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aus Nördlingen

Unterstützt durch das Evangelische Studienwerk Villigst e.V.
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Deutsche Zusammenfassung

So lange es die Allgemeine Relativitätstheorie gibt, so lange gibt es auch die
zugehörige Frage, inwieweit man die Newtonsche Gravitationstheorie als einen
Spezialfall oder doch wenigstens als eine Grenzlage der Allgemeinen Relativitäts-
theorie auffassen kann. Schon am 18. November 1915, eine Woche bevor Albert
Einstein seine Feldgleichungen bei der Preußischen Akademie der Wissenschaften
zu Berlin einreichte, schrieb er in einem Brief an David Hilbert, dass es für ihn nicht
so schwer war eine kovariante Formulierung für die Feldgleichungen zu finden (das
heißt eine Tensorgleichung in der zu findenden Lorentz-Metrik g auf einer vierdi-
mensionalen Mannigfaltigkeit), denn mit dem Riemannschen Krümmungstensor
stand ihm ein genügend allgemeines Tensorfeld zur Verfügung. Vielmehr bereitete
es Einstein Probleme, eine Feldgleichung anzugeben, die bei hinreichender Spezial-
isierung in das Newtonsche Gravitationsgesetz übergehen sollte.
In der Zwischenzeit haben sich verschiedene Forscher mit dieser Fragestellung
beschäftigt. Besonders hervorzuheben ist hierbei Jürgen Ehlers, der in den 80er
Jahren des 20. Jahrhunderts mit seiner Rahmentheorie einen Unterbau für die
Untersuchung der Grenzwertbeziehung formulierte. Die Objekte seiner Rahmen-
theorie sind so genannte Ehlers Raumzeiten Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ),
wobei M eine vierdimensionale Mannigfaltigkeit, g(λ) und h(λ) Metriken, ∇(λ)
ein Zusammenhang auf M , T (λ) ein Materietensor und λ ∈ R eine reelle Zahl
ist. Nach der Rahmentheorie müssen diese Objekte einige Axiome erfüllen. Man
kann dann zeigen, dass die Ehlersraumzeiten für λ > 0 in Raumzeiten im Sinne
der Allgemeinen Relativitätstheorie übergehen.
Im Vergleich dazu ist es schwer zu zeigen, dass im Fall λ = 0 die Ehlers Raumzeiten
in Newtonsche Raumzeiten übergehen können. Die Untersuchung der Bedingung-
en, die dafür nötig sind, nehmen einen großen Teil des ersten Kapitels ein. Diese
Tatsache ist keine neue Erkenntnis, sie wurde von Ehlers und beispielsweise Lotter-
moser ([31]) bereits diskutiert. Allerdings können wir hier einige neue Ergebnisse
präsentieren. Beispielsweise ist es in dieser Arbeit gelungen, zu zeigen, dass die
Mannigfaltigkeit im Fall λ = 0 unter bestimmten Voraussetzungen eine globale
Produktstruktur besitzt ((1.4.10) und (1.4.32)) oder dass es ein globales zeitar-
tiges Vektorfeld auf M gibt ((1.4.16)).
Im zweiten Kapitel gehen wir dann auf die Definition eines Newtonschen Grenz-
wertes näher ein und untersuchen, wann eine Familie von Ehlers Raumzeiten
einen Newtonschen Grenzwert oder zumindest einen Quasi-Newtonschen Grenz-
wert (auch dieser Begriff wird hier näher erläutert) besitzt. Auch hier ist durch
eine geometrische Bedingung eine kleine Verbesserung eines Existenzsatzes für

3



die Grenzwerte der Metriken erreicht worden. Außerdem konnten wir zeigen, dass
eine statische und kugelsymmetrische Raumzeit einen Newtonschen Grenzwert hat
(siehe Kapitel 2.5).
Im dritten Kapitel beschäftigen wir uns dann mit den Unterschieden zwischen
einem Quasi-Newtonschen und einem Newtonschen Grenzwert. Das Haupthinder-
nis für einen tatsächlichen Newtonschen Grenzwert ist ein zeitabhängiges Vektor-
feld, dass für einen Newtonschen Grenzwert verschwinden muss. Ehlers hat bereits
die Vermutung geäußert, dass asymptotisch flache Raumzeiten einen tatsächlichen
Newtonschen Grenzwert haben. Wir haben hier die Definition asymptotisch flacher
Raumzeiten an die Situation der Rahmentheorie angepasst (3.3.8) und damit
gezeigt, dass asymptotisch flache Familien von Ehlers Raumzeiten, die einen Quasi-
Newtonschen Grenzwert haben auch einen tatsächlichen Newtonschen Grenzwert
besitzen (3.3.10).
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Introduction

Since the theory of General Relativity has existed, the corresponding question has
been discussed as to whether and to what degree Newton’s theory of gravitation can
be considered as a special case or, at least, as a limit situation of General Relativity.
Already on 18th November 1915, one week after presenting his field equations at
the ”Preußische Akademie der Wissenschaften” in Berlin, Albert Einstein wrote in
a letter to David Hilbert that he had no problem to find a covariant formulation
for his field equations. With the Riemannian curvature tensor he had a tensor field
at his disposal which provided a sufficient degree of generality. In fact, however,
he had problems to formulate a field equation which contained the Newtonian
gravitation as a special case:

Die Schwierigkeit bestand nicht darin allgemein kovariante Gleichung-
en für die gµν zu finden; denn dies gelingt leicht mit Hilfe des Rie-
mann’schen Tensors. Sondern schwer war es, zu erkennen, dass diese
Gleichung eine Verallgemeinerung des Newton’schen Gesetzes bilden.
Dies gelang mir erst in den letzten Wochen (...), während ich die einzig
möglichen allgemein kovarianten Gleichungen, [die] sich jetzt als die
richtigen erweisen, schon vor 3 Jahren mit meinem Freund Grossmann
in Erwägung gezogen hatte. Nur schweren Herzens trennten wir uns
davon, weil mir die physikalische Diskussion scheinbar ihre Unverein-
barkeit mit Newtons Gesetz ergeben hätte.

[39], Document 148, p. 201

Thus, already Albert Einstein was interested in the question to which extend the
Newtonian theory can be regarded as a limit situation of the theory of Relativity.
In his work he studied this problem, but his considerations were limited to the
special case of the Schwarzschild spacetime and he used very special coordinates.
He succeeded in detecting the Newtonian gravitation field in this special coordinate
system by considering c→∞, where c is the speed of light. The transition of the
Einstein gravitation potential to the Newtonian one remained a little bit obscure.
In the 1920s, E. Cartan took a very important step to a better understanding of
this limit process. He formulated the Newtonian theory as a field theory on a
four-dimensional manifold with a connection ∇ as gravitation field, see [4] and [5].
In the 1980s, Jürgen Ehlers developed his frame theory and gave an answer to
the question to which extend the transition from Einstein’s theory of relativity to
Newton’s theory of gravitation was understood. Research into the implications of
this frame theory were continued by Martin Lottermoser among others.

5



But why is it interesting to understand the connection between these two theories?
For instance, one of the reasons is that, in general, we are interested in unifying
successful theories having the same purpose as in this case. Furthermore, it seems
to be helpful to have the possibility of transferring results from one theory to the
other. This could be of some importance to people who are interested in a better
understanding of post-Newtonian approximations, for example.
During my work on the Newtonian limit of General Relativity I met a lot of people,
especially physicists who did not understand why I was interested in this purpose,
since they considered the limit relation between the two theories as already known
and well understood. Such views already appear in the papers of Jürgen Ehlers:

Obwohl manche Lehrbücher und Monographien den Eindruck erwecken,
als sei die genannte Grenzwertbeziehung (→) eine wohlverstandene
Sache, ist mir aus der Literatur kein exakt formulierter und bewie-
sener Satz bekannt, der diese Meinung rechtfertigen würde. Es ist
zwar leicht möglich und zur vorläufigen Orientierung auch nützlich,
aus den Grundgleichungen der Einsteinschen Theorie formal diejenigen
der Newtonschen Theorie zu gewinnen, indem man einen geeigneten
Ansatz für die Metrik und die Materievariablen macht und kleine Grö-
ßen vernachlässigt, d.h. durch Null ersetzt ([...]). Eine mathematische
Rechtfertigung solcher heuristischer ”Ableitungen” steht aber noch aus.

[10], pp. 65-66

With his frame theory, Jürgen Ehlers took the decisive step towards understand-
ing this limit connection. The mathematical objects of his frame theory are the
so called Ehlers spacetimes Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ), where M is a
four-dimensional manifold, g(λ) and h(λ) are metrics, ∇(λ) a connection on M ,
T (λ) a matter tensor and λ ∈ R a real number. These objects have to satisfy
some axioms. Then it can be shown that for λ > 0, −g is a Lorentzian metric,
∇ its Levi-Civita connection and Einstein’s field equations hold. Therefore, for
λ > 0 and λ fixed, an Ehlers spacetime is an Einstein spacetime, which means a
spacetime in the sense of General Relativity.
While this can easily be seen, it is not obvious that the case of λ = 0 contains
models of Newton’s theory of gravitation. For instance, at the outset the frame
theory starts with a four-dimensional manifold and we have to discuss why this
manifold results in a Newtonian space for λ = 0. But we will see that this is the
case under certain circumstances.
Up to this moment, Ehlers frame theory has been well-known, (see, for instance,
[31]), but not so in a satisfactory way for global differential geometers. Therefore,
one aim of this dissertation is to explain the global structure in case of λ = 0, as
there are some unsolved problems in this context.

We start this dissertation by introducing some notations and discussing basic con-
cepts. In the first chapter we then examine the frame theory of Jürgen Ehlers.
After introducing the mathematical objects and the axioms of the frame theory, we
explain how the theory of General Relativity and Newton’s theory of gravitation
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can be detected within the frame theory. We will have to do into detail discussing
the case of λ = 0, where Newton’s theory may be involved. In this context we can
present some new results, for example, we are able to show that the manifold has
a global product structure under certain circumstances (see for instance (1.4.10)
and (1.4.32)) or that there is a global timelike vector field on M (see (1.4.16)).
In the second chapter we will talk about the concept of a Newtonian limit. We
start with its definition and discuss how we can extend a solution of Einstein’s field
equations to a family of Ehlers spacetimes. In other words, we adopt an approach
opposed to the one in the first chapter: We start with an Einstein spacetime and
demonstrate how it can be included into the frame theory. Furthermore, we will
talk about some standard examples of Newtonian limits and discuss them in detail.
Then we reconsider the question under which condition a family of Ehlers space-
times has a Newtonian or at least a quasi-Newtonian limit. These conditions are
partially known (see, for instance, [31] and [10]), but we are able to give a more
geometrical condition for the existence of the limit of the metrics (see (2.4.5)).
Finally, we will show how to find a Newtonian limit for spherically symmetric and
static solutions of Einstein’s field equations (see (2.5)).
In the previous paragraph the concept of a quasi-Newtonian limit has been men-
tioned. In the course of this dissertation we will explain that for λ = 0 sometimes
not genuine Newtonian cases appear. In particular, there is a time-dependent vec-
tor field v on R3 which is an obstacle to a limit to be a genuine Newtonian one.
In the third chapter, we therefore discuss conditions which ensure that this vector
field v disappears. First, we discuss its transformation behaviour and show that
it can be transformed to zero if it only depends on time. Then we discuss some
conditions of Ehlers and Trautman for the curvature tensor. Already Ehlers and
Lottermoser mentioned that a right definition of isolated systems, which means
of asymptotically flat spacetimes, might provide a condition for the existence of a
genuine Newtonian limit. Here we introduce a definition of asymptotically flat fam-
ilies of Ehlers spacetimes and show that, if these families have a quasi-Newtonian
limit, they have a genuine Newtonian one (see (3.3.8) and (3.3.10)). Furthermore,
we show that our standard examples satisfy the definition of asymptotically flat
spacetimes, which demonstrates that our definition is reasonable.
In the appendix, we list calculations about the extended Schwarzschild and Kerr
solutions.

I want to give special thanks to my supervisor Prof. Dr. Frank Loose for help and
motivation, especially in times when it was hard to carry on. Moreover, I would
like to thank Prof. Dr. Gerhard Huisken for his advice and support. Furthermore,
thanks to my very dear colleagues, Johannes S., Hans, Taki, Florian, Jakob, Eric,
Sebastian, Jonas, Johannes v. K., Silvia, Andreas, Stefan T., Stefan S., Tanja and
Sigrid Frank for helpful discussions and a really nice time. Of course, I have to
thank my family for being always there for me, particularly thanks to my parents
and my husband for motivating and supporting me all the time. Finally, I would
like to thank the Evangelisches Studienwerk Villigst e.V. for donating a helpful
scholarship to me.
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0.1. Transitions from tangent and cotangent space and induced connections

In this part we will introduce basic concepts and notations used in this dissertation.
At the end of this section we will discuss some aspects of Newton’s theory of
gravitation and Einstein’s theory of relativity.
In the following paragraphs let M always be a smooth manifold.

0.1 Transitions from tangent and cotangent space

and induced connections

Notation 0.1.1 Let π : E → M be a smooth vector bundle. We denote the set
of all global sections by

Γ(M ;E) := {s : M → E smooth : π ◦ s = idM}.

If E = TM or E = TM∗, we denote the sections (which are vector fields or
differential forms respectively) by

X(M) = Γ(M ;TM)

and
E (1)(M) = Γ(M ;TM∗).

Notation 0.1.2 Let g ∈ Γ(M ;T (0,2)M) and h ∈ Γ(M ;T (2,0)M). Then we define

ϕp : TMp → TM∗
p , ξ 7→ (η 7→ gp(ξ, η))

ψp : TM∗
p → TMp, α 7→ (β 7→ hp(α, β)) ∈ TM∗∗

p = TMp

as the transitions from the tangent space to the cotangent space and vice versa
induced by g and h.
In order to have a better understanding of the maps ϕp and ψp, note:

〈ϕp(ξ), η〉 = gp(ξ, η), for ξ, η ∈ TMp,

and
〈β, ψp(α)〉 = hp(α, β), for α, β ∈ TM∗

p ,

where
〈−,− 〉 : TM∗

p × TMp → R, 〈α, ξ〉 = α(ξ)

denotes the natural pairing between covectors and tangent vectors.
With the help of these transitions we are able to ”transform” tensor fields: if
we use the index ”b” we apply ϕ, if we use ψ we denote ”#”. For example, for
T ∈ Γ(T (2,0)M), we have T bb ∈ Γ(T (0,2)M).

Remark 0.1.3 If you have a look at (0.1.2) you see that we write

TM∗∗
p = TMp.
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0.2. Concepts of curvature

We want to point out that we can identify TM∗∗
p with TMp with the help of the

following canonical isomorphism:

ιp : TMp → TM∗∗
p , ιp(ξ)(α) = 〈α, ξ〉,

for ξ ∈ TMp and α ∈ TM∗
p , where

〈−,− 〉 : TM∗
p × TMp → R, 〈α, ξ〉 = α(ξ)

denotes the natural pairing between covectors and tangent vectors. This means
that for all α ∈ TM∗

p

ψp(α) = ξ ⇔ hp(α, β) = 〈β, ξ〉
holds for all β ∈ TM∗

p .

Remark 0.1.4 Let π : E → M be a smooth vector bundle and ∇ a connection
on E. Then ∇ induces connections on the associate bundles of E (for instance, on
the dual bundle or any tensor bundle).
For example, let π : TM →M be the tangent bundle and ∇ a connection on TM .
Then there is precisely one connection ∇∗ on TM∗ so that for all X, Y ∈ X(M)
and α ∈ E (1)(M)

〈∇∗Xα, Y 〉 = X〈α, Y 〉 − 〈α,∇XY 〉
holds, where 〈−,− 〉 is the natural pairing.
If g ∈ Γ(M ;T (0,2)M), the connection induced on T (0,2)M is defined by

∇ξg(η, ζ) = ξ(g(Y, Z))− g(∇ξY, ζ)− g(η,∇ξZ),

with ξ, η, ζ ∈ TMp and Y, Z continuations of η and ζ respectively.
If induced connections appear in the following discussions we will usually denote
them again by ∇.

0.2 Concepts of curvature

In this part let (M, g) always be a semi-Riemannian manifold. We now introduce
the curvature tensor, the Riemannian curvature tensor and their symmetries. We
will not demonstrate these symmetry properties. But you can find the proofs in
standard books about Riemannian geometry, see for example [37], §2.2.

Definition 0.2.1 Let π : E → M be a vector bundle, ∇ a connection on E. For
X, Y ∈ X(M), s ∈ Γ(M ;E) we define

R : X(M)× X(M)× Γ(M ;E)→ Γ(M ;E) : (X, Y, s) 7→ R(X, Y )s

R(X, Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

and call R the curvature of ∇.
The value of R(X, Y )s in p ∈ M only depends on Xp, Yp ∈ TMp and s(p) ∈ Ep.
Therefore, it is possible to define the curvature Rp in p as a tri-linear map:

Rp : TMp × TMp × Ep → Ep.

