to add impedance loading to the antenna. To keep things simple, let's avoid loading and continue on. Please refer to section 4.5 for more detailed information on loading options.

NUMBER OF LOADS? 0


```
G - CHANGE GEOMETRY
E - CHANGE ENVIRONMENT
X - CHANGE EXCITATION L - CHANGE LOADS/NETS F - CHANGE FREQUENCY
```

 COMMAND ?

You are now faced with the main menu again. By selection of an appropriate command letter, you may change the geometry (G), change the environment (E), change the source or excitation (E), change the loads and networks (L), and change the frequency. When satisfied with the antenna geometry and environment, you are ready to determine the antenna properties. The preferred choice at this point is C, compute and display the currents. If you select P for patterns or N for near fields, MININEC will check to see if the currents have been calculated: if not. MININEC will compute the currents before you can proceed. So, let's select C.

COMMAND? C

```
BEGIN MATRIX FILL
MATRIX FILL 10% COMPLETE - APPROX TIME REMAINING 1:48
```

MININEC responds almost immediately with an estimate of the time in minutes and seconds required to complete filling the impedance matrix. At intervals. the estimate will be updated and the total time will be given when this step is completed. Similarly, MININEC will estimate the time to solve the matrix for the currents and in turn display the total times.

```
BEGIN MATRIX FILL
MATRIX FILL 100& COMPLETE - APPROX TIME REMAINING 0:00
FILL MATRIX: 1:27
```

FACTOR MATRIX 100\% COMPLETE - APPRC天 TIME REMAINING 0:00
FACTOR MATRIX: 0.04
When the solution is complete. MININEC comfutes and disflays the impedance and power input for each source in turn. If there is more than one source, the sum total power input will also be displayed. The solution is also displayed in terms of the current distritution. wire by wire.

PULSE 1 VOLTAGE $=(1,0 \quad j)$ CURRENT $=(9.852278 E-04,9.479977 E-C: J)$ IMPEDANCE $=(311.6818,-468.9982 \mathrm{~J})$ POWER $=4.926139 E-04$ WATTS


```
:urrent lam mas neer used !: scive for *e virmem:, - -
```


juncticm or vonnectior point.

arswer
sabe:

- - Jhancle jeme?ry

E- MAMGE ENV:RIWMEN*
(- MAMCE EX: : TAT: W

- - THAMCE ․ AES METS
- - HAMEE 5REUEN

```
MP:TE I:SP:AY URRENT:
- GMPITE EAF-F:ELS PATTERME
- \(\quad \therefore\) mpity MEAB-F:ELIS
- - \(\quad \mathrm{x}:\)
```


mman:

 .mpesar er ar: aremes

-An 5 - mb.

surface (or media) relative to the first surface. A negative value is a step down: a positive value is a step up. A zero value means a flat ground. Note that there is no diffraction coefficient correction in MININEC for a cliff edge. There is also no correction for blockage due to a large step up, i.e.. the antenna cannot be in a well. For each media in turn, you must supply the distance in meters from the origin to the media boundary.

When you choose a circular boundary with two or more media, you will be prompted for the number of radial wires in the ground screen. This approximation is really accurate for dense ground screens only. One hundred or more should be used for best results. Zero, of course, is also a valid choice. You must also supply the wire radius of the wires in the ground screen. The length of the wires in the ground screen is the same as the distance to the interface between media one and two.

4.4 CHANGE EXCITATION

The X option on the MININEC menu provides the means to change the antenna feed excitation (i.e.. number of feeds, feed location and magnitude and phase without changing the geometry, environment, frequency or loading. Changing only the excitation does not require re-filling or re-factoring of the matrix. Hence, after solving for the currents for the initial excitation, you car. rapidly try out all possible source locations or try multiple source excitation. Source locations must coincide with the locations of the current pulse functions. You cannot put source excitations on non-existent pulses. At least one source must be given. MININEC will not allow more sources than the maximum set by the dimension statement (see the first 30 lines of MININEC to determine this limit).

There is but one source model in MININEC. The model imposes a constant field over a pulse width, with amplitude and location, coincident witt. a current pulse, chosen by the user. In spite of the simplicity, this source model is a good approximation for most transmit cases. What do you do then t evaluate the performance of a receive only antenna? One way to evaluate ithe receive properties of antenna is to place a transmitting dipole at a great distance (i.e., in the far field of the receive antenna). The field incider: on the receive antenna is a good approximation to a plane wave.

4.5 CHANGE LOADS

The L option on the MININEC menu provides the means to alter or ad: 1 umped parameter loads to an antenna. Changing the load requires re-filliris and re-factoring of the matrix. Each load location must coincide witt a current pulse expansion function. MININEC will not allow more loads than the maximum for which it is dimensioned (see the first 30 lines of MININEC : determine this limit). There are two kinds of loads; impedance loading anc S-parameter loading. You may select the loading type when prompted afie. specifying the number of loads.

The simplest load type is impedance loading. You must supply the fuise location, resistance and reactance for each load, in turn. The reactaric value you specify will not change when you change the frequency. If you
. - atone \cdot change appropriately with frequency, you must - every lime you change frequency. Alternatively, you - . ores of en equivalent S-parameter function.
*."em f circuit analysis makes use of the concept of a - our enter Generally, S is defined as $S=G+j \omega$ - cent una - is the angular frequency (reference 24). - : 0 : :me varying signals, $G=0$.
1..uit can always be expressed as a function of -.sere. the impedance can be represented as a ratio - per meter impedance function is a polynomial in S

... : And ore functions of R, L and C. For example, a \cdots

4.6 CHANGE FREQUENCY

The F option on the MINIMEC menu provides a way to alter the frequency. You will be prompted for the frequency in MHz. MIMIMEC will compute and display the wave length and return to the menu. Changing the frequency will require re-filling and re-factoring of the impedance matrix. The current geometry will be used.

4.7 COMPUTE/DISPLAY CURRENTS

The C option on the MININEC menu triggers filling and factoring of the matrix for the antenna configuration most recently specified. If a solution has already been computed, and no changes have been aade to the environaent. excitation, loads and frequency, then the C option will simply display the impedance and current distribution.

4.8 COMPUTE FAR FIELD PATTERNS

The P option on the MININEC menu is used to specify the far field pattern calculation. If the currents have not already been computed. they will be computed before you can proceed. You may choose to compute the patterns in dBI, i.e.. in $d B$ above an isotropic radiator, or in volts per meter. i.e.. the electric field.

When you choose $d B I$, you are prompted for the zenith angle and the azimuth angle. In each case you must supply three numbers, the initial angle, the angle increment and the number of angles. If you specify zero for the number of angles, one is assumed. The zenith and azimuth angles are the theta and phi angles, respectively, as shown in Figure 45 . When the patterns are calculated in $d B I$, the $e^{-j k R} / R$ dependence of the far field is suppressed, i.e.. the pattern is at infinite range.

Figure 45. Coordinate system for far field patterns.

When you choose to compute the patterns in volts per meter (i.e.. the electric field strength), the power (radiated) level is displayed and you are prompted to change this level. The fields will be scaled to the level you
epecify. went, you mut specify the renge in eetere. If you epecify zero. the - Jkr, dependence ls suppreseed. For eccurecy, be fe the renge yuu epecify 1 s oufficient for the fer field.

For both del and volts per meter. you will be proepted to seve ine pettern dete. When you enswer yee, you ore proepted for e flle nee. The patern dete will be seved as ASCII leages in this flie. You mey uec on editor or the MIMIMEC post processor to prepare this dete for plotting lsee Appendi: B).

4.9 COMPUTE mEAR FIELDS

The M option on the MIMIMEC menu ls ueed to specify the locetion of points for celculation of the near electric and megnetic flelde. If the currents have not e ready haen computed, they will be computed before you cen proceed. Ycu must choose electric or magnetic flelds. Then you will be prompted for the field location in certesian coordinates. You ere prompted for the initial coordinate. the increment and the numer of atepe for each of the principle direcions. All dimensions must be in meters. Mert, the radiated power levf is displayed and you are given chance to change this level. The near tields will be scaled to the power level you apecify. If you specify zero. the orisinal power level will be used. You will also be prompted to save the near field data. The rield data will be stored in the disk file you apecify. Use MMPOST (see Appendix B) or an editor of your choice to process this date for plotting.
4.10 QUIT

The θ option on the MIMINEC menu provides clean and efficient termination of the MININEC session.

REFERENCES

1. A.J. Julien, J.C. Logan. J.W. Rockway. MMIMIMEC: A Minl-numericel Electromagnetics Code." MOSC TD 516. September 1982.
2. D.f. Wilton, "wire Problems." Lecture Notes for short Course on computatlonel methode in Electromegnetics. 1981.
3. S.T. L1. J.C. Logen, J.W. Rockway. D.W. Tm, Microcomputer iools tor Compunications Engineering, Artech House. Inc.. Dedhem, MA. 1984.
4. T..J. Burke and A.J. Pogelo. MMuerical Electromagnetics fode (Mg()-Method of Momente." NOSC TD 116. Januery 1981.
5. R.F. Herrington. Field Computation by Moment Methods. Macmilien Compeny. Mew York. 1968.
6. M. Abramatz and l. Stegun. editor. Handbook of Mathemetical funciluns. MBS Applied Mathematics Series 35, Government Printing office. November 1980. PD. 590-592.
7. A. Relston, A Flrst Course in Numerical Analyals, Mciraw-Hill. New Yurk. 1965.
8. R.W.P. Kine, The Theory of Linear Antennas, Harvard University Press. Cembridge. MA. 1956.
9. R.W.P. Klne, Tables of Antenne Characteristics, IFI/Plenum Date CorporetIon. New York, 1971.
10. J.C. Logan. "A Comparison of Techniques for Treating Radiation and Scettering by Bent Wire Configurations with Junctions." Syracuse University Technical Report, TR-73-10. National Science Foundation Grant GK-4227. August 1973.
11. H.H. Chao and B.J. Strait. "Computer Programs for Radiation and Scattering by Arbitrary Configurations of Bent Wires," Scientific Report No. 7. Contract F19628-68-0180. AFCRL-700374, September 1970.
12. A.T. Adms. B.J. Strait, D.E. Warren, D. Kuo and T.E. Baldwin, Jr.. "Near Fields of Wire Antenna by Matrix Methods." IEEE Transactions on Antenna and Propagation, Vol. AP-21. No. 5. 1973. pp. 602-610.
13. A.T. Adans and E. Mendelovicz. "The Near Field Polarization Elilpse." IEEE Transactions on Antennas and Propagation, Vol. AP-21. No. 1, January 1973.
14. J.R. Wait. "Characteristics of Antennas Over Lossy Earth," Antenna Theory, Part II, R.E. Collin and F.J. Zuker, editors. McGraw-Hill. New York. pp. 386-437. 1969.
15. R.E. Collin and F.J. Zucker, Antenna Theory, McGraw-Hill Book Company, New York, 1969.
16. W.L. Stutzman and G.A. Thiele, Antenna Theory and Desifn, John Wiley and Sons. Mew York. 1981.
17. A.W. Gliseon and D.R. Wilton, "Numericel Procedures for Handling SteppedRedius Wire Functions," University of Missiselppi final report for contract M66001-E-0156. March 1974.
18. S. Prasad and R.W.P. King. "Experimental Study of Inverted L-. T-. and Related Tranemission Line Antennes." Journal of Research of the Mational Bureau of Standards--D hadio Propagation. V. 65D. No. 5. SeptemberOctober 1961.
19. J.H. Richmond, "Computar Program for Thin-Wire Structures in a Homogeneous Conducting Medium," NASA Technical Report 2902-12, Grant Mo. MGL 36-008-138. August 1973.
20. M. Van Blaricum and E.K. Miller. "TWTD: A Computer Program for Time Domaln Anelyeis of Thin Wire Structures." Lawrence Livermore Laboratory Report, UCRL-51277. October 28, 19?.?
21. J.W. Rockway and J.C. Logen, "Thin-Wire Modeling Techniques applied to Antenna Anelyeis," NELC TD 359. October 1974.
22. S.A. Schelkunorf and H.T. Fries, Antennas: Theory and Practice. John Wiley and Sona, Inc.. New York. 1952.
23. H. Jasik, Antenna Engineering Handbook. McGraw-Hill Book Company, New York. 1961.
24. N. Balabarrian, Fundementals of Circult Theory, Allyn and Bacon, Inc., Boston, 1961.

APPENDIX A

A PRE-PROCESSOR FOR MININEC

MNPRE.BAS converts NEC input data sets to MININEC geometry specifications. First prepare an input data file sultable for NEC (see reference for instructions). Then run MAPRE.BAS. MNPRE.BAS will prompt you for a disk file name containing the NEC data set. It will convert the geometry portion of the NEC data set into the geometry specifications required by MININEC and write the results into binary file named MININEC.INP. When you run MININEC, it will check MININEC.INP for data. If empty, data entry is normal keyboard entry. If not empty. MININEC will read the data and display the segmentation data. The MININEC session will then proceed as normal starting with the question:

CHANGE GEOMETRY (Y / N)?
A source listing of MNPRE.BAS follows:

```
10 REM $TITLE: 'IGNOMINI
/E'
20 DEFINT I-N
30 MAX8EG8=75
4O ON ERROR GOTO 320
50 INPUT "NEC Dataset Name (.NEC)",F$,F$=F$+".NEC"
60 OPEN "MININEC.INP" AS *2 LEN=30
70 FIELD &2, 2 AS 8$.4 AS X1$.4 AS Y1$.4 AS 21$,4 AS X2$,4 AS
Y2$.4 AS 22$.4 A8 R$
80 PUT 2 'Dumamy firet record for no. of wiree
90 OPEN FS FOR INPUT AS $1
100 ON ERROR GOTO O
110 IF EOF(1) THEN 300
120 LINE INPUT 1.L$
130 IF LEFT$(LS,2)<>"GW" THEN 110
132 PRINT LS
140 I= 3-(MIDS(LS, 3,1)=","):J=INSTR(I,LS,",")
150 GOSUB 230:IX=X:LSET S$-MKI$(IX)
160 N8EGS =N8EG8+IX:IF N8EG8>MNX8EGS THEN 280
170 NWIRES =NWIRES +1
180 GOSUB 230:L8ET X1$=MKS$(X):GO8UB 230:LSET Y1$=MKS$(X):GOSUB
230:LSET 21F=MKS$(X)
190 GOSUB 230:L8ET X2$-MKE$(X):COSUB 230:LSET Y2$-MKS$(X):GOSUB
230:LSET 22$-MK8$(X)
200 I=J+1:R=VAL(MIDS(LS,I)):IF R>O THEN LSET RS=MKSS(R)ELSE 290
210 PUT $2
220 GOTO 110
230 I=J+1:J=INSTR(I,LS,","):IF J THEN
X=VAL(MIDS(LS,I,J-I)):RETURN
240 PRINT"Not enough fields in this GW card."
250 CLOSE:KILL "MININEC.INP"
260 PRINT:PRINT"Any key for Initial Options"
270 WHILE INKEYS="":WEND:SYSTEM
280 PRINT"Segment limit exceeded ("MAXsEGS")":GOTO 250
290 PRINT"Wire radius must be positive number.":GOTO 250
300 LSET SS=MKIS(NWIRES):PUT 2,1
310 CLOSE:SYSTEM
320 PRINT FS" flle not found. <Ctrl-Break> to exit.":PRINT
330 CLOSE:KILL "MININEC.INP"
340 RESUME 50
```


