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The Newton and Halley Methods for Complex Roots

Lily Yau and Adi Ben-Israel

1 Introduction

Let f : C→ C be analytic. A solution (existence assumed) of

f(z) = 0 (1)

can be approximated by the Newton method

zk+1 := Nf (zk) , k = 0, 1, . . . (2)

using the iteration

Nf (z) := z − f(z)
f ′(z)

, (3)

with z0 sufficiently close to the sought solution. For (local) convergence conditions, see [15, Chapter 7].
Although the complex Newton method has been used at least since 1870, see [18], its geometric inter-

pretation is not well known, if known at all. It is worth studying for several reasons, including:

• The Newton iteration is universal: any iteration

z := g(z) , with an arbitrary iteration function g ,

is equivalent to the Newton iteration z := Nf (z) for a function f given by

f(z) := exp
{∫ z dt

t− g(t)

}
, (see [21, p. 40]) ,

in any domain where (t−g(t))−1 is integrable, which necessarily excludes the fixed–points of g (where
the integrand (t− g(t))−1 blows up). The geometry of Newton’s method may thus help to study the
“far behavior” (i.e., away from fixed–points) of any iteration.

• The Newton iteration, applied to a complex polynomial, is an important model of deterministic chaos.
Understanding the geometry of Newton’s method may give insights into chaotic behavior; see § 3.
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(a) The graph and level sets of |f(z)| (b) The tangent plane Tk and its intersection
showing two zeros ζ1, ζ2 Lk with the xy–plane

Figure 1: The next Newton iterate zk+1 is the point closest to zk in Lk

The geometric interpretation of the Newton method in the real case is well known: the next iterate
xk+1 is the zero of the line

y = f(xk) + f ′(xk)(x− xk)

tangent to the graph of f at (xk, f(xk)). In the complex case one is tempted with analogues of the above
interpretation, but what is a “tangent” of a complex function? We show here that the geometry of the
complex Newton iteration (3) is indeed analogous to the real case: the next point zk+1 := Nf (zk) is closest
to zk in the intersection (line) of the xy–plane and the tangent plane Tk of |f | at the point (zk, |f(zk)|);
see Figure 1.

The direction of the Newton step Nf (zk)−zk is therefore against the gradient of |f | at zk; see Figure 1(b).
Restricted to the vertical plane V passing through zk and containing∇|f |(zk), the complex Newton iteration
coincides with the real Newton iteration; see Figure 2.

Another well-known method for solving (1) is the Halley method zk+1 := Hf (zk) , k = 0, 1, . . .
using the iteration

Hf (z) := z − f(z)

f ′(z)− f ′′(z)
2f ′(z)

f(z)
. (4)

This “most frequently rediscovered” method (quoting [22, p. 91]) has a simple geometric interpretation in
the real case: the next iterate Hf (xk) is the zero of the hyperbola

h(x) := b +
a

x− c
(5)

that is osculating (or 2nd-order tangent) to f at xk, i.e., f = h , f ′ = h′ , f ′′ = h′′ at x = xk . See also [1],
[8], [13], [17], [22] and their references.

To understand the geometry of the complex Halley method, consider the complex “hyperbola”

h(z) := b +
a

z − c
(6)
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(a) The vertical plane V through zk, ∇|f |(zk) (b) The next iterate zk+1 is obtained by a (real)
and its intersection with the graph of |f | Newton iteration in the vertical plane V .

Figure 2: A “side view” of the complex Newton iteration

that osculates f at zk, i.e., the complex numbers a, b, c are determined by

h(zk) = b +
a

zk − c
= f(zk) , (7a)

h′(zk) = − a

(zk − c)2
= f ′(zk) , and (7b)

h′′(zk) =
2a

(zk − c)3
= f ′′(zk) . (7c)

In Theorem 2 we show that the next Halley iterate zk+1 is the (unique) zero of h, zk+1 := c − a/b. In
general, the direction of the Halley step Hf (zk)− zk is different from the direction of the Newton step; see
Remark 3.

The complex Halley method has an interesting “top view”: the level set of |h| at zk, Ck := {z : |h(z)| =
|h(zk)|} , is the osculating circle (or circle of curvature) of the level set of |f | at zk, Sk := {z : |f(z)| =
|f(zk)|} ; see Figure 5.

