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A new severe plastic deformation (SPD) process called plastic flowmachining (PFM) was recently proposed to produce thin sheets
with gradient structures. In the present paper, the role of the die geometry is investigated by studying the effects of the produced
sheet thickness (h) on the material properties of commercial pure Aluminum (Al1050) processed by PFM. -e obtained ex-
perimental results show that an increase of h in the range of 0.65 to 1.5mm improved the formation efficiency of the sheet.
Microstructures of the produced sheets show gradient structures with an average grain size varying from 0.8 to 3.81 µm across the
sheet thickness. Both experiments and finite element (FE) simulations document that the degree of the gradient in the mi-
crostructure becamemore significant when hwas increased. Sheets produced by PFM exhibited a better strength-ductility balance
than sheets obtained in other SPD processes. Tensile strength of 160–175MPa and total ductility of 18–25% were obtained for the
processed samples after PFM. A rise of h from 0.65 to 1.5mm lowered the strength but enhanced the ductility of the produced
sheet, which is due to the coarser microstructure at larger values of h.

1. Introduction

Severe plastic deformation (SPD) has been acclaimed as an
effective technique for producing metals with superior
properties which are unattainable by conventional thermo-
mechanical processing. To date there have been a great
number of SPD processes proposed, such as high pressure
torsion (HPT) [1], equal channel angular pressing (ECAP)
[2], accumulative roll bonding (ARB) [3], twist extrusion
(TE) [4], repetitive corrugation and straightening (RCS) [5],
to name a few. One of the most prominent benefits of SPD is
its ability to transform an initial coarse-grained (CG)
structure into an ultrafine-grained (UFG) structure at room
temperature, which significantly increases the mechanical
strength of the processed material via grain-boundary
strengthening (also known as conventional Hall–Petch
strengthening [6, 7]). -e main drawback of SPD is that the

considerable increase of strength is inevitably accompanied
by a significant loss of ductility which might limit the em-
ployment of this technique in industrial applications [8–11].
-erefore, seeking a method imparting high strength while
maintaining reasonable ductility is an enormous challenge in
SPD research. A possible solution to this issue is to develop
SPD methods which are able to produce metals with ap-
propriate microstructures. A novel SPD process was recently
proposed—called plastic flow machining (PFM)—which can
produce gradient structures [12, 13]. In PFM, a surface layer
of a bulk workpiece is separated via a controllable lateral
extrusion process to transform it into a fin or sheet with an
ultrafine-grained and gradient structure, in a single de-
formation step, which is basically simple shear. PFM has
a similar feature with another recently invented process,
called large strain extrusion machining (LSEM) [14, 15] in
the sense that in LSEM continuous metal fins with UFG
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structure can also be produced by separating a surface layer
from a bulk sample. -e difference is that in LSEM a cutting
tool is used together with a constraining channel, while in
PFM, an extrusion process produces the fin. However, the
microstructure produced by PFM is heterogeneous while it is
mostly homogeneous in LSEM, and the hydrostatic pressure
produced in the deformation zone in PFM is likely to be
higher than that in LSEM. PFM also exhibits a common
feature with nonequal channel angular pressing (NECAP)
[16, 17] in terms of the working principle. Indeed, lateral
extrusion in PFM works in the same way as in NECAP.
However, the main difference is that in PFM, only the surface
layer of the sample is deformed while the whole bulk sample
is deformed in NECAP. -is allows PFM to reduce the load
required for processing.

PFM was successfully applied on commercial pure
Aluminum 1050 to fabricate fins with different thicknesses.
-e obtained fins, produced through the lateral extrusion
process, exhibited gradients in terms of plastic strain, mi-
crostructure, and texture across their thickness. -e me-
chanical properties and formability of those fins were found
to be excellent. For example, a 0.65mm thickness fin,
produced by the one-step PFM operation, shows tensile
strength equivalent to that obtained from four passes of
incremental equal channel angular pressing (I-ECAP). -e
uniform elongation is also up to four times higher than that
received after four I-ECAP passes [13].-e average Lankford
value attained from the tensile tests at different directions of
this fin is 0.92, which is much higher than that obtained from
conventional rolling which ranges from 0.5 to 0.85 [13].
Owning to the ability to fabricate metallic sheets with su-
perior mechanical properties and formability, PFM shows
great potentials for industrial applications, and it is patented
worldwide [12]. -e aim of this paper is to give more in-
formation on this new process, especially concerning the
role of the die geometry.