APPENDIX B

a POST-PROCESSOR MININEC

MMPOST.BAS processes MIMINEC output data for ploting using the GRAPS progra (see MOSC TD 820, "GRAPS: Graphical Plotting Syatem" by R.T. Laird, July 1985). You may store MININEC currents, near fields and pattern data in a flle of your cholce. Election to store output dete in disk files is accomclished during a MIMINEC session. MMPOST.BAS will read these flles and prompt you for the date to be plotted. MNPOST.BAS will recognize the type of data and displey it for your convenlence. After you have chosen the data for plotting. the minimu and maximum values are computed and displayed. You will be prompted to adjust the acale limits or use these values. Then the data will be witten to file you designate in the format required by GRAPS. a prcerem listing of MMPOST.BAS follows:

1 RMM *** MININEC POST PROCESSOR *** NOSC CODE 822 JCL 7-86
2 CLS
3 COLOR 2.0
4 DIM
$\operatorname{EX}(300,4), E Y(300,4), E Z(300,4), E P(300), N(100), P(400), X(400,3), Z(16$
00.2)

5 PRINT " ++++ MININEC POST-PROCESSOR $++++{ }^{\prime \prime}$
6 PRINT :INPUT "MININEC OUTPUT DATA FILE (name.OUT) "; FS
7 T\$=RIGHT\$(FS.4)
8 IF LEFT $(T \$, 1)=" . "$ THEN 10
9 FS=FS+". OUT"
10 OPEN FS FOR INPUT AS 1
11 INPUT 1,I,PO,GS
12 IF G\$="C" THEN GOSUB 19
13 IF ($G \$=" D "$ OR $G \$=" V ")$ THEN GOSUB 190
14 IF (GS="E" OR G\$="H") THEN GOSUB 121
15 PRINT : INPUT "CONTINUE (Y/N) ": G\$
16 IF LEPT $\$(G \$, 1)=" N "$ THEN 349 ELSE PRINT " "
17 GOTO 5
18 REM --- PROCESS CURRENT DATA ---
$19 \mathrm{~J}=0$
$20 K=0$
21 FOR L=1 TO I
$22 \mathrm{~J}=\mathrm{J}+1$
$23 E X(L, 1)=J$
$24 K=K+1$
25 INPUT 1, EY(J,1),EY(J, 2), EY(J, 3), EY(J, 4)
$26 I F E Y(J, 1)+E Y(J, 2)+E Y(J, 3)+E Y(J, 4)=4$ THEN 29
$27 \mathrm{~J}=\mathrm{J}+1$
28 GOTO 24
$29 \mathrm{~N}(\mathrm{~L})=\mathrm{K}-1$
$30 \mathrm{~J}=\mathrm{J}-1$
$31 \mathrm{~K}=0$
$32 E X(L, 2)=J$
33 NEXT L
34 CLOSE 1
35 REM --- DISPLAY DATA ----
$36 \mathrm{P}=0$
$37 \mathrm{~K}=1$
$38 \mathrm{~L}=1$
$39 \mathrm{Nl}=1$
40 GOSUB 110
41 PRINT : INPUT "DISPLAY ANOTHER WIRE (Y/N) ":C\$
42 IF LEFTS(C\$,1)="N" THEN 46
$43 \mathrm{~L}=\mathrm{L}+1$
44 IF L> I THEN 38
45 GOTO 40
46 PRINT
47 PRINT " ++++ SELECT PLOT DATA ++++ "
48 PRINT: PRINT "ORDINATE DATA: "
$49 \mathrm{P}=\mathrm{P}+1$
$50 \mathrm{~W}=1$
51 IF I=1 THEN 55
52 PRINT :PRINT "NUMBER OF WIRES $=$ "; I

53 PRINT :INPUT "USE DATA FROM WHYCH WIRE ";W
54 IF (Wく1 OR W>I) THEN 52
$55 P(P)=\mathrm{Cl}(W)$
56 PRINT : PRINT "DATA TYPE: 1 - REAL"
57 PRINT " 2 - IMAGINARY"
58 PRINT " 3 - MAONITUDE"
59 PRINT " 4 - PHASE"
60 INPUT "ENTER CHOICE ": C
61 IF (C<O OR C>4) THEN 56
62 PRINT : PRINT "ABSCISSA DATA:
63 PRINT : PRINT " 1 - PULSE POSITION ON WIRE"
64 PRINT " 2 - DISTANCE (m) ALONG WIRE"
65 INPUT "ENTER CHOICE ";J
66 IF ($J<1$ OR J>2) THEN 62
67 ON J GOSUB 80,91
68 PRINT :PRINT "ADD MORE DATA FROM FILE ";FS;" (Y/N)";
69 INPUT C\$
70 IF LEFTS(CS.1)="N" THEN 75
$712(K, 1)=1.234$
$72 \mathrm{Z}(\mathrm{K}, 2)=-1.234$
$73 \mathrm{~K}=\mathrm{K}+1$
74 GOTO 38
$75 \quad 2(K, 1)=-1.234$
$76 \mathrm{Z}(\mathrm{K}, 2)=-1.234$
77 GOSUB 276
78 RETURN
79 REM ---- ABSCISSA TYPE (J=1) ----
$80 \mathrm{Nl}=\mathrm{EX}(\mathrm{W}, 1)$
$81 \mathrm{~N} 2=E X(W, 2)$
82 N3=0
83 FOR L=N1 TO N2
$842(K, 1)=N 3$
$85 \mathrm{Z}(\mathrm{K}, 2)=E Y(L, C)$
$86 K=K+1$
87 N3=N3+1
88 NEXT L
89 RETURN
90 REM ---- ABSCISSA TYPE (J=2) ----
$91 \mathrm{Nl}=\mathrm{EX}(\mathrm{W}, 1)$
$92 \mathrm{~N} 2=\mathrm{EX}(\mathrm{W}, 2)$
93 PRINT : PRINT "COORDINATES OF WIRE "; W
94 INPUT " END1 (X,Y,Z) "; X1,Y1,Z1
95 INPUT " END2 (X,Y,Z) ":X2,Y2,Z2
$96 \mathrm{~S}=(\mathrm{X} 2-\mathrm{X} 1) *(\mathrm{X} 2-\mathrm{X} 1)+(\mathrm{Y} 2-\mathrm{Y} 1) *(\mathrm{Y} 2-\mathrm{Y} 1)+(\mathrm{Z} 2-\mathrm{Z} 1) *(\mathrm{Z} 2-\mathrm{Z} 1)$
97 IF S>0 THEN 100
98 PRINT "WIRE LENGTH $=0 "$
99 GOTO 93
$100 \mathrm{~S}=\operatorname{SQR}(\mathrm{S}) /(\mathrm{N}(\mathrm{W})-1)$
$101 \mathrm{X}=0$
102 FOR L=N1 TO N2
$1032(K, 1)=X$
$104 \mathrm{Z}(\mathrm{K}, 2)=\mathrm{EY}(\mathrm{L}, \mathrm{C})$
$105 \mathrm{X}=\mathrm{X}+\mathrm{S}$
$106 \mathrm{~K}=\mathrm{K}+1$

```
107 NEXT L
108 RETURN
109 REM ---- DISPLAY CURRENTS ----
110 PRINT : PRINT "TOEAL POWER RADIATED " ":PO:" WATTS"
111 PRINT :PRINT "WIRE NUMBER ";L:":"
112 PRINT "REAL","IMAGINARY","MAGNITUDE"."PHASE"
113 PRINT " NO. ","(AMPS)"."(AMPS)"."(DEGREES)"
114 NL=EX(L,1)
115 N2=EX(L.,2)
116 FOR J=N1 TO N2
117 PRINT USING ".*******(J,1),EY(J,2),EY(J,3)::PRINT
USING "*s****":EY(J,4)
118 NEXT J
119 RETURN
120 REM --- PROCESS NEAR FIELD DATA ----
121 FOR L=1 TO I
122 INPUT &1, EX(L, 1),EX(L, 2),EX(L, 3),EX(L,4)
123 INPUT 1, EY(L,1),EY(L, 2),EY(L,3),EY(L,4)
124 INPUT 1, EZ(L,1),EZ(L, 2),EZ(L,3),EZ(L,4)
125 INPUT 1. EP(L),P(L)
126 INPUT 1, X(L,1),X(L, 2),X(L, 3)
127 NEXT L
128 CLOSE & 
129 REM --- DISPLAY DATA ----
130 L=1
131 GOSUB 177
132 PRINT :INPUT "DISPLAY ANOTHER FIELD POINT (Y/N) ":C$
133 IF LEFT$(CS,1)="N" THEN GOTO 137
134 L=L+1
135 IF L> I THEN L=1
136 GOTO 131
137 Ll=1 : L2 = I
138 PRINT :PRINT " ++++ SELECT PLOT DATA
++++"
139 PRINT :INPUT "ABSCISSA DATA (X/Y/Z) ":AS
140 AS=LEFT$(AS,1)
141 M=0
142 IF AS="X" THEN M=1
143 IF AS="Y" THEN M=2
144 IF AS="Z" THEN M=3
145 IF M=0 THEN GOTO 138
146 N=0
147 PRINT :PRINT "ORDINATE DATA: X = X-COMPONENT"
148 PRINT " Y = Y-COMPONENT"
149 PRINT " Z = I_COMPONENT"
150 PRINT " P = MAXIMUM OR PEAK VALUE"
151 INPUT "ENTER CHOICE OF FIELD COMPONENT (X/Y/Z/P) ";DS
152 DS=LEFT$(DS,1)
153 IF D$="P" THEN GOTO 164
154 PRINT "DATA TYPE:"
155 PRINT " 1 - REAL"
156 PRINT " 2 - IMAGINARY"
157 PRINT " 3 - MAGNITUDE"
158 PRINT " 4 - PHASE"
```

```
159 INPUT "CHOICE:".J
100 IF DS**X" THEN GOTO 165
101 IF DS:"Y" THEN GOTO 160
102 IF DS="Z" THEN SOTO 16"
163 GOTO 147
```



```
:GOTO 168
165 FOR L=L,1 TO L2 :N=N*1 :2(L.l)=X(N,M):Z,L., {)-EX N.: :NEXT
:GOTO 168
```



```
:GOTO 168
167 POR L=L\ TO L2:N=N+1 :Z(L.1)=X(N,M):Z(L,I)=EZ(N,I):NEXT:
168 L2=i.2+1
169 PRINT :PRINT "ADD MORE DATA FROM FILEE...FS.. (YN)
170 1NPUT CS
171 IF LEFTS(CS,1)="N" THEN GOTO 173
172 Z(L2,1)=1.234:Z(L2.2)=-1.234:Ll=L2+1 :L2=L2+I :GOTO 1 3H
173 2(L2.1)=-1.234:Z(L2.2)=-1.234
174 GOIUB 276
175 RETURN
176 REM --- DISPLAY NEAR FIELD DATA ----
177 PRINT :PRINT " ** NEAR FIELD DATA FROM
FILE '":FS:"*****
178 PRINT :PRINT " FIELD POINT: X = ":X(L,l):", Y=
";X(L,2):", Z = ";X(L,3)
179 PRINT "VECTOR"."REAL","IMAGINARY"."MAGNITUDE","PHASE"
180 IF GS="E" THEN PRINT
"COMPONENT","(V/M)","(V/M)","(V/M)","(DEG)"
181 IF GS="H" THEN PRINT
"COMPONENT","(AMPS/M)","(AMPS/M)","(AMPS/M)","(DEG)"
182 PRINT " X ";:PRINT USING "*.*****...
";EX(L,1),EX(L, 2),EX(L, 3);:PRINT USING "*###.##";EX(L, 4)
183 PRINT " Y ";:PRINT USING "*.####"```
";EY(L,1),EY(L, 2),EY(L, 3);:PRINT USING "####.##";EY(L, 4)
184 PRINT " Z ";:PRINT USING "*.*###*)."
";EZ(L, 1),EZ(L, 2),EZ(L, 3);:PRINT USING "####.##";EZ(L, 4)
185 IF G$x"E" THEN PRINT "MAXIMUM OR PEAK FIELD = ";EP(L);" V/M"
186 IF GS="H" THEN PRINT "MAXIMUM OR PEAK FIELD = ";EP(L);
AMPS/M"
187 PRINT "RADIATED POWER = ";P(L);" WATTS"
188 RETURN
189 REM --- PROCESS PATTERN DATA ---
190 IF G$="V" THEN GOTO 197
191 REM INPUT DATA IN DB
192 FOR L=1 TO I
193 INPUT #1, X(L, 1),X(L, 2),EX(L,1),EX(L, 2),EX(L, 3)
194 NEXT L
195 REM INPUT DATA IN V/M
196 GOTO 201
197 INPUT #l, RO
198 FOR L=1 TO I
199 INPUT (1, X(L, 1),X(L, 2),EX(L,1),EX(L, 2),EY(L, 1),EY(L, 2)
200 NEXT L
201 CLOSE #1
```

```
2U2 REN --- DISPLAY DATA -.--
203 J=1 :K=10 :IF K>I THEN K=1
204 IF GS="D" THEN GOSUB 232
205 IF GS:"V" THEN GOSUB 238
206 PRINT :INPUT "DISPLAY MORE PATTERN DATA (Y/N) ":CS
207 IF LEFTS(CS,1)="N" THEN GOTO 212
208 IF K=I THEN GOTO 203
209 J=K :K=K+10 :IF J>I THEN J=K-9
210 IF K>I THEN K=I
211 GOTO 204
212 L1=1 :L2=I
213 PRINT :PRINT " ++++ SELECT PLOT DATA
++++"
214 PRINT :INPUT "ABSCISSA DATA: (Theta/Phi) ":AS
215 AS=LEFTS(AS,1)
216 M=0
217 IF AS="T" THEN M=1
218 IF AS="P" THEN M=2
219 N=0
220 IF M=0 THEN GOTO 213
221 IF GS="D" THEN GOSUB 252
222 IF GS="V" THEN GOSUB 262
223 L2=L2+1
224 PRINT :PRINT "ADD MORE DATA FROM FILE '";FS;"' (Y/N) ";
225 INPUT C$
226 IF LEFT$(C$,1)="N" THEN GOTO 228
227 Z(L2,1)=1.234:Z(L2, 2)=-1.234:L1=L2+1:L2=L2+I :GOTO 213
228 Z(L2,1)=-1.234:Z(L2,2)=-1.234
229 GOSUB 276
230 RETURN
231 REM --- DISPLAY PATTERN DATA (DBI) ---
232 PRINT :PRINT " RADIATION PATTERN DATA"
233 PRINT :PRINT
"ZENITH","AZIMUTH","VERTICAL","HORIZONI'AL","TOTAL"
234 PRINT "(THETA)","(PHI)","PATTERN (dB)","PATTERN
(dB)","PATTERN (dB)"
235 FOR L=J TO K :PRINT X(L,1),X(L,2),EX(L,1),EX(L,2),EX(L.,3)
:NEXT L
236 RETURN
237 REM ---- DISPLAY PATTERN DATA (V/M) - --
238 PRINT :PRINT " RADIATION PATTERN DATA"
239 PRINT :PRINT "RADIAL DISTANCE = ";RO;" METERS"
240 PRINT "POWER LEVEL = ";PO;" WATTS"
241 PRINT :PRINT" ZENITH AZIMUTH"." E(THETA) "."
E(PHI)"
242 PRINT "(THETA) (PHI)","MAG(V/M) PHASE(DEG)","MAG(V/M)
PHASE(DEG)"
243 FOR L=J TO K
24 PRINT USING "###.### ";X(L, 1),X(L, 2);
245 PRINT USING " #######^^^^";EX(L,l);
246 PRINT USING " ######## ";EX(L, 2);
```



```
248 PRINT USING " #######";EY(L,2)
249 NEXT L
```