We thus can talk about the curvature tensor R = (Rp). It is a global section in
the vector bundle TM∗ ⊗ TM∗ ⊗ E∗ ⊗ E.
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0.2. Concepts of curvature

Remark 0.2.2 a) The curvature tensor R ist anti-symmetric in X and Y :
if we consider R to be a bilinear map from X(M)×X(M)→ End(Γ(M ;E)),

(X, Y ) 7→ (R(X, Y ) : s 7→ R(X, Y )s),

the following holds:
R(Y,X) = −R(X, Y ).

b) Let π : TM →M be the tangent bundle of M . If ∇ is a symmetric connection
on M , its curvature tensor R : X(M)×X(M)×X(M)→ X(M) satisfies the
first Bianchi-identity:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

for all X, Y, Z ∈ X(M).

Definition 0.2.3 Let π : E → M be a vector bundle, ∇ a connection on E.
If R ∈ Γ(M ;TM∗ ⊗ TM∗ ⊗ E∗ ⊗ E) is the curvature of ∇, we define Rm ∈
Γ(M ;TM∗ ⊗ TM∗ ⊗ E∗ ⊗ E∗) by:

Rmp(ξ1, ξ2, e1, e2) := gp(Rp(ξ1, ξ2)e1, e2).

We call Rm the Riemannian curvature tensor of ∇.

Remark 0.2.4 a) Let π : E → M be a vector bundle and ∇ a metric connec-
tion. Then the Riemannian curvature tensor is anti-symmetric in the first
two and in the last two arguments:

Rm(Y,X, s, t) = −Rm(X, Y, s, t)

Rm(X, Y, t, s) = −Rm(X, Y, s, t),

for all X, Y ∈ X(M) and s, t ∈ Γ(M ;E).

b) Let π : TM → M be the tangent bundle of M . If ∇ is a symmetric and
metric connection on M , its Riemannian curvature tensor Rmp : TMp ×
TMp × TMp × TMp → R satisfies the first Bianchi-identity:

Rmp(ξ1, ξ2, ξ3, ξ4) + Rmp(ξ2, ξ3, ξ1, ξ4) + Rmp(ξ3, ξ1, ξ2, ξ4) = 0,

for all ξ1, ξ2, ξ3, ξ4 ∈ TMp. Note that the first Bianchi-identity holds for every
choice of three of the four arguments of the Riemannian curvature tensor.

c) Let π : TM → M again be the tangent bundle of M and ∇ a symmetric
and metric connection on M . Then the Riemannian curvature tensor Rmp :
TMp × TMp × TMp × TMp → R fulfils the following symmetry condition:

Rmp(ξ1, ξ2, ξ3, ξ4) = Rmp(ξ3, ξ4, ξ1, ξ2),

for all ξ1, ξ2, ξ3, ξ4 ∈ TMp.
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0.2. Concepts of curvature

Remark 0.2.5 Let π : TM →M be the tangent bundle of M and ∇ a symmetric
and metric connection on M .

a) If we now have a look at the covariant derivations ∇R ∈ Γ(M ;TM (1,4)) and

∇Rm ∈ Γ(M ;TM (0,5)), we note that ∇ξR ∈ TM (1,3)
p and ∇ξ Rm ∈ TM (0,4)

p

keep the same identities as Rp and Rmp. For instance, the following holds:

(i) ∇ξR(η2, η1) = −∇ξR(η1, η2)

(ii) ∇ξR(η1, η2)η3 +∇ξR(η2, η3)η1 +∇ξR(η3, η1)η2 = 0

(iii) ∇ξ Rm(η1, η2, η4, η3) = −∇ξ Rm(η1, η2, η3, η4)

for all ξ, η1, η2, η3, η4 ∈ TMp.

b) Furthermore, the second Bianchi-identity holds:

∇ξR(η, ζ) +∇ηR(ζ, ξ) +∇ζR(ξ, η) = 0

for all ξ, η, ζ ∈ TMp.

Remark 0.2.6 If g ∈ Γ(M ;T (0,2)M) is just symmetric (and possibly degenerate)
and ∇ a symmetric and metric connection (with respect to g), the symmetries
mentioned in (0.2.4) and (0.2.5) for the Riemannian curvature tensor also hold.
This can easily be seen if you have a look at the proofs of these assertions, see for
instance [37], §2.2. There you only have to use the symmetric and metric property
of ∇ and it does not matter if g is degenerate or not.

Definition 0.2.7 a) The Ricci tensor Ric ∈ Γ(T (0,2)M) is the contraction of
the Riemannian curvature tensor in the first and fourth argument,

Ric = C(1,4)(Rm).

b) The scalar curvature S ∈ Γ(T (0,0)M) = E(M) is the contraction of the Ricci
tensor,

S = C(1,2)(Ric) = tr(Ric).

Remark 0.2.8 The Ricci tensor Ric ∈ Γ(M ;T (0,2)M) is symmetric:

Ricp(ξ, η) = Ricp(η, ξ),

for all p ∈M and ξ, η ∈ TMp.

Notation 0.2.9 Let p ∈ M , U a neighbourhood of p and x : U → V ⊆ Rn a
chart. Then there are functions gij,Γ

k
ij, R

l
ijk,Ricij ∈ E(V ) so that

g
∣∣U = gijdx

i ⊗ dxj

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk

R
∣∣U = Rl

ijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl

Ric
∣∣U = Ricij dx

i ⊗ dxj.
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0.2. Concepts of curvature

It follows that the Christoffel symbols are given by

Γrij =
1

2
gkr(∂igjk + ∂jgik − ∂kgij),

the components of the Riemannian curvature tensor by

Rs
ijk = ∂jΓ

s
ki − ∂kΓsji + ΓsjrΓ

r
ki − ΓskrΓ

r
ij,

and those of the Ricci tensor by

Ricik = Rj
ijk = ∂jΓ

j
ki − ∂kΓ

j
ji + ΓjjrΓ

r
ki − ΓjkrΓ

r
ji.

Example 0.2.10 We give an example which is interesting for our case. Let M
be a smooth manifold and g ∈ Γ(M ;T (0,2)M). Let furthermore ∇ be a connection
on the tangent bundle of M . We discuss the condition

∇g = 0

in detail. Therefore:
Let p ∈ M , U a neighbourhood of p, x : U → V ⊆ Rn a chart and g|U =
gijdx

i ⊗ dxj with gij ∈ E(V ). For g ∈ Γ(M ;T (0,2)M), ∇g ∈ Γ(M ;T (0,3)M) and so

∇g|U =: ∇igjkdx
i ⊗ dxj ⊗ dxk,

thus
∇ ∂

∂xi
g = ∇igjkdx

j ⊗ dxk.

In order to calculate ∇igjk, we have to consider the following:

∇ ∂

∂xi
g =

∂

∂xi
gjkdx

j ⊗ dxk + gjk∇ ∂

∂xi
dxj ⊗ dxk + gjkdx

j ⊗∇ ∂

∂xi
dxk

= Digjkdx
j ⊗ dxk + glk∇ ∂

∂xi
dxl ⊗ dxk + gjldx

j ⊗∇ ∂

∂xi
dxl

= Digjkdx
j ⊗ dxk + glk(−Γlij)dx

j ⊗ dxk + gjl(−Γlik)dx
j ⊗ dxk

= (Digjk − Γlijglk − Γlikgjl)dx
j ⊗ dxk

= ∇igjkdx
j ⊗ dxk.

If ∇g = 0, then
∇igjk = Digjk − Γlijgkl − Γlikgjl = 0,

for all i, j, k ∈ {1, ..., n} and for all charts.

Definition 0.2.11 Let T ∈ Γ(M ;T (0,2)M) be a symmetric (0, 2)−tensor field.
We then define the divergence of T , div(T ) ∈ Γ(M ;T (0,1)M) = E (1)(M) as

div(T ) = tr(1,2)(∇T ),

which means

〈div(T )(p), ξ〉 =
n∑
i=1

∇ei
T (ei, ξ),

for all p ∈M , ξ ∈ TMp and (ei) an orthonormal basis of TMp.

12



0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

Proposition 0.2.12 If Ric ∈ Γ(M ;T (0,2)M) is the Ricci tensor and S ∈ E(M)
the scalar curvature, the following holds (known as the contracted second Bianchi-
identity):

div(Ric) =
1

2
dS.

(Again the proof can be found in several standard books about Riemannian geom-
etry, see for instance [37], §2.2.)

Definition 0.2.13 The Einstein curvature tensor Ein(g) of (M, g) is given by

Ein(g) = Ric(g)− S

2
g.

Remark 0.2.14 It also holds:

div(Sg) = dS.

Therefore, the divergence of the Einstein tensor disappears, which can be seen by:

Ein(g) = Ric(g)− 1

2
Sg

⇒ div(Ein(g)) = div

(
Ric(g)− 1

2
Sg

)
= div (Ric(g))− 1

2
div (Sg)

=
1

2
dS − 1

2
dS

= 0.

0.3 Newton’s theory of gravitation and Einstein’s

theory of relativity

In this part we want to introduce the basic concepts of the two theories. But first
we have to cite some definitions and theorems from Linear Algebra which are also
important for the following chapters. For the proofs of the theorems and further
information see [17], §5.7, for instance.

Definition 0.3.1 Let V be a finite-dimensional real vector space and V ∗ the dual
space. The annihilator of v ∈ V , v 6= 0, is defined as

Ann(v) := {λ ∈ V ∗ : λ(v) = 0}.

Definition 0.3.2 Let V be a finite-dimensional real vector space and g : V ×V →
R a symmetric bilinear form. We call g

• positive definite, if g(v, v) > 0 for all v ∈ V \{0}.

• positive semi-definite, if g(v, v) ≥ 0 for all v ∈ V .

13



0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

• negative definite, if g(v, v) < 0 for all v ∈ V \{0}.

• negative semi-definite, if g(v, v) ≤ 0 for all v ∈ V .

• indefinite, otherwise.

Remark 0.3.3 Now let V be a four-dimensional, real vector space and v ∈ V
with v 6= 0. Due to the dimension formula we then have dim(Ann(v)) = 3 because
of the fact that Ann(v) = ker(f), where f : V ∗ → R, f(λ) = λ(v) and f 6= 0.

Now let g : V × V → R be a symmetric bilinear form. Then there are subspaces
V+, V− ⊆ V so that

V = V0 ⊕ V− ⊕ V+

where V0 = {v ∈ V : g(v, w) = 0, ∀w ∈ V } and

g|V−×V− negative definite

and
g|V+×V+ positive definite.

Definition 0.3.4 We call the symmetric bilinear form g : V × V → R non-
degenerate, if

Deg(g) := V0 = (0).

Remark 0.3.5 If we consider the transition from the tangent to the cotangent
space and vice versa defined in (0.1.2),

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w),

g is non-degenerate if and only if ϕ is an isomorphism.

Theorem (of Sylvester) 0.3.6 Let V be a finite-dimensional real vector space,
g : V × V → R a symmetric bilinear form and

V = V0 ⊕ V− ⊕ V+,

so that V0, V− and V+ are defined as above. Then the numbers n0 := dimV0,
n− := dimV− and n+ := dimV+ are unambiguously defined, which means that
they do not depend on the choice of V− and V+.
Moreover:

n− = max{dimW : W ⊆ V subspace and s(v, v) < 0 for v ∈ W, v 6= 0},
n+ = max{dimW : W ⊆ V subspace and s(v, v) > 0 for v ∈ W, v 6= 0}.

Due to theorem (0.3.6) it now makes sense to formulate the following

Definition 0.3.7 We define the index of g by ind(g) := n− as well as the rank of
g by rk(g) := n− + n+.
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0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

It can immediately be seen:

Lemma 0.3.8 Let V be a finite-dimensional real vector space, n = dimV and
g : V × V → R a symmetric bilinear form. Then, g is

• positive definite, if and only if rk(g) = n and ind(g) = 0.

• positive semi-definite, if and only if rk(g) ≤ n and ind(g) = 0.

• negative definite, if and only if rk(g) = n and ind(g) = n.

• negative semi-definite, if and only if rk(g) = p ≤ n and ind(g) = p.

• indefinite, if and only if 0 < ind(g) < rk(g).

Corollary 0.3.9 Let V be a finite-dimensional real vector space, g : V × V → R
a symmetric bilinear form and n− as well as n+ its invariants. Then we can find
a basis B of V so that

MB(g) =

 En+ 0 0
0 −En− 0
0 0 0

 ,

where En ∈Mat(n,R) is the unit matrix.
In particular, it is possible to find an orthogonal decomposition, which means that
we can find V− and V+ so that

V = V0©⊥ V−©⊥ V+.

Remark 0.3.10 Let V be a real vector space, g : V × V → R a bilinear form
which is positive semi-definite. If g(v, v) = 0, then v ∈ Deg(g) := V0.

Proof. According to (0.3.9) we can find an orthogonal decomposition of V of the
form

V = V0©⊥ V+.

Now let v ∈ V be arbitrary with g(v, v) = 0. Then there is a v0 ∈ V0 and a
v+ ∈ V+ so that v = v0 + v+. Now we have

0 = g(v, v) = g(v0, v0)︸ ︷︷ ︸
=0, v0∈V0

+2 g(v0, v+)︸ ︷︷ ︸
=0, V0⊥V+

+g(v+, v+) = g(v+, v+).

But this means that v+ = 0 and therefore v ∈ Deg(g). �

Definition 0.3.11 a) We call a semi-Riemannian manifold (M, g) a Lorentzian
manifold, if g has index 1 (which means that gp : TMp×TMp → R has index
1 for every p ∈M). We then call g a Lorentzian metric.
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0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

b) Let (M, g) be a four-dimensional, connected Lorentzian manifold. Then

Tp = {ξ ∈ TMp : gp(ξ, ξ) < 0}

is the set of all timelike vectors,

Λp = {ξ ∈ TMp : gp(ξ, ξ) = 0}\{0}

is the set of all null vectors,

Up = {ξ ∈ TM : gp(ξ, ξ) > 0} ∪ {0}

is the set of all spacelike vectors.

c) A four-dimensional, connected Lorentzian manifold (M, g) is called time-
oriented, if there is a timelike smooth vector field X ∈ X(M).
Tp consists of two connected components σp and τp, where τp = −σp. Two
timelike vector fields X and Y are considered to be equivalent, if Xp and Yp
belong to the same connected component of Tp, for all p ∈ M . An equiva-
lence class [X] of timelike vector fields is called time-orientation on (M, g).
If (M, g) is time-oriented there are exactly two time-orientations. If we
choose one with [X], we call a timelike tangent vector ξ ∈ TMp future-
oriented, if Xp and ξ belong to the same component. Otherwise ξ ∈ TMp is
called past-oriented.

d) A spacetime is a four-dimensional connected and time-oriented Lorentzian
manifold (M, g, [X]).

Now we have a look at Newton’s theory of gravitation. We therefore first have to
explain the concept of a Newtonian spacetime.

Definition 0.3.12 a) The Newtonian space is a three-dimensional euclidian
space E, thus E is isometrical to the Riemannian manifold (R3, geucl.).

b) The Newtonian time is represented by the real axis R.

c) The Riemannian product manifold (R, geucl.) × E of Newtonian time and
Newtonian space is called Newtonian spacetime.

Now we want to discuss the Newtonian law of motion and Newton’s law of gravi-
tation:

Law of motion 0.3.13 Let x : I → R×R3 be a curve, called Newtonian particle
of mass m which is subject to the force F : R × R3 → R3. Then the following
holds:

d(mẋ)

dt
= mẍ = F.

16



0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

Definition 0.3.14 Let K →M(K) be a mass distribution. A map ρ : R×R3 →
R+ is called mass density for M , if for every K ⊆ R× R3 compact∫

K

ρ(x)dx =: M(K)

holds.

Law of gravitation 0.3.15 Let ρ : R × R3 → R+ be a mass density for M and
u : R× R3 → R a map. We say that u satisfies the Newtonian law of gravitation
if

∆u =
∂2u

(∂x1)2
+

∂2u

(∂x2)2
+

∂2u

(∂x3)2
= 4πρ.

We then call G : R× R3 → R3 with

G = − grad(u),

the gravitation field for u.

Example: A perfect fluid 0.3.16 In continuum mechanics, a perfect fluid is
described by a velocity field V : R×R3 → R3, a pressure function p : R×R3 → R
and a mass density ρ : R× R3 → R which is constant (but not zero) for a perfect
fluid. The integral curve of the velocity field describes the mean movement of the
fluid molecules, while the other functions describe the energy of the fluid molecules
per volume and its internal interactions.
Then, the Euler equations, which express the preservation of energy and momen-
tum, describe the relation between (V, ρ, p) and the gravitation field G = − grad(u)
which they cause. The following holds:

ρDtV = − grad p+ ρG

div V = 0.

If you are interested in further reading see, for instance, [21], §4.2.

If we now talk about Einstein’s theory of gravitation we first have to note that
here gravitation is not represented by a vector field but by the curvature of the
space which now is represented by a spacetime (M, g).
Now let x : [0, 1]→M be a curve which satisfies Einstein’s law of motion

∇tẋ = 0.

Then x is called a free falling particle as it is not subject to a force anymore. The
law of motion thus demands that x is a geodesic on M .

If we now discuss the law of gravitation, we note that the present mass is repre-
sented by a symmetric energy momentum tensor T ∈ Γ(M,T (0,2)M).
Einstein’s law of gravitation, known as Einstein’s field equations, is then given by
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0.3. Newton’s theory of gravitation and Einstein’s theory of relativity

Einstein’s field equations 0.3.17 Let (M, g) be a spacetime. The metric g has
to satisfy the condition

Ein(g) = 8πT,

where Ein(g) is the Einstein curvature tensor and T ∈ Γ(M ;T (0,2)M) an energy
momentum tensor.