2. Experimental and Simulation Procedures

2.1. Experimental Procedures. Commercial pure Al1050
samples were processed by PFM at room temperature. A
description of the process was presented in a previous work
[13] and schematically presented in Figure 1. Fins were
produced with different thicknesses up to 1.5mm, while
keeping other geometrical parameters constant: the die angle
α � 1200 and the heights of the two die channels:
H0 � 20 mm and H1 � 18 mm. A thickness ratio parameter
was introduced for the fin, which is the ratio between the
thickness of the fin and the thickness of the layer removed
from the bulk:

t �
h

H0 −H1( )
. (1)

-e effects of this parameter on the fin formation and its
microstructure andmechanical properties were investigated.
As the die was constantly the same with H0 −H1 � 2 mm,
for the results presented in this work, t and h are simply
related by t � h/2.-e experiments were conducted applying
a back pressure of 110MPa and also without back pressure.

-e microstructures across the thickness of the fins were
characterized by scanning electron microscopy (SEM) and
electron back-scattering diffraction (EBSD) operated in
a JEOL JSM-6500F field-emission gun-scanning electron
microscope. Data acquisition and analyses were carried out
by the Aztec HKL and the ATOM software [18], respectively.
For the detection of grain boundaries, disorientation angles
between neighboring pixels were required to be greater than
5°. In order to obtain and compare mechanical properties of
the fins produced at different gap widths, tensile tests were
performed at room temperature. -e tensile direction was
set parallel to the longitudinal direction of the fin, and the
strain rate was 0.001 s−1.

2.2. Simulation Procedures. -e commercial DEFORM-
2D/3D V11.0 FE code was used for the FE simulations to
obtain insight into the stress and strain distributions within
the workpiece during the PFM process. All parts of
deforming tools were defined as rigid bodies, whereas the
workpiece was represented by 10000 tetragonal deformable
elements. Adaptive meshing was used to accommodate
large strains during the material flow within the lateral
channel. -e material behavior was taken isotropic using
the von Mises model with the hardening law
σ � 180ε0.23vM (MPa) (σ is the vonMises equivalent stress, and
εvM is von Mises strain). -e parameters of the hardening
law were obtained by approximating the stress-strain curve
of Al1050 from [19]. Friction was modeled by the Siebel
friction law τ � 0.2σ.

3. Results and Discussion

3.1. <e Effect of Die Geometry and Back Pressure on the
Formation of the Fin. A special feature of PFM is that both
forward and lateral extrusions occur concurrently during
processing; see the illustration in Figure 1(b).-e sample has
a cross section of H0W which changes into H1W after
processing, where W is the width of the workpiece. -e
outgoing fin has a cross section of hD. During the process,
the incoming flow Q0 is bifurcating into two flows: Q1 and
Q2. -ese three flows are defined in terms of volumes
moving across the cross sections per unit time:

incoming flow : Q0 � U0H0W, (2)

forward extrusion flow : Q1 � U1H1W, (3)

lateral extrusion flow : Q2 � U2hW, (4)

where U0, U1, and U2 are the respective material flow ve-
locities. Now, we introduce a parameter xwhich is the lateral
extrusion ratio defined by the fraction of the metal that flows
into the lateral slit:

x �
Q2

Q0

. (5)

Using Equations (2) and (4), we obtain
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x �
U2h

U0H0

, (6)

where U2 and U0 velocities can be expressed in terms of time
T of the extrusion, the length of the fin l, and the displacement
of the sample L0 in contact with the pressing punch:

U2 �
l

T
,

U0 �
L0
T
,

(7)

which leads to

x �
lh

L0H0

. (8)

As can be seen from this expression, the parameter x is
fully defined by simple geometrical parameters that can be
readily measured, just like the parameter t from Equation
(1). �e maximum possible value of x is 1; it happens when
the back-pressure punch does not move: it is fixed. �is
situation corresponds to the case of nonequal channel an-
gular pressing (NECAP) which was examined analytically
and experimentally in [16, 17, 20].