251 REM --- SAVE PATTERN DATA (BDI) ---
252 PRINT : INPUT "ORDINATE DATA (Vertical/Horizontal/Total) "•IS
253 DS=LEFTS (DS,1)
$254 \mathrm{~J}=0$
255 IF D $\$=$ "V" THEN $J=1$
256 IF DS="H" THEN J=2
257 IF DS="T" THEN J=3
258 IF J=0 THEN GOTO 260
259 FOR L=L1 TO L2 : N=N+1: $\mathrm{Z}(\mathrm{L}, 1)=\mathrm{X}(\mathrm{N}, \mathrm{M}): \mathrm{Z}(\mathrm{L}, 2)=\mathrm{EX}(\mathrm{N}, \mathrm{J}): N E X$:
260 RETURN
261 REM --- SAVE PATTERN DATA (V/M) ---
262 PRINT : PRINT "ORDINATE DATA: $T=E-T H E T A$ COMPONEN*"
263 PRINT " $P=E-P H I$ COMPONENT"
264 INPUT "ENTER CHOICE OF COMPONENT (T/P) ";DS
265 D\$=LEFT\$ (D\$,1)
266 PRINT :PRINT "DATA TYPE: 1 - MAGINTUDE"
267 PRINT " 2 - PHASE"
268 INPUT "CHOICE:";J
269 IF D\$="T" GUTO 272
270 IF DS="P" GOTO 273
271 GOTO 274
272 FOR L=L1 TO L2: $N=N+1: Z(L, 1)=X(N, M): Z(L, 2)=E X(N,: \quad N Y$
:GOTO 274

274 RETURN
275 REM ---FIND MAX \& MIN ---
276 PRINT : PRINT "PLOT FORMAT: 1 - ONE ORDINATE SCALF
277 PRINT " 2 - TWO ORDINATE SCALES"
278 PRINT " 3 - POLAR OR SMITH CHART
279 INPUT "ENTER CHOICE "; C :PRINT
280 IF (C<l OR C>3) THEN GOTO 276
281 IF C=2 THEN PRINT "--- TWO CURVES IS ASSUMED -.-
$282 \mathrm{Ll}=1$:L2=I
283 IF G\$="C" THEN 300
$284 \mathrm{XL}=9.999999 \mathrm{E}+35: \mathrm{XH}=-9.999999 \mathrm{E}+35$
$285 \mathrm{YL}=9.999999 \mathrm{E}+35: \mathrm{YH}=-9.999999 \mathrm{E}+35$
286 FOR L=L1 TO L2
287 IF $Z(L, 1)<X L$ THEN XL=Z $(L, 1)$
288 IF $Z(L, 1)>X H$ THEN $X H=Z(L, 1)$
289 IF $Z(L, 2)<Y L$ THEN YL $=Z(L, 2)$
290 IF $Z(L, 2)>Y H$ THEN $Y H=Z(L, 2)$
291 NEXT L
$292 \mathrm{~L} 2=\mathrm{L} 2+1$
293 IF $Z(L 2,1)=-1.234$ THEN GOTO 32:
294 IF C><2 THEN GOTO 298
$295 \mathrm{Yl}=\mathrm{YL}: Y 2=\mathrm{YH}$
$296 \mathrm{~L} 1=\mathrm{L} 2+1: \mathrm{L} 2=\mathrm{L} 2+1$
297 GOTO 285
$298 \mathrm{~L} 1=\mathrm{L} 2+1: \mathrm{L} 2$ \# L $2+\mathrm{I}:$ GOTO 2 At
299 REM --- CURRENTS MAX \& M:
300 IF C<>2 THEN 304
301 IF $P=2$ THEN 304
302 PRINT:PRINT "BUT, THEMY AHY


```
3030010 276
304 xL=9.9999995+35 ixim-9.9949995+35
305 YL=9.999999E+35 iYN=-9.999999E+35
306 FOR J=1 TO P
307 L2-L1+P(J)-1
308 TOR LEL1 TO L2
309 IF &(L,1)<XL TM\: XL,E(L,1)
```



```
311 IF &(L, 2)<YL THEX YL=8(L,2)
312 IF &(L, 2) >H THEM YN=&(L,2)
313 MEXT L
314 IF J=2 THEN 318
315 IF C<>2 THIN 318
316 Y1=YL:Y2=YH
317 YL=9.999999E+35 iYH=-9.999999E+35
318 L1 = L2 +2
319 NEXT J
320 L2=K
321 PRINT :PRINT " "."MINIMUM"."MNXIMUM"
322 PRINT "ABSCISSA", XL,XH
323 IF C=2 THEN PRINT "ORDIMATE".Y1.Y`." (LEFT SIDE)"
324 PRINT "ORDINATE",YL,YH
325 IF C=3 THEN GOTO 337
326 PRINT :INPUT "CHANGE ABSCIS8A MNNGE (Y/N) ";CS
327 IF LEPTS(CS,1)="N" THEN GOTO 330
328 INPUT "NEW LOWER LIMIT = ";XL
329 INPUT "NEW UPPER LIMIT = ";XH
330 PRINT :INPUT "CHANGE ORDINATE RNNGE (Y/N) ".CS
331 IF LEPT$(C$,1)="N" THEN GOTO 337
332 IF C><2 THEN GOTO 335
333 INPUT "NEW LOWER LIMIT (LEET SIDE) = ";Y1
334 INPUT "NEW UPPER LIMIT (LEET SIDE) = ":Y2
335 INPUT "NEW LOWER LIMIT = ":YL
336 INPUT "NEW UPPER LIMIT = ";YH
337 PRINT :INPUT "PLOT DATA FILE (name.DAT) ":FS
338 T$=RIGHT$(FS,4)
339 IF LEFT$(T$,1) = "." THEN 341
340 F$=F$+".DAT"
341 OPEN F$ FOR OUTPUT AS #1
342 IF C=1 THEN PRINT #1, XL;",";XH:",";YL;",N;YH
343 IF C=2 THEN PRINT %1, XL;",";XH;",";Y1;",";Y2;",";YL;",";YH
344 FOR L=1 TO L2
345 PRINT %1, Z(L,1);",";Z(L, 2)
346 NEXT L
347 CLOSE #l
348 RETURN
349 SYSTEM
```

aprewilx C
mimimec phocran listimg
minImec compllation
Festeat run times for MIMIWEC3 heve been echieved using ofbasic/ IWLINE(TW). Wicroway's BASIC complier poat procescor wich cenerates in-line 8007 code for all floating point expreasions. The following table gives some idea of the difference in run times for the metrix fill in the semple problem in MOSC TD 516, Appendix B.

EASICA Interpreter	$1 / 2$ hours
IEm BASIC compiler	22 minutes
87BASIC Compiler	8 minutes
87BASIC/INLIME	minutes

87BASIC/IMLIME 18 availsble from Microway. P.O. Box 79, Kingaton. Kass. 02364 Phone (617) 746-7341. The current price of the package is two hundred dollers.

MINIWEC3.BAS may be run with the BASICA Interpreter, but the maximum nuber of pulses must be reduced to 42 with 10 wires. A maximu of 50 wires and 50 pulses may be used with the IBM BASIC Compiler. The other compllers allow 70 pulses.