Remark 0.3.18 If T = 0, M is called a vacuum. Then for the field equations the
following holds:

0 = tr(Ein(g)) = trg(Ric)− S

2
trg g = S − S

2
n = (1− n

2
)S.

This means that S = 0 for dimM = n 6= 2 and it follows from the definition of
the Einstein curvature tensor that Ein(g) = Ric(g). Therefore,

Ric(g) = 0

is called Einstein vacuum equation.
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Chapter 1

Frame theory

In this section we start to discuss the frame theory which goes back to Jürgen
Ehlers. His frame theory makes it possible to compare models of General Relativity
with those of Newton’s theory of gravitation. Although the fundamental concepts
come from Jürgen Ehlers this chapter is not a repetition of his former work or
the work of some of his students (for example Lottermoser, [31]). We here try to
adopt a new approach and try to avoid coordinate calculations as long as possible.
Furthermore, we use results from Algebraic Topology in order to have a better
global understanding of the implications of the frame theory.

1.1 The structure of the frame theory

The structure of Ehlers’ frame theory is determined by the following ingredients,
axioms and definitions.

Ingredients 1.1.1 If you want to establish a frame theory which contains both
Newton’s and Einstein’s theories of gravitation you can use the following mathe-
matical objects:

• a four-dimensional connected smooth manifold M (which is Hausdorff by
definition of manifolds);

• a causality constant λ ∈ R;

• a symmetric tensor field g on the tangent bundle of M , which means g ∈
Γ(M ;T (0,2)M), called time metric;

• a symmetric tensor field h on the cotangent bundle of M , which means
h ∈ Γ(M ;T (2,0)M), called space metric;

• a symmetric tensor field T on the cotangent bundle ofM , T ∈ Γ(M ;T (2,0)M),
called matter tensor;

• a so called gravity field ∇, a symmetric connection on M .

Axioms 1.1.2 The introduced objects λ, g, h, T and ∇ have to satisfy the fol-
lowing axioms:
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1.1. The structure of the frame theory

1. At every point p ∈ M there is a timelike tangent vector ξ ∈ TMp, which
means:

gp(ξ, ξ) > 0,

and hp : TM∗
p × TM∗

p → R is positive definite on the annihilator of ξ,

hp|Ann(ξ)×Ann(ξ) > 0,

where Ann(ξ) = {µ ∈ TM∗
p : µ(ξ) = 0}.

2. For the transitions from the tangent space to the cotangent space and vice
versa induced by g and h (see (0.1.2) ), it is demanded that

ϕp ◦ ψp = −λ idTM∗p

for all p ∈M .

3. Both g and h have to be parallel with regard to the connection ∇, which
means

∇g = ∇h = 0,

where ∇ here denotes connections on TM ⊗ TM and TM∗ ⊗ TM∗ induced
by ∇ (see also (0.1.4)).

4. The matter tensor T has to satisfy div(T ) = 0.

5. The curvature tensor R of the connection ∇ induces a tensor R# by

R#
p (ξ, α, η, β) := 〈β,Rp(ξ, ψp(α))η〉,

for ξ, η ∈ TMp and α, β ∈ TM∗
p . This tensor R# is a four-linear map on

TMp × TM∗
p × TMp × TM∗

p for every p ∈ M , and we require that it is
symmetric in the two first and the two last arguments,

R#
p (ξ, α, η, β) = R#

p (η, β, ξ, α),

for all ξ, η ∈ TMp and α, β ∈ TM∗
p .

6. Finally, the frame theory demands:

Ric(∇) = 8π

(
T bb − 1

2
tr(T b)g

)
.

Remark 1.1.3 a) Let us first have a look at the second axiom. In case of λ 6= 0
it follows that ϕ is surjective and ψ injective, and so both are bijective due
to dim(TMp) = dim(TM∗

p ) < ∞. Therefore, g and h are non-degenerate
and we have: ψ = −λϕ−1.
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b) We have to comment on the fourth axiom. As already mentioned in (0.2.11),
divergence usually is defined for a symmetric (0, 2)−tensor field T . In our
case we now have a (2, 0)− tensor field T . But as ∇T then is a (2, 1)−tensor
field, ∇T ∈ T (2,1)M , we now define

div(T ) = tr(1,3)(∇T ),

which means that

〈β, div(T )(p)〉 =
n∑
i=1

∇ei
T (αi, β),

where (ei) is an orthonormal basis of TMp and (αi) the dual basis. Note
that div(T ) ∈ T (1,0)M . As T is symmetric, it does not matter if we build
the (1, 3)− or the (2, 3)−trace.

c) Now let us deal with the fifth axiom and the definition of R#
p . Note that in

case of λ 6= 0 we rediscover the definition of the Riemannian curvature tensor
(consider also d)). But the fifth axiom can not be replaced by a corresponding
formula of the Riemannian curvature tensor as this is not possible in case of
λ = 0.

d) In case of λ 6= 0, (M, g) is a pseudo-Riemannian manifold. Then (h,∇, T )
are determined by g: h is the quasi-inverse of g (see axiom two), T is defined
by axiom six and condition three determines the connection ∇ definitely.
According to the precondition the connection ∇ is symmetric and so it is the
Levi-Civita connection of g. This is not the case for λ = 0, of course.
It can also be shown that some conditions can be neglected in case of λ 6=
0. As ∇ is the Levi-Civita connection of g, the curvature tensor and the
Riemannian curvature tensor satisfy the usual symmetries (see also (0.2.4)
and (0.2.2)). For instance, condition number five follows directly from the
metric condition three and the fact that the connection is symmetric, since:
Let ξ, η ∈ TMp, as well as α, β ∈ TM∗

p . Then:

R#
p (ξ, α, η, β) = 〈β,Rp(ξ, ψp(α))η〉

= −1

λ
〈ϕp(ψp(β)), Rp(ξ, ψp(α))η〉

= −1

λ
gp(ψp(β), Rp(ξ, ψp(α))η)

= −1

λ
gp(Rp(ξ, ψp(α))η, ψp(β))

= −1

λ
Rmp(ξ, ψp(α), η, ψp(β))

= −1

λ
Rmp(η, ψp(β), ξ, ψp(α))

= −1

λ
gp(Rp(η, ψp(β))ξ, ψp(α))
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= −1

λ
〈ϕp(ψp(α)), Rp(η, ψp(β))ξ〉

= 〈α,Rp(η, ψp(β))ξ〉
= R#

p (η, β, ξ, α),

where 〈−,− 〉 again denotes the natural pairing.

e) Moreover, we have to comment on the last axiom. Usually the reader should
expect Einstein’s field equations. However, note that these are equivalent to
axiom six in case of λ 6= 0 which is demonstrated by the following:
It is known that Einstein’s field equations are given by:

Ein(g) = 8πT̃ ,

where Ein(g) = Ric(∇)− 1
2
Sg and T̃ ∈ Γ(M ;T (0,2)M) . If you now build the

trace of the equation Ric(∇)− 1
2
Sg = 8πT̃ with regard to g, you get

S − 1

2
S · 4 = 8π trg(T̃ ),

thus
S = −8π trg(T̃ ).

If you put this in Ric(∇)− 1
2
Sg = 8πT̃ , you get

Ric(∇) = 8πT̃ +
1

2
Sg

= 8πT̃ − 4π trg(T̃ )g

= 8π

(
T̃ − 1

2
trg(T̃ )g

)
= 8π

(
T bb − 1

2
tr(T b)

)
,

with T̃ ∈ Γ(M ;T (0,2)M), thus T = T̃## and so T̃ = T bb and T̃# = T b. As

you do not lose any information by the transition T → T̃ = T bb in case of
λ 6= 0 these equations are equivalent to Einstein’s field equations. This is
clearly not the case for λ = 0.

f) Now you can see that condition four follows immediately from condition six
in case of λ 6= 0. From (0.2.14) follows that

div(Ein) = 0

and therefore also
div(T bb) = 0.

g) It is really surprising that the frame theory does not determine a time ori-
entation, which usually belongs to every model in General Relativity. Nor-
mally one would expect that an equivalence class [B] is mentioned, where
B ∈ X(M) is a timelike global vector field (see 0.3.11).
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h) If you have a look at the axioms mentioned by Ehlers in his papers (see for
instance [13]), our first axiom there is divided into the following two axioms:

1. At every point p ∈ M there is at least one timelike tangent vector
ξ ∈ TMp.

2. For every ξ ∈ TMp with gp(ξ, ξ) > 0,

hp|Ann(ξ)×Ann(ξ) > 0.

We will use our axiom one in the following sections and we will see there that
although the formulations of Ehlers seem to be stronger, our axiom number
one is equivalent to the two of Ehlers (for λ = 0 and this is the only case
where we need this axiom). We therefore are allowed to exchange the axioms
(see (1.2.6)).

i) Sometimes a gravity constant G ∈ R+ also appears as one of the objects of
the frame theory. But as there are no conditions for this gravity constant we
consider G to be equal to 1, G = 1, and will not mention it any further.

After the presentation of the axioms of the frame theory we now analyse the
situation of the frame theory in one point. We therefore have to discuss some
concepts of Linear Algebra.

1.2 Linear Algebra

In order to understand how we can identify Newton’s theory of gravitation and
the theory of General Relativity in the frame theory, we are first interested in
the rank and index of the bilinear forms g and h in dependence on λ. (For the
definitions and the Sylvester’s theorem see the beginning of section (0.3).) In the
following discussion let V be a real vector space of dimension 4, g : V × V → R
and h : V ∗ × V ∗ → R symmetric bilinear forms.

Theorem 1.2.1 Let V , g and h be given as mentioned above, as well as λ ∈ R.
They are required to satisfy the following conditions:

1. There is a v ∈ V with g(v, v) > 0 and h|Ann(v)×Ann(v) > 0.

2. For

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β)

with v, w ∈ V and α, β ∈ V ∗:

ϕ ◦ ψ = −λ idV ∗ .
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Then:

(i) For λ > 0, g and h have rank 4, g has index 3 and h has index 1.

(ii) For λ < 0, g and h have rank 4 and both have index 0.

(iii) For λ = 0, g has rank 1 and h has rank 3. Both have index 0.

Proof. First let λ 6= 0. Then we know by the second condition that the maps

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β)

are isomorphisms (remember that from ϕ ◦ ψ = −λ id follows that ϕ is surjective
and ψ injective and due to dim(TMp) = dim(TM∗

p ) < ∞ that ϕ and ψ are
bijective) and it follows that g and h are non-degenerate. But this means that
rk(g) = rk(h) = 4.
Now we have a look at the first condition. It immediately shows that ind(g) ≤ 3.
Furthermore, there is a three-dimensional subspace of V ∗ on which h is positive
definite. So we get ind(h) ≤ 1.
Let v ∈ V and α = ψ−1(v), so v = ψ(α). Then:

g(v, v) = 〈ϕ(v), v〉 = 〈ϕ ◦ ψ(α), ψ(α)〉 = −λ〈α, ψ(α)〉 = −λh(α, α). (1.1)

Now let λ > 0. Due to equation (1.1) we get

ind(g) = ind(−h)⇔ ind(h) = ind(−g).

As ind(g) ≤ 3, we have ind(−g) ≥ 1. Due to ind(h) ≤ 1 it follows that

ind(−g) = ind(h) = 1 and ind(g) = 3,

which shows (i).
Now let λ < 0. Due to (1.1) we have

ind(g) = ind(h).

As ind(h) ≤ 1 we just have to exclude that ind(g) = ind(h) = 1. Let us assume
that this is the case. Then there is a decomposition V = V+⊕V− with g|V+×V+ > 0,
g|V−×V− < 0 and even g(V+, V−) = 0 (see (0.3.9)). If now w ∈ V−\{0} (which exists
as we assumed that dimV− = 1) and β = ϕ(w), then

h(β, β) = 〈β, ψ(β)〉 = 〈β, ψ ◦ ϕ(w)〉 = −λ〈ϕ(w), w〉 = −λg(w,w) < 0.

But on the other hand, for v ∈ V+\{0}

〈β, v〉 = 〈ϕ(w), v〉 = g(v, w) = 0
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holds, so β ∈ Ann(v), which is a contradiction to condition 2. Therefore,

ind(g) = ind(h) = 0,

which shows (ii).
Now let λ = 0. Condition one provides that rk(g) ≥ 1. Furthermore, it implies
that rk(h) ≥ 3 as h is positive definite on the annihilator of v, which is three-
dimensional. From the second condition follows that rk(g)+rk(h)≤ 4 due to the
following calculation:

ϕ ◦ ψ = 0⇒ im(ψ) ⊆ ker(ϕ)⇒ rk(ψ) ≤ dim(ker(ϕ)) = 4− rk(ϕ).

This clearly shows that g has rank 1 and h has rank 3. Due to the first condition
g therefore has index 0 as claimed. But as h has to be positive definite on a three-
dimensional subspace of V ∗ the index of h also equals 0. This shows (iii) and thus
the claim of the theorem. �

Now we will prove a normal form theorem for g and h. First let us have a look at
this preliminary remark:

Lemma 1.2.2 Let V , g and h be the same as before as well as λ ∈ R and let

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β)

be the transitions between V and V ∗, where v, w ∈ V and α, β ∈ V ∗. If these
transitions satisfy the condition

ϕ ◦ ψ = −λ idV ∗ ,

then also follows
ψ ◦ ϕ = −λ idV .

Proof. First let λ 6= 0. Then the claim directly follows as ϕ and ψ are invertible
and we have ϕ = −λψ−1 as well as ψ = −λϕ−1. So we get:

ψ ◦ ϕ = −λϕ−1 ◦ ϕ = −λ idV .

For λ = 0 we first define

H := ker(ϕ) = Deg(g) = {v ∈ V : g(v, w) = 0 ∀w ∈ V } ⊆ V.

As dim(im(ϕ)) = rk(g) = 1, the dimension formula leads to

dim(ker(ϕ)) = 4− dim(im(ϕ)) = 4− 1 = 3.

Moreover, we have dim(im(ψ)) = rk(h) = 3. Due to the fact that ϕ◦ψ = 0 in case
of λ = 0, it immediately follows that im(ψ) ⊆ ker(ϕ) and on top of that, because
of the dimensions, we have im(ψ) = ker(ϕ) = H. Now let v ∈ V and α ∈ V ∗.
Then

h(α, ϕ(v)) = 〈ϕ(v), ψ(α)〉 = g(v, ψ(α)︸︷︷︸
∈H

) = 0, ∀α ∈ V ∗,

and we get ϕ(v) ∈ Deg(h) = ker(ψ), ∀v ∈ V . So we have im(ϕ) ⊆ ker(ψ) and
eventually ψ ◦ ϕ = 0. �
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1.2. Linear Algebra

Remark 1.2.3 If we have a look at the dimensions of the subspaces of V and V ∗

mentioned before we can even see that im(ϕ) = ker(ψ) because of the fact that

dim(im(ϕ)) = dim(rk(g)) = 1 = 4−3 = 4−rk(h) = 4−dim(im(ψ)) = dim(ker(ψ)).

Due to this we can define

H : = ker(ϕ) = Deg(g) = im(ψ) ⊆ V,

L : = ker(ψ) = Deg(h) = im(ϕ) ⊆ V ∗.

Normal form theorem 1.2.4 Let V , g and h be the same as above, as well as
λ ∈ R. They are required to satisfy the following conditions:

1. There is a v ∈ V with g(v, v) > 0 and h|Ann(v)×Ann(v) > 0.

2. For

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β),

where v, w ∈ V and α, β ∈ V ∗,

ϕ ◦ ψ = −λ idV ∗

holds (and as we have seen before this implies ψ ◦ ϕ = −λ idV ).

Then there is a basis A = (e0, ..., e3) of V so that we have for the dual basis
A∗ = (ω0, ..., ω3)

(g(ei, ej))i,j = diag(1,−λ,−λ,−λ),

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1).

Proof. Let first λ 6= 0. Then we know from theorem (1.2.1) and from (0.3.9) that
there is a basis A = (e0, e1, e2, e3) of V with

M(g; A) = diag(1,−λ,−λ,−λ).

(Actually we first get a basis A with M(g; A) = diag(1,−1,−1,−1) for λ > 0
and M(g; A) = diag(1, 1, 1, 1) for λ < 0, but after scaling we can get a basis as
mentioned above.) Of course, we then have:

(〈ϕ(ei), ej〉) = (g(ei, ej)) = diag(1,−λ,−λ,−λ).