�e lateral extrusion ratio (x) is plotted as a function of
the fin thickness ratio in Figure 2, from a number of ex-
periments conducted with and without back pressure.

As can be seen, the lateral extrusion ratio increases with
the gap-width size, and it is more prominent when pro-
cessing with back pressure. �erefore, in order to enhance
the formation of the fin and improve efficiency, PFM
needs to be carried out with sufficiently high fin thickness

ratio and with the assistance of a back pressure. When t
was smaller than 0.35, the fin was not produced in the
absence of back pressure. With back pressure, this critical
value was reduced to 0.2. �is means that at small-gap
widths (h), the lateral extrusion stops at a certain point,
and the forward extrusion is predominant during the
process. High friction and the formation of a dead metal
zone near the entrance of the lateral slit might be the causes
that obstructed the lateral flow at narrow-gap widths of the
side channel. With the rise of t, the process was improved.
Bearing all the above in mind, when designing a PFM die,
for a given fin thickness, one should choose a reasonable
value of t.

3.2. �e Effect of Fin �ickness Ratio on Strain and Micro-
structure in the Fin. �e microstructures of three fins cor-
responding to three-fin thickness ratios, 0.325, 0.5, and 0.75,
were characterized by EBSD measurements. �e case of t �
0.75 was selected to show the microstructure of the fin, see
Figure 3(b). Clearly, grain refinement with a microstructure
gradient across the thickness can be seen.

A significant grain refinement and the strain gradient
across the fin thickness are documented in Figure 4. �e
initial grain size of about 100 µmwas refined to 3.81, 2.1, and
0.85 µm in the left edge area (LEA), middle area (MA), and
right edge area (REA), respectively, of the fin.

Regarding the strain gradient across the fin thickness, the
reason for this is that material points flow along different
strain paths while moving from the bulk workpiece into the
fin. Each time the material point alters its flow direction,
a shear strain is adding and accumulating. �e diversity of
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Figure 1: Schematic illustration of the PFM process: (a) die ge-
ometry and (b) metal flow. P and Pbp are the pressing pressure and
back pressure, respectively. H0, H1, h, and α are the geometrical
dimensions. W is the width dimension. U0, U1, and U2 are the
velocities, and Q0, Q1, and Q2 are the volumes per unit time of the
metal flows.
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Figure 2: Measured dependence of the lateral extrusion ratio on
the fin thickness ratio, under a back pressure of 110MPa and also
without back pressure.
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strain paths forms a complex strain field in the deformation
zone situated at the intersection of the forward and lateral
channels. High friction at the interface between the right side
of the fin and the 120° inclined edge of the die (Figure 1(a))
also contributes to this strain gradient.

�e grain sizes corresponding to three different fin
thickness ratios can be evaluated using Figure 5. As can be
seen, the grain size increased almost linearly across the fin
thickness, from the REA to the LEA in all three cases of the
fin thickness ratios. In addition, with the increase of t from
0.325 to 0.75, the average grain size in the REA did not
change considerably, from 0.8 to 0.85 µm, respectively. At
the same time, the average grain sizes in the MA and LEA
were significantly increased, from 1.4 to 2.1 µm and from
1.9 to 3.81 µm, respectively. It is widely accepted in SPD
research that the significant microstructure refinement
under large plastic strain is associated with a continuous

dynamic recrystallization phenomenon. �is process in-
volves grain subdivision caused by the buildup of GNDs
and new fine grain formation with high-angle grain
boundaries (HAGBs) during large deformation at room
temperature [21, 22]. �e smaller grain size change in the
REA compared with that in the MA and LEA when t is
varied implies that the strain imposed in the REA was less
dependent on the geometry of the die. �is is because the
strain in the REA resulted not only from the abrupt change
of material point trajectory (which depends on the die
geometry) but also from the effect of the high friction at the
interface between the right side of the fin and the die
surface. An average gradient in grain size (g) can be defined
as the slope of the best-fit line which represents the de-
pendence of grain size on the distance (Figure 5). �is
gradient was found to be the same 2.1× 10−3 for all t values
from 0.0325 to 0.75.

