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Abstract

The taxonomy of scleractinian corals has traditionally been established based on morphol-
ogy at the “macro” scale since the time of Carl Linnaeus. Taxa described using macromor-
phology are useful for classifying the myriad of growth forms, yet new molecular and 
small-scale morphological data have challenged the natural historicity of many familiar 
groups, motivating multiple revisions at every taxonomic level. In this synthesis of sclerac-
tinian phylogenetics and systematics, we present the most current state of affairs in the field 
covering both zooxanthellate and azooxanthellate taxa, focusing on the progress of our 
phylogenetic understanding of this ecologically-significant clade, which today is supported 
by rich sets of molecular and morphological data. It is worth noting that when DNA 
sequence data was first used to investigate coral evolution in the 1990s, there was no con-
certed effort to use phylogenetic information to delineate problematic taxa. In the last 
decade, however, the incompatibility of coral taxonomy with their evolutionary history has 
become much clearer, as molecular analyses for corals have been improved upon techni-
cally and expanded to all major scleractinian clades, shallow and deep. We describe these 
methodological developments and summarise new taxonomic revisions based on robust 
inferences of the coral tree of life. Despite these efforts, there are still unresolved sections 
of the scleractinian phylogeny, resulting in uncertain taxonomy for several taxa. We high-
light these and propose a way forward for the taxonomy of corals.
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4.1  Introduction

Stony corals belonging to the order Scleractinia (Anthozoa: 
Hexacorallia) are a clade of cnidarians that build a calcium 
carbonate skeleton in the form of aragonite, and are sister 
group to the non-stony corallimorpharians (Daly et al. 2003; 
Fukami et al. 2008; Kitahara et al. 2014; Lin et al. 2014). At 
present, Scleractinia contains 31 families, about 240 genera, 
and over 1,500 species (Cairns 1999, 2009; Appeltans et al. 
2012; Huang and Roy 2015), including both zooxanthel-
late—hosting the symbiotic dinoflagallate Symbiodinium—
and azooxanthellate corals. Zooxanthellate species typically 
inhabit shallow waters surrounding warm-subtropical and 
tropical seas and comprise the main coral reef framework 
builders with about 800 valid species. Azooxanthellate spe-
cies are widely distributed in the world’s oceans from shal-
low to deep waters and consist of about 700 valid species. 
Neither zooxanthellate and azooxanthellate nor shallow and 
deep species are distinguished phylogenetically and only par-
tially separated at the family level taxonomically. Due to the 
ecological and economic importance of tropical coral reefs—
e.g., high species diversity and mass fisheries production—
zooxanthellate taxa have been the subject of a greater volume 
of research relative to azooxanthellate species. However, 
both groups have comparable richness, having diversified 
successfully over hundreds of millions of years. Therefore in 
this chapter on coral systematics, they deserve equal atten-
tion, limited only by the amount of published data available.

The coral skeleton has been and continues to be the main 
source of morphological characters used in scleractinian 
classification. Most coral species are colonial, but solitary 
corals have evolved in at least six lineages independently 
(Barbeitos et al. 2010). Among colonial species, each coral-
lite (skeletal unit formed by an individual polyp) within a 
colony or species may have varying characteristics depend-
ing on growth rate, position in the colony and other 
environmentally- influenced traits. Consequently, morpho-
logical boundaries between species are generally obscure, 
and the task of identifying corals falling within and outside 
the limited pool of systematists has remained challenging at 
every taxonomic level since Linnaeus (1758) established 
Madrepora.

Fortunately, molecular phylogenetic analyses in the last 
two decades have undoubtedly advanced coral taxonomy by 
making large amounts of data available and inspiring the 
next generation of systematists. Understandably, the numer-
ous name changes across the entire coral phylogeny that 
have ensued can cause considerable confusion for coral 
researchers outside the limited circle of systematists. To 
address this apparent disarray, we track the history of molec-
ular data used for phylogenetic reconstruction, summarise 
the most recent phylogenetic understanding of corals, and 

describe recent taxonomic research at family, genus and spe-
cies levels. Finally we conclude by highlighting taxonomic 
issues that remain unresolved in the hope that research efforts 
will be refocused to stabilise all of the problematic taxa.

4.2  The Rise of Molecular Phylogenetic 
Methods

Genetic data have been collected from scleractinian corals 
since the early 1980s, but these were first based on allozyme 
allelic frequencies obtained using gel electrophoresis 
(Ridgway 2005). Stoddart (1983, 1984) examined the genetic 
diversity of Pocillopora damicornis using up to ten enzymes, 
and found that populations from Western Australia and 
Hawaii were maintained predominantly via asexual repro-
duction. Willis and Ayre (1985) analysed eight enzyme loci 
from Great Barrier Reef Pavona cactus to show that geneti-
cally similar colonies tended to show the same growth form, 
and overall the species comprised highly clonal populations 
(Ayre and Willis 1988). Allozyme electrophoresis was also 
employed to clarify genetic boundaries of closely-related 
morphotypes, such as between Montipora species (Heyward 
and Stoddart 1985), M. digitata populations (Stobart and 
Benzie 1994), within the Orbicella (previously 
“Montastraea”) annularis species complex (Knowlton et al. 
1992; van Veghel and Bak 1993), and among Platygyra mor-
phospecies (Miller and Benzie 1997).

Another early genotyping method was restriction frag-
ment length polymorphism (RFLP), which hybridised 
digested DNA fragments to probes for determining their 
lengths, or to genomic DNA of known species to establish 
identity. McMillan and Miller (1988) used RFLP to distin-
guish the morphologically confusing corals, Acropora 
 formosa (= A. muricata) and A. “nobilis” (= A. intermedia; 
see Veron and Wallace 1984).

The first set of scleractinian DNA sequence data to be 
published comprised highly repetitive sequences of 118 bp 
each, otherwise known as minisatellites, cloned from 
Acropora muricata and A. latistella (McMillan and Miller 
1989). Five more species were sequenced for these repeats in 
a follow-up study, in which a maximum parsimony analysis 
did not support most of the morphological subgroups 
(McMillan et al. 1991).

The use of polymerase chain reaction (PCR), an essential 
technique of today, began for corals with the amplification of 
nuclear 28S ribosomal DNA (rDNA) that was then sequenced 
for reconstructing the phylogeny of Anthozoa (Chen et al. 
1995). This analysis included nine species of scleractinian 
corals, and two families tested with more than one species 
each were recovered as clades. In a subsequent analysis that 
focused on Scleractinia, Veron et al. (1996) added six species 
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with improved representation from Fungiidae and Poritidae, 
which were found to be monophyletic.

At about the same time, the mitochondrial 16S rDNA was 
sequenced from 34 species to reconstruct a larger scleractin-
ian phylogeny (Romano and Palumbi 1996, 1997). This 
analysis showed that all five genera and nine of ten families 
for which more than one taxon were tested formed mono-
phyletic groups. However, of the seven suborders examined, 
only three—Meandriina, Poritiina and Dendrophylliina—
were recovered unambiguously as clades, although only 
Dendrophylliina remains the only monophyletic suborder to 
emerge from recent studies (e.g., Fukami et al. 2008; 
Arrigoni et al. 2014a).