We now define

ω0 := ϕ(e0), ωk := −1

λ
ϕ(ek) (1 ≤ k ≤ 3)

and then
〈ωi, ej〉 = δij
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holds, which means that B := (ω0, ω1, ω2ω3) is dual to A. Furthermore, we know
that for all v, w ∈ V

h(ϕ(v), ϕ(w)) = −λg(v, w)

holds and so we finally get

h(ω0, ω0) = −λg(e0, e0) = −λ,

h(ω0, ωk) = −1

λ
· λg(e0, ek) = 0,

h(ωk, ωl) =
1

λ2
h(ϕ(ek), ϕ(el)) =

1

λ2
(−λ)g(ek, el) =

1

λ2
(−λ)(−λ)δkl = δkl,

for 1 ≤ k, l ≤ 3. This shows the claim for λ 6= 0.
Now let λ = 0. It is clear that we can not copy the proof for λ 6= 0 as g does not
determine h in case of λ = 0. As the degeneration space of h is not as big as the
one of g we now start with h:
Due to theorem (1.2.1) and (0.3.9) we now can choose a basis B := (ω0, ω1, ω2, ω3)
of V ∗ so that

M(h; B) = diag(0, 1, 1, 1). (1.2)

For µ 6= 0, Bµ := (µω0, ω1, ω2, ω3) is also a basis with (1.2) as h is bilinear.
Now let A = (e0, e1, e2, e3) be dual to B. Then A := ( 1

µ
e0, e1, e2, e3) is dual to Bµ.

Since
〈ωα, ψ(ωi)〉 = h(ωα, ωi) = δαi (0 ≤ α ≤ 3, 1 ≤ i ≤ 3),

we get for 1 ≤ i ≤ 3:
ψ(ωi) = ei.

Then it follows

g(eα, ei) = g(ψ(ωi), eα) = 〈ϕ ◦ ψ︸ ︷︷ ︸
=0

(ωi), eα〉 = 0, (0 ≤ α ≤ 3, 1 ≤ i ≤ 3).

Now let finally c := g(e0, e0). Then c > 0 as rk(g) = 1 and ind(g) = 0 and

g

(
1

µ
e0,

1

µ
e0

)
=

1

µ2
c = 1

for µ :=
√
c. So Aµ is the required basis and this shows the claim. �

Now we will see that the claims of the theorem above are equivalent:

Theorem 1.2.5 Let V be a real vector space of dimension four, g : V × V → R
and h : V ∗ × V ∗ → R symmetric bilinear forms. Furthermore, let λ ∈ R. Then it
is equivalent:

(i) g and h fulfil the following conditions:

1. There is a v ∈ V with g(v, v) > 0 and h|Ann(v)×Ann(v) > 0.

27
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2. For

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β),

where v, w ∈ V and α, β ∈ V ∗,

ϕ ◦ ψ = −λ idV ∗

holds.

(ii) There is a basis A = (e0, ..., e3) of V so that we have for the dual basis
A∗ = (ω0, ..., ω3)

(g(ei, ej))i,j = diag(1,−λ,−λ,−λ),

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1).

Proof.

(i)⇒ (ii) This directly follows from the normal form theorem (1.2.4).

(ii)⇒ (i) We now show that g and h satisfy the conditions demanded.

1) The first condition is fulfilled immediately. By defining v := e0 and by
using the assumption we have:

g(v, v) = 1 > 0.

Then the annihilator of v is:

Ann(v) = Ann(e0) = span(ω1, ω2, ω3)

and h is obviously positive definite on span(ω1, ω2, ω3).

2) If we want to see the validity of the second condition we have to present
the maps

ϕ : V → V ∗, 〈ϕ(v), w〉 = g(v, w)

ψ : V ∗ → V, 〈α, ψ(β)〉 = h(α, β)

with regard to the bases A and A∗ and we get the matrices

A = diag(1,−λ,−λ,−λ)

and
B = diag(−λ, 1, 1, 1).

From A · B = −λE4 follows that ϕ ◦ ψ = −λ idV ∗ . This shows the
second condition and the theorem.

�
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Remark 1.2.6 As mentioned above (see (1.1.3 h)), we now are able to show that
our axiom one is equivalent to Ehlers’ axioms:

1. At every point p ∈M there is at least one timelike tangent vector ξ ∈ TMp.

2. For every ξ ∈ TMp with gp(ξ, ξ) > 0,

hp|Ann(ξ)×Ann(ξ) > 0.

As we showed in theorem (1.2.5) that our axioms in (i) are equivalent to (ii), we
just have to show that Ehlers’ second condition follows from (ii).
In order to demonstrate this we choose an arbitrary v ∈ V with g(v, v) > 0 and
we consider

Ann(v) = {α ∈ V ∗|α(v) = 0}.

The case of λ < 0 is not interesting as h then is positive definite on the whole of V ∗

and, of course, also on Ann(v). So we look at the case of λ ≥ 0. Let A = (e0, ..., e3)
be a basis of V and A∗ = (ω0, ..., ω3) the dual basis so that

(g(ei, ej))i,j = diag(1,−λ,−λ,−λ),

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1).

Then there is a presentation of v with respect to this basis: v =
∑3

i=0 viei, vi ∈ R,
i = 0, ..., 3, and we have:

0 < g(v, v) = (v0)2 − λ
3∑
i=1

(vi)
2.

It immediately follows that v0 6= 0. If you now consider

0 < g(v, v) = (v0)2

(
1− λ

∑3
i=1(vi)

2

(v0)2

)
,

you can see that λ |v|
2

v20
< 1 for v := (v1, v2, v3).

Let β ∈ Ann(v) be arbitrary with the presentation β =
∑3

i=0 βiω
i, βi ∈ R, i =

0, ..., 3. Then:

0 = β(v) =
3∑
i=0

βivi = v0β0 +
3∑
i=1

βivi ⇔ β0 = −
∑3

i=1 βivi
v0

.

We now define β := (β1, β2, β3) and let ( , ) be the standard scalar product on R3,
then (β, v) =

∑3
i=1 βivi, then the equation above results in

β0 = −(β, v)

v0

.
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1.3. Transfer to the frame theory

Then the following holds:

h(β, β) = −λ(β0)2 +
3∑
i=1

(βi)
2

= −λ(β0)2 + |β|2

= −λ(β, v)2

(v0)2
+ |β|2

≥ −λ |β|
2|v|2

(v0)2
+ |β|2

= |β|2
(

1− λ |v|
2

(v0)2

)
︸ ︷︷ ︸

>0

.

(Here we use the Cauchy-Schwarz inequality.) Due to the fact that
(

1− λ |v|
2

(v0)2

)
> 0,

it follows that
h(β, β) ≥ 0 and h(β, β) = 0⇔ β = 0.

With β0 = − (β,v)
v0

we then have

h(β, β) ≥ 0 and h(β, β) = 0⇔ β = 0.

But this means that h is positive definite on Ann(v).

1.3 Transfer to the frame theory

Now we want to transfer the results of the last paragraph to our case. We just
have to cite the first theorem as its statement is just pointwise and the proof is
identical with the one above.

Theorem 1.3.1 Let M be a four-dimensional connected manifold, g a symmetric
tensor field on the tangent bundle of M , g ∈ Γ(M ;T (0,2)M), h a symmetric tensor
field on the cotangent bundle of M , h ∈ Γ(M ;T (2,0)M) and λ ∈ R. These objects
are required to satisfy the first two axioms of the frame theory. Then the following
holds (everywhere!):

(i) For λ > 0, g and h have rank 4, g has index 3 and h has index 1.

(ii) For λ < 0, g and h have rank 4 and both have index 0.

(iii) For λ = 0, g has rank 1 and h has rank 3. Both have index 0.

Theorem 1.3.2 Let M be a four-dimensional connected manifold, g a symmetric
tensor field on the tangent bundle of M , g ∈ Γ(M ;T (0,2)M), h a symmetric tensor
field on the cotangent bundle of M , h ∈ Γ(M ;T (2,0)M) and λ ∈ R. Then it is
equivalent:

30



1.3. Transfer to the frame theory

(i) g and h satisfy the first two axioms of the frame theory.

(ii) For every p ∈ M there is an open neighbourhood U ⊆ M and vector fields
Xi ∈ X(U), i = 0, ..., 3, forming a basis at every point q ∈ U so that for the
dual differential forms ωj ∈ E (1)(U), j = 0, ..., 3, the following holds:

(g(Xi, Xj))i,j = diag(1,−λ,−λ,−λ), i, j = 0, ..., 3;

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1), i, j = 0, ..., 3.

Proof.

(i)⇒ (ii) We already now that the theorem holds for one p ∈ M . We therefore have
to show that is also holds locally. We first choose a chart

x : U → V ⊆ R4

so that the coordinate vector fields(
∂

∂x0

∣∣∣∣
p

,
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

,
∂

∂x3

∣∣∣∣
p

)
and the dual forms

(dx0|p, dx1|p, dx2|p, dx3|p)
are ”normal bases” in p. Since

(
∂
∂x0 |q, ∂

∂x1 |q, ∂
∂x2 |q, ∂

∂x3 |q
)

and the dual forms
(dx0|q, dx1|q, dx2|q, dx3|q) are bases of TMq and TM∗

q in every q ∈ U , we now
use an orthonormalization process which depends differentiable on q ∈ U ′,
for all q ∈ U ′ ⊆ U , p ∈ U ′ and U ′ small enough (similar to the Gram-
Schmidt-process).
So let us start with the frame

(
∂
∂x0 ,

∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

)
. Since

gp

(
∂

∂x0

∣∣∣∣
p

,
∂

∂x0

∣∣∣∣
p

)
= 1,

we can find an open neighbourhood U ′ of p, U ′ ⊆ U so that

g

(
∂

∂x0

∣∣∣∣
U ′
,
∂

∂x0

∣∣∣∣
U ′

)
6= 0.

Then we can define

X ′0 :=
1√

g
(

∂
∂x0

∣∣
U ′
, ∂
∂x0

∣∣
U ′

) · ∂

∂x0

∣∣∣∣
U ′
.

Thus,
g(X ′0, X

′
0) = 1

on U ′. Now we define

X ′i :=
∂

∂xi

∣∣∣∣
U ′
− g

(
X ′0,

∂

∂xi

∣∣∣∣
U ′

)
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1.3. Transfer to the frame theory

for 1 ≤ i ≤ 3 and it follows that

g(X ′i, X
′
0) = 0.

We therefore consider the frame

A′ = (X ′0, X
′
1, X

′
2, X

′
3)

and its dual frame
′A∗ = (′ω0,′ ω1,′ ω2,′ ω3).

Then ϕ(X ′0) = ′ω0 holds, since:

〈ϕ(X ′0), X ′i〉 = g(X ′0, X
′
i) = δ0i,

for 0 ≤ i ≤ 3; but we also have

〈′ω0, X ′i〉 = δ0
i ,

since ′A∗ is dual to A′. Thus, it follows that

h(′ω0,′ ωi) = 〈′ωi, ψ(′ω0)〉 = 〈′ωi, ψ(ϕ(X ′0))〉
= −λ〈′ωi, X ′0〉 = −λδi0,

for 0 ≤ i ≤ 3. Now we consider

W := {ω ∈ E (1)(U ′) : 〈ω,X ′0〉 = 0}.

Thus, for all p ∈ U ′

Wp = span(′ω1|p,′ ω2|p,′ ω3|p) = Ann(X ′0|p)

holds and (′ω1,′ ω2,′ ω3) is a basis of TM∗
p in every p ∈ U ′. Due to the first

condition, which is equivalent to Ehlers’ axioms as we have seen in (1.2.6, we
now know that hp is positive definite on the annihilator of X ′0|p and therefore
it follows that

h(′ωi,′ ωi) > 0,

for 1 ≤ i ≤ 3. Therefore, we now are able to orthonormalize (′ω1,′ ω2,′ ω3)
using the standard orthonormalization process of Schmidt. We then get
ωi ∈ E (1)(U ′) with

h(ωi, ωj) = δij

for 1 ≤ i, j ≤ 3. Thus, we define

A∗ := (ω0, ω1, ω2, ω3)

with ω0 := ′ω0 and we already have

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1).
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1.3. Transfer to the frame theory

Now let A = (X0, X1, X2, X3) be dual to A∗, thus

〈ωj, Xi〉 = δji ,

for 0 ≤ i, j ≤ 3. But this means that X0 = X ′0, since

〈ωj, X ′0〉 = δj0 = 〈ωj, X0〉,

for 0 ≤ j ≤ 3. Furthermore, we have

g(X0, Xi) = 〈ϕ(X0), Xi〉 = 〈ω0, Xi〉 = δ0
i .

Next we show that ψ(ωi) = Xi for 1 ≤ i ≤ 3. This follows from the fact that

〈ωj, ψ(ωi)〉 = h(ωi, ωj) = δij = δji = 〈ωj, Xi〉,

for 0 ≤ j ≤ 3. Finally,

g(Xi, Xj) = g(ψ(ωi), Xj) = 〈ϕ(ψ(ωi)), Xj〉
= −λ〈ωi, Xj〉 = −λδij,

for 1 ≤ i, j ≤ 3, and therefore

(g(Xi, Xj))i,j = diag(1,−λ,−λ,−λ),

which shows the claim.

(ii)⇒ (i) We now show that the first two axioms of the frame theory hold. Therefore,
let (X0, X1, X2, X3) and (ω0, ω1, ω2, ω3) so that

(g(Xi, Xj))i,j = diag(1,−λ,−λ,−λ), i, j = 0, ..., 3;

(h(ωi, ωj))i,j = diag(−λ, 1, 1, 1), i, j = 0, ..., 3.

1) Then, the first axiom is satisfied immediately, since we take X0|p for all
p ∈ U ′ and get

gp(X0|p, X0|p) = 1.

Furthermore,
Ann(X0|p) = span(ω1

p, ω
2
p, ω

3
p),

where hp is obviously positive definite.

2) Since this is also a pointwise discussion the second axiom follows directly
from the proof of (1.2.5) and this shows the claim of the theorem.

�

Remark 1.3.3 (i) The arguments used in the proof above show why it is usu-
ally not possible to prove the theorem globally. A global theorem would
require a global chart x and thus a global frame on M . If this was the case
one could start this orthonormalization process and get a global assertion.
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1.4. The case λ = 0

(ii) If you want to use the frame theory to make a connection between General
Relativity and Newton’s theory of gravitation you first have to find out how
you can detect the two theories within the frame theory. In case of λ > 0,
models of General Relativity can appear. Then we have a four-dimensional
manifold M , (−λg) is of full rank and has index 1, so it is a Lorentzian
metric and, in addition to that, Einstein’s field equations hold according to
the sixth axiom of the frame theory. Up to this moment it is not clear at all
how you can discover models of Newton’s theory within the frame theory.
As we will soon see, these models can appear in case of λ = 0. This is the
topic of the following section.

1.4 The case λ = 0

In this section we now discuss the case λ = 0. We will see that Newtonian models
can appear in this case. Of course, this is not a new fact, see [31] for instance.
But as already mentioned before, we are interested in the global structure of the
manifold, not in the local one, as in the approaches by Lottermoser, for instance.
This global point of view would be an improvement concerning the knowledge
about the frame theory up to this moment.
As we have already noted before in case of λ > 0, models of General Relativity
can appear. The connection ∇ is totally and unambiguously defined. Some of
the axioms also follow directly from others (see (1.1.3)). If we want to detect
Newton’s theory in case of λ = 0, we first have to show that the manifold M
equals M = R× R3 in this case.

We therefore consider M, g, h and ∇ as well as the axioms belonging to them in
case of λ = 0. From theorem (1.3.1) follows that rk(g) = 1, ind(g) = 0, rk(h) = 3
and ind(h) = 0. Therefore, we now define

Hp := Deg(gp) = {ξ ∈ TMp : gp(ξ, η) = 0, ∀η ∈ TMp} ⊆ TMp.

Because of rk(g) = 1 we have dim(Hp) = dim(Deg(gp)) = 3. Furthermore, we
define H := (Hp)p∈M . Then H is a subset of TM , H ⊆ TM and as Hp depends
smoothly on p, H is a smooth subbundle of TM . Therefore, H = (Hp)p∈M is a
distribution on M (see also (1.4.1)).

1.4.1 The theorem of Frobenius

As we need the theorem of Frobenius in the following discussion we now cite this
theorem and the definitions belonging to this context. If you are interested in
further reading see [44], chapter 1, for instance.

Definition 1.4.1 Let Mn be a smooth manifold and let 0 ≤ k ≤ n.

a) A distribution of rank k on M is a smooth subbundle E ⊆ TM of rank k.
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1.4. The case λ = 0

b) A distribution E ⊆ TM is called integrable, if for every p ∈ M there is a
chart x : U → V ⊆ Rn (with p ∈ U , 0 ∈ V and x(p) = 0) so that

Nc = {q ∈ U : xk+1(q) = ck+1, ..., xn(q) = cn}

is an integral manifold for E, for all c ∈ V ⊆ Rn−k, where V ⊆ Rn−k is a
neighbourhood of 0 ∈ Rn−k. This means that (TNc)q = Eq, for all q ∈ Nc.

Definition 1.4.2 We call a distribution E ⊆ TM involutive, if

[X, Y ] ∈ Γ(E)

holds for all X, Y ∈ Γ(E).

Theorem of Frobenius 1.4.3 A distribution E ⊆ TM is integrable if and only
if it is involutive.

1.4.2 The topology of (M,H)

In order to achieve M = R × R3 we first have to show that the distribution is
integrable and then that the foliation even gives a fibration. If we then show in
addition that the Frobenius leaves equal R3 and are not twisted we meet our aim.
So let us start dealing with integrability.

Remark 1.4.4 (i) Locally the foliation is always a product, of course, globally
it can be very complicated. As we will see in the following discussion we can
only achieve global status if the manifold meets further conditions, if it is
simply connected, for instance.