Fin
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Figure 3: (a) A sample after PFM processing. (b) SEM microstructure across the thickness of the fin for the case of t � 0.75.

850µm 5µm 5µm 5µm

FD

TD PDTD

111

001

(a) (b) (c) (d)

101

TD

Figure 4: EBSD microstructures of (a) initial sample and (b) left edge area (LEA), (c) middle area (MA), and (d) right edge area (REA),
respectively, of the fin for the case of t � 0.75.
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�e results of the FE simulations obtained for strain and
stress distributions for the two values of t (0.75 and 0.325)
are displayed in Figure 6. As can be seen from Figures 6(a)

and 6(b), the top layer of the bulk sample is heavily de-
formed within the deformation zone adjacent to the entry
of the lateral channel. �e heterogeneous deformation in
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this zone leads to the strain gradient of the produced fin, in
which the strain values increase across the fin thickness
from the left to the right. One can analyze this strain
gradient by dividing the fin into three strain areas, namely,
the left edge area (LEA), the middle area (MA), and the
right edge area (REA). -e greater deformation in the HSA
can be attributed to high friction generated at the contact
between the material and the inclined edge of the die, under
high compression pressure. -e REAs in both cases t �
0.75 and 0.325 exhibit a similar range of von Mises strain
values from 3 to 4. However, the LEAs show different
features in the two cases. In the case t � 0.75 (Figure 6(a)),
the REA displays lower von Mises strain values (from 1 to
1.5) than in the case t � 0.325 (about 1.5). -is is consistent
with the experimental results that the average grain size in
the LEA decreased from 3.8 to 1.9 when t increased from
0.75 to 0.325, but that in the REA did not change con-
siderably (from 0.85 to 0.8 µm). Figures 6(b) and 6(d) show
the stress distribution for the two different t values. In both
cases, high compressive stresses (with a maximum value of
400MPa) are generated in the deformation zone due to
a large hydraulic pressure which is enhanced by the applied
back pressure. -erefore, microfractures such as micro-
cracks and voids are suppressed in PFM, improving in this
way the workability of the fin.

3.3. Mechanical Properties and the Effect of the Fin <ickness
Ratio. -e tensile test results of the initial and PFM-
processed samples corresponding to different fin thickness
ratios, ranging from 0.325 to 0.75, are presented in Figure 7(a).
-e geometry of tested samples is displayed in Figure 7(b)
with h being the thickness of the sample. As can be seen,
a significant increase in strength, about more than 2.5 times,
was achieved in all produced fins. Good elongations—which
were far higher than those in other SPD counterparts—were
also attained. A comparison of ductility obtained at a similar
strength range for Al1050 from several SPD processes is
presented in Table 1. -e data were collected from different
studies. As can be seen, in a comparable range of UTS
strength, PFM provides higher uniform and total elongations
than other SPD processes. For example, compared with eight
ECAP passes route Bc at room temperature (RT) followed by
annealing at varying conditions, one PFM pass shows about
twice higher uniform elongation and a 1.5 times higher total
elongation. Another example is that when comparing with
seven ARB passes at RT, one PFM pass presents about four to
five times higher uniform elongation.-is again highlights the
novelty of PFM in terms of imparting high strength while
maintaining reasonable ductility and sheds light on the benefit
of the gradient microstructure in improving the strength-
ductility relation.

Regarding the impact of the fin thickness ratio on the
mechanical properties, the strength decreased with the in-
crease of t. A decrease from nearly 180 to 160MPa in UTS
took place when t varied from 0.325 to 0.75. -e opposite
trend was seen for the ductility: the uniform elongation
increased from 6 to 8%, and the total elongation increased
from 18 to 25%.-ese results can be explained by correlating

them with the effect of the fin thickness ratio on the strain
and microstructure that are presented in the previous sec-
tions. -e grain sizes in all areas, the LEA, MA, and REA,
increased with the increase of t (Figure 5). -is means that
the microstructure generally became coarser when t was
increased, resulting in a decrease in strength and increase in
ductility, as expected.