Other PCR-based methods were adopted earlier on but 
these contributed little to phylogenetic reconstruction and 
have largely been discontinued owing to the fall in DNA 
sequencing costs in recent years. For instance, random 
amplified polymorphic DNA (RAPD) detected by four 
10-mer primers showed that Favia fragum and Porites astre-
oides underwent high levels of self-fertilisation (Brazeau 
et al. 1998). Five RAPD primers were also used to assess 
differentiation among populations of Acropora surculosa (= 
A. hyacinthus) in Guam (Romano and Richmond 2000). The 
four populations studied were not significantly distinct from 
one another, but the eastern and western coasts of Guam 
were found to be genetically distinct when the respective 
populations were pooled. Amplified fragment length poly-
morphism (AFLP) is another PCR-based tool related to the 
RFLP technique that amplifies the restriction fragments 
which are subsequently separated by gel electrophoresis. 
This method aided in the discrimination of Orbicella faveo-
lata from the other two species of the O. annularis complex 
(Lopez and Knowlton 1997; Lopez et al. 1999). Interestingly, 
AFLP was able to detect a much greater proportion of dis-
tinct Pavona cactus genotypes at Eclipse Island compared to 
allozyme genotypes (Smith et al. 1997), which indicated 
highly clonal populations instead (Ayre and Willis 1988).

Microsatellites, short tandem sequence repeats of between 
two and five bp, are typically used in population genetic stud-
ies and in tests of species boundaries among closely- related 
species. The first coral microsatellite to be utilised was 
detected in Orbicella franksi and used to distinguish among 
members of the O. annularis complex (Lopez et al. 1999). 
Many taxon-specific sets of microsatellite markers were pub-
lished at the turn of the century (Maier et al. 2001; Le Goff 
and Rogers 2002; Magalon et al. 2004; Miller and Howard 
2004; Severance et al. 2004a; Shearer and Coffroth 2004), 
and continue to be developed in recent years (Davies et al. 
2013; Torda et al. 2013c; Boulay et al. 2014; Serrano et al. 
2014; Zilberberg et al. 2014; Addamo et al. 2015; Tay et al. 
2015). Unfortunately, the extreme polymorphism exhibited 
by these markers even among sibling species diminishes 

their utility for inferring phylogenies, but they continue to be 
the main workhorse for population genetic studies.

The first multi-species evolutionary trees of Scleractinia 
were reconstructed on the basis of the mitochondrial 16S 
rDNA (Romano and Palumbi 1996) and nuclear 28S rDNA 
(Veron et al. 1996). Shortly after, the nuclear internal tran-
scribed spacers 1 and 2 (ITS), which include the 5.8S rDNA 
between them (White et al. 1990), were amplified and 
sequenced from the Orbicella annularis complex (Lopez 
and Knowlton 1997), as well as species from Acropora 
(Odorico and Miller 1997) and Porites (Hunter et al. 1997). 
Lopez and Knowlton (1997) also obtained sequence data 
from the β-tubulin coding and intron regions, but found that 
ITS and these loci showed no diagnosable variability among 
the three Orbicella species. The Acropora species exhibited 
varying degrees of molecular separation, with only A. longi-
cyathus clearly distinguished from the other four studied 
species (Odorico and Miller 1997). However, ITS from five 
species of Porites analysed under maximum parsimony 
appeared to resolve evolutionary relationships among them 
(Hunter et al. 1997).

These taxon-specific patterns of genetic resolution 
prompted researchers to expand on the repertoire of loci 
from both the nuclear and mitochondrial genomes for phylo-
genetic purposes (Severance et al. 2004b; Concepcion et al. 
2006, 2010; Flot et al. 2008; Chen et al. 2009). These mark-
ers, along with the primers used to amplify them, are often 
clade specific. Among the nuclear loci that are still in use 
today, some of the earliest to be developed include the intron 
region of the mini-collagen gene (Wang et al. 1995), used 
almost exclusively to investigate the evolutionary history of 
Acropora (Hatta et al. 1999; Vollmer and Palumbi 2002; 
Fukami et al. 2003; Palumbi et al. 2012; Suzuki and Fukami 
2012). The Pax-C 46/47 intron, introduced by van Oppen 
et al. (2000, 2001), continues to be used for Acropora 
 phylogenetics (Richards et al. 2008, 2013) and taxonomi-
cally broader reconstructions (Fig. 4.1). The divergence of 
Pax-C intron is low among sibling species (van Oppen et al. 
2000) but is much higher for more inclusive clades (van 
Oppen et al. 2001).

The awareness that gene duplication (Lopez and Knowlton 
1997; Odorico and Miller 1997) and heterozygosity (van 
Oppen et al. 2000) are common in nuclear loci led many to 
clone their PCR products and sequence multiple clones in 
hopes of capturing intragenomic variability. These include 
amplifications of the Pax-C intron (van Oppen et al. 2001, 
2004; Márquez et al. 2002; Richards et al. 2008, 2013), 
β-tubulin (Fukami et al. 2004b; Stefani et al. 2008a), ITS 
(Medina et al. 1999; van Oppen et al. 2000, 2002; Diekmann 
et al. 2001; Rodriguez-Lanetty and Hoegh-Guldberg 2002; 
Márquez et al. 2003; Chen et al. 2004; Vollmer and Palumbi 
2004; Forsman et al. 2005, 2006, 2009, 2010, 2015; Wei 
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et al. 2006; Stefani et al. 2011; Kitano et al. 2013, 2014), and 
28S rDNA (Chen et al. 2000; Cuif et al. 2003; Wolstenholme 
et al. 2003). For regions that have not diverged considerably 
between paralogues, such as the ITS, mixed PCR products 
can be split into two dominant sequences based on phase 
reconstruction of forward and reverse chromatograms of dis-

tinct lengths (Flot and Tillier 2006; Flot et al. 2006). The 
software Champuru was developed (Flot 2007) and used for 
processing direct sequencing data from Pocillopora (Flot 
et al. 2008, 2010; Schmidt-Roach et al. 2013; Adjeroud et al. 
2014) and Stylophora (Flot et al. 2011). Variable amplicons 
with no intra-individual length variation can also be resolved 

Fig. 4.1 Maximum likelihood genus-level phylogeny (576 species) of 
Scleractinia based on 12 DNA markers: mitochondrial 12S rDNA, 16S 
rDNA, ATP synthase subunit 6, cytochrome c oxidase subunit I, control 
region, cytochrome b and NADH dehydrogenase subunit 5; nuclear 18S 
rDNA, 28S rDNA, histone H3, internal transcribed spacers and Pax-C 

46/47 intron. Data unavailable for Schizocyathidae, the only valid 
extant family not represented here. Branch supports not assessed in 
detail. Colours differentiate adjacent families and are not unique for 
any taxa, except for genera assigned incertae sedis that are shown in 
black

M.V. Kitahara et al.
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statistically using SeqPHASE (Flot 2010). Furthermore, 
direct sequencing of ITS has been carried out following PCR 
with primers demonstrating high fidelity for a single copy 
(Takabayashi et al. 1998a, b, 2003; Lam and Morton 2003; 
Benzoni et al. 2007, 2010, 2011, 2012a, b, 2014; Mangubhai 
et al. 2007; Stefani et al. 2008b; Knittweis et al. 2009; Huang 
et al. 2011; Benzoni and Stefani 2012). Nevertheless, since 
the intra-individual variability of these nuclear markers is not 
fully understood (Chen et al. 2004; Vollmer and Palumbi 
2004), caution should be exercised even when using these 
primer sets.