A progre listing dimensioned for the IBM BASIC Compiler follows:

```
l REM ****** MININEC(3) ********** NOSC CODE }822\mathrm{ (JCL CHANGE 6)
9-25-86
2 DEFIATM I.J.K.N
3 DIM KI(6,2),O(14)
4 REM --D-- MNXIMUM NUMBER OF SEGMENTS (PULSES + 2 WIRES) = 150
5 M8=150
6 DIM X(150),Y(150),Z(150)
7 REM ----- MNXIMUM NUMBER OF WIRES = 50
8 MN=50
9 DIM A(50),CA(50),CB(50),CG(50),J1(50),J2(50,2),N(50,2),S(50)
10 REM ----- MAXIMUM NUMBER OF LOADS = 11
11 ML=11
12 REM ----- MAXIMUM ORDER OF S-PARAMETER LOADS = 8
13 MA=8
14 DIM LA(2,11,8),LP(11),LS(11)
15 REM ----- MAXIMUM NUMBER OF MEDIA = 6
16MM=6
17 REM ----- H MUST BE DIMENSIONED AT LEAST }
18 DIM H(6),T(6),U(6),V(6),Z1(6),Z2(6)
19 REM ---~- MAXIMUM NUMBER OF PULSES = 50
20 MP=50
21 DIM C%(50,2),CI(50),CR(50),P(50),W%(50)
22 DIM ZR(50,50), ZI(50,50)
23 REM ---- ARRAYS E,L & M DIMENSIONED TO MW+MP=100
24 DIM E(100),L(100),M(100)
25 COLOR 2,0
26 GOTO 1499
27 REM ********** KERNEL EVALUATION OF INTEGRALS I & & I 
* ththtthtwt
28 IF K<0 THEN }3
29 X 3 = X 2+T* (V1-X2)
30 Y 3=Y2+T* (V2-Y2)
31 Z3=Z2+T*(V3-Z2)
32 GOTO 36
33 X3=Vl+T*(X2-V1)
34 Y3=V2+T*(Y2-V2)
35 Z3=V3+T*(Z2-V3)
36 D3=X3*X3+Y3*Y3+Z3*Z3
37 REM ----- MOD FOR SMALL RADIUS TO WAVELENGTH RATIO
38 IF A(P4)<=SRM THEN D=SQR(D3):GOTO 49
39 D=D3+A2
40 IF D>0 THEN D=SQR(D)
41 REM ----- CRITERIA FOR USING REDUCED KERNEL
4 2 ~ I F ~ I 6 I = 0 ~ T H E N ~ 4 9 ~
43 REM ----- EXACT KERNEL CALCULATION WITH ELLIPTIC INTEGRAL
44 B=D3/(D3+4*A2)
4 5 ~ W O = C O + B * ( C l + B * ( C 2 + B * ~ ( C 3 + B * C 4 ) ) ) ,
4 6 W l = C 5 + B * ( C 6 + B * ( C 7 + B * ~ ( C 8 + B * C 9 ) ) ) ,
4 7 \mathrm { VO } = ( W O - W 1 * L O G ( B ) ) * S Q R ( 1 - B )
48 T3=T3+(VO+LOG(D3/(64*A2))/2)/P/A(P4)-1/D
49 Bl=D*W
50 REM ----- EXP(-J*K*R)/R
51 T3=T3+COS(Bl)/D
```

```
52 T4=T4-8IM(B1)/D
5 3 ~ R I M U R A ~
54 RIM ***** P8I(P1,P2,P3) = T1 + J * T2 ***********
55 REM ----- RATRIE8 REQUIRED FOR NEAR FIELD CALCULATION
56 X1=X0+P1*T5/2
57 Y1=YO+P1*T6/2
58 E1=20+P1*T7/2
59 X2=X1-X(P2)
60 Y2=Y1-Y(P2)
61 22=21-K*2(P2)
62 V1=X1-X(P3)
63 V2=Y1-Y(P3)
64 V3=21-K*Z(P3)
65 GOTO 135
66 I4=INM(P2)
67 I5=I4+1
68 X2=X0-(X(I4)+X(I5))/2
69 Y2=Y0-(Y(I4)+Y(I5))/2
70 Z2=20-K*(Z(I4)+Z(I5))/2
71 V1=X0-X(P3)
72 V2=YO-Y(P3)
73 V3=Z0-K*Z(P3)
74 GOTO 135
75 X2=XO-X (P2)
76 Y2 =YO-Y(P2)
77 Z2=Z0-K*Z(P2)
78 I4=INT(P3)
79 I5=I4+1
80 Vl=XO-(X(I4)+X(I5))/2
81 V2=YO-(Y(I4)+Y(I5))/2
82 V3=Z0-K*(Z(I4)+Z(I5))/2
83 GOTO 135
84 REM ----- ENTRIES REQUIRED FOR IMPEDANCE MATRIX CALCULATION
85 REM -_-\infty S(M) GOES IN (X1,Y1,Z1) FOR SCALAR POTENTIAL
86 REM -_--- MOD FOR SMALL RADIUS TO WAVE LENGTH RATIO
87 FVS=1
88 IF K<l THEN }9
89 IF A(P4)>SRM THEN }9
90 IF (P3=P2+1 AND P1=(P2+P3)/2) THEN 91 ELSE }9
91 Tl=2*LOG(S(P4)/A(P4))
92 T2=-W*S(P4)
93 RETURN
94 I4=INT(PI)
95 I 5=I4+1
96 Xl=(X(I4)+X(I5))/2
97 Yl=(Y(I4)+Y(I5))/2
98 Zl=(Z(I4)+Z(I5))/2
99 GOTO 113
100 REM ----- S(M) GOES IN (XI,Yl,Zl) FOR VECTOR POTENTIAL
101 REM ----- MOD FOR SMALL RADIUS TO WAVE LENGTH RATIO
102 FVS=0
103 IF K<l THEN 109
104 IF A(P4)>=SRM THEN }10
```

```
105 IF (I=J AND P3=P2+.5) THEN 106 ELSE 109
106 T1=LOG(8(P4)/A(P4))
107 T2=-W*S(P4)/2
108 RNTURN
109 X1=X(P1)
110 Y1=Y(P1)
111 21=2(P1)
112 REM ----- S(U)-S(M) GOES IN (X2,Y2,Z2)
113 14=INT(P2)
114 IF I4=P2 THEN 120
115 I5=I4+1
116 X2=(X(I4)+X(I5))/2-X1
117 Y2=(Y(I4)+Y(I5))/2-Y1
118 Z2=K*(Z(I4)+Z(I5))/2-Z1
119 GOTO 124
120 X2=X(P2)-X1
121 Y2=Y(P2)-Y1
122 Z2=K*Z(P2)-21
123 REM -----S(V)-S(M) GOES IN (V1,V2,V3)
124 I4=INT(P3)
125 IF I4=P3 THEN 131
126 I 5 = I 4+1
127 VI=(X(I4)+X(I5))/2-XI
128V2=(Y(I4)+Y(I5))/2-Y1
129 V 3=K*(Z(I4)+Z(I5))/2-Z1
130 GOTO 135
131 V1 =X(P3)-X1
132 V2=Y(P3)-Y1
133 V3=K*Z(P3)-Z1
134 REM ----- MAGNITUDE OF S(U) - S(M)
135 DO=X2*X2+Y2*Y2+Z2*Z2
136 REM ----- MAGNITUDE OF S(V) - S(M)
137 IF DO>0 THEN DO=SQR(DO)
138 D3 = V1*V1 +V2*V2+V3*V3
139 IF D3>0 THEN D3=SQR(D3)
140 REM ----- SQUARE OF WIRE RADIUS
141 A2=A(P4)*A(P4)
142 REM ----- MAGNITUDE OF S(V) - S(U)
143 S4=(P3-P2)*S(P4)
144 REM ----- ORDER OF INTEGRATION
145 REM ----- LTH ORDER GAUSSIAN QUADRATURE
146 Tl=0
147 T2=0
148 I 61=0
149 F2=1
150 L=7
151 T=(DO+D3)/S(P4)
152 REM ----- CRITERIA FOR EXACT KERNEL
153 IF T>1.1 THEN 165
154 IF C$="N" THEN 165
155 IF J2(W%(I),1)=J2(W%(J),1) THEN }16
156 IF J 2(W%(I),1)=J2(W%(J),2) THEN 160
157 IF J2(W%(I), 2)=J2(W%(J),1) THEN 160
```

```
158 IF J2(W%(I),2)=J2(WE(J),2) THEN 160
159GOTO 165
160 IF A(P4)>8PM THEN }16
161 IF FVS=1 THEN 91 ELSE }10
162 F2=2*(P3-P2)
163 I6I=(1-LOC(S4/F2/B/A(P4)))/P/A(P4)
164 coTO }16
165 IF T>6 THEN L=3
166 IF T>10 THEN L=1
167 15=L+L
168 T3=0
169 T4=0
170 T=(Q(L)+.5)/F2
171 GOSUB 28
172 T=(.5-Q(L))/F2
173 GOSUB 28
174 L=L+1
175 T1=T1+Q(L)*T3
176 T2=T2+Q(L)*T4
177 L=L+1
178 IF L<I5 THEN 168
179 Tl=S4*(T1+161)
180 T2=S4*T2
181 RETURN
182 REM *********** COMPLEX SQUARE ROOT
183 REM ----- W6+I*W7=SQR(Z6+I*Z7)
184 T6=SQR((ABS(26)+SQR(26*Z6+Z7*Z7))/2)
185 T7=ABS(27)/2/T6
186 IF 26<0 THEN 191
187 W6=T6
188 W7=T7
189 IF Z7<0 THEN W7=-T7
190 RETURN
191 W6=T7
192 W7=T6
193 IF 27<0 THEN W7=-T6
194 RETURN
195 REM ********** IMPEDANCE MATRIX CALCULATION
196 IF FLG=1 THEN 428
197 IF FLG=2 THEN }47
198 REM ----- BEGIN MATRIX FILL TIME CALCULATION
199 OT$=TIME$
200 QS="MATRIX FILL "
201 PRINT
202 PRINT "BEGIN ":QS
203 REM ----- ZERO IMPEDANCE MATRIX
204 FOR I=1 TO N
205 FOR J=1 TO N
206 ZR(I,J)=0
207 ZI(I,J)=0
208 NEXT J
209 NEXT I
210 REM ----- COMPUTE ROW I OF MATRIX (OBSERVATION LOOP)
```

```
211 FOR I=1 TO N
212 Il=AB8(CB(I,1))
213 I2=AB8(CE(I, 2))
214F4=8GN(CA(I,1))*S(I1)
215F5=8GN(C&(I,2))*8(I2)
216 REM ----- R(M + 1/2) - R(M - 1/2) HAS COMPONENTS (T5,T6,T7)
217 T5=F4*CA(IL)+F5*CA(12)
218 T6=F4*CB(I 1)+F5*CB(I2)
219 T7=F4*CG(I1)+F5*CG(I2)
220 IF C&(I, 1)=-C&(I,2) THEN T7=S(I1)*(CG(I1)+CG(I2))
221 REM ----- COMPUTE COLUMN J OF ROW I (SOURCE LOOP)
222 FOR J=1 TO N
223 Jl=ABS (C&(J,1))
224 J2=ABS(C&(J,2))
225 F4=SGN(C&(J,1))
226F5=SGN(C&(J, 2))
227 F6=1
228 F7=1
229 REM ----- IMAGE LOOP
230 FOR K=1 TO G STEP -2
231 IF C& (J,1)<>-C&(J,2) THEN 235
232 IF K<O THEN 332
233 F6=F4
234 F7=F5
235 F8=0
236 IF K<0 THEN 248
237 REM ----- SET FLAG TO AVOID REDUNANT CALCULATIONS
238 IF Il<>I2 THEN 246
239 IF (CA(II)+CB(II))=0 THEN 241
240 IF C&(I, 1)<>C&(I, 2) THEN }24
241 IF J1<>J2 THEN 246
242 IF (CA(J1)+CB(J1))=0 THEN 244
243 IF C& (J,1)<>C&(J,2) THEN 246
244 IF II=J1 THEN F8=1
245 IF I=J THEN F8=2
246 IF ZR(I,J)<>0 THEN 317
247 REM ----- COMPUTE PSI(M,N,N+1/2)
248 Pl=2*W% (I ) +I - 1
249 P2=2*W% (J)+J-1
250 P3=P2+.5
251 P4=J2
252 GOSUB 102
253 Ul=F5*T1
254 U2=F5*T2
255 REM ----- COMPUTE PSI(M,N-1/2,N)
256 P 3 = P2
257 P2=P2-.5
258 P4=J1
259 IF F8<2 THEN GOSUB 102
260 Vl=F4*T1
261 V2=F4*T2
262 REM -----S(N+1/2)*PSI(M,N,N+1/2) +S(N-1/2)*PSI(M,N-1/2,N)
263 X3=U1*CA(J2)+V1*CA(J1)
```

```
264 Y 3=U1*CB(J2)+V1*CB(J1)
265 23=(F7*Ul*CG(J2)+F6*V1*CG(J1))*K
266 REM --\infty-\infty REAL PART OF VECTOR POTENTIAL CONTRIBUTION
267 D1=W2*(X3*T5+Y3*T6+Z3*T7)
268 X3=U2*CA(J2)+V2*CA(J1)
269 Y = U2*CB(J2)+V2*CB(J1)
270 Z3*(F7*U2*CG(J2)+F6*V2*CG(J1))*K
271 REM ---\infty- IMAGINARY PART OF VECTOR POTENTIAL CONTRIBUTION
272 D2=W2*(X3*T5+Y3*T6 +Z3*T7)
273 REM --\infty-- COMPUTE PEI(M+1/2,N,N+1)
274 Pl=P1+.5
275 IF F8=2 THEN Pl=P1-1
276 P2=P3
277 P3=P3+1
278 P4=J2
279 IF F8<>1 THEN 283
280 U5=F5*U1 +T1
281 U6=F5*U2+T2
282 GOTO 291
283 GOSUB }8
284 IF F8<2 THEN 288
285 Ul = (2*T1-4*Ul*F5)/S(J1)
286 U2=(2*T2-4*U2*F5)/S(J1)
287 GOTO 314
288 U5=T1
289 U6=T2
290 REM ----- COMPUTE PSI(M-1/2,N,N+1)
291 Pl=P1-1
292 GOSUB 87
293 Ul=(Tl-U5)/S(J2)
294 U2=(T2-U6)/S(J2)
295 REM -_--- COMPUTE PSI(M+1/2,N-1,N)
296 Pl=P 1 +1
297 P 3 = P 2
298 P2=P2-1
299 P4=J1
300 GOSUB 87
301 U3=T1
302 U4=T2
303 REM --_-- COMPUTE PSI(M-1/2,N-1,N)
304 IF F8<1 THEN 308
305 Tl=U5
306 T2=U6
307 GOTO 311
308 Pl=P1-1
309 GOSUB 87
310 REM --_-- GRADIENT OF SCALAR POTENTIAL CONTRIBUTION
311 Ul=U1+(U3-T1)/S(J1)
312 U2=U2+(U4-T2)/S(J1)
313 REM ----- SUM INTO IMPEDANCE MATRIX
314 ZR(I,J)=ZR(I,J)+K*(D1+Ul)
315 ZI(I,J)=ZI(I,J)+K*(D2+U2)
316 REM ----- AVOID REDUNANT CALCULATIONS
```

```
317 1F J<1 THEM 332
318 IF F8=0 TH%\ 332
319 2R(J,I)=2R(I,J)
320 ZI(J,I)=2I(I,J)
321 REM -- -- 8EOMENTR ON SANE WIRE 8AME DI8TANCE APART HAVE 8AME
Z
322 P1=J+1
323 IP P1>M THE& 332
324 1F CE(P1,1)<>CS(P1,2) THEN }33
325 IF C& (P1, 2)=C8(J,2) THEN 328
326 IF CE (P1,2)<>-C8(J,2) THTM }33
327 IF (CA(J2)+CB(J2))<>O THEN }33
328 P2=I +1
329 IF P2>N THEN 332
330 ZR(P2,P1)=2R(I,J)
331 ZI(P2,P1)=ZI(I,J)
332 NEXT K
333 NEXT J
334 PCT=1/N
335 GOSUB 1601
336 NEXT I
337 REM ----- END MATRIX FILL TIME CALCULATION
338 T$=TIMES
339 GOSUB 1591
340 PRINT *3," "
341 PRINT &3,"FILL MATRIX : ";T$
342 REM ********** ADDITION OF LONDS ************
343 IF NL=O THEN }37
344 F5 =2*P*F
345 FOR I=1 TO NL
346 IF LS="N" THEN }36
347 REM ----- S-PARAMETER LOADS
348 U1=0
349 U2=0
350 D1 =0
351 D2=0
352 S=1
353 FOR J=0 TO LS(I) STEP 2
354 Ul=Ul +LA(1,I,J)*S*F5^J
355 Dl=Dl +LA(2,I,J)*S*F5^J
356 L=J+1
357 U2 = U2 +LA(1,I,L)*S*F5^L
358 D2=D2+LA(2,I,L)*S*F5^L
359 S=-S
360 NEXT J
3 6 1 ~ J = L P ( I )
362 D=D1*D1 +D2*D2
363 LI=(U2*D1 -D2*U1)/D
364 LR=(U1*D1+U2*D2)/D
365 GOTO 369
366 LR=LA(1,I,1)
367LI=LA (2,I,1)
368 J=LP(I)
```

```
369 F2=1/M
370 1F C&(J,1)《-C (J,2) THEN 372
371 IF K<O THEM F2=2/M
372 2R(J,J)=2R(J,J)+F2*LI
373 2I(J,J)=21(J,J)-F2*LR
374 MEXT I
375 REM ********* IMPEDANCE MATRIX FACTORIZATION
376 REM ----- BEGIN MATRIX FACTOR TIME CALCULATION
377 OT$=TIMES
378 O$="FACTOR MATRIX"
379 PRINT
380 PRINT "BEGIN ":QS:
381 X=N
382 PCTN=X*(X-1)*(X+X-1)
383 FOR K=1 TO N-1
384 REM ----- SEARCH POR PIVOT
385 T=ZR(K,K)*ZR(K,K)+ZI(K,K)*ZI(K,K)
386 11=K
387 FOR I=K+1 TO N
388 TI=2R(I,K)*2R(I,K)+2I(I,K)*2I(I,K)
389 IF Tl<T THEN 392
390 11=1
391 T=T1
392 NEXT I
393 REM ----- EXCHANGE ROWS K AND Il
394 IF II=K THEN 403
395 FOR J=1 TO N
396 Tl=2R(K,J)
397 T2=2I(K,J)
398 2R(K,J)=2R(II,J)
399 2I(K,J)=ZI(II,J)
400 2R(Il,J)=T1
401 2I(Il,J)=T2
4 0 2 ~ N E X T ~ J ~
4 0 3 ~ P ( K ) = 1 1
4 0 4 ~ R E M ~ - - - - - ~ S U B T R A C T ~ R O W ~ K ~ F R O M ~ R O W S ~ K + 1 ~ T O ~ N
4 0 5 ~ F O R ~ I = K + 1 ~ T O ~ N '
4 0 6 ~ R E M ~ - - - - - ~ C O M P U T E ~ M U L T I P L I E R ~ L ( I , K ) ~
407 Tl=(ZR(I,K)*ZR(K,K)+ZI(I,K)*ZI(K,K))/T
408 T2=(ZI(I,K)*ZR(K,K)-ZR(I,K)*ZI(K,K))/T
409 ZR(I,K)=Tl
410 ZI(I,K)=T2
4 1 1 ~ R E M ~ - - - - - ~ S U B T R A C T ~ R O W ~ K ~ F R O M ~ R O W ~ I ~
4 1 2 ~ F O R ~ J = K + 1 ~ T O ~ N '
413 ZR(I,J)=ZR(I,J)-(2R(K,J)*T1-ZI(K,J)*T2)
414 ZI(I,J)=ZI(I,J)-(ZR(K,J)*T2+ZI(K,J)*TI)
4 1 5 ~ N E X T ~ J ~ J ~
4 1 6 ~ N E X T ~ I ~
417 X=N-K
418 PCT=1-X*(X-1)*(X+X-1)/PCTN
4 1 9 \text { GOSUB 1601}
4 2 0 ~ N E X T ~ K
421 REM ----- END MATRIX FACTOR TIME CALCULATION
```

```
422 T$=TIMES
4 2 3 ~ G O S U B ~ 1 5 9 1 ~
4 2 4 ~ P R I N T ~
425 PRIET *3, "FACTOR MATRIX: ";T$
```



```
427 RHM ----- COMPUTE RIGHT HAND SIDE
428 FOR I=1 TO N
4 2 9 ~ C R ( I ) = 0
430 CI(I) =0
4 3 1 ~ N E X T ~ I ~
432 FOR J=1 TO NS
433 F2=1/M
434 IF C&(E(J),1)=-C&(E(J),2) THEN F2=2/M
435 CR(E(J))=F2*M(J)
436 CI(E(J))=-F2*L(J)
4 3 7 \text { NEXT J}
438 REM ----- PERMUTE EXCITATION
4 3 9 ~ P O R ~ K = 1 ~ T O ~ N - 1 ~
440 I 1 = P(K)
441 IF Il=K THEN 448
442 T1=CR(K)
443 T2=CI(K)
444CR(K)=CR(II)
445 CI(K)=CI(II)
446 CR(II)=Tl
447CI(I1)=T2
4 4 8 ~ N E X T ~ K
49 REM ----- FORNARD ELIMINATION
450 FOR I =2 TO N
451 Tl=0
452 T2=0
453 FOR J=1 TO I-1
454 Tl=Tl+ZR(I,J)*CR(J)-ZI(I,J)*CI(J)
455 T2=T2+ZR(I,J)*CI(J)+ZI(I,J)*CR(J)
456 NEXT J
457 CR(I)=CR(I)-T1
458 CI(I)=CI(I)-T2
4 5 9 ~ N E X T ~ I ~
460 REM ----- BACK SUBSTITUTION
461 FOR I=N TO 1 STEP -1
462 T1=0
463 T2=0
464 IP I=N THEN }46
4 6 5 ~ F O R ~ J = 1 + 1 ~ T O ~ N '
466 Tl=Tl+ZR(I,J)*CR(J)-ZI(I,J)*CI(J)
467 T2=T2+ZR(I,J)*CI(J)+ZI(I,J)*CR(J)
4 6 8 ~ N E X T ~ J ~
469 T= ZR(I,I)* ZR(I,I)+ZI(I,I)*ZI(I,I)
470 Tl=CR(I)-Tl
471 T2=CI(I)-T2
472 CR(I) = (Tl*ZR(I,I)+T2*ZI(I,I))/T
473 CI(I)=(T2*ZR(I,I)-T1*ZI(I,I))/T
474 NEXT I
```

```
475 FLG=2
476 REM ********** SOURCE DATA
477 PRINT *3," "
478 PRINT #3,B$;" SOURCE DATA ";B$
479 PWR=0
4 8 0 ~ F O R ~ I = 1 ~ T O ~ N S
481 CR=CR(E(I))
482 CI=CI(E(I))
483 T=CR*CR+CI *CI
484 T1=(L(I)*CR+M(I)*CI)/T
485 T2=(M(I)*CR-L(I)*CI)/T
486 O2=(L(I)*CR+M(I)*CI)/2
487 PWR=PWR+O2
488 PRINT *3,"PULSE ";E(I),"VOLTAGE = (";L(I);",";M(I);"J)"
4 8 9 ~ P R I N T ~ * 3 , " ~ " , " C U R R E N T ~ = ~ ( " ; C R ; " , " ; C I ; " J ) " ~
490 PRINT *3," ","IMPEDANCE = (";T1;",";T2;"J)"
491 PRINT *3," ","POWER = ";O2;" WATTS"
4 9 2 ~ N E X T ~ I ~
493 IF NS>1 THEN PRINT #3," "
494 IF NS>1 THEN PRINT *3,"TOTAL POWER = ";PWR;"WATTS"
4 9 5 ~ R E T U R N
496 REM ********** PRINT CURRENTS **********
497 GOSUB 196
498 S$="N"
499 PRINT #3. " "
500 PRINT *3,BS;" CURRENT DATA ";B$
501 FOR K=1 TO NW
502 IF S$="Y" THEN 507
503 PRINT *3, ""
504 PRINT #3, "WIRE NO. ";K;":"
505 PRINT *3, "PULSE","REAL","IMAGINARY","MAGNITUDE","PHASE"
506 PRINT #3, " NO.","(AMPS)","(AMPS)","(AMPS)","(DEGREES)"
507 Nl=N(K,l)
508 N2=N(K, 2)
509 I =N1
510 C=C% (I,1)
511 IF (N1=0 AND N2=0) THEN C=K
512 IF G=1 THEN 515
513 IF (J1(K)=-1 AND N1>N2) THEN N2=N1
514 IF Jl(K)=-1 THEN 525
515 E%=1
516 GOSUB 572
517 I21=111
518 J2!=J1!
519 GOSUB 607
520 IF S$="N" THEN PRINT #3,
IS,Il!;TAB(29);J11;TAB(43);S1;TAB(57);S2
521 IF SS="Y" THEN PRINT #l,Ill;",";Jll;",";Sl;",";S2
522 IF Nl=0 THEN 532
523 IF C=K THEN 525
524 IF I$="J" THEN Nl=Nl+1
525 FOR I=N1 TO N2-1
526 I 2l=CR(I)
```

```
527 J21=CI(I)
528 GOSUB 607
529 IF S$="N" THEN PRINT #3,
I,CR(I);TAB(29);CI(I);TAB(43);S1;TAB(57);S2
530 IF S$="Y" THEN PRINT #l,CR(I);",";CI(I);",";S1;",";S2
531 NEXT I
532 I=N2
533 C=C%(I,2)
534 IF (N1=0 AND N2=0) THEN C=K
535 IF G=1 THEN 537
536 IF Jl(K)=1 THEN 543
537 E%=2
538 GOSUB 572
539 IF (Nl=O AND N2=O) THEN 549
540 IF Nl>N2 THEN 549
541 IF C=K THEN 543
542 IF I$="J" THEN 549
543 12!=CR(N2)
544 J2!=CI(N2)
545 GOSUB }60
546 IF S$="N" THEN PRINT *3,
N2,CR(N2);TAB(29);CI(N2);TAB(43);S1;TAB(57);S2
547 IF S$="Y" THEN PRINT #1,CR(N2);",";CI(N2);",";S1;",";S2
548 IF Jl(K)=1 THEN }55
549 I2!=I1!
550 J2!=J1!
551 GOSUB }60
552 IF S$="N" THEN PRINT
#3,IS,I11;TAB(29);J11;TAB(43);S1;TAB(57);S2
553 IF S$="Y" THEN PRINT #l,Il!;",";J1l;",";S1;",";S2
554 IF S$="Y" THEN PRINT #1," 1 , 1 , l , 1"
555 NEXT K
556 IF S$="Y" THEN 569
557 PRINT
558 INPUT "SAVE CURRENTS TO A FILE (Y/N) ";S$
559 IF S$="N" THEN 570
560 IF S$<>"Y" THEN 557
561 PRINT #3," "
562 INPUT "FILENAME (NAME.OUT) ";F$
563 IF LEFT$(RIGHT$(F$,4),1)="." THEN 564 ELSE F$=F$+".OUT"