(ii) In the following we will show that some results which we know from semi-
Riemannian geometry, for instance, also hold in case of λ = 0. So we develop
a special geometry for degenerate bilinear forms.

(iii) As the connection ∇ is also symmetric and metric with regard to g in case
of λ = 0 the Koszul formula also holds:

2g(∇XY, Z) =X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]),

for X, Y and Z ∈ X(M). This can easily be seen because one just has to
apply symmetry and metric property repeatedly:

g(∇XY, Z) =X(g(Y, Z))− g(Y,∇XZ)

=X(g(Y, Z))− (g(Y,∇ZX) + g(Y, [X,Z]))

=X(g(Y, Z))− (Z(g(Y,X))− g(∇ZY,X))− g(Y, [X,Z])

=X(g(Y, Z))− Z(g(Y,X)) + g(∇YZ + [Z, Y ], X))− g(Y, [X,Z])
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1.4. The case λ = 0

=X(g(Y, Z))− Z(g(Y,X)) + Y (g(Z,X))− g(Z,∇YX)

+ g(X, [Z, Y ]) + g(Y, [Z,X])

=X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))− g(Z,∇XY + [Y,X])

− g(X, [Y, Z]) + g(Y, [Z,X])

=X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))− g(X, [Y, Z])

+ g(Y, [Z,X]) + g(Z, [X, Y ])− g(∇XY, Z),

for X, Y and Z ∈ X(M). But you have to bear in mind that the connection
∇ is not determined unambiguously because of the degeneration of g.

(iv) We want to mention again that in the tangent and cotangent spaces in case
of λ = 0 we have

Hp : = ker(ϕp) = Deg(gp) = im(ψp) ⊆ TMp,

Lp : = ker(ψp) = Deg(hp) = im(ϕp) ⊆ TM∗
p .

Furthermore, dim(Hp) = 3 and dim(Lp) = 1.

Theorem 1.4.5 Let H = (Hp) be the distribution defined above with Hp = Deg(gp).
Then the distribution H = (Hp) is integrable.

Proof. First, we have to remember that the integrability of the distribution H ⊆
TM is a local condition. Therefore, let p ∈ M , x : U → V ⊆ R4 be a chart for p
so that

(
∂
∂x0 |p, ∂

∂x1 |p, ∂
∂x2 |p, ∂

∂x3 |p
)

is a normal basis (see (1.3.2)).
We now show that the distribution is involutive. Then the theorem of Frobenius
provides that it is also integrable. In order to achieve this we use B := ∂

∂x0 ∈ X(U ′),
with p ∈ U ′ ⊆ U and U ′ small enough. Then

g(B,B) = 1

on U ′. We then define
ω := ϕ(B)(−) = g(B,− ).

Then ωp 6= 0 because of the fact that gp(Bp, Bp) = 1 for all p ∈ U ′. Furthermore,
we have

ker(ωp) = {ξ ∈ TMp : 0 = 〈ϕp(Bp), ξ〉 = gp(Bp, ξ)}.

Then Hp ⊆ ker(ωp) and because of ωp 6= 0 for all p ∈ U ′, follows that ker(ωp) = Hp

due to dimension.
In order to show that H is involutive, let X, Y ∈ Γ(H) be arbitrary and then
we have to prove that [X, Y ] ∈ Γ(H). We just have to show that ω([X, Y ]) = 0
because this means that [X, Y ]p ∈ ker(ωp) and we get [X, Y ] ∈ Γ(H).
By definition of ω we have ω([X, Y ]) = g(B, [X, Y ]). As∇ is symmetric and metric
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with regard to g it follows from the Koszul formula (see (1.4.4)) that

ω([X, Y ]) = g(B, [X, Y ])

=− 2 g(∇XB, Y )︸ ︷︷ ︸
=0

+X g(B, Y )︸ ︷︷ ︸
=0

+B g(X, Y )︸ ︷︷ ︸
=0

−Y g(X,B)︸ ︷︷ ︸
=0

− g(X, [B, Y ])︸ ︷︷ ︸
=0

+ g(Y, [X,B])︸ ︷︷ ︸
=0

= 0,

as X, Y ∈ Γ(H) (remember: Deg(gp) = Hp). So H is involutive and therefore also
integrable by the theorem of Frobenius. �

Remark 1.4.6 If we have a look at the definition of ω in the proof of (1.4.5) it
seems to depend on the choice of B. But, while the choice of B is arbitrary, ω is
not arbitrary at all: ω = ϕ(B), so ω ∈ L and hp(ωp, ωp) = 1. As dim(Lp) = 1, ω
is fixed except for its sign.
In the following we want to discuss the global structure of the foliation. We
therefore suppose that there is a global timelike normalized vector field B ∈ X(M).
Up to this moment the existence of such a vector field is not clear at all and has
to be studied in the following.
So let us suppose that B ∈ X(M) is such a vector field. Then we first note that

0 = ∇ξ(g(B,B))

= (∇ξg)(Bp, Bp) + gp(∇ξB,Bp) + gp(Bp,∇ξB)

= 2gp(∇ξB,Bp),

for ξ ∈ TMp. Therefore,
gp(∇ξB,Bp) = 0 (1.3)

for ξ ∈ TMp arbitrary.
Furthermore, let X ∈ Γ(H). Then:

gp(∇BpX,Bp) = Bp(g(X,B)︸ ︷︷ ︸
=0

)− (∇Bpg)︸ ︷︷ ︸
=0

(Xp, Bp)− gp(Xp,∇BpB)︸ ︷︷ ︸
=0

= 0. (1.4)

If we now again define
ω = 〈ϕ(B),− 〉 = g(B,− ),

we can show that ω is closed:
dω = 0.

As dωp is an antisymmetric bilinear form, we just have to show that

dωp(ξ, η) = 0

for ξ, η ∈ Hp and
dωp(ξ, Bp) = 0
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for ξ ∈ Hp. Now let ξ, η ∈ Hp be arbitrary and X, Y ∈ Γ(H) continuations of ξ
and η, Xp = ξ, Yp = η. Then it follows with the help of the Formula of Cartan:

dωp(ξ, η) = ξ(ω(Y )︸ ︷︷ ︸
=0

)− η(ω(X)︸ ︷︷ ︸
=0

)− ωp([X, Y ]p︸ ︷︷ ︸
∈Hp

) = 0.

Due to (1.3) and (1.4) we also get

dωp(ξ, Bp) = ξ(ω(B)︸ ︷︷ ︸
=1

)−Bp(ω(X)︸ ︷︷ ︸
=0

)− ωp([X,B]p)

= ωp(∇ξB −∇BpX)

= gp(Bp,∇ξB)− gp(Bp,∇BpX)

= 0.

Therefore,
dω = 0.

Notation 1.4.7 In the following discussion the foliation belonging to H is called
B = (Fα)α∈R, where R is an index set. This means that the Fα are maximal and

connected integral manifolds for H and M =
⋃̇
α∈RFα.

Definition 1.4.8 Let M and N be smooth manifolds. A smooth map Φ : M → N
is called submersion, if DΦp : TMp → TNΦ(p) is surjective for all p ∈M .

Theorem 1.4.9 Let the manifold M be simply connected and g and ∇ be as above.
Suppose there is a complete global timelike normalized vector field B ∈ X(M) on
M . Then there is a submersion T : M → R so that T−1(c) is an integral manifold
for H for every c ∈ R.

Proof. We first define the differential form ω ∈ E (1)(M) by

ω := 〈ϕ(B),− 〉 = g(B,− ).

According to (1.4.6), we already know that ω then is closed, dω = 0. As the
manifold M is simply connected, π1(M) = (1), it follows that ω is also exact
(see for example [40], §5.7). Therefore, there is a T ∈ E(M) for ω with dT = ω.
Because of dTp(Bp) = ωp(Bp) = 1 for all p ∈M , T is a submersion.
Now let (Φt : M → M)t∈R be the global flow on M belonging to B, this means
that Φ0 = id and

dΦt

dt
= B ◦ Φt,

for all t ∈ R. For all p ∈M we then have

d

dt
(T ◦ Φt(p)) = 〈dTΦt(p),

dΦt

dt
(p)〉 = 〈ωΦt(p), BΦt(p)〉 = 1,

which means that
T ◦ Φt(p) = T (Φ0(p)) + t = T (p) + t. (1.5)

38
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Therefore, it follows that
T (M) = R.

As T is a submersion, the surfaces

Nc := T−1(c) ⊆M

are hypersurfaces (closed submanifolds of codimension 1). Furthermore, for all
p ∈ Nc

Tp(Nc) = ker(dTp) = ker(ωp) = Hp

holds, which means that Nc = T−1(c) is integral manifold for H. �

Theorem 1.4.10 Let the manifold M be simply connected and g and ∇ be as
above. Suppose there is a complete global timelike normalized vector field B ∈
X(M) on M . Furthermore, let T : M → R be the submersion of theorem (1.4.9).
Then there is a diffeomorphism Ψ : R × F → M with T ◦ Ψ = pr1, where F :=
T−1(0) = N0.

Proof. Let F := T−1(0) = N0. We define

Ψ : R× F →M

Ψ(t, p) := Φt(p),

where (Φt(p))t∈R is the global flow belonging to B. Then Ψ is smooth and the
same holds for

Ω : M → R× F
Ω(p) := (T (p),Φ−T (p)(p)).

According to (1.5), we know that

T (Φt(p)) = T (p) + t,

for all t ∈ R. Therefore, the following holds:

Ω ◦Ψ(t, p) = Ω(Φt(p)) = (T (Φt(p)),Φ−T (Φt(p))(Φt(p)))

= (T (p) + t,Φ−T (p)−t(Φt(p))).

Now we use the both fact that T (p) = 0 and the flow property Φt ◦Φs = Φt+s, for
all s, t ∈ R. Then it holds:

Ω ◦Ψ(t, p) = (T (p) + t,Φ−T (p)−t(Φt(p)))

= (t,Φ−t ◦ Φt(p)) = (t, φ0(p))

= (t, p).

We then also have:

Ψ ◦ Ω(p) = Ψ(T (p),Φ−T (p)(p)) = ΦT (p)(Φ−T (p)(p))

= ΦT (p) ◦ Φ−T (p)(p) = Φ0(p)

= p,
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which shows that Ω ◦Ψ = id and Ψ ◦Ω = id and therefore: Ψ is a diffeomorphism.
Finally we have

T ◦Ψ(t, p) = T (Φt(p)) = T (p) + t = t = pr1(t, p),

for all (t, p) ∈ R× F , thus T ◦Ψ = pr1, which shows the claim. �

Corollary 1.4.11 The surfaces Nc := T−1(c) are connected and simply connected.

Proof. From theorem (1.4.10) we already know that M is diffeomorphic to R×F ,
M ∼= R× F . As the manifold M is connected and simply connected (and R also,
of course), F = T−1(0) = N0 has to be connected and simply connected. Due to
M ∼= R× F , the surfaces Nc are diffeomorphic and therefore Nc is connected and
simply connected for all c ∈ R. �

Theorem 1.4.12 Let the manifold M be simply connected and g and ∇ be as
above. Suppose there is a complete global timelike normalized vector field B ∈
X(M) on M . Let T : M → R be the submersion of (1.4.9). Then {T−1(c)}c∈R is
the Frobenius foliation of H. This means that for every c ∈ R there is precisely
one α ∈ R with T−1(c) = Fα and for every α ∈ R there is precisely one c ∈ R with
Fα = T−1(c).

Proof. We already know from (1.4.9) that the Nc are integral manifolds for H.
Furthermore, we know that the hypersurfaces Nc are connected (see (1.4.11)). As
Nc is integral and connected there is precisely one α ∈ R so that Nc ⊆ Fα. So we
just have to show that Nc is maximal and it follows that Nc = Fα.
Therefore, let p ∈ Nc ⊆ Fα and q ∈ Fα be arbitrary. Now we want to show
that q ∈ Nc. As Fα is connected (and therefore path connected), there is a curve
γ : [0, 1]→ Fα which connects p with q, so we have γ(0) = p and γ(1) = q. For γ
the following holds:

γ̇(t) ∈ (TFα)γ(t) = Hγ(t) = TNT◦γ(t) = ker(DTγ(t)).

So we get

0 = DT (γ̇(t)) =
d

dt
(T ◦ γ)(t),

and therefore
T ◦ γ(t) = const. = T ◦ γ(0) = T (p) = c,

as well as
T (q) = T (γ(1)) = c.

This shows that
q ∈ T−1(c) = Nc.

As every arbitrary point q ∈ Fα is also contained inNc, Nc is maximal and coincides
with the Frobenius leave, Nc = Fα. So the map

R→ R, c 7→ α

is bijective, since ⋃̇
c∈R

Nc = M =
⋃̇

α∈R
Fα.

This shows the claim. �
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Remark 1.4.13 a) Note that the fibration T : M → R basically does not

depend on the choice of B (see also (1.4.6)). If B̃ is another global timelike
vector field, then there is an X ∈ Γ(H) so that

B̃ = ±B +X,

since the set {ξ ∈ TMp : gp(ξ, ξ) = 1} consists of the two hypersurfaces
Bp +Hp and −Bp +Hp. For ω̃ we then either have

ω̃ := φ(B̃) = ω

or
ω̃ := φ(B̃) = −ω

and therefore for a T̃ with DT̃ = ω̃

T̃ = ±T + c̃

for a c̃ ∈ R. T is considered to be the absolute time of (M, g,∇).

b) The structure of the foliation beloning to H = Deg(g) of (M, g,∇) is there-
fore completely clear if M is simply connected and if there is a complete
vector field B ∈ X(M) on (M, g). But we want to point out that you can
always find a product structure locally. So if you do not insist on the fact
that the manifold has to equal R×R3 but I×U , where I ⊆ R is an open in-
terval and U ⊆ R3 a connected subset, you do not have to require anything,
since the theorems always hold locally.

c) In the following we have to discuss the geometrical and topological properties
of the three manifold F . We already know that it is simply connected and
connected.

d) Furthermore, we have to find out if there is a global timelike vector field B
on (M, g,∇), which means if (M, g) is time oriented. And we also have to
discuss the question if there is a complete vector field.

Remark 1.4.14 The existence of such a complete vector field B ∈ X(M) is a
necessary condition for a global product structure. We construct a counterexample:
Let M0 := R × R3 and g the ”standard structure” given by diag(1, 0, 0, 0) with
respect to cartesian coordinates (t, x1, x2, x3). Let furthermore ∇ = D be the
”standard connection”. Let

E := {(t, x) ∈M0 : t ≥ 0, x1 = 0}

and we define M := M0\E.
Then B := ∂

∂t
is a timelike unit global vector field on (M, g) but it is not complete.

For the submersion T : M → R belonging to B, T = pr1 holds (except for an
additive constant). But T−1(0) is not connected!
Furthermore, there is no other submersion whose fibers are the Frobenius leaves.
If we define R := M/∼, where p ∼ q if p and q belong to the same leave and
f : M → N is such a submersion, R has to be at least Hausdorff. But one can
show that the two leaves in T−1(0) are not separable in R.
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1.4.3 Time-orientation of (M,H)

In this section we discuss the existence of a global timelike normalized vector
field on (M, g,∇). We therefore first prove a well known theorem (especially in
Algebraic Topology, see [23], for instance). The existence of the global timelike
normalized vector field in our case then follows from this theorem.

Theorem 1.4.15 Every line bundle L → M on a simply connected manifold M
is trivial.

Proof. We here give a proof using methods of Differential Geometry.
Let M be simply connected and L → M a line bundle on M . Let h be a bundle
metric on L and ∇ a metric connection with respect to h. We now show that ∇
is flat.
Because of dimLp = 1 there is a v ∈ Lp\{0} with Lp = 〈v〉, for all p ∈M . As the
curvature tensor Rp(ξ, η) : Lp → Lp is linear, ξ, η ∈ TMp, we therefore just have
to show that

Rp(ξ, η)v = 0,

if we want to show that Rp(ξ, η) = 0. But it is equivalent to show that

0 = h(Rp(ξ, η)v, v) = Rmp(ξ, η, v, v).

But as the Riemannian curvature tensor Rmp is anti-symmetric in the last two
arguments (see (0.2.4)) this condition is fulfilled. But this exactly means that ∇
is flat.
We have shown that there is a flat connection on L. So we have almost reached our
aim to show that L ∼= M ×R. Due to dimension it is already clear that every fiber
Lp is isomorph to R, Lp ∼= R, ∀p ∈ M . Now we use the fact that the manifold
M is simply connected. This means that two smooth curves α : I → M and
β : I → M , (I = [0, 1]) with fixed ending points, for example α(0) = p = β(0),
α(1) = q = β(1), are homotopic. Now we employ parallel transport along α.
But as we have a flat connection parallel transport is invariant with regard to
homotopy. That means that it does not depend on the choice of the curve with
starting point p and ending point q (see for example [2]).
Therefore, let p and q ∈M be arbitrary. We consider the isomorphism

Iq : R→ Lq, v 7→ parα(ι(v)),

where α : I → M is an arbitrary smooth curve with α(0) = p and α(1) = q and
ι is some fixed isomorphism between R and Fp. This now provides the demanded
isomorphism Φ between M × R and L by

Φ : M × R→ L, (q, v) 7→ Iq(v),

since parallel transport parα : Lp → Lq is an isomorphism (even an isometry if
∇ is metric), see for example [28], §3.2. But this means that L ∼= M × R and
therefore, that the bundle L is trivial. �
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Theorem 1.4.16 Let M be a simply connected manifold, H our distribution as
well as g and ∇ as above. Then there is a global timelike normalized vector field
B ∈ X(M) on M .