Mitochondrial loci have also been popular markers in phy-
logenetic analyses. These are haploid, and thus unambiguous 
sequences can be obtained generally without cloning. While 
mitochondrial genes typically evolve faster than nuclear 
genes in metazoans, anthozoans show an opposite pattern 
(van Oppen et al. 1999; Shearer et al. 2002; Fukami and 
Knowlton 2005; Tseng et al. 2005; Hellberg 2006; Huang 
et al. 2008; Chen et al. 2009). Therefore, these genes are more 
informative for reconstructing deep coral phylogenies. Other 
than the 16S rDNA that established widespread subordinal 
non-monophyly (Romano and Palumbi 1996, 1997; Le Goff-
Vitry et al. 2004), 12S rDNA, cytochrome b and cytochrome 
c oxidase subunit I (COI) were purposed for corals relatively 
early (Medina et al. 1999; van Oppen et al. 1999; Chen and Yu 
2000; Fukami et al. 2000) and have been used for inferring 
large scleractinian trees effectively (Chen et al. 2002; Fukami 
et al. 2004b, 2008; Barbeitos et al. 2010; Kitahara et al. 2010b, 
2013; Stolarski et al. 2011; Arrigoni et al. 2012, 2014c; Huang 
2012; Huang and Roy 2013, 2015; Marcelino et al. 2013; 
Curnick et al. 2015; Fig. 4.1). The gene encoding ATP syn-
thase subunit 6 is also commonly used, but primarily for 
Acroporidae (Fukami et al. 2000; Forsman et al. 2010).

Different taxa contain various intergenic regions within 
their mitochondrial genomes, but these may not be ortholo-
gous across species or are not amenable for alignment across 
distant clades. The noncoding intergenic region identified by 
Fukami et al. (2004a), for instance, was too variable to be 
aligned across all of Merulinidae (Huang et al. 2011) and is 
not orthologous with the intergenic region (or the putative 
control region) in Acropora (van Oppen et al. 2001; 
Wolstenholme 2004; Richards et al. 2008, 2013), Montipora 
(van Oppen et al. 2004; Forsman et al. 2010), Porites 
(Forsman et al. 2009) or Agariciidae (Luck et al. 2013; 
Pochon et al. 2015). These fast-evolving mitochondrial 
markers remain useful for phylogenetic studies among 
closely-related species.

Whole mitochondrial genomes have also been extremely 
important sources of data for large coral phylogenies (Medina 
et al. 2006; Emblem et al. 2011; Kayal et al. 2013; Lin et al. 
2011, 2014). Nevertheless, we note that major clades appear 
to exhibit distinct patterns of mtDNA sequence evolution 
that could be responsible for various topological inconsisten-

cies, such as the paraphyly of Scleractinia with respect to 
Corallimorpharia (Kitahara et al. 2014), i.e., the “naked 
coral” hypothesis (Medina et al. 2006).

On the one hand, single-gene analyses were the rule 
among the earliest studies because of the high cost of DNA 
sequencing and the paucity of suitable markers, primers and 
publicly available data. On the other hand, there were studies 
drawing phylogenetic inference based on more than one loci, 
including Lopez and Knowlton’s (1997) analyses of two 
nuclear genes and AFLP. Early researchers also acknowl-
edged that nuclear and mitochondrial genes evolve at differ-
ent rates and thus both should be examined, albeit as separate 
datasets (Medina et al. 1999; Romano and Cairns 2000; van 
Oppen et al. 2001). Sequence data were combined beginning 
with the seminal study by Fukami et al. (2004b), which con-
catenated the cytochrome b and COI genes after passing the 
incongruence length difference test (Farris et al. 1995). The 
use of more than one marker for inferring species relation-
ships has become the norm in more recent studies, aided by 
a variety of nucleotide substitution models (Posada and 
Crandall 2001) and the ability to use mixed models in a mul-
tilocus partitioned-by-gene analysis (Ronquist and 
Huelsenbeck 2003; Stamatakis 2006).

Authors remain split between concatenating markers to 
obtain hidden support (Huang et al. 2011; Addamo et al. 
2012; Arrigoni et al. 2012, 2014a, b, c; Benzoni et al. 2012b) 
and making separate estimations of gene trees (Benzoni et al. 
2011, 2012a, 2014; Gittenberger et al. 2011; Bongaerts et al. 
2013; Kitano et al. 2013, 2014; Huang et al. 2014a; Arrigoni 
et al. 2015). With more markers available for inferring phy-
logenies, combined analyses of multilocus data may be the 
way forward. Recent large-scale studies (>450 species) have 
sought to concatenate data from seven or more loci (Huang 
2012; Huang and Roy 2013, 2015; Curnick et al. 2015; Fig. 
4.1). However, different genes cannot be assumed to share 
the same evolutionary history, and the phylogeny recon-
structed for every gene may differ from the actual species 
history (Maddison and Knowles 2006). Thus, for species 
classifications, methods that use coalescent theory to jointly 
estimate gene trees and the species tree would be more 
appropriate (Liu and Pearl 2007; Liu 2008; Liu et al. 2008; 
Heled and Drummond 2010). A recent study of Porites cor-
als based on the multilocus coalescence showed that the 
three branching forms found in the Caribbean are probably 
not distinct species (Prada et al. 2014).

These species tree methods have become especially rele-
vant with the development of high-throughput sequencing 
technologies because it is now possible to generate ortholo-
gous sequence data in great abundance (McCormack et al. 
2013). Such data can be obtained through the sequencing of 
expressed sequence tags (Philippe and Telford 2006), restric-
tion site associated DNA (Rubin et al. 2012), and probe- 
based target enrichment of nuclear ultraconserved elements 
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(Faircloth et al. 2012; Lemmon et al. 2012), among several 
others. The assembly of the complete Acropora digitifera 
genome (Shinzato et al. 2011) has provided a much-needed 
reference to identify and utilise orthologous regions for phy-
logenetic analyses. Indeed, we expect these new methods to 
be applied on scleractinians extensively in the next decade, 
sustaining the “molecular revolution” (Stolarski and 
Roniewicz 2001: 1101) of coral systematics.