2 The Newton method

We identify complex numbers z = x+iy ∈ C with the two–dimensional real vectors (x, y) ∈ R2, and denote
this correspondence by

x + iy ←→ (x, y) .

Consider an analytic function f(z) = u + iv = u(x, y) + iv(x, y) , and its absolute value F (x, y) =
|f(x + iy)| =

√
u2(x, y) + v2(x, y) , which is differentiable, as a function of (x, y), except where f(z) = 0.

The gradient of F is

∇F (x, y) =
1√

u2 + v2

(
uux + vvx

uuy + vvy

)
(8)
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where ux = ∂u/∂x , uy = ∂u/∂y , etc. Using the Cauchy-Riemann equations: ux = vy and uy = −vx ,
[14, § II.2], we calculate [10, p. 544]

f(z)
f ′(z)

=
u + iv

ux + ivx
=

(uux + vvx) + i(uuy + vvy)
u2

x + v2
x

←→ 1
u2

x + v2
x

(
uux + vvx

uuy + vvy

)
. (9)

A comparison with (8) shows that the Newton method (3) is a gradient method for the absolute value
function |f |, i.e., (

xk+1

yk+1

)
:=

(
xk

yk

)
− t∇F (xk, yk) . (10)

It remains to determine the step size t in (10). Consider the space R3, with standard coordinates1 (x, y, Z).
The intersection of a (non-horizontal) plane in R3 with the xy–plane is called the trace of that plane.

A geometric interpretation of the complex Newton method can now be given.

Theorem 1. Let the function f be analytic, and let zk = xk + iyk be a point where f(zk) and f ′(zk) are
nonzero. Let Tk be the tangent plane of F (x, y) := |f(x+ iy)| at (xk, yk, F (xk, yk)), and let Lk be the trace
of Tk. The next iterate zk+1 = xk+1 + iyk+1 of the Newton method

zk+1 := zk − f(zk)
f ′(zk)

corresponds to the point (xk+1, yk+1) on the line Lk that is nearest to (xk, yk).

Proof. The plane Tk tangent to the graph of F at (xk, yk, F (xk, yk)) has the equation

Z = Z(x, y) = F (xk, yk) +∇F (xk, yk) ·
(

x− xk

y − yk

)
,

where · denotes inner product. If Tk is non–horizontal (i.e., ∇F (xk, yk) 6= 0), its trace is the line Lk given
by

F (xk, yk) +∇F (xk, yk) ·
(

x− xk

y − yk

)
= 0 . (11)

Let (x∗, y∗) be the point on Lk that is closest to the point (xk, yk), i.e., (x∗, y∗) is the orthogonal projection
of (xk, yk) on Lk. Therefore the difference (x∗, y∗)− (xk, yk) is orthogonal to Lk, i.e.,

(
x∗ − xk

y∗ − yk

)
= t ∇F (xk, yk) , (12)

where the constant t is determined by the condition that (x∗, y∗) lies on Lk. Since (x∗, y∗) satisfies (11),
we have

F (xk, yk) +∇F (xk, yk) ·
(

x∗ − xk

y∗ − yk

)
= F (xk, yk) + t ‖∇F (xk, yk)‖2 = 0

and
t = − F (xk, yk)

‖∇F (xk, yk)‖2
. (13)

Using (8) and the Cauchy-Riemann equations, we compute

‖∇F (xk, yk)‖2 = u2
x + v2

x . (14)

Substituting (13), (8) and (14) into (12) yields
(

x∗

y∗

)
=

(
xk

yk

)
−
√

u2 + v2

u2
x + v2

x

1√
u2 + v2

(
uux + vvx

uuy + vvy

)
=

(
xk

yk

)
− 1

u2
x + v2

x

(
uux + vvx

uuy + vvy

)
, (15)

1The 3rd coordinate is denoted Z, to avoid confusion with complex numbers z.
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where all functions are evaluated at (xk, yk). A comparison with (9) shows that
(

x∗

y∗

)
←→ zk − f(zk)

f ′(zk)
.