Proof. In order to show this we have to look at the bundle L = TM/H. Due to
dimension L is a line bundle on M . According to theorem (1.4.15) this bundle is
trivial as the manifold M is simply connected. But as the bundle is trivial, there
is a section σ : M → L which is not zero at any point of M . Now let γ be a
Riemannian metric on M and we consider

F := H⊥ ⊆ TM

with respect to γ. If π : TM → L = TM/H denotes the projection and ι : F →
TM is the inclusion, then f := π ◦ ι : F → L is obviously a bundle isomorphism
(since fp : Fp → Lp is an isomorphism between one dimensional vector spaces).
Now we can define

B̃ := f−1 ◦ σ : M → F ⊆ TM.

So we have found a global timelike vector field B̃ on M , this means that g(B̃, B̃) 6=
0 everywhere. But then

B :=
1√

g(B̃, B̃)
B̃

is a global timelike normalized vector field on M . �

Remark 1.4.17 We therefore know that there is a global timelike normalized
vector field if we require that the manifold is simply connected. But one has to
bear in mind that the completeness of such a vector field can not be concluded
(see (1.4.14)). But the completeness of at least one vector field is a necessary and
sufficient condition for a global product structure. We therefore have to demand
that one of the global timelike normalized vector fields is complete if we want to
have a global product structure.

The existence of such a global timelike vector field is a further improvement of
the facts known up to this moment. Lottermoser, for instance, always requires the
existence of such a vector field. Now we have shown that it always exists if the
manifold M is simply connected.

1.4.4 Geometry of (M,H)

We now know the global structure of the fibration. Therefore, we have to discuss
the structure of the leaves Nc for every c. But as we already know that the leaves
are diffeomorphic we just discuss the case F := N0.
First, we will show that F is flat. So let us consider hp : TM∗

p × TM∗
p → R

and the map ψp : TM∗
p → TMp

∼= TM∗∗
p (canonical) with 〈β, ψp(α)〉 = hp(α, β).

We already know that ind(hp) = 3 and rk(hp) = 3, thus dim(Deg(hp)) = 1. As

ker(ψp) = Deg(hp), ψp induces a homomorphism ψ̃p : Dp := TM∗
p/Deg(hp) →
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TMp. Since im(ψp) = Hp, we already know that im(ψ̃p) ⊆ Hp. But as ker(ψ̃p) =

(0) it follows that dim(im(ψ̃p)) = 3 and therefore im(ψ̃p) = Hp. Thus,

ψ̃p : Dp = TM∗
p/Deg(hp)

∼=→ Hp

is an isomorphism.
Now, hp : TM∗

p×TM∗
p → R also induces h′p : Dp×Dp → R and since hp is bilinear,

symmetric and positive semi-definite, h′p is also. But h′p is even positive definite,
since from h′p([α], [α]) = 0 follows that α ∈ Deg(hp) and therefore [α] = 0 (see
(0.3.10)). So h′ = (h′p) is a metric on D = (Dp).

Moreover, h′p induces a metric h̃p on Hp by

h̃p(ξ, η) = h′p(ψ̃
−1
p (ξ), ψ̃−1

p (η)),

for ξ, η ∈ Hp. Furthermore, Hp = TFp, so h̃ = (h̃p) is a Riemannian metric on F .

Theorem 1.4.18 The bundle H ⊆ TM is a totally geodesic subbundle.

Proof. Let Y ∈ Γ(H) and ξ ∈ TMp be arbitrary. Then we have to show that
∇ξY ∈ Hp. As we already know that Hp = Deg(gp) we demonstrate that for
η ∈ TMp arbitrary

gp(∇ξY, η) = 0

holds.
Due to the fact that TMp = Hp⊕R ·Bp, η can be written as η = ζ +λ ·Bp, where
ζ ∈ Hp and λ ∈ R. Because of

gp(∇ξY, η) = gp(∇ξY, ζ + λ ·Bp)

= gp(∇ξY, ζ) + λgp(∇ξY,Bp)

= 0 + λgp(∇ξY,Bp)

= λgp(∇ξY,Bp),

we only have to show that
gp(∇ξY,Bp) = 0.

As Y ∈ Γ(H), we know that ω(Y ) = 0. Finally:

0 = ξ(ω(Y ))

= ∇ξ(g(Y,B))

= (∇ξg)(Yp, Bp)︸ ︷︷ ︸
=0, because of ∇g=0

+gp(∇ξY,Bp) + gp(Yp,∇ξB)︸ ︷︷ ︸
=0, as Yp∈Hp

= gp(∇ξY,Bp),

which shows that the bundle H ⊆ TM is totally geodesic. �

So it follows directly:

Corollary 1.4.19 Every fibre Nc is a totally geodesic submanifold.
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Now it is clear that we can restrict ∇ to H and we write

∇̃XY = ∇XY

for X, Y ∈ Γ(H). Thus, if we restrict ∇̃ to F , ∇̃F then is a connection on H|F → F

and as ∇ is symmetric, ∇̃F is also symmetric on F provided that we consider H|F
to be the tangent bundle of F . Now we want the connection ∇̃F also to be metric
with respect to h̃ in order to get a candidate (and therefore the only one) for the
Levi-Civita connection on the tangent bundle of F . To achieve this we have to
use the condition ∇h = 0. Therefore, we first have to define a connection on the
bundle D = TM∗/Deg(h). Then we can take the same approach as we took in

order to construct the metric h̃. In order to avoid confusion in the following we
choose these terms:

• ∇ is the symmetric connection on TM ;

• ∇∗ is the connection on TM∗, induced by ∇:

(∇∗ξα)(η) = ξ(α(Y ))− αp(∇ξY ),

where ξ, η ∈ TMp, α ∈ E (1)(M) and Y is a continuation of η;

• ∇̃ is the connection on H with ∇̃ = ∇|H ;

• ∇′ is the connection we want to find on D = TM∗/Deg(h).

Theorem 1.4.20 Let M be a four-dimensional manifold, TM∗ → M the cotan-
gent bundle, h ∈ Γ(M ;TM∗ ⊗ TM∗) a symmetric tensor field with rk(h) = 3
and ind(h) = 0. Let L = Deg(h) ⊆ TM∗ and D := TM∗/L. Furthermore, let
h′ = (h′p), h′p : Dp ×Dp → R be induced by h. Finally, let ∇∗ be a connection on
TM∗ with ∇∗h = 0. Then the following holds:

a) There is a unique connection ∇′ on D with

∇′Xs′ = (∇∗Xs)′, (1.6)

∀X ∈ X(M), ∀s ∈ E (1)(M) and s′(p) = πp(s(p)), where πp : TM∗
p → Dp =

TM∗
p/Ent(hp).

b) ∇′ is metric with respect to h′.

Proof.

a) Let p ∈M , ξ ∈ TMp, x : U → V be a chart on M , p ∈ U and t ∈ Γ(U ;D|U).
As in the proof of (1.4.16), we now choose a bundle metric γ on TM∗ and
we define for L := Ent(hp):

E := L⊥ ⊆ TM∗

45



1.4. The case λ = 0

with respect to γ. Then again E ∼= D by π|E : E → D and we define
s := (π|E)−1(t). Therefore, we now define:

∇′ξt := (∇∗ξs)′.

Thus, if ∇′ is a well defined connection on D it is already clear that is
uniquely determined by (1.6).
Now let us show that ∇′ is well defined and satisfies the conditions of a
connection.

(i) In order to show that ∇′ is well defined we have to show the following:
if u ∈ Γ(L|U), then ∇∗ξu ∈ Γ(L|U). This means that L ⊆ TM∗ is
a parallel subbundle. Therefore, we have to show that ∇∗ξu is also
in the degeneration space of h (remember: L := Deg(h)). Now, let
α ∈ E (1)(M) be arbitrary. Then we get (because of ∇∗ξh = 0):

hp(αp,∇∗ξu) = ξ(h(α, u))− hp(∇∗ξα, up) = 0,

as up ∈ Lp = Deg(hp). Therefore ∇′ is well defined.

(ii) ∇′ is a connection on D: Let X ∈ X(M), f ∈ E(M), ω ∈ Γ(D) and
α := (π|E)−1(ω), so α′ = ω. Then we have:

(I)
∇′fXω = (∇∗fXα)′ = f(∇∗Xα)′ = f · ∇′Xω

(II)

∇′X(fω) = (∇∗X(fα))′ = ((Xf) · α + f · ∇∗Xα)′

= (Xf) · α′ + f · (∇∗Xα)′

= (Xf) · ω + f · ∇′Xω.

b) Now let us show that ∇′ is metric with respect to h′, this means:

ξ(h′(s′1, s
′
2)) = h′(∇′ξs′1, s′2) + h′(s′1,∇′ξs′2),

for ξ ∈ TMp and s1, s2 ∈ Γ(U ;TM∗
|U). Due to the definition of

h′p : Dp ×Dp → R, h′p(s′1, s′2) := hp(s1, s2)

and ∇h = 0 we have:

ξ(h′(s′1, s
′
2)) = ξ(h(s1, s2))

= h(∇∗ξs1, s2) + h(s1,∇∗ξs2)

= h′((∇∗ξs1)′, s′2) + h′(s′1, (∇∗ξs2)′)

= h′(∇′ξs′1, s′2) + h′(s′1,∇′ξs′2).

And therefore ∇′ is metric with respect to h′.
�
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Remark 1.4.21 By the bundle map

ψ̃ : D
∼=→ H,

∇′ induces a new connection ∇̂ on H by

∇̂XY = ψ̃∇′Xψ̃−1(Y ),

where X ∈ X(M) and Y ∈ Γ(H). This connection is metric with respect to h̃
because of the fact that ∇′Xh′ = 0, since

X(h̃(Y, Z)) = X(h′(ψ̃−1(Y ), ψ̃−1(Z)))

= h′(∇′Xψ̃−1(Y ), ψ̃−1(Z)) + h′(ψ̃−1(Y ),∇′Xψ̃−1(Z))

= h′(ψ̃−1(∇̂XY ), ψ̃−1(Z)) + h′(ψ̃−1(Y ), ψ̃−1(∇̂XZ))

= h̃(∇̂XY, Z) + h̃(Y, ∇̂XZ),

where X ∈ X(M) and Y, Z ∈ Γ(H).

On the other hand ∇̃ is symmetric on H in the sense that

T̃ (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ] = 0,

for X, Y ∈ Γ(H).

Now we will show that ∇̃ = ∇̂ =: ∇H . If we then restrict this connection to F ,
we get a symmetric and metric connection on the tangent bundle H|F of F and
therefore we have the candidate for the Levi-Civita connection on the leaves.

Theorem 1.4.22 The two connections ∇̃ and ∇̂ defined in the previous discussion
coincide, ∇H := ∇̃ = ∇̂.

Proof. In order to demonstrate the claim we first show that the map ψ (with
ψp : TM∗

p → TM∗∗
p
∼= TMp, α 7→ hp(α, .)) is parallel. In order to keep track we

always write ∇ for any connection used in the following calculations, even if we
talk about induced connections on the particular bundles (for example, ∇ψ with
∇ the induced connection on Hom(TM∗, TM)). Now, let ξ ∈ TMp as well as
α, β ∈ E (1)(M) be arbitrary. Then:

〈(∇ξψ)(α), β〉 = 〈(∇ξ(ψ(α))), β〉 − 〈ψ(∇ξα)), β〉
= 〈(∇ξh(α, .)), β〉 − h(∇ξα, β)

= ξ(h(α, β))− h(α,∇ξβ)− h(∇ξα, β)

= (∇ξh)(α, β)

= 0.

Furthermore, it is important that im(ψ) = H. Now, let X ∈ Γ(H) be arbitrary.

We define α := (π|E)−1(ψ̃−1(X)), where π|E : E → D is defined as in the proof of
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1.4. The case λ = 0

(1.4.20). Then ψ(α) = X and the following holds:

∇̂ξX = ∇̂ξ(ψ(α))

= ψ̃∇′ξψ̃−1(ψ(α)) = ψ̃∇′ξψ̃−1(ψ̃(α′))

= ψ̃(∇′ξα′) = ψ̃((∇∗ξα)′)

= ψ(∇∗ξα)

= ∇ξ(ψ(α))− (∇ξψ)︸ ︷︷ ︸
=0

(α)

= ∇ξX

= ∇̃ξX.

As X ∈ Γ(H) and ξ ∈ TMp are arbitrary, the two connections coincide. �

If we restrict the connection ∇H to F , then ∇H |F is symmetric in the above sense

and metric with regard to h̃, and therefore the unambiguously defined Levi-Civita
connection on the leave F .
If we now want to show that the curvature tensor vanishes on the leaves, we
have to keep in mind that the leaves are three-dimensional. Therefore, the Ricci
tensor contains all information of the curvature tensor on the leaves. As we have
already seen, the leaves are totally geodesic and therefore, we can have a look at
the Ricci tensor of the four-dimensional manifold M and then simply consider the
components in direction of the leaves.

Theorem 1.4.23 The leaves are flat, that means the curvature tensor vanishes,
R = 0.

Proof. As we have already noted we only have to show that the Ricci tensor of
the whole manifold M vanishes, if restricted to the leave. According to the sixth
axiom we have:

Ric(∇) = 8π

(
T bb − 1

2
tr(T b)g

)
.

Let ξ, η ∈ Hp be arbitrary. Then we get for the Ricci tensor:

Ric(ξ, η) = 8π

T bb(ξ, η)− 1

2
tr(T b) gp(ξ, η)︸ ︷︷ ︸

=0


= 8πT (ϕp(ξ)︸ ︷︷ ︸

=0

, ϕp(η)︸ ︷︷ ︸
=0

)

= 0.

This shows the claim, the leaves are flat indeed. �

Remark 1.4.24 a) If you replace one of the vectors ξ or η by Bp in the cal-
culation above, the Ricci tensor still vanishes. Therefore, there are not any
mixed terms of the Ricci tensor.
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1.4. The case λ = 0

b) However, if you put in Bp twice you get

Ric(Bp, Bp) = 8π

T bb(Bp, Bp)−
1

2
tr(T b) gp(Bp, Bp)︸ ︷︷ ︸

=1


= 8π

(
T (ϕp(Bp), ϕp(Bp))−

1

2
T (ϕp(ei), ω

i)

)
= 8π

(
T (ω0, ω0)− 1

2
T (ω0, ω0)

)
= 4πT (ω0, ω0),

where A = (Bp, e1, e2, e3) as well as A∗ = (ω0, ω1, ω2, ω3) are bases of the
tangent and cotangent space respectively.
This is the only component that does not vanish. Later it provides the
Newtonian equation.
Note also that ω0 does not depend on the choice of the basis but it even is
ω = ϕ(B). Therefore,

Ric(B,B) = 4πT (ω, ω)

holds.

1.4.5 The Ricci tensor in case of λ = 0

We want to point out that the Ricci tensor in case of λ = 0 is also symmetric. Of
course, this can be seen by the calculations in (1.4.23). But it is also possible to
see this directly (without using the sixth axiom). We we first have to discuss the
definition of Ric in case of λ = 0.
We define Ric = (Ricp : TMp × TMp → R) by

Ric := tr1,4(R),

where R = (Rp) is the curvature tensor. Thus, if A = (e0, e1, e2, e3) is a basis
of the tangent space and A∗ = (ω0, ω1, ω2, ω3) the dual basis, we define for every
p ∈M and ξ, η ∈ TMp:

Ricp(ξ, η) =
3∑
i=0

〈ωi, Rp(ei, ξ)η〉,

where 〈−,− 〉 : TM∗
p × TMp → R is the natural pairing between covectors and

tangent vectors.
We now show that the Ricci tensor is also symmetric in case of λ = 0.

Remark 1.4.25 Let ∇ be the connection on TM as above and

∇g = 0 and ∇h = 0

with respect to the induced connections on TM∗ ⊗ TM∗ and TM ⊗ TM . Then
the dual connection ∇∗ on TM∗ is metric with respect to h, since the connection
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1.4. The case λ = 0

on TM ⊗ TM induced by ∇ is the same as the one induced by ∇∗.
We now have a look at R̂ : TMp × TMp × TM∗

p × TM∗
p → R defined by

R̂p(ξ, α, η, β) := 〈β,Rp(ξ, ψp(α))η〉,

for ξ, η ∈ TMp, α, β ∈ TM∗
p . The following holds:

Lemma 1.4.26 R̂ is the tensor field on T (2,2)M which is induced by the connection
∇∗ on (TM∗, h): R̂ = Rm(∇∗, h). Thus,

R̂p(ξ, η, α, β) = hp(R
∗
p(ξ, η)α, β),

where p ∈ M , ξ, η ∈ TMp, α, β ∈ TM∗
p and R∗ ∈ Γ(M ;T (0,2)M ⊗ End(TM∗)) is

the curvature tensor of ∇∗.