4.3  The Phylogeny of Scleractinia: 
Integrating Molecular 
and Morphological Evidence

The origin of modern Scleractinia is not well understood. 
Fossils appeared abruptly in the Middle Triassic (ca. 240 Ma 
ago) already represented by a wide variety of solitary and 
colonial forms (Roniewicz and Morycowa 1993; Veron 
1995; Stanley Jr 2003). From colony integration, e.g., phac-
eloid, meandroid and thamnasteroid (Wells 1956; Stanley Jr 
2003), to the structural organisation within individual coral-
lites, e.g., septal ornamentation and axial structures 
(Roniewicz 1989; Roniewicz and Stanley Jr 1998; Roniewicz 
and Stolarski 1999, 2001), the range of morphological diver-
sity observed among Triassic fossils is comparable to that in 
modern scleractinians. Moreover, the recent proposal that 
Kilbuchophyllia (Ordovician, ca. 450 Ma ago; Scrutton and 
Clarkson 1991; Scrutton 1993), Numidiaphyllum and 
Houchangocyathus (Permian, ca. 265–255 Ma ago; Ezaki 
1997, 2000) were true scleractinian corals, in addition to 
molecular clock estimates (Stolarski et al. 2011), suggest an 
extensive Palaeozoic evolutionary history for Scleractinia.

The foundational studies of evolutionary relationships in 
the late nineteenth and early twentieth centuries relied exclu-
sively on macromorphological skeletal characteristics of 
extant and extinct scleractinians. As they are sessile or have 
restricted capacity for movement (e.g., free-living and/or 
solitary), corals are subjected to the environmental condi-
tions at their place of settlement. Consequently, they exhibit 
considerable morphological plasticity, driven in part by vari-
ous ecological factors (Foster 1979a, b, 1980; Best et al. 
1984; Hoeksema 1991; Budd 1993; Todd 2008). According 
to Lowenstein (1985), taxonomic research based exclusively 
on morphology is plagued by two major limitations. The first 
arises from convergence, in which unrelated taxa resemble 
one another as a result of having adapted to living in similar 
environments, so morphological similarities are not indica-
tive of close evolutionary relationships. The second limita-
tion concerns traits that may evolve at distinct rates in 
different lineages. Not surprisingly, the small number of 
“reliable” macromorphological characters, as indicated by 
Cairns (2001), and the uncertain impact of environmental 
variables on skeletal morphology have severely hampered 

attempts to infer relationships among scleractinian suborders 
and families (Romano and Cairns 2000; Stolarski and 
Roniewicz 2001; Le Goff-Vitry et al. 2004; Fukami et al. 
2008). As such, evolutionary hypotheses based on morpho-
logical characters have resulted in several different taxo-
nomic schemes (e.g., Vaughan and Wells 1943; Alloiteau 
1952; Wells 1956; Chevalier and Beauvais 1987; Veron 
1995; for a review of the first four schemes, see Stolarski and 
Roniewicz 2001). Despite the long history of the subject 
(e.g., Linnaeus 1758; Pallas 1766; Forskål 1775; Esper 1795; 
Lamarck 1801), taxonomic and evolutionary relationships 
within this important habitat-forming anthozoan order 
remain largely uncertain to date.

In their first comprehensive and consistent scheme that 
was heavily influenced by the skeletal macromorphological 
research of Milne Edwards and Haime (e.g., 1848a, b, c, d, e, 
1850, 1851a, b, 1857), Vaughan and Wells (1943) hierarchi-
cally ordered several characters and devised keys to genera 
centered around an evolutionary hypothesis of Scleractinia. 
Although more recent analyses have included additional and 
more detailed subcorallite morphology, the revised version 
of this scheme published in the Treatise on Invertebrate 
Paleontology (Wells 1956) is still widely applied (Wood 
1983; Veron 1986, 2000). The essence of Wells’ (1956) 
scheme is that five scleractinian suborders can be distin-
guished based on characteristics of septal trabeculae and sep-
tal structure, with 33 families differentiated by wall type, 
occurrence of endotheca and type of budding.

The incorporation of subcorallite data into scleractinian 
classification was pioneered by Alloiteau (1952, 1957), who 
recognised a total of 65 families (30 with extant representa-
tives) belonging to eight suborders. These groupings were 
later revised with greater emphasis on microstructural char-
acters by Chevalier and Beauvais (1987), who proposed 11 
suborders embracing 55 families. However, according to 
Stolarski and Roniewicz (2001: 1095), the microstructural 
criteria applied “to distinguish suborders containing only 
extinct taxa (i.e., Pachythecaliina, Distichophylliina, 
Archaeofungiina) are unclear or have not been supported by 
further research”.

The most recent Scleractinia-wide classification divided 
the order into 13 suborders (7 with extant representatives) 
and 61 families (24 extant) (Veron 1995). However, as 
explicitly stated by the author, it had many points of uncer-
tainty at subordinal and family levels. According to Budd 
et al. (2010), this evolutionary scheme had even lower reso-
lution among families and suborders than the classification 
of Wells (1956), and by that time cladistic analyses had yet 
to contribute significantly to our understanding of scleractin-
ian evolution. Indeed, the use of morphological characters to 
establish phylogenetic relationships within coral families 
have proved challenging and, as a consequence, applied to 
only a small number of extant families—Fungiidae (Cairns 
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1984; Hoeksema 1989, 1991, 1993), Mussidae and 
Siderastreidae (Pandolfi 1992), Turbinoliidae (Cairns 1997), 
Faviidae (Johnson 1998), Acroporidae (Wallace 1999), 
Dendrophylliidae (Cairns 2001), Atlantic Faviidae and 
Mussidae (Budd and Smith 2005), and Pacific Faviidae 
(Huang et al. 2009).

The recent recognition that the scleractinian skeleton is 
biologically controlled and not easily perturbed by environ-
mental factors at the microstructural level (Janiszewska et al. 
2011, 2013) has led to more detailed subcorallite observa-
tions (Cuif et al. 2003; Budd et al. 2012; Kitahara et al. 2012, 
2013; Arrigoni et al. 2014a; Huang et al. 2014b; Janiszewska 
et al. 2015). Indeed, greater attention has been given to previ-
ously overlooked micromorphological and microstructural 
characters. Specifically, micromorphology considers the 
shapes of teeth along the wall, septa, columella, and septal 
face granulations, while microstructure is concerned with the 
cross-sectional wall structure, arrangements of rapid accre-
tion centres and thickening deposits within the wall, septa, 
and columella (Cuif and Perrin 1999; Budd and Stolarski 
2009, 2011). Together with improvements in our understand-
ing of skeletal ontogeny, new studies of subcorallite mor-
phology are shedding light on evolutionary relationships 
within the order. Indeed, the finding that intra-fibrous organic 
matrices containing complex macromolecular assemblages 
actually control nucleation, spatial delineation and organisa-
tion of basic microstructural skeletal units (Lowenstam and 
Weiner 1989) has provided support for several molecular 
clades (e.g., Cuif et al. 2003; Benzoni et al. 2007; Budd and 
Stolarski 2009, 2011; Janiszewska et al. 2011, 2015; Kitahara 
et al. 2012, 2013).