564 IF OS>"C" THEN PRINT #3,"FILLENAME (NAME.OUT): ";F$
565 OPEN F$ FOR OUTPUT AS #l
566 PRINT #3," "
567 PRINT #1,NW;",";PWR;",C"
568 GOTO 501
569 CLOSE #1
570 RETURN
571 REM ----- SORT JUNCTION CURRENTS
572 IS="E"
573 11!=0!
574 J11=01
575 IF (C=K OR C=O) THEN 580
576 I$="J"
```

```
577 I11=CR(I)
578 J1l=CI(I)
579 REM ---- CHECK FOR OTHER OVERLAPPING WIRES
580 FOR J=1 TO NW
581 IF J=K GOTO 604
582 Ll=N(J,1)
583 L2=N(J,2)
584 IF E% =2 THEN 590
585 CO=C&(Ll,1)
586 CT=C8(L2,2)
587 L3=L1
588 L4=L2
589 GOTO 594
590 CO=C&(L2,2)
591 CT=C&(L1,1)
592 L3=L2
593 L4=L1
594 IF CO=-K THEN 596
595 GOTO 599
596 I11=11!-CR(L3)
597 J1!=J1!-CI(L3)
598 I$="J"
599 IF CT=K THEN }60
600 GOTO 604
601 I11=I11+CR(L4)
602 J1!=J11+CI(L4)
603 I$="J"
6 0 4 ~ N E X T ~ J ~
605 RETURN
606 REM ----- CALCULATE S1 AND S2
607 13!=121*121
608 J3!=J2!*J2!
609 IF (I3l>0 OR J3l>0) THEN 612
610 S1=0!
6 1 1 ~ G O T O ~ 6 1 3 ~
612Sl=SQR(I31+J31)
613 IF I21><0 THEN 616
614 S2=01
615 RETURN
616 S2=ATN(J21/I2l)/PO
617 IF 121>0 THEN RETURN
618 S2=S2+SGN(J21)*180
619 RETURN
620 REM ********** FAR FIELD CALCULATION **********
621 IF FLG<2 THEN GOSUB }19
622 02=PWR
623 REM ----- TABULATE IMPEDANCE
624 IF NM=O THEN 634
625 FOR I=1 TO NM
626 Z6=T(I)
627 27=-V(I)/(2*P*F*8.85E-06)
628 REM ---- FORM IMPEDANCE=1/SQR(DIELECTRIC CONSTANT)
629 GOSUB }18
```

```
630 D=W6*W6+W7*W7
631 Zl(I)=W6/D
632 Z2(I)=-W7/D
6 3 3 \text { NEXT I}
634 PRINT # 3," "
635 PRINT #3,B$;" FAR FIELD ";B$
636 PRINT #3," "
637 REM ----- INPUT VARIABLES FOR FAR FIELD CALCULATION
638 INPUT "CALCULATE PATTERN IN DBI OR VOLTS/METER (D/V)";P$
639 IF PS="D" THEN 655
640 IF P$<<"V" THEN 638
641 Fl=1
6 4 2 ~ P R I N T
643 PRINT "PRESENT POWER LEVEL = ";PWR;" WATTS"
644 INPUT "CHANGE POWER LEVEL (Y/N) ";AS
645 IF AS="N" THEN 650
646 IF AS<>"Y" THEN 644
647 INPUT "NEW POWER LEVEL (WATTS) ";O2
648 IF O$>"C" THEN PRINT $3."NEW POWER LEVEL = ";O2
6 4 9 \text { GOTO } 6 4 4
650 IF (O2<0 OR O2=0) THEN O2=PWR
651 F1=SQR(02/PWR)
652 PRINT
653 INPUT "RADIAL DISTANCE (METERS) ";RD
654 IF RD<0 THEN RD=0
655 AS="ZENITH ANGLE : INITIAL,,INCREMENT,NUMBER"
656 PRINT AS;
657 INPUT ZA,ZC,NZ
658 IF NZ=0 THEN NZ=1
659 IF OS>"C" THEN PRINT #3,AS:": ";ZA;",";ZC;",";NZ
660 AS="AZIMUTH ANGLE: INITIAL,INCREMENT,NUMBER"
661 PRINT AS;
662 INPUT AA, AC,NA
663 IF NA=0 THEN NA=1
664 IF OS>"C" THEN PRINT #3,AS:": ";AA;",";AC;",";NA
665 PRINT #3,
666 REM *********** FILE FAR FIELD DATA ***********
667 INPUT "FILE PATTERN (Y/N)";SS
668 IF SS="N" THEN 676
669 IF S$<>"Y" THEN 667
670 PRINT #3." "
671 INPUT "FILENAME (NAME.OUT)";F$
672 1F LEFT$(RIGHT$(PS,4),1)="." THEN 673 ELSE FS=FS+".OUT"
673 IF OS>"C" THEN PRINT #3,"FILENAME (NAME.OUT): ";FS
674 OPEN FS FOR OUTPUT AS $1
675 PRINT 1,NA*NZ;",";O2;",";P$
676 PRINT #3. " "
677 K91=.016678/PWR
678 REM ----- PATTERN HEADER
679 PRINT &3,BS;" PATTERN DATA ";B$
680 IF P$="V" GOTO 685
681 PRINT #3,"ZENITH"."AZIMUTH","VERTICAL","HORIZONTAL","TOTAL"
682 A$="PATTERN (DB)"
```

```
683 PRINT *3," ANGLE"," ANGLE",A$, IS,A$
6 8 4 \text { GOTO } 6 9 2
685 IF RD>0 THEN PRINT #3,TAB(15);"RADIAL DISTANCE = ";RD;"
METERS"
686 PRINT *3,TAB(15);"POWER LEVEL = ";PWR*Fl*Fl;" WATTS"
687 PRINT #3,"ZENITH AZIMUTH"," E(THETA) ","
E(PHI)"
68 AS=" MAG(V/M) PHASE(DEG)"
6 8 9 \text { PRINT *3," ANGLE ANGLE",AS,AS}
690 IF S$="Y" THEN PRINT #l,RD
691 REM ----- LOOP OVER AZIMUTH ANGLE
692 Ql=AA
693 FOR Il=1 TO NA
694 U3=Q1*PO
695 V1=-SIN(U3)
696 V2=COS(U3)
697 REM ----- LOOP OVER ZENITH ANGLE
698 Q2=ZA
699 FOR I2=1 TO NZ
700 U4=02* P0
701 R3=COS(U4)
702 T3=-SIN(U4)
703 T1=R3*V2
704 T2=-R3*V1
705 R1=-T3*V2
706 R2=T3*V1
707 X1=0
708 Y1=0
709 21=0
710 X2=0
711 Y2=0
712 22=0
713 REM ----- IMAGE LOOP
714 FOR K=1 TO G STEP -2
715 FOR I=1 TO N
716 IF K>0 THEN 718
717 IF C&(I,1)=-C3(1,2) THEN 812
718 J=2*W% (I) - 1 +I
719 REM ----- FOR EACH END OF PULSE COMPUTE A CONTRIBUTION TO
E-FIELD
720 FOR F5=1 TO 2
721 L=ABS(C8(I,F5))
722 F3=SGN(CS(I,F5))*W*S(L)/2
723 IP C&(I,1)<>-CE(I,2) THEN 725
724 IF F3<0 THEN 811
7 2 5 ~ I F ~ K = 1 ~ T H E N ~ 7 2 8 ~
726 IP NM<>O THEN }74
727 REM ----- STANDARD CASE
728 S2=W*(X(J)*R1+Y(J)*R2+Z(J)*K*R3)
729 Sl=cos(S2)
730 S2=SIN(S2)
731 B1=F3*(S1*CR(I)-S2*CI(I))
732 B2=P3*(S1*CI!I)+S2*CR(I))
```

```
733 IF C%(I,1)=-C%(I,2) THEN 742
734 Xl=X1+K*B1*CA(L)
735 X2=X2+K*B2*CA(L)
736 Yl=Y1+K*Bl*CB(L)
737 Y2=Y2+K*B2*CB(L)
738 Z1=Z1+Bl*CG(L)
739 Z2=Z2+B2*CG(L)
7 4 0 \text { GOTO 811}
741 REM ----- GROUNDED ENDS
742 Z1=Z1+2*Bl*CG(L)
743 Z2=Z2+2*B2*CG(L)
744 GOTO 811
745 REM ----- REAL GROUND CASE
746 REM ----- BEGIN BY FINDING SPECULAR DISTANCE
747 T4=1000001
748 IF R3=0 THEN 750
749 T4=-Z(J)*T3/R3
750 B9=T4*V2+X(J)
751 IF TB=1 THEN 754
752 B9=SQR(B9*B9+(Y(J)-T4*V1)^2)
753 REM ----- SEARCH FOR THE CORRESPONDING MEDIUM
754 J2=NM
755 FOR Jl=NM TO 1 STEP -1
756 IF B9>U(J1) THEN }75
757 J2=J1
758 NEXT Jl
799 REM --ー-- OBTAIN IMPEDANCE AT SPECULAR POINT
760 Z4=Z1(J2)
761 Z5=Z2(J2)
762 REM ----- IF PRESENT INCLUDE GROUND SCREEN IMPEDANCE IN
PARALLEL
763 IF NR=0 THEN }77
764 IF B9>U(1) THEN }77
765 R=B9+NR*RR
766 Z8=W* R*LOG(R/(NR*RR))/NR
767 S8=-Z5*Z8
768 S9=Z4*Z8
769 T8=Z4
770 T9=Z5+Z8
771 D=T8*T8+T9*T9
772 24=(S8*T8+S9*T9)/D
773 25=(S9*T8-S8*T9)/D
774 REM ----- FORM SQR(1-2^2*SIN* 2)
775 Z6=1-(Z4*Z4-Z5*Z5)*T3*T3
776 Z7=-(2*Z4*Z5)*T3*T3
777 GOSUB 184
778 REM ----- VERTICAL REFLECTION COEFFICIENT
779 S8=R3-(W6*Z4-W7*25)
780 S9=- (W6*Z5+W7*Z4)
781 T8=R3+(W6*Z4-W7*Z5)
782 T9=W6*Z5+W7*Z4
783 D=T8*T8+T9*T9
784 V8=(S8*T8+S9*T9)/D
```

```
785 V9=(S9*T8-S8*T9)/D
786 REM --ー-- HORIZONTAL REFLECTION COEFFICIENT
787 S8=W6-R3*24
788 S9=W7-R3*Z5
789 T8=W6+R3*24
790 T9=W7+R3*Z5
791 D=T8*T8+T9*T9
792 H8=(S8*T8+S9*T9)/D-V8
793 H9=(S9*T8-S8*T9)/D-V9
794 REM ----- COMPUTE CONTRIBUTION TO SUM
795 S2=W*(X(J)*R1+Y(J)*R2-(Z(J)-2*H(J2))*R3)
796 Sl=COS(S2)
797 S2=SIN(S2)
798 Bl=F3*(Sl*CR(I)-S2*CI(I))
799 B2=F3*(Sl*CI(I)+S2*CR(I))
800 W6=B1*V8-B2*V9
801 W7=B1*V9+B2*V8
802 D=CA(L)*V1+CB(L)*V2
803 26=D* (B1*H8-B2*H9)
804 Z7=D* (Bl*H9+B2*H8)
805 Xl=X1-(CA(L)*W6+V1*Z6)
806 X2=X2-(CA(L)*W7+V1*Z7)
807 Yl=Y1-(CB(L)*W6+V2*Z6)
808 Y2=Y2-(CB(L)*W7+V2*Z7)
809 2l=Zl+CG(L)*W6
810 22=Z2+CG(L)*W7
811 NEXT F5
812 NEXT I
813 NEXT K
814 H2 = (X1*T1+Y1*T2+Z1*T3)*G0
815 H1=(X2*T1+Y2*T2+Z2*T3)*GO
816 X4=(X1*V1+Y1*V2)*G0
817 X3=(X2*V1+Y2*V2)*G0
818 IF PS="D" THEN 826
819 IF RD=0 THEN 841
820 Hl=Hl/RD
821 H2 =H2/RD
822 X3=X3/RD
823 X4=X4/RD
824 GOTO 841
825 REM ----- PATTERN IN DB
826 P1 =-999
827 P2=P1
828 P3=P1
829 Tl=K91*(H1*H1+H2*H2)
830 T2=K91*(X3**3+X4*X4)
831 T3=T1+T2
832 REM ----- CALCULATE VALUES IN DB
833 IF Tl>1E-30 THEN Pl=4.343*LOG(Tl)
834 IF T2>1E-30 THEN P2=4.343*LOG(T2)
835 IF T3>1E-30 THEN P3=4.343*LOG(T3)
836 PRINT #3,Q2;TAB(15);Q1;TAB(29);P1;TAB(43);P2;TAB(57);P3
837 IF S$="Y" THEN PRINT &1,Q2;",";Q1;",";P1;",";P2;",";P3
```

```
838 GOTO }86
839 REM -_-- PATTERN IN VOLTS/METER
840 REM ----- MAGNITUDE AND PHASE OF E(THETA)
84 Sl=0
842 IF (H1=0 AND H2=0) THEN 844
843 Sl=SQR(Hl*Hl+H2*H2)
844 IF Hl><O THEN 847
845 S2=0
8 4 6 ~ G O T O ~ 8 5 0 ~
847 S2=ATN(H2/H1)/PO
848 IF H1<0 THEN S2=S2+SGN(H2)*180
849' REM ----- MAGNITUDE AND PHASE OF E(PHI)
850 S3=0
851 IF (X3=0 AND X4=0) THEN }85
852 S3=SQR(X3*X3+X4*X4)
853 IF X3><0 THEN 856
854 S4=0
855 GOTO }85
856 S4=ATN(X4/X3)/PO
857 IF X3<0 THEN S4=S4+SGN(X4)* 180
858 PRINT #3,USING "###.### ";02.01;
859 PRINT #3,USING " *****##の^^";Sl*Fl;
860 PRINT *3.USING " ###.梧 ";S2;
861 PRINT #3,USING " ##.####^^^^";S3*Fl;
862 PRINT #3,USING " ###.##";S4
863 IF S$="Y" THEN PRINT'
#1,Q2;",";Q1;",";S1*Fl;",";S2;",";S3*Fl;","S4
864 REM ----- INCREMENT ZENITH ANGLE
865 Q2=02+ZC
866 NEXT I2
867 REM ----- INCREMENT AZIMUTH ANGLE
868 Q1=Q1 +AC
869 NEXT Il
870 CLOSE $l
871 RETURN
872 REM ********** NEAR FIELD CALCULATION
873 REM ----- ENSURE CURRENTS HAVE BEEN CALCULATED
874 IF FLG<2 THEN GOSUB }19
875 02=PWR
876 PRINT 3." "
877 PRINT *3,B$;" NEAR FIELDS ";B$
878 PRINT *3,"
879 INPUT "ELECTRIC OR MAGNETIC NEAR FIELDS (E/H) ";NS
880 IF(N$="H" OR N$="E") GOTO 882
881 GOTO 879
882 PRINT
883 REM ----- INPUT VARIABLES FOR NEAR FIELD CALCULATION
884 PRINT "FIELD LOCATION(S):"
885 A$="-COORDINATE (M): INITIAL,INCREMENT,NUMBER "
886 PRINT " X";AS;
887 INPUT XX,XC,NX
888 IF NX=0 THEN NX=1
889 IF OS>"C" THEN PRINT *3,"X";AS;": ";XX;",";XC;",";NX
```

```
890 PRINT " Y';AS;
891 INPUT YY,YC,NY
892 IF NY=0 THEN NY=1
893 IF OS>"C" THEN PRINT #3,"Y";AS;": ";YY;",";YC;",";NY
894 PRINT " Z";AS;
895 INPUT ZZ,ZC,NZ
896 IF NZ=0 THEN NZ=1
897 IF OS>"C" THEN PRINT *3,"Z";AS;": ";ZZ;",";ZC;",";NZ
898 Fl=1
8 9 9 ~ P R I N T
900 PRINT "PRESENT POWER LEVEL IS ";PWR;" WATTS"
901 INPUT "CHANGE POWER LEVEL (Y/N) ";AS
902 IF AS="N" THEN 907
903 IF AS<>"Y" THEN 901
904 INPUT "NEW POWER LEVEL (WATTS) ";O2
905 IF OS>"C" THEN PRINT #3," ":PRINT *3,"NEW POWER LEVEL (WATTS)
= ";02
906 GOTO 901
907 IF (O2<0 OR O2=0) THEN O2=PWR
908 REM ----- RATIO OF POWER LEVELS
909 Fl=SQR(O2 / PWR)
910 IF N$="H" THEN Fl=Fl/SO/4/P
911 PRINT
912 REM ----- DESIGNATION OF OUTPUT FILE FOR NEAR FIELD DATA
913 INPUT "SAVE TO A FILE (Y/N) ";SS
914 IF SSx"N" THEN 922
915 IF S$<>"Y" THEN 913
916 INPUT "FILENAME (NAME.OUT) ";FS
917 IF LEFTS(RIGHTS(FS,4),1)="." THEN 918 ELSE F$=F$+".OUT"
918 IF OS>"C" THEN PRINT *3," ":PRINT *3,"FILENAME (NAME.OUT)
";F$
919 OPEN FS FOR OUTPUT AS $2
920 PRINT *2,NX*NY*NZ;".";O2;",";N$
921 REM -_--- LOOP OVER 2 DIMENSION
922 FOR IZ=1 TO NZ
923 REM ----- LOOP OVER Y DIMENSION
924 FOR IY=1 TO NY
925 REM ----- LOOP OVER Z DIMENSION
926 FOR IX=1 TO NX
927 REM ----- NEAR FIELD HEADER
928 PRINT *3." "
929 IF NS="E" THEN PRINT 3,BS;"NEAR ELECTRIC FIELDS";BS
930 IF N$="H" THEN PRINT #3,BS;"NEAR MAGNETIC FIELDS";B$
931 PRINT #3,TAB(10);"FIELD POINT: ";"X = ";XX;" Y = ";YY;" Z =
";2Z
932 PRINT *3," VECTOR","REAL","IMAGINARY","MAGNITUDE","PHASE"
933 IF N$="E" THEN A$=" V/M "
934 IF N$="H" THEN AS=" AMPS/M "
935 PRINT #3," COMPONENT ",AS,A$,A$," DEG"
936 Al=0
937 A3=0
938 A4=0
939 REM ----- LOOP OVER THREE VECTOR COMPONENTS
```

```
940 FOR I=1 TO 3
941 X0=XX
942 YO=YY
943 Z0=ZZ
944 IF N$="H" THEN 954
945 T5=0
946 T6=0
947 T7=0
948 IF I=1 THEN T5=2*SO
949 IF I=2 THEN T6=2*SO
950 IF I=3 THEN T7=2*SO
951 U7=0
952 U8=0
953 GOTO 964
954 FOR J8=1 TO 6
955Kl(J8,1)=0
956K\ (J8, 2)=0
957 NEXT J8
958 J9=1
959 J8=-1
960 IF I=1 THEN XO=XX+J8*SO/2
961 IF I =2 THEN YO=YY+J8*SO/2
962 IF I=3 THEN ZO=ZZ+J8*SO/2
963 REM ----- LOOP OVER SOURCE SEGMENTS
964 FOR J=1 TO N
965 J1 =ABS (C% (J,1))
966 J2=ABS (C& (J,2))
967 J 3 =J2
968 IF Jl>J2 THEN J3=J1
969 F4=SGN(C%(J,1))
970 F5=SGN(C&(J, 2))
971 F6=1
972 F7=1
973 U5=0
9 7 4 ~ U 6 = 0 ~
975 REM ----- IMAGE LOOP
976 FOR K=1 TO G STEP - 2
977 IF C&(J,1)<>-C&(J,2) THEN 983
978 IF K<O THEN 1044
979 REM ----- COMPUTE VECTOR POTENTIAL A
980 F6=F4
981 F7=F5
982 REM ----- COMPUTE PSI(0,J,J+.5)
983 P1=0
984 P 2=2*J 3+J - 1
985 P3 = P 2 +. 5
986 P4 =J 2
987 GOSUB 75
988 Ul=T1*F5
989 U2=T2* F5
990 REM ----- COMPUTE PSI (0,J-.5,J)
991 P3=P2
992 P2=P2-. 5
```

```
993 P4=J1
994 GOSUB 66
995 Vl=F4*Tl
996 V2=F4*T2
997 REM ----- REAL PART OF VECTOR POTENTIAL CONTRIBUTION
998 X3=U1*CA(J2)+V1 *CA(Jl)
999 Y3=U1*CB(J2)+V1*CB(J1)
1000 Z3=(F7*Ul*CG(J2)+F6*V1*CG(Jl))*K
1001 REM ----- IMAGINARY PART OF VECTOR POTENTIAL CONTRIBUTION
1002 X5=U2*CA(J2)+V2*CA(J1)
1003 Y5=U2*CB (J 2) +V2*CB (J 1)
1004 Z5=(F7*U2*CG(J2)+F6*V2*CG(J1))*K
1005 REM ----- MAGNETIC FIELD CALCULATION COMPLETED
1006 IF N$="H" THEN 1038
1007 Dl=(X3*T5+Y3*T6+Z3*T7)*W2
l008 D2=(X5*T5+Y5*T6+Z5*T7) *W2
1009 REM ----- COMPUTE PSI(.5,J,J+1)
1010 Pl=.5
1011 P2=P3
1012 P3=P3+1
1013 P4=J2
1014 GOSUB 56
1015 Ul=T1
1016 U2=T2
1017 REM ----- COMPUTE PSI(-.5,J,J+1)
1018 Pl=-Pl
1019 GOSUB 56
1020 Ul=(T1-U1)/S(J2)
1021 U2=(T2-U2)/S(J2)
1022 REM ----. COMPUTE PSI(.5,J-1,J)
1023 P1=-P1
1024 P3=P2
1025 P2=P2-1
1026 P4=J1
1027 GOSUB 56
1028 U3=T1
1029 U4=T2
1030 REM - -.-. COMPUTE PSI (-.5,J-1,J)
1031 P1=-P1
1032 GOSUB 56
1033 REM ----- GRADIENT OF SCALAR POTENTIAL
1034 U5=(Ul + (U3-T1)/S(J1) +D1)*K+U5
1035 U6=(U2+(U4-T2)/S(J1)+D2)*K+U6
1036 GOTO 1044
1037 REM ----- COMPONENTS OF VECTOR POTENTIAL A
1038 KI(1,J9) =KI (1,J9) +(X3*CR(J)-X5*CI(J))*K
1039 K!(2,J9) =KI(2,J9)+(X5*CR(J)+X3*CI(J))*K
1040 KI(3.J9)=KI(3.J9)+(Y3*CR(J)-Y5*CI(J))*K
1041 KI(4.J9)=KI(4.J9)+(Y5*CR(J)+Y3*CI(J))*K
1042KI(5.J9)=KI(5.J9) +(Z3*CR(J)-25*CI(J))*K
1043 KI (6.J9) =KI(6.J9) +(25*CR(J)+23*CI(J))*K
1044 NEXT K
1045 IF NS="H" THEN 1048
```

```
1046 U7=U5*CR(J) -U6*CI(J) +U7
1047 U8=U6*CR(J) +U5*CI (J) +U8
1048 NEXT J
1049 IF N$="E" THEN 1071
1050 REM ----- DIFFFRENCES OF VECTOR POTENTIAL A
1051 J8=1
1052 J9=J9+1
1053 IF J9=2 THEN 960
1054 ON I GOTO 1055,1060,1065
1055 H(3)=K! (5,1)-K! (5,2)
1056 H(4)=K! (6,1)-Kl(6,2)
1057 H(5)=K! (3,2)-K! (3,1)
1058 H(6)=K! (4,2)-K!(4,1)
1059 GOTO 1093
1060 H(1) =K! (5, 2)-K! (5,1)
1061 H(2)=K! (6,2)-K! (6,1)
1062 H(5)=H(5)-K!(1,2)+K! (1,1)
1063 H(6) =H(6)-K! (2,2)+K! (2,1)
1064 GOTO 1093
1065 H(1) =H(1)-K\ (3,2)+K\ (3,1)
1066 H(2)=H(2)-KI(4,2)+K!(4,1)
1067 H(3)=H(3)+K!(1,2)-K!(1,1)
1068 H(4)=H(4)+K!(2,2)-KI(2,1)
1069 GOTO 1093
1070 REM ----- IMAGINARY PART OF ELECTRIC FIELD
1071 U7=M*U7/SO
1072 REM ----- REAL PART OF ELECTRIC FIELD
1073 U8=-M*U8/S0
1074 REM ----- MAGNITUDE AND PHASE CALCULATION
1075 Sl=0
1076 IF (U7=0 AND U8=0) THEN 1078
1077 Sl=SQR(U7*U7+U8*U8)
1078 S2=0
1079 IF U8<>0 THEN S2=ATN(U7/UB)/PO
1080 IF U8>0 THEN 1082
1081 S2=S2+SGN(U7)*180
1082 IF I=1 THEN PRINT *3." X ".
1083 IF I =2 THEN PRINT % 3." Y ".
1084 IF I=3 THEN PRINT *3," Z ".
1085 PRINT
*3.TAB(15);F1*U8;TAB(29);F1*U7;TAB(43);F1*S1;TAB(57);S2
1086 IF S$="Y" THEN PRINT %2,F1*U8;",";F1*U7;",";Pl*S1;",";S2
1087 REM ----- CALCULATION FOR PEAK ELECTRIC FIELD
1088 Sl=Sl*Sl
1089 S2=S2*P0
1090 Al=A1+S1* COS(2*S2)
1091 A3=A3+S1*SIN(2*S2)
1092 A4=A4+S1
1093 NEXT I
1094 IF NS ="E" THEN 1117
1095 REM ----- MAGNETIC FIELD MAGNITUDE AND PHASE CALCULATION
1096 FOR I=1 TO 5 STEP 2
1097 S1=0
```

```
1098 IF (H(I)=0 AND H(I+1)=0) THEN 1100
1099 Sl=SQR(H(I)*H(I)+H(I+1)*H(I+1))
1100 S2=0
1101 IF H(I)<>0 THEN S2=ATN(H(I+1)/H(I))/PO
1102 IF H(I)>0 THEN 1104
1103 S2=S2+SGN(H(I+1))*180
1104 IF I=1 THEN PRINT *3," X ",
1105 IF I=3 THEN PRINT #3," Y "。
1106 IF I=5 THEN PRINT #3," Z ",
1107 PRINT
#3,TAB(15);F1*H(I);TAB(29);Fl*H(I+1);TAB(43);F1*S1;TAB(57);S2
1108 IF S$="Y" THEN PRINT
#2,F1*H(I);",";F1*H(I+1);",";F1*S1;",";S2
1109 REM ----- CALCULATION FOR PEAK MAGNETIC FIELD
1110 Sl=Sl*Sl
1111 S2=S2*PO
1112 Al=Al+S1*COS(2*S2)
1113 A3=A3+S1*SIN(2*S2)