Remark 1.
(a) The Newton step zk+1 − zk is in the direction of −∇|f |(xk, yk), and is therefore perpendicular to the
level set of |f | at (xk, yk).
(b) While −∇|f | is the direction of steepest descent for |f |, the Newton iteration does not necessarily
produce a descent of |f | (if the Newton step is “too long”); see [10, p. 547, Example 2].
(c) We can alternatively interpret f(z) = 0 as a system of 2 equations in 2 (real) unknowns

u(x, y) = 0
v(x, y) = 0

and apply the 2–dimensional Newton method

(
xk+1

yk+1

)
:=

(
xk

yk

)
−

(
ux uy

vx vy

)−1 (
u
v

)
, (16)

where all functions and derivatives are evaluated at (xk, yk). This simplifies (after computing the inverse
explicitly, and using the Cauchy-Riemann equations) to

(
xk+1

yk+1

)
:=

(
xk

yk

)
− 1

u2
x + v2

x

(
uux + vvx

uuy + vvy

)
, (17)

which is identical to the complex Newton method (3), as shown by comparison with (15). The geometric
interpretation given in Theorem 1 therefore applies also to the 2–dimensional Newton method (16).

Let V be the vertical plane through the point zk and containing ∇|f |(xk, yk). Then V contains the
next iterate zk+1, by Remark 1(a), but in general V does not contain the sought root of f .

Let Φ be the function whose graph is the intersection of V and the graph of |f(z)|. If we perform a
(real) Newton iteration for Φ at zk, then the next iterate is the same as that obtained by a (complex)
Newton iteration for f at zk. The complex Newton iteration is thus equivalent to a real Newton iteration
in the vertical plane V ; see Figure 2(b). A precise statement is:

Corollary 1. Let the function f be analytic, and let zk = xk + iyk be a point where f(zk) and f ′(zk) are
nonzero. Let V be the vertical plane through the point zk and containing ∇|f |(xk, yk), and let M be its
trace, parametrized by

x = ξ
y = mξ + b

(18)

Finally let Φ(ξ) be the function:M → R whose graph is the intersection of V and the graph of |f(z)|.
Then the complex Newton iteration Nf at zk is equivalent to the real Newton iteration NΦ at xk:

zk+1 := Nf (zk) = xk+1 + iyk+1 ←→ (xk+1, yk+1) := (NΦ(xk),mNΦ(xk) + b) (19)

Proof. We denote F (x, y) := |f(x + iy)| =
√

u2(x, y) + v2(x, y). The slope of the line M is, by (8),

m =
uuy + vvy

uux + vvx
, (20)
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all functions evaluated at (xk, yk). Substituting (18) into F (x, y) we get the function

Φ(ξ) = F (ξ,m ξ + b) , (21)

which is the restriction of F to the plane V . In particular,

Φ(xk) = F (xk, yk) = |f(zk)| . (22)

The derivative of Φ is
Φ′(ξ) = Fx + mFy =

uux + vvx

|f | + m
uuy + vvy

|f |
and at xk,

Φ′(xk) =
1
|f |

(
(uux + vvx) +

uuy + vvy

uux + vvx
(uuy + vvy)

)
, by (20) ,

=
1

|f | (uux + vvx)
(
(uux + vvx)2 + (uuy + vvy)2

)

=
1

|f | (uux + vvx)
(u2 + v2) (u2

x + v2
x) , by the Cauchy–Riemann equations ,

=
|f | |f ′|2

uux + vvx
. (23)

The real Newton iteration for Φ at xk gives the next iterate

xk+1 := xk − Φ(xk)
Φ′(xk)

,

and substituting (22) and (23) we get

xk+1 := xk − 1
|f ′|2 (uux + vvx) .

The corresponding y–coordinate is

yk+1 := yk −m
1
|f ′|2 (uux + vvx) = yk − 1

|f ′|2 (uuy + vvy) , by (20) .

Combining the last two results, we get
(

xk+1

yk+1

)
=

(
xk

yk

)
− 1
|f ′|2

(
uux + vvx

uuy + vvy

)
, all functions evaluated at (xk, yk) ,

which is the same as (15).

We conclude that the complex Newton method for f is a sequence of real Newton iterations for |f | in
vertical planes containing pairs of adjacent iterates (zk, zk+1).

Remark 2. Theorem 1 allows tracking the Newton iterates (2) for all initial z0. The Newton orbit is
deflected at the level sets of |f | in analogy with the refraction of light, in geometric optics, by concave or
convex lenses.