DNA sequences provide large numbers of phylogeneti-
cally informative characters that are independent of the high 
morphological variability of the coral skeleton. Various 
degrees of incongruence between morphological and molec-
ular phylogenies are seen at all taxonomic levels, but the 
most striking is found at the subordinal level. While five sub-
orders are recognised in the most widely-accepted morpho-
logical scheme (Wells 1956), only three main clades at the 
deepest nodes—“basal”, “complex” and “robust”—have 
been recovered based on molecular analyses (Romano and 
Palumbi 1996; Kitahara et al. 2010b; Stolarski et al. 2011; 
Huang 2012). Nearly every genetic locus tested to date sup-
ports these latter groupings. The 28S rDNA (Chen et al. 
1995; Cuif et al. 2003), 16S rDNA (Romano and Palumbi 
1996, 1997; Le Goff-Vitry et al. 2004; Kitahara et al. 2010a), 
12S rDNA (Chen et al. 2002), combined 16S rDNA and 28S 
rDNA (Romano and Cairns 2000), combined cytochrome b 
and COI, as well as β-tubulin (Fukami et al. 2008) all support 
the split between the “complex” and “robust” clades. The 
sister relationship between the “basal” clade and the rest of 
Scleractinia has been recovered by 12S rDNA, COI, 28S 
rDNA (Kitahara et al. 2010b; Stolarski et al. 2011), and most 

other mitochondrial loci (Huang 2012; Huang and Roy 2013, 
2015; Kitahara et al. 2014; Lin et al. 2014). To date, no mor-
phological characters associated with the hard skeleton have 
been found to correlate directly with the molecular splits. 
Interestingly, an examination of four “complex” and seven 
“robust” corals revealed that the two clades differ in embry-
onic developmental morphology (“prawn chip” in “com-
plex” corals), with the notable exception of the “complex” 
Pavona decussata, which is more similar to “robust” clade 
representatives in this respect (Okubo et al. 2013). 
Expectedly, without any trace of soft tissue preserved, it 
would be even more challenging to position the extinct sub-
orders on the coral phylogeny.

At the family level, the picture is not very different. Most 
families composed exclusively of zooxanthellate species 
have been shown by molecular data to be polyphyletic 
(Fukami et al. 2004b, 2008; Arrigoni et al. 2012). Among 
these, the most poorly understood families were Faviidae, 
Merulinidae, Pectiniidae and Trachyphylliidae (sensu Veron 
2000). The Indo-Pacific representatives of these taxa had 
been called the “Bigmessidae” for their extremely chaotic 
and unnatural classification (Budd 2009; Huang et al. 2011). 
In contrast, the molecular evolutionary hypothesis posits that 
most families composed exclusively or predominantly of 
azooxanthellate corals are monophyletic. Therefore, apart 
from Caryophylliidae and Oculinidae, molecular groupings 
of azooxanthellate taxa are broadly consistent with classical 
taxonomy (Kitahara et al. 2010b; Stolarski et al. 2011).

According to our present understanding, the order 
Scleractinia comprises at least 30 clades that correspond to 
family-level groups. Among them, Gardineriidae and 
Micrabaciidae belong to the “basal” clade; Acroporidae, 
Agariciidae, Astrocoeniidae, Dendrophylliidae, 
Euphylliidae, Flabellidae, Fungiacyathidae, Guyniidae, 
Poritidae, Siderastreidae and Turbinoliidae from the “com-
plex” clade; and Anthemiphylliidae, Caryophylliidae, 
Coscinaraeidae, Deltocyathiidae, Diploastraeidae, 
Fungiidae, Lobophylliidae, Meandrinidae, Merulinidae, 
Montastraeidae, Mussidae, Oculinidae, Plesiastreidae, 
Pocilloporidae and Psammocoridae represent the “robust” 
clade (Fig. 4.1). Genetic sampling for three families is lim-
ited or nonexistent. Rhizangiidae is represented only by the 
mitochondrial genome of an Astrangia species (Medina et al. 
2006), which is closely related to Oculina (Huang 2012; 
Huang and Roy 2013, 2015). Stenocyathidae consists of 
three monotypic genera, of which only Stenocyathus has 
been sequenced and found nested within Caryophylliidae 
(Cuif et al. 2003; Kitahara et al. 2010b; Stolarski et al. 2011). 
Schizocyathidae contains three monotypic genera that have 
never been sampled for genetic data. Among the “robust” 
corals, Madrepora and Heterocyathus + Oulastrea appear to 
be two phylogenetically distinct lineages that cannot be 
placed in any of the above families.
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4.4  New Taxonomic Revisions of Families 
and Genera

The abundance of taxonomic revisionary studies is increas-
ing in recent years, but the resolution of all scleractinian 
families and genera is far from complete. A large amount of 
data and comprehensive taxonomic coverage are necessary 
to justify formal name changes following the International 
Code of Zoological Nomenclature, which have taken consid-
erable time and effort by numerous coral taxonomists. 
Consequently, the first revision to jointly consider DNA 
sequence data and traditional forms of evidence such as mor-
phology and reproduction in a phylogenetic context only 
emerged more than a decade after the first scleractinian 
molecular phylogenies by Romano and Palumbi (1996) and 
Veron et al. (1996).

The pioneering study by Wallace et al. (2007) used one 
mitochondrial (cytochome b) and one nuclear (histone 2a 
and 2b) gene to show that subgenus Isopora, previously 
placed within Acropora, was sufficiently distinct to be ele-
vated to genus within family Acroporidae. Isopora tends to 
form more than one axial corallite per branch, while Acropora 
contains only a single axial corallite (Wallace et al. 2012). 
Reproductively, Isopora broods planula larvae and its 
oocytes are attached via a stalk to the mesenteries, in contrast 
to Acropora spp. which are broadcast spawners and have 
unstalked gonads.

Acroporidae expanded further when, following the com-
prehensive reconstruction of Fukami et al. (2008), Dai and 
Horng (2009a) transferred Alveopora from Poritidae to 
Acroporidae (see also Licuanan 2009). Like its new confa-
milials, Alveopora possesses synapticulothecal walls 
(Wallace 2012). Its exact phylogenetic placement is unstable 
to date, although evidence has pointed to a close relationship 
with Astreopora (Fukami et al. 2008; Kitahara et al. 2010b, 
2014; Huang and Roy 2015; Kitano et al. 2014; Fig. 4.1).

Another group that underwent taxonomic changes rela-
tively early was Siderastreidae. Fukami et al. (2008) first 
showed that the family was polyphyletic, with Siderastrea 
placed in the “complex” clade while the rest of the family was 
deep within the “robust” clade. Furthermore, Benzoni et al. 
(2007, 2010) found strong support to distinguish Psammocora 
from other “robust” siderastreids and resurrected 
Psammocoridae to accommodate the genus. The most recent 
analyses indicated that Coscinaraea, Craterastrea, Horastrea 
and Anomastraea constituted a monophyletic group that is 
sister to Psammocoridae, so the family Coscinaraeidae was 
proposed to contain these genera (Benzoni et al. 2012b; see 
also Huang 2012; Huang and Roy 2013, 2015).