1114 A4=A4+S1
1115 NEXT I
1116 REM ----- PEAK FIELD CALCULATION
1117 PK=SQR(A4/2+SQR(A1*A1+A3*A3)/2)
1118 PRINT *3," MAXIMUM OR PEAK FIELD = ";Fl*PK;AS
1119 IF (S$="Y" AND NS="E") THEN PRINT #2,F1*PK;",";O2
1120 IF (S$="Y" AND N$="H") THEN PRINT #2,F1*PK:",";O2
1121 IF S$="Y" THEN PRINT #2,XX;",";YY;",";ZZ
1122 REM ----- INCREMENT X DIMENSION
1123 XX=XX +XC
1124 NEXT IX
1125 REM ----- INCREMENT Y DIMENSION
1126 YY=YY+YC
1127 NEXT IY
1128 REM ----- INCREMENT Z DIMENSION
1129 ZZ=2Z+ZC
1130 NEXT IZ
1131 CLOSE $2
1132 RETURN
1133 REM ********** FREQUENCY INPUT ***********
1134 REM ----- SET FLAG
1135 PRINT
1136 INPUT "FREQUENCY (MHZ)";F
1137 IF F=0 THEN F=299.8
1138 IF OS>"C" THEN PRINT *3," ":PRINT * 3. "FREQUENCY (MHZ):";F
1139 W=299.8/F
1140 REM ----VIRTUAL DIPOLE LENGTH FOR NEAR FIELD CALCULATION
1141 SO=.001*W
1142 REM ----- 1 / (4 PI * OMEGA * EPSILON)
1143 M=4.77783352**W
1144 REM ----- SET SMALL RADIUS MODIFICATION CONDITION
1145 SRM=.0001*W
1146 PRINT 3, " WAVE LENGTH = ";W;" METERS"
1147 REM ----- 2 PI / WAVELENGTH
1148 W=2*P/W
```

```
1149 W2=W*W/2
1150 FLG=0
1151 RETURN
1152 REM *********** GEOMETRY INPUT
1153 REM ----- WHEN GEOMETRY IS CHANGED, ENVIRONMENT MUST BE
CHECKED
1154 GOSUB 1371
1155 PRINT
1156 IP INFILE THEN 1162
1157 INPUT "NO. OF WIRES";NW
1158 IF NW=0 THEN RETURN
1159 IF NW<=MW THEN 1162
1160 PRINT "NUMBER OF WIRES EXCEEDS DIMENSION..."
1161 GOTO 1157
1162 IF OS>"C" THEN PRINT *3," ":PRINT *3,"NO. OF WIRES:";NW
1163 REM ----- INITIALIZE NUMBER OF PULSES TO ZERO
1164 N=0
1165 FOR I=1 TO NW
1166 IF INFILE THEN GOSUB 1559:GOTO 1192
1167 PRINT
1168 PRINT "WIRE NO.";I
1169 INPUT " NO. OF SEGMENTS";Sl
1170 IF Sl=0 THEN 1155
1171 AS=" END ONE COORDINATES (X,Y,Z)"
1172 PRINT AS;
1173 INPUT X1,Y1,Z1
1174 IF G<O AND Z1<0 THEN PRINT "Z CAN OT BE NEGATIVE":GOTO 1172
1175 AS=" END TWO COORDINATES (X,Y,Z)"
1176 PRINT AS;
1177 INPUT X2,Y2,22
1178 IF G<O AND Z2<0 THEN PRINT "Z CANNOT BE NEGATIVE":GOTO 1176
1179 IF Xl=X2 AND Yl=Y2 AND Zl=Z2 THEN PRINT"ZERO LENGTH
WIRE.":GOTO 1168
1180 AS=" RADIUS"
1181 PRINT " "AS;
1182 INPUT A(I)
1183 IF A(I)<=0! THEN 1181
1184 REM ----- DETERMINE CONNECTIONS
1185 IF OS>"C" THEN PRINT *3," ":PRINT *3,"WIRE NO.":I
1186 GOSUB 1301
1187 PRINT "CHANGE WIRE NO. ";I;" (Y/N) ";
1188 INPUT AS
1189 IF AS="Y" THEN 1167
1190 IF AS<>"N" THEN 1187
1191 REM ----- COMPUTE DIRECTION COSINES
1192 X3=X2-X1
1193 Y 3 = Y2-Y1
1194 Z3=22-21
1195 D=SOR(X3*X 3+Y **Y 3+Z3*Z3)
1196 CA(I) =X3/D
1197CB(I) =Y3/D
1198CG(I)=23/D
1199 S(I)=D/S I
```

```
1200 REM ----- COMPUTE CONNECTIVITY DATA (PULSES N1 TO N)
\(1201 \mathrm{Nl}=\mathrm{N}+1\)
\(1202 \mathrm{~N}(\mathrm{I}, 1)=\mathrm{N} 1\)
1203 IF \((S l=1\) AND \(I l=0)\) THEN \(N(I, 1)=0\)
\(1204 \mathrm{~N}=\mathrm{N} 1+\mathrm{Sl}\)
1205 IF Il=0 THEN \(\mathrm{N}=\mathrm{N}-1\)
1206 IF I2=0 THEN \(\mathrm{N}=\mathrm{N}-1\)
1207 IF N>MP THEN PRINT "PULSE NUMBER EXCEEDS
DIMENSION":CLOSE:GOTO 1157
\(1208 \mathrm{~N}(\mathrm{I}, 2)=\mathrm{N}\)
\(1209 \operatorname{IF}(S 1=1\) AND \(\mathrm{I} 2=0)\) THEN \(\mathrm{N}(\mathrm{I}, 2)=0\)
1210 IF \(N<N 1\) THEN 1249
1211 FOR J=N1 TO N
\(1212 \mathrm{C} 8(\mathrm{~J}, \mathrm{l})=\mathrm{I}\)
1213 C ( \(\mathrm{J}, 2\) ) \(=\mathrm{I}\)
1214 W (J) = I
1215 NEXT J
\(1216 \mathrm{C} \%(\mathrm{~N} 1,1)=\mathrm{I} 1\)
\(1217 \mathrm{C}(\mathrm{N}, 2)=\mathrm{I} 2\)
1218 REM ---- COMPUTE COORDINATES OF BREAK POINTS
\(1219 \mathrm{Il}=\mathrm{Nl}+2\) * ( \(\mathrm{I}-1\) )
1220 I 3=Il
\(1221 \mathrm{X}(\mathrm{I} 1)=\mathrm{XI}\)
\(1222 \mathrm{Y}(\mathrm{I} 1)=\mathrm{Y} 1\)
\(1223 \mathrm{Z}(\mathrm{I} 1)=\mathrm{Zl}\)
1224 IF C\& (N1,1)=0 THEN 1232
\(1225 \mathrm{I} 2=\operatorname{ABS}(\mathrm{C} \mathrm{\&}(\mathrm{Nl}, 1))\)
\(1226 \mathrm{~F} 3=\operatorname{SGN}(\mathrm{C} \&(\mathrm{~N} 1,1)) * \mathrm{~S}(\mathrm{I} 2)\)
\(1227 \mathrm{X}(\mathrm{I} 1)=\mathrm{X}(\mathrm{I} 1)-\mathrm{F} 3^{*} \mathrm{CA}(\mathrm{I} 2)\)
\(1228 \mathrm{Y}(\mathrm{I} 1)=\mathrm{Y}(\mathrm{I} 1)-\mathrm{F} 3 * \mathrm{CB}\) (I2)
    229 IF C\% (N1,1)=-I THEN F3=-F3
\(1230 \mathrm{Z}(\mathrm{I} 1)=\mathrm{Z}(\mathrm{I} 1)-\mathrm{F} 3 * \mathrm{CG}\) (I2)
1231 I \(3=13+1\)
1232 I \(6=\mathrm{N}+2\) * I
1233 FOR I \(4=I 1+1\) TO I6
\(1234 \mathrm{~J}=\mathrm{I} 4-\mathrm{I} 3\)
\(1235 \mathrm{X}(\mathrm{I} 4)=\mathrm{X} 1+\mathrm{J} * \mathrm{X} 3 / \mathrm{S} 1\)
\(1236 \mathrm{Y}(\mathrm{I} 4)=\mathrm{Y} 1+\mathrm{J} * \mathrm{Y} 3 / \mathrm{S} 1\)
\(1237 \mathrm{Z}(\mathrm{I} 4)=\mathrm{Zl}+\mathrm{J} * \mathrm{Z} 3 / \mathrm{Sl}\)
1238 NEXT I4
1239 IF C\& (N, 2) \(=0\) THEN 1247
1240 I \(2=\operatorname{ABS}(C 8(N, 2))\)
\(1241 \mathrm{~F} 3=\operatorname{SGN}(\mathrm{C} 8(\mathrm{~N}, 2)) * \mathrm{~S}(\mathrm{I} 2)\)
1242 I \(3=16-1\)
\(1243 \mathrm{X}(\mathrm{I} 6)=\mathrm{X}(\mathrm{I} 3)+\mathrm{F} 3 * \mathrm{CA}(\mathrm{I} 2)\)
\(1244 \mathrm{Y}(\mathrm{I} 6)=\mathrm{Y}(\mathrm{I} 3)+\mathrm{F} 3^{*} \mathrm{CB}\) (I2)
1245 IF \(I=-C 8(N, 2)\) THEN \(F 3=-F 3\)
\(1246 \mathrm{Z}(\mathrm{I} 6)=\mathrm{Z}(\mathrm{I} 3)+\mathrm{F} 3 * \mathrm{CG}\) (I2)
1247 GOTO 1257
1248 REM ---- SINGLE SEGMEN O PULSE CASE
1249 I \(1=\mathrm{N} 1+2\) * ( \(\mathrm{I}-1\) )
\(1250 \mathrm{X}(\mathrm{I} 1)=\mathrm{XI}\)
\(1251 Y(I 1)=Y 1\)
```

```
1252 Z(II)=Z1
1253 Il=Il+1
1254 X(II)=X2
1255 Y(Il)=Y2
1256 Z(I1)=Z2
1257 NEXT I
1258 REM ********** GEOMETRY OUTPUT **********
1259 PRINT #3, " "
1260 PRINT *3, " **** ANTENNA GEOMETRY ****"
1261 IF N>O THEN 1266
1262 PRINT
1263 PRINT "NUMBER OF PULSES IS ZERO....RE-ENTER GEOMETRY"
1264 PRINT
1265 GOTO 1157
1266 K=1
1267 J=0
1268 FOR I=1 TO N
1269 Il=2*W%(I)-1+I
1270 IF K>NW THEN 1281
1271 IF K=J THEN 1281
1272 J=K
1273 PRINT #3," "
1274 PRINT #3,"WIRE NO. ";K;" COORDINATES",.,"CONNECTION PULSE"
1275 PRINT *3,"X","Y","Z","RADIUS","END1 END2 NO."
1276 IF (N (K,1)><0 OR N(K,2)><0) THEN 1281
1277 PRINT #3,"-","-","-"," -"," - 0"
1278 K=K+1
1279 IF K>NW THEN 1288
1280 GOTO 1272
1281 PRINT
#3,X(I1);TAB(15);Y(I1);TAB(29);Z(11);TAB(43);A(W% (I));TAB(57);
1282 PRINT #3, USING "### ##### **";C%(I,1),C%(I, 2),I
1283 IF (I=N(K,2) OR N(K,1)=N(K,2) OR C% (I, 2)=0) THEN K=K+1
1284 IF C%(I,1)=0 THEN C%(I,1)=W%(I)
1285 IF C%(I, 2)=0 THEN C%(I, 2)=W%(I)
1286 IF (K=NW AND N(K,1)=0 AND N(K,2)=0) THEN 1272
1287 IF (I=N AND K<NW) THEN 1272
1288 NEXT I
1289 PRINT
1290 CLOSE 1:IF INFILE THEN INFILE=0:IF OS>"C" THEN 1295
1291 INPUT " CHANGE GEOMETRY (Y/N) ";AS
1292 IF AS="Y" THEN 1155
1293 IF AS<>"N" THEN 1291
1294 REM ----- EXCITATION INPUT
1295 GOSUB 1432
1296 REM ----- LOADS/NETWORKS INPUT
1297 GOSUB 1457
1298 FLG=0
1299 RETURN
1300 REM ********** CONNECTIONS ***********
1301 E(I) =X1
1302 L(I)=Y1
1303 M(I) = Z1
```

```
1304E(I+NW) =X2
1305 L(I+NW) =Y2
1306 M(I+NW)=Z2
1307 Gs=0
1308 I =0
1309 I2=0
1310 Jl(I)=0
1311 J2(I,1)=-I
1312 J2(1, 2)=-I
1313 IF G=1 THEN 1325
1314 RFM ----- CHECK FOR GROUND CONNECTION
1315 IF Z1=0 THEN 1317
1316 GOTO 1320
1317 I1=-I
1318 J1(I)=-1
1319 GOTO 1342
1320 IF Z2=0 THEN 1322
1321 GOTO 1325
1322 I2=-I
1323 JI(I)=1
1324 G%=1
1325 IF I=1 THEN 1360
1326 FOR J=1 TO I-1
1327 REM ----- CHECK FOR END1 TO ENDI
1328 IF (Xl=E(J) AND Y1=L(J) AND Zl=M(J)) THEN 1330
1329 GOTO 1335
1330 Il=-J
1331 J2(I, 1)=J
1332 IF J2(J,1)=-J THEN J2(J,1)=J
1333 GOTO 1342
1334 REM ----- CHECK FOR END1 TO END2
1335 IF (Xl=E(J+NW) AND Y1=L(J+NW) AND 21=M(J+NW)) THEN 1337
1336 GOTO 1341
1337 Il=J
1338 J2(I, 1)=J
1339 IF J 2(J, 2)=-J THEN J 2(J, 2) =J
1340 GOTO 1342
1341 NEXT J
1342 IF G%=1 THEN 1360
1343 IF I=1 THEN 1360
1344 FOR J=1 TO I-1
1345 REM ----- CHECK END2 TO END2
1346 IF (X2=E(J+NW) AND Y2=L(J+NW) AND Z2=M(J+NW)) THEN 1348
1347 GOTO 1353
1348 I 2=-J
l349 J 2(I, 2)=J
1350 IF J2(J,2)=-J THEN J2(J,2)=J
1351 GOTO 1360
1352 REM ----- CHECK FOR END2 TO END1
1353 IF (X2=E(J) AND Y2=L(J) AND Z2=M(J)) THEN 1355
1354 GOTO 1359
1355 I2=J
1356 J2(I, 2)=J
```

```
1357 IF J2(J,1)=-J THEA J2(J,1) =J
1358 GOTO 1360
1359 MEXT J
1360 PRINT *3." COORDIMATES"," "." ","END
NO. OF" 
1361 PRINT *3," X"," Y"," 2","RADIUS CONNECTION
SEGMENTS*
1362 PRINT *3,X1;TAB(15);Y1;TAB(29);Z1;TAB(57);I1
1363 PRINT
#3.X2;TAB(15);Y2;TAB(29);Z2;TAB(43);A(I);TAB(57):I2;TAB(71);S1
1364 RETURN
1365 RIMM ********** ENVIRONENT INPUT
1366 PRINT
1367 PRINT " **** WARNING ****"
1368 PRINT "REDO GEOMETRY TO ENSURE PROPER GROUND
CONNECT ION/DI SCONNECT I ON"
1369 PRINT
1370 REM ----- INITIALIZE NUMBER OF RADIAL WIRES TO ZERO
1371 NR=0
1372 REM ----- SET ENVI RONMENT
1373 PRINT $3." "
1374 AS = "ENVI RONMENT (+1 FOR PREE SPACE, - 1 FOR GROUND PLANE)"
1375 PRINT AS;
1376 INPUT G
1377 IF OS>"C" THEN PRINT *3,AS;": ";G
1378 IF G=1 THEN 1430
1379 IF G<>-1 THEN 1375
1380 REM ---\infty- NUMBER OF MEDIA
1381 AS=" NUMBER OF MEDIA (O FOR PERFECTLY CONDUCTING GROUND)"
1382 PRINT AS:
1383 INPUT NM
1384 IF NM<=MM THEN 1387
1385 PRINT "NUMBER OF MEDIA EXCEEDS DIMENSION..."
1386 GOTO 1382
1387 IF OS>"C" THEN PRINT *3,AS:": ";NM
1388 REM ----- INITIALIZE BOUNDARY TYPE
1389 TB=1
1390 IF NM=0 THEN 1430
1391 IF NM=1 THEN 1398
1392 REM ----- TYPE OF BOUNDARY
1393 AS=" TYPE OF BOUNDARY (1-LINEAR, 2-CIRCULAR)"
1394 PRINT " ";AS;
1395 INPUT TB
1396 IF OS>"C" THEN PRINT *3,AS;": ";TB
1397 REM ---\infty- BOUNDARY CONDITIONS
1398 FOR I=1 TO NM
1399 PRINT "MEDIA";I
1400 A$=" RELATIVE DIELECTRIC CONSTANT, CONDUCTIVITY"
1401 PRINT " ";AS;
1402 INPUT T(I),V(I)
1403 IF OS>"C" THEN PRINT *3,AS;": ";T(I)","V(I)
1404 IF I>I THEN 1416
1405 IF TB=1 THEN 1416
```

```
1406 AS=" MUMBER OF RADIAL WIRES IN GROUND SCREEN*
1407 PRINT " ":AS:
1408 INPUT ER
1409 IF OS,"C" THEN PRINT *3,AS:": ":MR
1410 IF NR=0 THEN 1416
1411 AS=" RADIUS OF RADIAL WIRES*
1412 PRINT " *iAS;
1413 INPUT RR
1414 IF OS>"C" THIEN PRINT %3,AS;": ";RR
1415 REM ----- INITIALIZE COORDINATE OF MEDIA INTERFACE
1416 U(I) =1000000!
1417 REM ----- INITIALIZE HEIGHT OF MEDIA
1418 H(I) =0
1419 IF I=NM THEN 1424
1420 AS=" X OR R COORDINATE OF NEXT MEDIA INTERFACE"
1421 PRINT " ";A$:
1422 INPUT U(I)
1423 IP OS>"C" THEN PRINT *3,AS;": ";U(I)
1424 IF I=1 THEN 1429
1425 AS=" HEIGHT OP MEDIA"
1426 PRINT " ";AS;
1427 INPUT H(I)
1428 IF OS>"C" THEN PRINT #3,AS;": ";H(I)
1429 NEXT I
1430 RETURN
1431 REM ********** EXCITATION INPUT
1432 PRINT
1433 AS="MO. OF SOURCES "
1434 PRINT AS:
1435 INPUT NS
1436 IF NS<l THEN NS=1
1437 IF NS<=MP THEN 1440
1438 PRINT "NO. OF SOURCES EXCEEDS DIMENSION ..."
1439 GOTO 1434
1440 IF O$>"C" THEN PRINT *3." ":PRINT *3, AS;": ";NS
1441 FOR I=1 TO NS
1442 PRINT
1443 PRINT "SOURCE NO. ";I;":"
1444 AS="PULSE NO., VOLTAGE MAGNITUDE, PHASE (DEGREES)"
1445 PRINT AS;
1446 INPUT E(I),VM,VP
1447 IF E(I)<=N THEN 1450
1448 PRINT "PULSE NUMBER EXCEEDS NUMBER OF PULSES..."
1449 GOTO 1445
1450 IF OS>"C" THEN PRINT *3,AS;": ":E(I)","VM","VP
1451 L(I) =VM* COS(VP*PO)
1452 M(I)=VM*SIN(VP*PO)
1453 NEXT I
1454 IF FLG=2 THEN FLG=1
1455 RETURN
1456 REM *********** LOADS INPUT **********
1457 PRINT
1458 INPUT "NUMBER OF LOADS ";NL
```

```
1459 IF NL<=ML THEN 1462
1460 PRINT "NUMBER OF LOADS EXCEEDS DIMENSION..."
1461 GOTO 1458
1462 IF OS>"C" THEN PRINT *3,"NUMBER OF LOADS";NL
1463 IF NL<1 THEN 1494
1464 INPUT "S-PARAMETER (S=jw) IMPEDANCE LOAD (Y/N)";LS
1465 IF L$<>"Y" AND LS<>"N" THEN 1464
1466 AS="PULSE NO. , RESISTANCE, REACTANCE"
1467 IF LS ="Y" THEN AS= "PULSE NO., ORDER OF S-PARAMETER
FUNCTION"
1468 FOR I=1 TO NL
1469 PRINT
1470 PRINT "LOAD NO. ";I;":"
1471 IF L$="Y" THEN 1478
1472 PRINT AS;
1473 INPUT LP(I),LA(1,I,1),LA(2,I,1)
1474 IF LP(I)>N THEN PRINT "PULSE NUMBER EXCEEDS NUMBER OF
PULSES...": GOTO 1472
1475 IF OS>"C" THEN PRINT *3,AS:":
";LP(I);",";LA(1,I, 1):",";LA(2,I,1)
1476 GOTO 1493
1477 REM ----- S-PARAMETER LOADS
1478 PRINT AS;
1479 INPUT LP(I),LS(I)
1480 IF LP(I) >N THEN PRINT "PULSE NUMBER EXCEEDS NUMBER OF
PULSES...": GOTO 1478
1481 IF LS(I) >MA THEN PRINT "MNXIMUM DIMENSION IS 10":GOTO 1479
1482 IF OS>"C" THEN PRINT *3,AS;": ";LP(I);",";LS(I)
1483 FOR J=0 TO LS (I)
1484 AS="NUMERATOR, DENOMINATOR COEFFICIENTS OF S^"
1485 PRINT AS;J;
1486 INPUT LA(1,I,J),LA(2,I,J)
1487 IF OS>"C" THEN PRINT *3,AS;J;":";LA(1,I,J);",";LA(2,I,J)
1488 NEXT J
1489 IF LS (I) >0 THEN }149
1490 LS (I) =1
1491 LA (I,I,I)=0
1492 LA (2,I, 1) =0
1493 NEXT I
1494 FLG=0
1495 RETURN
1496 REM ********** MAIN PROGRAM **********
1497 REM ----- DATA INITIALIZATION
1498 REM ----- PI
1499 P=4*ATN(1)
1500 REM ----- CHANGES DEGREES TO RADIANS
1501 PO=P/180
1502 BS="*********************"
1503 REM ----- INTRINSIC IMPEDANCE OF FREE SPACE DIVIDED BY 2 PI
1504 G0=29.979221%
1505 REM ---------- Q-VECTOR FOR GAUSSIAN QUADRATURE
1506 READ
Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),Q(8),Q(9),Q(10),Q(11),Q(12)
```

```
1507 READ Q(13),Q(14)
1508 DATA
.288675135,.5,.430568156,.173927423,.169990522,. 326072577
1509 DATA .480144928,.050614268,.398333239,.1111190517
1510 DATA . 262766205,.156853323,.091717321,.181341892
1511 REM ---------- E-VECTOR FOR COEFFICIENTS OF ELLIPTIC
INTEGRAL
1512 READ C0,C1,C2,C3,C4,C5,C6,C7,C8,C9
1513 DATA
1.38629436112,.09666344259,.03590092383,.03742563713,.01451196212
1514 DATA .5,.12498593397,.06880248576,.0332835346,.00441787012
1515 REM ----- IDENTIFY OUTPUT DEVICE
1516 GOSUB 1582
1517 PRINT #3,TAB(20);BS;B$
1518 PRINT #,TAB(22):"MINI-NUMERICAL ELECTROMAGNETICS CODE"
1519 PRINT #3,TAB(36):"MININEC"
1520 PRINT 3,TAB(24);DATES;TAB(48);TIME$
1521 PRINT #3.TAB(20);B$;B$
1522 REM ----- FREQUENCY INPUT
1523 GOSUB 1135
1524 REM ----- ENVIRONMENT INPUT
1525 GOSUB 1371
1526 REM ----- CHECK FOR NEC-TYPE GEOMETRY INPUT
1527 GOSUB 1552
1528 REM ----- GEOMETRY INPUT
1529 GOSUB 1155
1530 REM -.--- MENU
1531 PRINT
1532 PRINT BS;" MININEC MENU ";BS
1533 PRINT " G - CHANGE GEOMETRY C - COMPUTE/DISPLAY
CURRENTS"
1534 PRINT " E - CHANGE ENVIRONMENT P - COMPUTE FAR-FIELD
PATTERNS"
1535 PRINT " X - CHANGE EXCITATION N - COMPUTE NEAR-FIELDS"
1536 PRINT " L - CHANGE LOADS"
1537 PRINT " F - CHANGE FREQUENCY Q - QUIT"
1538 PRINT BS;BS;BS
1539 INPUT " COMMAND ";C$
1540 IF C$="F" THEN GOSUB 1135
1541 IF C$="P" THEN GOSUB 621
1542 IF C$="X" THEN GOSUB 1432
1543 IF C$="E" THEN GOSUB 1366
1544 IF C$="G" THEN GOSUB 1154
1545 IF C$="C" THEN GOSUB 497
1546 IF C$="L" THEN GOSUB 1457
1547 IF C$="N" THEN GOSUB }87
1548 IF C$<>"Q" THEN 1531
1549 IF OS="P" THEN PRINT #3, CHR$(12) ELSE IF O$="C" THEN PRINT
#3. " "
1550 CLOSE
1551 GOTO 1619
1552 REM ********** NEC-TYPE GEOMETRY INPUT **********
1553 OPEN "MININEC.INP" AS #1 LEN=30
```