The Newton step zk+1 − zk is perpendicular to the level set of |f | at zk. If the step-lengths are small,
as they typically are near a root to which the method converges, the Newton orbits approximate the
orthogonal trajectories of the |f | level sets, trajectories that stay close if the level sets are well-behaved.
These trajectories are described by the differential equation

ż = − f(z)
f ′(z)

or the continuous Newton method; see [5], [11].
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Figure 3: Illustration of Newton’s method for f(z) = z4 − 1

Exmaple 1. Consider the polynomial f(z) = z4− 1 . The equation f(z) = 0 has 4 roots: ±1,±i. Several
level sets of the absolute value |f | are plotted in Figure 3(a). Figure 3(b) shows the Newton iterates
0.356 + i 1.521, 0.225 + i 1.191, 0.094 + i 1.012 , and illustrates the fact that each Newton iterate is the
orthogonal projection of the previous iterate on the trace of the plane tangent to the graph of |f |. These
traces are shown as dashed lines.

3 Attraction basins of the Newton method for polynomials

Let p be a polynomial with roots ζ1, . . . , ζk. With each root ζi we associate a basin (or domain of attraction),
A(ζi), consisting of points from where the Newton method eventually converges to ζi.

Exmaple 2. The polynomial p(z) = z2 − 1 has two roots ζ1 = 1 and ζ2 = −1. The Newton iteration is

Np(z) :=
1
2

(
z +

1
z

)

and its basins are A(1) = {z : Re z > 0} (the open right half-plane) and A(−1) = {z : Re z < 0} (the open
left half-plane); see [20, p. 20]. Imaginary points are taken by the Newton iteration to imaginary points.
The Newton iterations thus take every point to the nearest root, if the nearest root is unique.

The orderly behavior of Newton’s method shown in Example 2 does not hold for polynomials p(z)
of degree ≥ 3. Indeed, the Gauss–Lucas Theorem states that the roots of p′(z) lie in the convex hull of
the roots of p(z) [10, § 6.5]. Since the Newton iteration Np(z) := z − p(z)/p′(z) behaves erratically near
the zeros of p′(z), there is no guarantee that the Newton iterates converge to the nearest root. In fact,
the Newton basins have a common boundary, a Julia set [3] consisting of points near which the Newton
method leads to any root.
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Figure 4: Newton basins for f(z) = z4 − 1

The Newton basins give stunning pictures, among the most beautiful in the fractal gallery; see [4, pp.
141–142], [9], [12] and [16]. We illustrate this in Figure 4(a), showing Newton basins of f(z) = z4 − 1.

Since the orbits of the Newton iteration are orthogonal to the level sets of |f |, we may gain some insight
by superimposing the |f | level sets on the Newton basins. We illustrate this in Figure 4(b) for the function
f(z) = z4 − 1. In such a picture, the Julia set includes
• points where the |f | level sets are wild (e.g., along the diagonals of Figure 4(b), near the center), or
• points where the step-lengths |f(z)|/|f ′(z)| are big, in which case the Newton orbits may separate, with
nearby points bouncing into different basins, and
• points taken by the Newton iteration into the previously mentioned points, e.g., the 4 corners of Fig-
ure 4(b).

Historical note: The problem of specifying the Newton basins was posed by Cayley [6] in 1879. Cay-
ley (like Schröder before him) could not go beyond quadratic polynomials because of the chaotic global
behavior of the complex Newton method.

The study of iterations with rational functions (such as the Newton iteration (3) for a polynomial) was
greatly advanced by Fatou and Julia in 1918–1920; see [3] and the history in [2]. After a hiatus of about
50 years, the subject picked up again in the 1970’s, and has been studied intensively ever since; see [3], [4],
[9], [19] and references therein.

4 The Halley method

The “complex” Halley method

zk+1 := zk − f(zk)

f ′(zk)− f ′′(zk)
2f ′(zk)

f(zk)
(24)
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is interpreted, as in the real case, using the “hyperbola” (6)

h(z) := b +
a

z − c

that is 2nd-order tangent to f at zk, i.e., the complex numbers a, b, c are determined by the equations (7).
We solve these equations to get

a = −4
(f ′k)

3

(f ′′k )2
, b = fk − 2

(f ′k)
2

f ′′k
, c = zk + 2

f ′k
f ′′k

, (25)

where fk, f
′
k, f

′′
k denote their values at zk. Substituting these values into the zero of h, c − a/b , gives

(24). This zero is unique because the “hyperbola” (6) is a Möbius (or linear fractional) transformation
[14, § V.3], usually written in the form

w =
αz + β

γz + δ
. (26)