These revisions implicated the closely-related Fungiidae 
as two former polystomatous and attached siderastreids, 

Coscinaraea wellsi and Psammocora explanulata, were 
genetically nested within the predominantly monostomatous 
and free-living Fungiidae and possessed the fungiid synapo-
morphy of compound synapticulae or fulturae, continuous 
buttress-like structures connecting the septa (Benzoni et al. 
2007). The two rogue species were eventually transferred 
into Cycloseris (Benzoni et al. 2012a). Siderastreidae has 
thus been split into Siderastreidae, Psammocoridae and 
Coscinaraeidae, with two species transferred into Fungiidae. 
The latter also underwent a major reclassification based pri-
marily on COI and ITS data, which supported the elevation 
of several subgenera previously in Fungia to genus, includ-
ing Cycloseris, Danafungia, Lobactis and Pleuractis 
(Gittenberger et al. 2011). Several movements between gen-
era were also proposed, such as the transfer of members of 
Fungia (Verrillofungia) into Lithophyllon, Lithophyllon 
mokai into Cycloseris, Fungia (Danafungia) fralinae into 
Heliofungia, and Fungia (Wellsofungia) granulosa into 
Pleuractis. Transformations of life history traits onto the 
molecular phylogeny further showed that the ability to be 
free living was lost four times and the evolution of multiple 
mouths occurred ten times, all independently throughout the 
evolutionary history of Fungiidae (Gittenberger et al. 2011).

The extreme polyphyly of the “robust” families Faviidae, 
Merulinidae, Mussidae and Pectiniidae revealed by Fukami 
et al. (2004b, 2008), coupled with the large number of spe-
cies and genera in these taxa, posed severe challenges for 
taxonomic definitions of these corals. There was widespread 
acknowledgement that reclassification was necessary 
(Fukami 2008; Budd 2009; Budd et al. 2010), but the 
 convergence of most macromorphological characters con-
ventionally used to define genera and families hindered revi-
sionary work. Many molecular (Huang et al. 2009, 2011; 
Benzoni et al. 2011; Arrigoni et al. 2012; Schwartz et al. 
2012) and morphological (Budd and Smith 2005; Budd and 
Stolarski 2009, 2011) studies identified problematic taxa and 
highlighted phylogenetically informative characters—
including molecular markers, macromorphology, micromor-
phology and microstructure—before the first taxonomic 
monograph was published.

In a massive undertaking, Budd et al. (2012) expanded 
Merulinidae to include all members of the “Bigmessidae” 
clade (XVII sensu Fukami et al. 2008), made up of mostly 
Indo-Pacific species from Faviidae, Merulinidae, Pectiniidae 
and Trachyphylliidae as defined by Veron (2000). They also 
relegated Faviidae to subfamily Faviinae as a group restricted 
to the Atlantic, and synonymised Pectiniidae and 
Trachyphylliidae as Merulinidae. Mussidae was redefined to 
include Mussinae (Atlantic mussids) and Faviinae. Finally, 
Pacific “mussids”, the three remaining pectiniid genera, 
Echinomorpha, Echinophyllia and Oxypora, as well as 
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Moseleya were placed in the new family Lobophylliidae (Dai 
and Horng 2009b).

Budd et al. (2012) also proposed several modifications at 
the genus level. The highly polyphyletic Favia and 
Montastraea were trimmed of their Indo-Pacific and 
“Bigmessidae” members, which were accommodated by 
Dipsastraea and Phymastrea respectively, so that Favia now 
contains F. fragum and F. gravida, while Montastraea only 
includes M. cavernosa. Montastraea and Diploastrea were 
also placed in their own respective families Montastraeidae 
and Diploastraeidae as appropriate for their distinctiveness. 
Scolymia became an Atlantic genus, so its Indo-Pacific con-
stituents became Homophyllia australis and Parascolymia 
vitiensis.

More recently, Huang et al. (2014a, b) examined 
Merulinidae more closely and found that more revisions at 
the genus level were necessary. In particular, Astrea was res-
urrected and a new genus Paramontastraea established to 
contain some species from Phymastrea, which was syn-
onymised as Favites. Coelastrea was revived and a new 
genus Paragoniastrea described to accommodate distinct 
species previously classed in Goniastrea. Barabattoia and 
Paraclavarina were neither genetically nor morphologically 
separated from Dipsastraea and Merulina respectively, and 
were thus synonymised.

Major changes to the recently-established Lobophylliidae 
are ongoing, as Arrigoni et al. (2014b) considered 
Australomussa as a junior synonym of Parascolymia, and 
also resurrected Sclerophyllia to accommodate S. margariti-
cola and its sister species S. (previously Acanthastrea) max-
ima that are endemic to waters surrounding the Arabian 
peninsula (Arrigoni et al. 2015).

Several taxa thought to be closely affiliated with Pacific 
“faviids” and “mussids”—Merulinidae and Lobophylliidae 
respectively—are now in distant “robust” taxa. Dai and 
Horng (2009b) transferred Plesiastrea into Plesiastreidae 
(clade XIV sensu Fukami et al. 2008), although only the 
move of the type species P. versipora has been validated 
since P. devantieri is in Astrea, Merulinidae (Huang et al. 
2014b). Blastomussa was also transferred into Plesiastreidae 
(Dai and Horng 2009b), but it has been considered incertae 
sedis more recently (Budd et al. 2012; Benzoni et al. 2014) 
as Plesiastrea is more closely related to the azooxanthellate 
species Cyathelia axillaris, Trochocyathus efateensis and 
Tethocyathus virgatus (Kitahara et al. 2010b; Benzoni et al. 
2011; Huang 2012; Huang and Roy 2013, 2015). Furthermore, 
the closest relatives of Blastomussa are Physogyra, Plerogyra 
and Nemenzophyllia, all previously in the “complex” 
Euphylliidae and now incertae sedis (Fukami et al. 2008; 
Kitahara et al. 2010b; Benzoni et al. 2014). Oulastrea is part 
of a deep-branching clade sister to Fungiidae, Psammocoridae 
and Coscinaraeidae (Huang 2012; Huang and Roy 2013, 
2015), and may revert to the family Oulastreidae (Veron 

2013). Perhaps the most enigmatic and still unresolved case 
of a former Pacific “faviid” is that of Leptastrea, which has 
been consistently shown as closely related to Fungiidae 
based on different markers (Romano and Palumbi 1996; 
Romano and Cairns 2000; Fukami et al. 2008; Kitahara et al. 
2010b) despite striking differences in morphology between 
this genus and any of the known mushroom coral genera.

While the first integrative taxonomic revision was per-
formed for Acroporidae in the “complex” clade, progress on 
other “complex” groups has been limited compared to the 
“robust” corals. Only recently was the first comprehensive 
revision of Poritidae published. Kitano et al. (2014) analysed 
samples from all five poritid genera using COI and ITS to 
show that Porites was monophyletic, but Machadoporites 
and Poritipora cannot be distinguished from Goniopora and 
were thus synonymised. The authors also found that 
Goniopora stutchburyi was genetically isolated from its con-
generics but was the only sister species of Stylaraea, and 
thus moved it into a new genus, Bernardpora.