1554 FIELD $1, \dot{2}$ AS S\$. 4 AS X1\$.4 AS Y1\$.4 AS 21\$.4 AS X2\$.4 AS Y2\$,4 AS 22\$.4 AS RS
1555 GET 1
1556 NW=CVI(S\$)
1557 IF NW THEN INFILE=1
1558 RETURN
1559 REM --------- GET GEOMETRY DATA FROM MININEC.INP
1560 GET 1
1561 Sl=CVI(S\$)
1562 Xl=CVS(X1\$)
1563 Yl=CVS(Y1\$)
1564 2l=CVS(21\$)
$1565 \times 2=C V S(X 2 \$)$
1566 Y2=CVS(Y2\$)
1567 z2=CVS($\mathrm{Z} 2 \$$)
$1568 \mathrm{~A}(\mathrm{I})=\mathrm{CVS}(\mathrm{R} \$)$
1569 IF G<O THEN IF $21<0$ OR $22<0$ THEN GOSUB 1574
1570 PRINT \#3," ":PRINT \#3,"WIRE NO."; I
1571 IF Xl=X2 AND Y1=Y2 AND $21=22$ THEN PRINT"WIRE LENGTH IS
ZERO.":GOTO 1549
1572 GOSUB 1301
1573 RETURN
1574 IF IZNEG THEN 1578
1575 PRINT"NEGATIVE Z VALUE ENCOUNTERED FOR GROUND PLANE."
1576 INPUT "ABORT OR CONVERT NEGATIVE Z VALUE TO ZERO (A/C)? ";AS
1577 IF AS="A" THEN 1549 ELSE IF AS="C" THEN IZNEG=1 ELSE 1576
1578 IF Z1<0 THEN Z1=-Z1
1579 IF $22<0$ THEN $22=-22$
1580 RETURN
1581 REM ********** IDENTIFY OUTPUT DEVICE **********
1582 INPUT "OUTPUT TO CONSOLE, PRINTER, OR DISK (C/P/D)";OS
1583 IF OS="C" THEN FS="SCRN:": GOTO 1588
1584 IF OS="P" THEN F $\$=$ "LPT1:":GOTO 1588
1585 IF OS<>"D" THEN 1582
1586 INPUT "FILENAME (NAME.OUT)";F
1587 IF LEFTS(RIGHT\$(FS,4),1)="." THEN 1588 ELSE FS=FS+".OUT"
1588 OPEN F\$ FOR OUTPUT AS $\$ 3$
1589 CLS
1590 RETURN
1591 REM ********** CALCULATE ELAPSED TIME *********
1592 IH=VAL(MIDS(T\$,1,2))-VAL(MID\$(OT\$,1,2))
1593 IM=VAL(MIDS(T\$,4,2))-VAL(MIDS(OT\$,4,2))
1594 IS=VAL(MIDS(TS,7,2))-VAL(MIDS(OT\$,7,2))
1595 IF IS < O THEN IS=IS+60:IM=IM-1
1596 IF IM<0 THEN IM=IM+60:IH=IH-1
1597 IF IH<O THEN IH=IH+24
1598 T\$=":"+MIDS(STRS(IS+100),3)
1599 IF IH THEN TS=MIDS(STRS(IH), 2)+":"+MIDS(STRS(IM+100), 3)+TS
ELSE TS=MIDS(STRS(IM),2)+T\$
1600 RETURN
1601 REM ********** CALCULATE APPROXIMATE TIME REMAINING