Proof. Since ∇∗h = 0, we get ∇ψ = 0, where ∇ is the induced connection on
Hom(TM∗, TM). Therefore,

hp(R
∗
p(ξ, η)α, β) = 〈β, ψp(R∗p(ξ, η)α)〉

and
ψp(R

∗
p(ξ, η)α) = ψp(∇∗ξ∇∗Y ω −∇∗η∇∗Xω −∇∗[X,Y ]pω)

holds, where p ∈ M , ξ, η ∈ TMp, α, β ∈ TM∗
p and X, Y ∈ X(M) as well as

ω ∈ E (1)(M) are continuations of ξ, η and α respectively. But as ∇ψ = 0, the
following holds:

ψp(∇∗ξ∇∗Y ω) = ∇ξ(ψ(∇∗Y ω)) = ∇ξ∇Y (ψ(ω)).

Therefore,

hp(R
∗
p(ξ, η)α, β) = 〈β, ψp(R∗p(ξ, η)α)〉

= 〈β,Rp(ξ, η)ψ(α)〉
= R̂p(ξ, η, α, β).

�

Corollary 1.4.27 The tensor R̂ is anti-symmetric in the last two arguments.

Proof. This can be concluded from the fact that R̂ is the Riemannian curvature
tensor of (∇∗, h) and that the symmetries of the Riemannian curvature tensor also
hold for h degenerate (see (0.2.6)). �

We now define the following contraction of R = R(∇):

tr3,4(R) = (tr3,4(Rp) : TMp × TMp → R)

tr3,4(Rp)(ξ, η) : = spur(Rp(ξ, η)).
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1.4. The case λ = 0

Proposition 1.4.28 Let M , g, h and ∇ be as above. Then the following holds:

tr3,4(R) = 0.

Proof. Let p ∈M and (e0, e1, e2, e3) a normal basis for (TMp, gp, hp) with the dual
basis (ω0, ω1, ω2, ω3). This means that

ϕ(e0) = ω0 and ψ(ωi) = ei (1 ≤ i ≤ 3).

Then

tr3,4(Rp)(ξ, η) =
3∑
i=0

〈ωi, Rp(ξ, η)ei〉

= 〈ϕ(e0), Rp(ξ, η)e0〉+
3∑
i=1

〈ωi, Rp(ξ, η)ψ(ωi)〉

= gp(Rp(ξ, η)e0, e0) +
3∑
i=1

R̂p(ξ, η, ω
i, ωi)

= 0

holds because of the anti-symmetry of the Riemannian curvature tensor in the last
two arguments. �

Corollary 1.4.29 The Ricci tensor Ric := tr1,4(R) is symmetric.

Proof. Let p ∈ M , ξ, η ∈ TMp, A = (e0, e1, e2, e3) be a basis of the tangent space
and A∗ = (ω0, ω1, ω2, ω3) the dual basis. Then the following holds:

Ricp(ξ, η) =
3∑
i=0

〈ωi, Rp(ei, ξ)η〉

(∗)
= −

3∑
i=0

〈ωi, Rp(η, ei)ξ〉 −
3∑
i=0

〈ωi, Rp(ξ, η)ei〉

=
3∑
i=0

〈ωi, Rp(ei, η)ξ〉 − tr3,4(Rp)(ξ, η)︸ ︷︷ ︸
=0

= Ricp(η, ξ),

where we used the first Bianchi identity in (∗). �

1.4.6 The global structure of M

Now we are going to introduce a new concept in order to finally show that the
leaves Nc

∼= R3 and as a consequence M ∼= R× R3.
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1.4. The case λ = 0

Definition 1.4.30 a) We call a curve α : I → M spacelike, if there is an
ω ∈ TM∗

p for all α̇(s), s ∈ [0, t), with ψp(ω) = α̇(s) and for ω

hp(ω, ω) > 0

holds, for p ∈M .

b) The manifold M is called geodesically complete in space direction, if every
maximal spacelike geodesic is defined for all t ∈ R.

Remark 1.4.31 In theorem (1.4.23) we have shown that the Nc are flat for all
c ∈ R. If in addition we require that M is geodesically complete in space direction
the leaves Nc are geodesically complete in the Riemannian sense and thus (Nc, h̃)
is a complete three-dimensional flat Riemannian manifold. Since π1(Nc) = (1), we
know from Riemannian Geometry that for the Nc we have

(Nc, h̃) ∼= E3,

where E3 = (R3, geucl) denotes the three-dimensional euclidean space (see for ex-
ample [7], §8.4).
By theorem (1.4.10) the manifold M has the form

M ∼= R× F

in case of λ = 0. Moreover, we have shown that F ∼= R3, altogether our manifold
has the structure

M ∼= R× R3.

We now want to get global coordinates for M . Therefore, let (e1, e2, e3) be an
orthonormal basis of TFp and ιp : R3 → TFp the corresponding coordinate iso-
morphism. Furthermore, let B be a complete global timelike unit vector field on
M and T : M → R be the fibration from (1.4.12). Let σ : R → M be a smooth
section in M with T ◦ σ = idR, which means that σ is an integral curve for B.
Then we get a diffeomorphism Φ : R× R3 →M and global coordinates for M by

Φ : R× R3 →M

(t, x) 7→ expσ(t)(ισ(t)(x)).

This, of course, is a diffeomorphism, since expp : TMp → M is a diffeomorphism
in this case (see for instance [7], §8.4).
We now want to have a look at the liberty we have for the coordinate system
of M . In every σ(t), where σ is an integral curve for B, we have to choose
(e1(t), e2(t), e3(t)) (orthonormal) in differentiable dependence on t. Therefore, the
only choices we have are the following:
Let c ∈ R, b : R → R3 and S : R → O(3). Then every possible coordinate
transformation is given by

τ : R× R3 → R× R3

(t, x) 7→ (±t+ c, S(t)x+ b(t)).

In (1.4.10) we have already found a diffeomorphism Ψ : R×F →M depending on
B. Note that the coordinates given by this diffeomorphism are not always of the
form mentioned above.
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1.4. The case λ = 0

Having all this in mind we now can formulate the following

Theorem 1.4.32 Let M be a four-dimensional connected smooth manifold, λ = 0,
g ∈ Γ(M ;T (0,2)M), h ∈ Γ(M ;T (2,0)M), and ∇ a symmetric connection on M .
These mathematical objects have to satisfy the following axioms of the frame theory:

1. At every point p ∈ M there is a timelike tangent vector ξ ∈ TMp, and hp is
positive definite on the annihilator of ξ,

hp|Ann(ξ)×Ann(ξ) > 0.

2. For the transitions from the tangent space to the cotangent space and vice
versa induced by g and h

ϕp ◦ ψp = −λ idTM∗p

holds for all p ∈M .

3. Both g and h have to be parallel with regard to the connection ∇,

∇g = ∇h = 0.

4.

Ric(∇) = 8π

(
T bb − 1

2
tr(T b)g

)
.

If M is simply connected, then there is a global timelike unit vector field on M . If
one of these vector fields is complete and, in addition, M geodesically complete in
space direction, then M is a Newtonian space, which means that

M ∼= E4.

Remark 1.4.33 We want to point out once more that if we do not require the
manifold M to be simply connected and geodesically complete in space direction
or the timelike unit vector field to be complete, we locally still get what we want.
Then the manifold M is of the form I × U , where I ⊆ R is an open interval and
U a flat three dimensional manifold.

1.4.7 The Newtonian equations

The components of the connection 1.4.34 In case of λ = 0 we have seen that
the manifold has the desired Newtonian structure. Next we are interested in the
Newtonian equations which emerge from Einstein’s field equations in case of λ = 0.
So let M , g, h, and∇ be as above and (t, x1, x2, x3) a coordinate system for M . We
already know from the discussion above that ∇XY ∈ Γ(H) for all X, Y ∈ X(M)
(see (1.4.6) and (1.4.18)). As ∇ is flat, we also know that ∇∂i

∂j = 0 for 1 ≤ i ≤ 3,
which means that ∇ is defined by ∇B,

(
B = ∂

∂t

)
. We therefore define

∇BB = Γi00∂i =: f i∂i
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and
∇∂i

B = Γji0∂j =: vji ∂j

for 1 ≤ i, j ≤ 3. Due to ∇h=0 we then get

vji = 〈dxj,∇∂i
B〉 = 〈dxj,∇B∂i〉 = 〈−∇Bdx

j, ∂i〉 = −〈∇Bdx
j, ψ(dxi)〉

= −h(∇Bdx
j, dxi) = h(dxj,∇Bdx

i) = 〈∇Bdx
i, ψ(dxj)〉 = 〈∇Bdx

i, ∂j〉
= −〈dxi,∇B∂j〉 = −〈dxi,∇∂j

B〉
= −vij.

Therefore, the only components of ∇ which do not vanish are

Γi00 = f i, i = 1, 2, 3;

Γj0i = Γji0 = vji = −vij, i, j = 1, 2, 3.

Particularly,
Γi0i = 0,

which means that ∇ is determined by the six functions f 1, f 2, f 3 and v3
2, v1

3, v2
1.

Remark 1.4.35 The functions f 1, f 2, f 3 and v3
2, v1

3, v2
1 are not determined any

further by the axioms of the frame theory used up to this moment. With the help
of the last three axioms we can find out more about these functions.

Now we try to derive the Newtonian equations with the help of the last three
axioms. As we will soon see, in most cases the so called ”Quasi-Newtonian” equa-
tions appear, not genuine Newtonian ones. In the following chapters we therefore
also have to discuss the question when genuine Newtonian models appear.

The components of the Ricci tensor 1.4.36 First we talk about the compo-
nents of the Ricci tensor which do not vanish and we use the last axiom of the
frame theory. By (1.4.24) we already know that

Ric(B,B) = 4πT (ω, ω).

Remember that ω ∈ E (1)(M) is the inambiguously defined 1-form on M (except
for the sign) with ker(ω) = H and g̃(ω, ω) = 1, where g̃ is the metric on L =
Deg(h) ⊆ TM∗ induced by g. Therefore,

ρ := T (ω, ω)

does not depend on coordinates and we can call it mass density on M . As further-
more

Ricp(Bp, Bp) = Ricp(e0, e0) =
3∑
i=0

Ricp(ei, ei) = trg(Ric)p,

where (Bp, e1, e2, e3) is an orthonormal basis of TMp, we define

S := Ric(B,B),
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1.4. The case λ = 0

where S is the scalar curvature of (M, g, h,∇). This means that we have

S = 4πρ.

Now letX ∈ Γ(H), (Bp, e1, e2, e3) be an orthonormal basis of TMp and (ω, ω1, ω2, ω3)
dual with ϕp(Bp) = ω. Then

Ric(B,X)p =
3∑
i=1

〈ωi, Rp(ei, Bp)Xp〉

holds, as ω0 = ω = ϕp(Bp) and Rp(ξ, η)ζ ∈ Hp for all ξ, η, ζ ∈ TMp. In our
coordinates (t, x1, x2, x3) with B = ∂

∂t
and ei = ∂i we then get:

R(ei, B)ej = ∇∂i
∇B∂j −∇B∇∂i

∂j︸ ︷︷ ︸
=0

−∇[B, ∂i]︸ ︷︷ ︸
=0

∂j

= −∇∂i
∇∂j

B.

Therefore, we get for the Ricci tensor:

Ric(B, ∂j) = −
3∑
i=1

〈ωi,−∇∂i
∇∂j

B〉 = − trH(HessH(B))j = −∆H(B)j,

where the index H always means that we only take the components in direction
of H. As we already know that all components of the Ricci tensor vanish (except
Ric(B,B)), we therefore get the equation

∆HB = 0.

But this means that we now know all components of the Ricci tensor and that
axiom six (Ric(∇) = 8π

(
T bb − 1

2
tr(T b)g

)
) is equivalent to the following three

conditions in case of λ = 0:

• All Frobenius leaves are flat, R|H×H×H = 0;

• S = 4πρ;

• ∆HB = 0.

Now we want to discuss the last two equations in coordinates. We get:

S(p) = Ric(B,B) =
3∑
i=1

〈ωi, R(ei, B)B〉

=
3∑
i=1

〈ωi,∇∂i
∇BB −∇B∇∂i

B〉

=
3∑
i=1

〈ωi,∇∂i
(f j∂j)−∇B(vji ∂j)〉
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=
3∑
i=1

〈ωi, (Dif
j)∂j −Bvji ∂j − v

j
i∇B∂j〉

=
3∑
i=1

〈ωi, (Dif
k −Dtv

k
i − v

j
i v
k
j )∂k〉

=
3∑
i=1

(Dif
i −Dt vii︸︷︷︸

=0

−vji vij)

= div(f)− 2||v||2

(in cartesian coordinates). We therefore get the equation

div(f)− 2||v||2 = 4πρ. (1.7)

The second condition in coordinates equals

〈ωj,∇HB〉 =
3∑
i=1

〈ωi,∇∂i
∇∂j

B〉

=
3∑
i=1

〈ωi,∇∂i
(vkj ∂k)〉

=
3∑
i=1

〈dxi, Div
k
j ∂k〉

=
3∑
i=1

Div
i
j.

If we now define vi := εkijv
j
k, we get Div

i
j = rot(v)j and therefore, ∆HB = 0 is

equivalent to
rot(v) = 0, (1.8)

where εkij = 1 if (i, j, k) is an even permutation of (1, 2, 3), εkij = −1, if (i, j, k) is
an odd permutation of (1, 2, 3) and εkij = 0, otherwise.

The symmetry of the tensor R#: the fifth axiom 1.4.37 Now we have to
discuss axiom five, which contains the symmetry of the tensor R#:

R#
p (ξ, λ, η, µ) = R#

p (η, µ, ξ, λ). (1.9)

First, we have to remember that we had:

R#
p : TMp × TM∗

p × TMp × TM∗
p → R

R#
p (ξ, λ, η, µ) := 〈µ,Rp(ξ, ψp(λ))η〉,

where Rp : TMp × TMp × TMp → TMp is the curvature tensor and ψp : TM∗
p →

TMp is given by
〈λ, ψp(µ)〉 = hp(λ, µ), (1.10)
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for all λ, µ ∈ TM∗
p . Furthermore, we have to remember the bundle metric h̃p :

Hp ×Hp → R defined on Hp = Deg(gp) by

h̃p(ψp(λ), ψp(µ)) = hp(λ, µ).

Thus, due to (1.10) this means that

h̃p(ψp(λ), ψp(µ)) = 〈λ, ψp(µ)〉,

and, since im(ψp) = Hp,

h̃p(ψp(λ), η) = 〈λ, η〉
also holds for all η ∈ Hp. Therefore, it follows that

R#
p (ξ, λ, η, µ) = h̃p(Rp(ξ, ψp(λ))η, ψp(µ)),

since we already know that Rp(ξ, η) : TMp → TMp always has its values in Hp.
But this means that for ξ, η ∈ Hp

R#
p (ξ, λ, η, µ) = h̃p(Rp(ξ, ψp(λ))η, ψp(µ)) = RmNp

p (ξ, ψp(λ), η, ψp(µ))

holds, where RmNp is the Riemannian curvature tensor of the Riemannian manifold
(Np, h̃|Np). Therefore the symmetry condition (1.9) already holds for ξ, η ∈ Hp.
Thus, condition (1.9) only provides new information in the two following cases:

a) ξ = η = Bp

b) ξ ∈ Hp, η = Bp.

So we again choose a coordinate system (t, x) and, of course,

∇BB = f i∂i

and
∇∂i

B = vji ∂j

hold for 1 ≤ i, j ≤ 3, where B = ∂t. Furthermore, we know that ∇∂i
∂j = 0. And

we know from the calculations about the scalar curvature in (1.4.36) that

R(B, ∂i)B = (Bvji −Dif
j + vki v

j
k)∂j.

Now we can define for λ, µ ∈ TMp, λ = dxi and µ = dxj so that ψ(λ) = ∂i
and ψ(µ) = ∂j (remember that the condition always holds for λ = ω = ϕ(B) or
µ = ω = ϕ(B), as both sides already vanish).
But this means that

R#(B, dxi, B, dxj) = Bvji −Dif
j + vki v

j
k.

Then condition (1.9) results in

0 = R#(B, dxi, B, dxj)−R#(B, dxj, B, dxi)

= (Bvji −Bvij)− (Dif
j −Djf

i) + (vki v
j
k − v

k
j v

i
k)

= 2Bvji − (Dif
j −Djf

i) + (vki v
j
k − (−vki )(−vjk))︸ ︷︷ ︸

=0

,
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for all 1 ≤ i, j ≤ 3, due to the condition vij = −vji . If we again define vk = εijkv
j
i

and v = (v1, v2, v3), this results in

2∂tv + rot(f) = 0. (1.11)

Now let ξ := ∂i, λ := dxj and µ := dxk for 1 ≤ i, j, k ≤ 3. Again we know from
(1.4.36) that

R(B, ∂k)∂i = Dkv
j
i ∂j.

Thus,
R#(B, dxk, ∂i, dx

j) = Dkv
j
i .

Furthermore, we calculate

R(∂i, ∂j)B = ∇∂i
∇∂j

B −∇∂j
∇∂i

B

= ∇∂i
(vkj ∂k)−∇∂j

(vki ∂k)

= (Div
k
j −Djv

k
i )∂k.