The azooxanthellate corals have lagged far behind in 
terms of revisionary work, due to much fewer taxonomists 
working on the numerous scleractinian lineages that contain 
them. Nevertheless, problematic taxa have been identified 
through broad-scale phylogenetic analyses (Kitahara et al. 
2010b; Stolarski et al. 2011), and revisions have commenced. 
For instance, Dactylotrochus cervicornis was genetically 
nested among Agariciidae species, so Kitahara et al. (2012) 
moved it from Caryophylliidae into Agariciidae, making it 
the first extant agariciid that is solitary and azooxanthellate. 
An azooxanthellate shallow-water agariciid, Leptoseris trog-
lodyta, was described shortly after (Hoeksema 2012). 
Finally, a new family Deltocyathiidae that included nearly all 
the species of Deltocyathus was established for an early- 
diverging clade traditionally placed in Caryophylliidae 
(Kitahara et al. 2013).

4.5  Detection of Species Boundaries

Identification of coral species has always been problematic. 
The overlap of morphological variation between and within 
colonies (i.e., between corallites) obscures species boundar-
ies. Although species delimitation among scleractinian cor-
als has been studied for many corals, data are still limited. 
The most studied coral in this respect is the Orbicella annu-
laris complex. This group of three species, O. annularis, O. 
franksi and O. faveolata, is amongst the dominant corals of 
many Caribbean reefs. Historically, they have been consid-
ered as one species, O. annularis, with several morphs dis-
tributed along various environmental gradients, including 
different depths and reef zones (Graus and Macintyre 1976, 
1989). However, a tremendous number of studies on mor-
phology, reproduction, ecology, growth rates and genetics 
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have been carried out (Knowlton et al. 1992, 1997; van 
Veghel and Bak 1993, 1994; van Veghel 1994; van Veghel 
and Kahmann 1994; Weil and Knowlton 1994; van Veghel 
and Bosscher 1995; van Veghel et al. 1996; Lopez and 
Knowlton 1997; Szmant et al. 1997; Lopez et al. 1999; 
Medina et al. 1999; Manica and Carter 2000; Knowlton and 
Budd 2001; Fukami et al. 2004a; Levitan et al. 2004, 2011), 
nearly all of which showing that the complex is not a single 
species with high morphological variation but comprises 
three separate species.

The research effort devoted to resolving the Orbicella 
annularis complex was unprecedented for corals, and 
remains unmatched for other taxa that are seemingly as com-
plex. Nevertheless, there have been several cases whereby 
species complexes showed varied levels of separation and no 
taxonomic action was taken. We describe some of these 
examples as follows.

In order to investigate species boundaries, crossing exper-
iments and spawning observations are the most precise 
approaches to test for reproductive isolation between species 
(Lang 1984). However, data from such studies are limited in 
terms of taxonomic and geographic coverage. Crosses have 
been tested for a variety of Acropora species and interspecific 
fertilisation observed in several combinations (Willis et al. 
1997; Hatta et al. 1999; van Oppen et al. 2002; Fukami et al. 
2003; Isomura et al. 2013). Nevertheless, interspecific fertili-
sation rates tend to be lower than intraspecific ones (Wei 
et al. 2012), allowing species boundaries to be defined (Willis 
et al. 2006). Acropora colonies with intermediate morpholo-
gies between species are generally not used for such experi-
ments and remain challenging subjects for taxonomic 
research. Species boundaries of such difficult morphologies 
have been explored in two instances. First, five species and 
seven morphs from the A. humilis species group were exam-
ined by Wolstenholme (2004) for their reproductive patterns 
and molecular phylogeny. The data indicated that the five 
species were valid and the morphs at different stages of 
divergence from the valid species. Second, Suzuki and 
Fukami (2012) analysed the fertilisation rates and molecular 
phylogenetic relationships of three morphs of A. solitaryen-
sis and found that two morphs were actual variants of the 
species while the last one was an undescribed species.

The merulinid genus Platygyra has also been used in mul-
tiple experimental crosses due to its abundance in the Indo- 
Pacific and problematic species identities. Miller and 
Babcock (1997) performed crossing experiments and 
recorded spawning times to show that reproductive isolation 
was severely limited among seven species in the Great 
Barrier Reef. Moreover, Miller and Benzie (1997) found that 
three species, P. daedalea, P. sinensis and P. pini contained 
no fixed differences in allozyme frequencies. However, con-
trary to these results, molecular phylogenetic analysis using 
ITS sequences revealed clear genetic differences between 

P. sinensis and P. pini in Hong Kong (Lam and Morton 2003). 
To date, species boundaries among Platygyra species remain 
unresolved, although results have so far suggested that geo-
graphic variation in the degree of species separation is 
apparent.

Cryptic diversity within species exists in several other 
corals. For example, comparisons of Mycedium elephantotus 
colonies between different localities in Taiwan revealed the 
existence of at least two reproductive groups based on tim-
ings of gametogenesis and spawning, supported by allozyme 
electrophoretic data (Dai et al. 2000). In fact, intraspecific 
differentiation was detected between co-occurring popula-
tions of Cycloseris costulata in Indonesia (Gittenberger and 
Hoeksema 2006), P. daedalea in Kenya (Mangubhai et al. 
2007), and Favites valenciennesi in Japan (Fukami and 
Nomura 2009). Larger geographic contrasts such as between 
Red Sea and Pacific Ocean populations of Dipsastraea and 
Stylophora have also revealed molecular separation between 
regions (Stefani et al. 2011; Arrigoni et al. 2012; 
Keshavmurthy et al. 2013). However, to reach a stage where 
taxonomic revisions can be attempted, broad geographic 
sampling across the Indo-Pacific and detailed studies of 
closely-related species are necessary, such as in the case of 
species in Astreopora (Suzuki and Nomura 2013), 
Pocillopora (Pinzón and LaJeunesse 2010; Pinzón et al. 
2012, 2013; Torda et al. 2013a, b; Marti-Puig et al. 2014; 
Schmidt-Roach et al. 2013, 2014) and Psammocora (Benzoni 
et al. 2010; Stefani et al. 2008a). In particular, boundaries 
among Psammocora species were clarified through a series 
of rigorous molecular and morphological analyses (Stefani 
et al. 2008a, b; Benzoni et al. 2007, 2010), which saw 24 
nominal species reorganised as seven valid species—P. 
albopicta, P. contigua, P. digitata, P. haimiana, P. nierstraszi, 
P. profundacella and P. stellata.

Crossing experiments are usually performed for 
broadcast- spawning corals because it is relatively easy to 
collect eggs and sperm, but are difficult to apply on species 
that brood, are gonochoric or release daughter colonies asex-
ually. Temporal reproductive isolation has been examined in 
some fungiids (Loya et al. 2009), but for other taxa, detailed 
morphological analyses with type material combined with 
molecular methods have been used to define species bound-
aries, such as in Pocillopora damicornis (Schmidt-Roach 
et al. 2014) and Goniopora stokesi (Kitano et al. 2013). 
Considering that coral spawning usually occurs once a year, 
it may be prudent to use these approaches on top of crossing 
experiments. Unfortunately, the latter may be the only way 
to tell species apart as some closely-related corals may be 
indistinguishable with morphological and molecular meth-
ods (e.g., Forsman et al. 2009).

An important goal of species delimitation is to character-
ise intraspecific morphological variation, but cryptic species 
that are still undergoing introgression may occur without 
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fixed morphological differences throughout their distribu-
tion, such as in Acropora cytherea and A. hyacinthus (Ladner 
and Palumbi 2012). We expect more corals to possess such a 
signature, but an unambiguous procedure to deal with them 
taxonomically remains to be established.