The Möbius transformation (6) maps c to ∞, zk to fk, and zk+1 to 0. Therefore, it can be rewritten as

w :=
(c− zk)(z − zk+1)
(zk+1 − zk)(z − c)

fk (27)

Any line or circle passing through c is mapped by (27) into a line; every other line or circle goes into a
circle. In particular, the circle {w : |w| = |fk|} corresponds to

∣∣∣∣
(c− zk)(z − zk+1)
(zk+1 − zk)(z − c)

fk

∣∣∣∣ = |fk|

or |z − zk+1|
|z − c| =

|zk+1 − zk|
|zk − c| , (28)
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which is a line (bisector of the segment [c, zk+1]) if the ratio in (28) is 1, and is a circle Ck otherwise. The
curvature of the level set

Sk = {(x, y) : F (x, y) = F (xk, yk)} (29)

at the point (xk, yk) is determined by the values of F, Fx, Fy, Fxx, Fxy, and Fyy at (xk, yk). The conditions
(7) then imply that Sk and Ck have the same curvature at (xk, yk). Since Ck is a circle it must be the
circle of curvature (or osculating circle) of the level set (29) at (xk, yk); see Figure 5. We summarize:

Theorem 2. Let the function f be analytic, and let zk = xk + iyk be a point where f(zk), f ′(zk), and
f ′′(zk) are nonzero. Let h be the Möbius transformation

(6) h(z) := b +
a

z − c

whose level set Ck = {z : |h(z)| = |f(zk)|} is the osculating circle of Sk = {z : |f(z)| = |f(zk)|} at zk. The
next iterate

zk+1 := zk − f(zk)

f ′(zk)− f ′′(zk)
2f ′(zk)

f(zk)

is the (unique) zero of h.

Remark 3. The direction of the Newton step Nf (zk)− zk is along −∇|f |(zk), i.e., the Newton step is on
the line connecting zk and the center of the osculating circle of the level set Sk of |f | at zk.

To determine the direction of the Halley step we recall that the Halley method for a function f(z) is
the same as the Newton method applied to the function

g(z) :=
f(z)√
f ′(z)

(30)

in the sense that Hf (z) = Ng(z) for all z. By Remark 1(a) the Halley step is along −∇|g|(xk, yk). The
gradient of |g| is, by (30),

∇|g| = 1
|f ′|1/2

∇|f | − |f |
2|f ′|3/2

∇|f ′| ,

so the direction of the Halley step is generally different from the direction of the Newton step.

We can show (by analogy with the Newton method, Corollary 1) that the complex Halley method
for f is a sequence of real Halley iterations for |f | in vertical planes containing pairs of adjacent iterates
(zk, zk+1).

Exmaple 3. Figure 6 shows, for f(z) = z4 − 1, the Halley iterates 0.5 + i 2, 0.253 + i 1.254, 0.036 + i,
the associated level sets of |f |, and their osculating (dashed) circles.

Remark 4. An advantage of writing a Möbius mapping (26) in the form (6) is that the inverse mapping
(also Möbius) has the same form, and has the same set of parameters {a, b, c} (with b and c transposed):

z := h−1(w) = c +
a

w − b
. (31)

A straightforward computation then shows that (31) is a 2nd-order tangent of f−1 at fk = f(zk), i.e.,

h−1(fk) = c +
a

fk − b
= f−1(fk) = zk ,

dh−1

dw
(fk) = − a

(fk − b)2
=

df−1

dw
(fk) , and

d2h−1

dw2
(fk) =

2a

(fk − b)3
=

d2f−1

dw2
(fk) ,

so that h−1 interpolates f−1 in the same way that h interpolates f .
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Figure 6: Two Halley iterations for f(z) = z4 − 1, and the osculating circles.

Remark 5. The global behavior of Halley’s method is chaotic, but (as expected) “less chaotic” than
Newton’s method; compare Figures 4(a) and 7. Figure 7 shows an interesting feature of the Halley method
for f(z) := z4 − 1: the Julia set is on the boundaries of circular “half-moons” (comets?). For other
polynomials the Julia sets have different shapes, no less pretty than Figure 7.

For more pictures see our web page at: http://rutcor.rutgers.edu:80/~bisrael/Halley.html
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ates (REU) Program at the Center for Discrete Mathematics & Theoretical Computer Science (DIMACS),
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