1602 IPCT=100*PCT

```
1603 T$=T IMES
1604 IH=VAL(MIDS(TS,1,2))-VAL(MIDS (OT$,1,2))
1605 IF IH<O THEN IH=IH+24
1606 IM=VAL(MIDS(T$,4,2))-VAL(MIDS (OT$,4,2))
1607 IS=VAL(MIDS(TS,7,2))-VAL(MIDS(OT$,7,2))
1608 IS=IS+60*(IM+60*IH)
1609 IS=IS*(1/PCT-1)
1610 IM=INT(IS/60)
1611 IS=IS MOD 60
1612 IH=INT(IM/60)
1613 IM=IM MOD 60
1614 TS=":"+MIDS(STR$(IS+100),3)
1615 IF IH THEN T$=MIDS(STRS(IH), 2)+":"+MIDS(STRS(IM+100), 3)+T$
ELSE T$=MIDS(STR$(IM), 2)+T$
1616 LOCATE CSRLIN,1
1617 PRINT OS;IPCT;"* COMPLETE - APPROX TIME REMAINING "TS" ";
1618 RETURN
1619 END
```


INITIAL DISTRIBUTION

Naval Sea Systems CommandWashington. DC 20362-5101Code 61×41
Space \& Naval Warfare Systems Command
Washington. DC 20363-5100
PDE-107
PDE-110
David W. Taylor Naval Ship Research \&
Development Center
Bethesda. MD 20084-5000
Code 012.4
Naval Postgraduate School
Monterey. CA 93940
Code 62AB
USA CECOM
Fort Monmouth. NJ 07703-5202
AMSEL COM-TN-4
USA ISEIA
Fort Huachuca. AZ 85613.5300
ASBH SET-P
Rome Air Development Center
Hanscom AFB. MA 01731
Defense Technical Information Center
Alexandria VA 22314
Lawrence Livermore National Laboratory
PO Box 808
Livermore CA 94550
Code L156 (Dr. M. J. Barth)
$E N D$

$$
7-87
$$

DTIC

[^0]: Figure 11. Convergence test for an antiresonant dipole showing the percent difference in admittance between MININEC and R.W.P. King (references 8 and 9). (Part b).

[^1]: Note to NEC users:
 The MININEC post processor progran is used to convert NEC input data set into a MININEC antenna geometry description. These data are automatically stored in the MININEC.INP file. At this point, if the MININEC.INP file is not empty. MININEC will use that data for the geometry description and you will skip the normal geometry input. See Appendix A for further information.