4.6  Unresolved Taxa and the Future 
of Coral Systematics

Much of biology depends critically on a reliable taxonomic 
framework (Wheeler 2004). In modern times, such a frame-
work has been built with molecular data on top of traditional 
and updated morphological evidence that has been the main-
stay of taxonomy. Often, developmental, reproductive, and 
other ecological data are also gleaned for such research. 
Within the last two decades, coral biologists have developed 
a systematic phylogenetic approach that integrates these 
lines of evidence. Indeed, molecular data have been the 
major driving force in modern coral taxonomy, and together 
with the application of new techniques to explore subcoral-
lite morphology, new light is still being shed on scleractinian 
phylogeny.

Although morphological evidence to support the three 
deep molecular clades is still scarce, microstructural charac-
ters such as the structure and arrangement of rapid accretion 
deposits and thickening deposits have proven to be phyloge-
netically informative at the family level (Budd and Stolarski 
2011; Kitahara et al. 2013; Arrigoni et al. 2014a). 
Micromorphological traits such as shape of septal teeth, the 
development of secondary calcification axes and correspond-
ing granulation on septal teeth and faces, the shape of the 
area between teeth, fulturae (Gill 1980), and others, are also 
useful for the differentiation of some genera within zooxan-
thellate coral families and genera (Benzoni et al. 2007; Budd 
and Stolarski 2009). In the same way, the delineation of pri-
marily azooxanthellate coral families has largely been 
resolved, with few notable exceptions including 
Caryophylliidae (Kitahara et al. 2010b, 2012, 2013; Stolarski 
et al. 2011) and Oculinidae (Kitahara et al. 2010b; Huang 
and Roy 2015).

While rapid improvements have been achieved in sclerac-
tinian systematics, there are still unresolved taxa. In reality, 
the evolutionary positions of some families and genera, espe-
cially those still based solely on macromorphological char-
acters (e.g., Wells 1956), remain tentative. Furthermore, only 
about one-third of all scleractinian species have been exam-
ined phylogenetically (Fig. 4.1; Huang and Roy 2015), and 
for most of these species, few genetic markers have been 
used. Families that are still showing considerable uncertain-
ties in their evolutionary positions include Anthemiphylliidae, 
Astrocoeniidae, Caryophylliidae, Oculinidae and 
Siderastreidae (Benzoni et al. 2007; Fukami et al. 2008; 

Kitahara et al. 2010b, 2012; Huang 2012; Huang and Roy 
2013, 2015). In the case of genera, the emerging picture is 
even more concerning, as we are still unable to place many 
of them precisely on the phylogeny. They include 
Anthemiphyllia, Astrangia, Catalaphyllia, Cladocora, 
Culicia, Gyrosmilia, Indophyllia, Leptastrea, Montigyra, 
Paracyathus, Polycyathus, Simplastrea, Solenastrea and 
Stephanocyathus. Representatives of some of these genera 
are rare or restricted to remote localities and sampling them 
for molecular analyses poses a practical challenge. 
Nevertheless, some genera with sufficient numbers of repre-
sentatives tested have been shown to be para- or polyphy-
letic. Among them, some of the most problematic genera are 
within the families Agariciidae (Leptoseris and Pavona), 
Dendrophylliidae (Balanophyllia, Cladopsammia, 
Dendrophyllia and Rhizopsammia), Caryophylliidae 
(Phyllangia and Rhizosmilia), Euphylliidae (Euphyllia and 
Galaxea), Flabellidae (Flabellum and Truncatoflabellum) 
and Oculinidae (Oculina). Unfortunately, only a few genetic 
markers have been sequenced from these genera, and most 
are only informative at higher taxonomic levels.

Endeavouring to improve our understanding of scleractin-
ian evolution as a lineage and as a system, we recognise and 
consider some important future research directions. Amongst 
these, the most obvious is “the species problem in corals” as 
foreshadowed by Hoffmeister (1926: 151) and nowadays 
made increasingly clear by the application of molecular tech-
niques; establishing a clear and unambiguous phylogenetic 
framework must be one of the first challenges to be addressed. 
Since reliable taxonomic information is essential for the 
interpretation of molecular phylogenies, institutional and 
financial investments should be made toward building strong 
specimen collections and spurring rigorous taxonomic 
research. In particular, the inclusion of more material with 
broader taxon coverage and multiple sampling localities in 
future phylogenetic studies should be supported consistently 
by in situ images, collection of voucher specimens and fixed 
tissue samples for deposition in accessible repositories. This 
will allow re-examination of evidence as new molecular and 
morphological techniques become available. Moreover, 
importance should also be accorded to existing historical ref-
erence collections, including type material of extant and 
extinct coral taxa for which only a morphological approach 
can be used.

Although coral molecular phylogenetic studies generally 
focus heavily on few mitochondrial or ribosomal markers, 
and whilst these have greatly improved our understanding of 
scleractinian phylogenetic relationships, it is now clear that 
to achieve higher resolution and to be able to investigate all 
taxonomic levels, multiple genetic markers are essential 
(e.g., Dunn et al. 2008; Philippe et al. 2009; Regier et al. 
2010). In the case of corals, a stumbling block to applying 
such multilocus phylogenetics is the paucity of single copy 

4 The New Systematics of Scleractinia: Integrating Molecular and Morphological Evidence

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971



52

nuclear markers that have been tested. To cross this hurdle, 
we must turn to high-throughput sequencing technologies 
for obtaining genomic or transcriptomic data for a range of 
corals. These methods could be used to collect near- 
exhaustive molecular data possibly containing phylogenetic 
signal at all levels. However, notwithstanding the progress 
expected with phylogenomics, we stress that improvement 
of techniques and better understanding of the taxonomic sig-
nals and environment-induced variability of morphological 
characters are essential for advancing the field.

As we go forth in this new age of coral systematics, the 
gap between the state-of-the-art classification and practical 
needs of the broader scientific community appears to be wid-
ening. Indeed, while taxonomic changes resulting from inte-
grative analyses are increasingly being published, the 
outdated but understandably more widely-accepted scheme 
is still being applied in some recent work on corals and their 
associates (e.g., Ho and Dai 2014; Tsang et al. 2014; Work 
and Aeby 2014). A lag is to be expected before the new 
framework is embraced outside the restricted circle better 
informed of the ongoing revisions. To bridge this gap more 
rapidly, we urge more active collaborations between taxono-
mists and ecologists, as well as more user-friendly literature 
such as field illustrations of corals under the revised classifi-
cation (e.g., Dai and Horng 2009a, b; Licuanan 2009).

Thus, apart from encouraging a new generation of taxon-
omists, molecular biologists, and paleontologists, the foment 
of multi- and interdisciplinary studies including taxonomy, 
ecology, morphology, molecular biology, palaeontology and 
oceanography, will shape future studies positively to help 
improve our understanding of scleractinian evolution. This is 
indeed a welcome development in a time of major scientific 
interest and intense public concern due to the uncertain fate 
of coral reefs in the face of anthropogenic challenges.
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