To this end, the mechanical properties of PFM-processed
fins can be controlled by the fin thickness ratio. -e target of
obtaining high strength can be fulfilled by choosing a small t
value. In this case, good ductility, higher than that in other
SPD techniques (Table 1), can be reached.

4. Conclusions

(i) Lateral and forward extrusions occur simulta-
neously during the PFM process. -e process
should be conducted with a back pressure to
improve its efficiency. In the condition of pro-
cessing with a back pressure of 110MPa, when t
was smaller than 0.325, the fin was not formed
because the lateral extrusion stopped at a certain
point and the forward extrusion became pre-
dominant during the process. With the rise of
t from 0.325 to 0.75, the lateral extrusion ratio
increased, improving the formation efficiency of
the fin.
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(ii) Ultrafine-grained microstructure and gradient mi-
crostructure were obtained after one-step PFM
deformation. -e average grain size varied from 0.8
to 3.81 µm across the fin thickness. When t was
increased from 0.325 to 0.75, the degree of the
gradient in the microstructure became more sig-
nificant. -is was in good agreement with the FEM
simulation in which the strain gradient showed the
same dependence on t.

(iii) PFM exhibits superior strength-ductility balance
with respect to other SPD counterparts.

A tensile strength of 160–175MPa and total ductility of
18–25% were obtained for Al1050 samples after one-step
deformation. An increase of t from 0.325 to 0.75 reduces the
strength but improves the ductility of the produced fin. -is
can be attributed to the coarser microstructure obtained for
larger t values.
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Patent: WO2017017341, Universite de Lorraine, Metz, France,

2015.
[13] V. Q. Vu, Y. Beygelzimer, L. S. Toth, J.-J. Fundenberger,

R. Kulagin, and C. Chen, “-e plastic flow machining: a new

SPD process for producing metal sheets with gradient

structures,”Materials Characterization, vol. 138, pp. 208–214,

2018.
[14] M. Efe, W. Moscoso, K. P. Trumble, W. Dale Compton, and

S. Chandrasekar, “Mechanics of large strain extrusion ma-

chining and application to deformation processing of mag-

nesium alloys,” Acta Materialia, vol. 60, no. 5, pp. 2031–2042,

2012.

Table 1: Tensile test results on Al1050 preprocessed by different SPD techniques.

SPD technique
UTS (MPa) Uniform El (%) Total El (%)

Ref.
Initial Final Initial Final Initial Final

1 pass PFM at RT
t � 0.325 175± 3 6± 0.5 18± 0.8

-is studyt � 0.5 70± 2 169± 3 31± 1 7± 0.5 56± 1 20± 0.8
t � 0.75 160± 3 8± 0.5 25± 0.8

8 ECAP passes route Bc at RT+ annealing at varying
conditions

— 140/175 — 3/3.5 — 10/15 [23]

4 incremental ECAP passes at RT 76 177 35 1.5 55 15 [24]
60% reduction in ASR at RT 100 176 2 2 17 6.5 [25]
7 ARB passes at RT 110 150 — — 12 9 [26]
4 ECFE passes at RT 78 122 32 1.5 43 14.7 [27]

RT: room temperature; UTS: ultimate strength; El: elongation; Ref.: reference; ASR: asymmetric rolling; ARB: accumulative roll bonding; ECFE: equal channel
forward extrusion.

Advances in Materials Science and Engineering 7



[15] W. Moscoso, M. R. Shankar, J. B. Mann, W. D. Compton, and
S. Chandrasekar, “Bulk nanostructured materials by large
strain extrusion machining,” Journal of Materials Research,
vol. 22, no. 1, pp. 201–205, 2011.
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[17] L. S. Tóth, R. Lapovok, A. Hasani, and C. Gu, “Non-equal
channel angular pressing of aluminum alloy,” Scripta Mate-
rialia, vol. 61, no. 12, pp. 1121–1124, 2009.

[18] B. Beausir and J.-J. Fundenberger, ATOM, Analysis Tool for
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