Thus,
R#(∂i, dx

j, B, dxk) = Div
k
j −Djv

k
i .

This means that condition (1.9) results in

Div
k
j +Djv

i
k + dkv

j
i = 0

for all 1 ≤ i, j, k ≤ 3. But this condition always holds if two of the indices are the
same. And if it holds for one permutation of (1, 2, 3), then also for all the other
five. So if we define i = 1, j = 2 and k = 3, this results in

div(v) = 0. (1.12)

All in all, this discussion shows that the symmetry condition (1.9) for R# in
coordinates is equivalent to the two equations

2Dtv + rot(f) = 0

div(v) = 0.

The divergence of the matter tensor T : the fourth axiom 1.4.38 Now we
discuss the fourth axiom of the frame theory:

div(T ) = 0.

We again use our coordinate system (t, x) and define:

ρ := T (dt, dt), jk := T (dt, dxk), Skl := T (dxk, dxl),

for all 1 ≤ k, l ≤ 3 and as before

∇BB = f i∂i, ∇∂i
B = ∇B∂i = vki ∂k, ∇∂i

∂k = 0,
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1.4. The case λ = 0

for all 1 ≤ i, k ≤ 3. Then we first have for 1 ≤ i, k, l ≤ 3:

〈∇∂i
dxk, ∂l〉 = Di 〈dxk, ∂l〉︸ ︷︷ ︸

δk
l

−〈dxk,∇∂i
∂l︸ ︷︷ ︸

=0

〉 = 0

〈∇∂i
dxk, B〉 = Di 〈dxk, B〉︸ ︷︷ ︸

δk
0

−〈dxk,∇∂i
B〉

= −vki .

Thus,
∇∂i

dxk = −vki dt.
Furthermore, it holds for 1 ≤ i, l ≤ 3:

〈∇∂i
dt, ∂l〉 = −〈dt,∇∂i

∂l︸ ︷︷ ︸
=0

〉 = 0

〈∇∂i
dt, B〉 = −〈dt,∇∂i

B〉 = −〈dt, vki ∂k〉 = 0.

Thus,
∇∂i

dt = 0.

Moreover, for 1 ≤ l ≤ 3:

〈∇Bdt, ∂l〉 = −〈dt∇B∂l〉 = −〈dt, vkl ∂k〉 = 0

〈∇Bdt, B〉 = −〈dt,∇BB〉 = −〈dt, fk∂k〉 = 0.

Thus,
∇Bdt = 0.

Finally, for 1 ≤ i, l ≤ 3:

〈∇Bdx
i, ∂l〉 = −〈dxi∇B∂l〉 = −〈dxi, vkl ∂k〉 = −vil

〈∇Bdx
i, B〉 = −〈dxi,∇BB〉 = −〈dxi, fk∂k〉 = −f i.

Thus,
∇Bdx

i = −vildxl − f idt.
Now we are able to calculate the components of the divergence of T . Remember
that we had

div(T ) = tr(1,3)(∇T ).

We therefore get:

〈dt, div(T )〉 =
3∑
i=0

∇∂i
T (dxi, dt)

=∇BT (dt, dt) +
3∑
i=1

∇∂i
T (dxi, dt)
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1.4. The case λ = 0

=B(T (dt, dt))− T (∇Bdt, dt)− T (dt,∇Bdt)

+
3∑
i=1

(∂i(T (dxi, dt))− T (∇∂i
dxi, dt)− T (dxi,∇∂i

dt))

=Dtρ+
3∑
i=1

(Dij
i − T ( vii︸︷︷︸

=0

dt, dt))

=Dtρ+ div(j).

Furthermore, for 1 ≤ l ≤ 3:

〈dxl, div(T )〉 =
3∑
i=0

∇∂i
T (dxi, dxl)

=∇BT (dt, dxl) +
3∑
i=1

∇∂i
T (dxi, dxl)

=B(T (dt, dxl))− T (∇Bdt, dx
l)− T (dt,∇Bdx

l)

+
3∑
i=1

(∂i(T (dxi, dxl))− T (∇∂i
dxi, dxl)− T (dxi,∇∂i

dxl))

=Dt(j
l)− T (dt,−vlidxi − f idt)

+
3∑
i=1

(Di(S
il)− T ( vii︸︷︷︸

=0

dt, dxl)− T (dxi,−vlidt))

=Dt(j
l) + vliT (dt, dxi) + f iT (dt, dt) +Di(S

il) + vliT (dxi, dt)

=Dt(j
l) + vlij

i + f iρ+Di(S
il) + vlij

i

=Dt(j
l) +Di(S

il) + 2vlij
i + ρf i.

If we again define vk = εijkv
j
i and v = (v1, v2, v3) we see that the condition div(T ) =

0 is equivalent to the two equations

Dtρ+ div(j) = 0

Dt(j) + div(S) = 2j × v − ρf.

Remark 1.4.39 If you remember the discussion about a perfect fluid (see (0.3.16))
you can realize that the two equations mentioned above contain the Euler equa-
tions as a special case. First, we require v to disappear, v = 0, and ρ to be constant
(but not zero). Furthermore, we define S := pE3, j := ρV and −G = f . Then we
get:

Dtj + div(S) = j × v − ρf ⇔ Dt(ρV ) + grad(p) = ρG

⇔ ρDtV = − grad(p) + ρG,

since ρ does not depend on t and since the following holds:

div(S)j =
∂Sij

∂xi
=
∂(p · δij)
∂xi

= δij
∂p

∂xi
=

∂p

∂xj
= grad(p)j.
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1.4. The case λ = 0

The other equation results in

0 = div(ρV ) = ρ div(V )⇒ div(V ) = 0,

since ρ is constant and not zero. But this means that the equations which emerge
from the axiom div(T ) = 0 contain the Euler equations as a special case.

Law of motion 1.4.40 Finally, we study the local geodesic equation in case of
λ = 0 for the special coordinates named above. In general, these equations read:

ẍk + Γkij(x)ẋiẋj = 0.

Then we get for k = 1:

ẍ1 = −Γ1
00ẋ

0ẋ0 + 2Γ1
02ẋ

0ẋ2 + 2Γ1
03ẋ

0ẋ3

= f 1ẋ0ẋ0 − 2v12ẋ
0ẋ2 + 2v31ẋ

0ẋ3

= f 1 − 2v12ẋ
2 + 2v31ẋ

3,

where (without restriction)

ẍ0 = 0⇒ (ẋ)0 = 1⇒ x0(t) = t

holds. In exactly the same way we have for k = 2 and k = 3:

ẍ2 = f 2 + 2v12ẋ
1 − 2v23ẋ

3

ẍ3 = f 3 − 2v31ẋ
1 + 2v23ẋ

2.

Altogether this means:
ẍ = f − 2ẋ× v, (1.13)

where × is the cross product in R3.

Remark 1.4.41 (i) In the previous discussion some notations appear that may
surprise some readers. We consider v and f to be time dependent vector fields
on R3 in our special coordinates. Only then it makes sense to talk about
rot(f), rot(v) and the cross product in R3.

(ii) If rot(f) = 0, f can be written as the gradient of a map u, f = grad(u).
This is the case if and only if ∂0(v) = 0 (see (1.11)). Therefore, this is also
necessary if we want to get a Newtonian model. But we first have to define
what this exactly means in our context. This is one task of the next chapter.

We now summarize the results of the first chapter:

Theorem 1.4.42 Let M be a four-dimensional connected smooth manifold, λ
∈ R+

0 , g ∈ Γ(M ;T (0,2)M), h ∈ Γ(M ;T (2,0)M), T ∈ Γ(M ;T (2,0)M), and ∇ a
symmetric connection on M . These mathematical objects have to satisfy the six
axioms of the frame theory. Then the following holds:
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1.4. The case λ = 0

a) For λ > 0, (M, (−λg)) is a spacetime, ∇ the Levi-Civita connection of (−λg)
and (−λg) satisfies Einstein’s field equations for the given T .

b) For λ = 0 the following holds: If M is simply connected, then there is a global
timelike unit vector field on M . If one of these vector fields is complete and,
in addition, M geodesically complete in space direction, M is a Newtonian
space, which means that

M ∼= E4.

Furthermore, there are global coordinates on M with regard to which we get
the quasi-Newtonian equations

(i) div(f)− 2v2 = 4πρ,

(ii) rot(v) = 0,

(iii) rot(f) + 2
·
v= 0,

(iv) div(v) = 0,

(v) Dtρ+ div(j) = 0,

(vi) Dt(j) + div(S) = 2j × v − ρf ,

(vii) ẍ = f − 2ẋ× v,

where f i = Γi00, for i = 1, 2, 3, vij = Γk0i, −vik = Γi0k, for i, k ∈ {1, 2, 3},
T 00 = ρ, T 0k = jk and T ik = Sik, for i, k ∈ {1, 2, 3}.

Remark 1.4.43 Of course, we are interested in genuine Newtonian equations.
For v = 0 the quasi-Newtonian equations result in

(i) div(f) = 4πρ,

(ii) rot(f) = 0,

(iii) Dtρ+ div(j) = 0

(iv) Dt(j) + div(S) = −ρf

(v) ẍ = f ,

which means that we get the Newtonian law of motion and as mentioned above,
f can be written as the gradient of a map u, f = grad(u). Therefore, the law of
gravitation

∆u = 4πρ

also holds in this case. Furthermore, we have seen in (1.4.39) that the equations
in (iii) and (iv) contain the Euler equations for a perfect fluid as a special case.
Thus, it is very important to discuss the question, when v = 0. This is the task of
the third chapter.
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Chapter 2

The Newtonian limit: definition
and existence

In this chapter we first want to define the concept of the Newtonian limit. After
that we want to discuss some examples of limits of solutions of Einstein’s field
equations. In the third part we discuss conditions which make sure that there is a
Newtonian or a quasi-Newtonian limit. Finally, we discuss the limit of spherically
symmetric and static solutions.

2.1 Definition of the Newtonian limit

In order to define a Newtonian limit we first have to study how classical Newtonian
systems can be imbedded in the frame theory. Only then it really makes sense to
talk about a Newtonian limit. For instance, in case of a classical Newtonian
system we certainly do not have an arbitrary four-dimensional manifold but the
space R× R3. Therefore, we now have to consider the following.

Definition 2.1.1 a) A tuple (M, g, h,∇, T, λ) which meets the conditions of
the frame theory is called an Ehlers spacetime.

b) We call (M, g(λ), h(λ),∇(λ), T (λ), λ) a by λ ∈ (0, 1] parametrized family of
Ehlers spacetimes, if (M, g(λ), h(λ),∇(λ), T (λ), λ) satisfies the frame theory
for every λ ∈ (0, 1] fixed.

Definition 2.1.2 A classical Newtonian system is a tuple (R × R3, ρ, u) with
smooth maps ρ : R× R3 → R+ and u : R× R3 → R so that the following holds:

(i) ∆u = ∂2u
(∂x1)2

+ ∂2u
(∂x2)2

+ ∂2u
(∂x3)2

= 4πρ,

(ii) u(t, x)→ 0 for |x| → ∞.

Definition 2.1.3 We define the imbedding of a classical Newtonian system in the
category of all Ehlers spacetimes as the functor which relates a classical Newtonian
system (R×R3, ρ, u) to an Ehlers spacetime (M, g, h,∇, T, λ) so that (with respect
to the natural coordinate system (t, x)):
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2.1. Definition of the Newtonian limit

(i) M = R× R3,

(ii) (gij) = diag(1, 0, 0, 0),

(iii) (hij) = diag(0, 1, 1, 1),

(iv) with f := grad(u) we require: for i = 1, 2, 3, Γi00 = f i, as well as Γkij = 0
otherwise,

(v) T 00 = ρ, T ij = 0 otherwise,

(vi) λ = 0.

Remark 2.1.4 Of course we have to discuss if the resulting tuple (M, g, h,∇, T, λ)
of definition (2.1.3) is an Ehlers spacetime. But the definition is suitable to the
results of section (1.4.7). For instance, in (1.4.36) we found that for λ = 0 the
sixth axiom

Ric(∇) = 8π(T bb − 1

2
tr(T b)g)

is equivalent to the three conditions (in coordinates):

• All Frobenius leaves are flat;

• div(f)− 2||v||2 = 4πρ;

• rot(v) = 0.

But these conditions are satisfied, of course, since R3 is flat, v = 0, thus rot(v) = 0
and

div(f)− ||v||2 = div(f) = div(grad(u)) = ∆u = 4πρ

holds due to the fact that (R× R3, ρ, u) is a classical Newtonian system.

In exactly the same way we now define a quasi-Newtonian system and its imbed-
ding in the category of all Ehlers spacetimes:

Definition 2.1.5 A quasi-Newtonian system is a tuple (R×R3, ρ, f, v) with time-
dependent vector fields v and f on R3, a map ρ : R × R3 → R+ for which the
following holds:

(i) div(f)− 2||v||2 = 4πρ,

(ii) rot(v) = 0,

(iii) rot(f) + 2Dtv = 0,

(iv) div(v) = 0.

Definition 2.1.6 We define the imbedding of a quasi-Newtonian system in the
category of all Ehlers spacetimes as the functor which relates a quasi-Newtonian
system (R× R3, ρ, f, v) to an Ehlers spacetime (M, g, h,∇, T, λ) so that:
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2.1. Definition of the Newtonian limit

(i) M ⊆ R× R3,

(ii) (gij) = diag(1, 0, 0, 0),

(iii) (hij) = diag(0, 1, 1, 1),

(iv) for i = 1, 2, 3, Γi00 = f i, as well as Γj0i = vij, Γi0j = −vij, for i, j ∈ {1, 2, 3},
Γkij = 0 otherwise,

(v) T 00 = ρ and T ij = 0 otherwise,

(vi) λ = 0.

Remark 2.1.7 As we saw in the chapter about the frame theory, an Ehlers space-
time which is related to a quasi-Newtonian system fulfils the frame theory for
λ = 0, whereas an Ehlers spacetime which is related to a classical Newtonian sys-
tem additionally meets the condition v = 0 and it is M = R × R3. Now it also
makes sense to talk about a Newtonian or quasi-Newtonian limit of a family of
Ehlers spacetimes:

Definition 2.1.8 For λ ∈ (0, 1] let (M, g(λ), h(λ),∇(λ), T (λ), λ) be a parame-
trized family of Ehlers spacetimes on a four-dimensional connected differentiable
manifold M .

a) We say that this family of Ehlers spacetimes has a quasi-Newtonian limit, if

(i) all tensor fields have limits in every point p ∈M for λ→ 0. The metrics
g(λ) and h(λ) converge in the C2−norm towards the limit metrics g(0)
and h(0), the connections converge in the C1−norm towards the limit
connection ∇(0);

(ii) the limits (g(0), h(0),∇(0), T (0)) fulfil the frame theory for λ = 0.

b) Such a family of Ehlers spacetimes has a Newtonian limit, if

(i) the family has a quasi-Newtonian limit;

(ii) the manifold is simply connected and geodesically complete in space
direction and furthermore, there is a complete global timelike unit
vector field;

(iii) there are Newtonian coordinates so that v = 0 in these coordinates.

Remark 2.1.9 a) Looking at condition (i) in the definition of a quasi-Newton-
ian limit it is worth noting that the connection has to converge in a C1−sense.
This guarantees that the limit of the curvature tensor and the curvature
tensor of the limit connection coincide.

b) As we saw in the first chapter the conditions (ii) and (iii) of definition (2.1.8)
really guarantee that a family of Ehlers spacetimes not only has a quasi-
Newtonian but also a genuine Newtonian limit. The condition (ii) makes
sure that the manifold in case of λ = 0 really has the form M = R× R3.
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2.2. Extension of spacetimes

Additionally, the third condition causes that the quasi-Newtonian equations
transform into the genuine Newtonian ones. Since, if v = 0, equation (1.11)
equals rot(f) = 0 and − as we already commented in the chapter about the
frame theory − f can be written as a gradient of a map u, f = grad(u).
Thus, the genuine Newtonian law of gravitation emerges from the equation
(1.7). If we consider (1.13) in addition, we can see that it turns out to be
the Newtonian law of motion.

2.2 Extension of spacetimes

All in all, it is our aim to find out when a solution of Einstein’s field equations has
a Newtonian limit. Therefore, we have to discuss how we can extend a spacetime
to a family of Ehlers spacetimes. Only then we can talk about a Newtonian limit
of this spacetime.

Definition 2.2.1 Let (M, g) be a spacetime. An extension of the spacetime (M, g)
is a by λ ∈ (0, 1] parametrized family of Ehlers spacetimes

Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ)

with the additional condition
g(1) = −g.

Remark 2.2.2 a) As an extension is a family of Ehlers spacetimes this defini-
tion guarantees that it satisfies the conditions of the frame theory.

b) The additional condition
g(1) = −g

ensures that we can regain the original spacetime for λ = 1.

c) Observe that in definition (2.2.1) we talk about an extension of spacetime.
We want to point out that we have not found a canonical way to extend a
given spacetime.

2.3 Examples

In this section we want to discuss the Newtonian limits of some solutions of Ein-
stein’s field equations.

2.3.1 Minkowski spacetime

The Minkowski spacetime is the simplest solution of Einstein’s field equations.
We want to discuss one possibility of finding a Newtonian limit of Minkowski
spacetime.
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2.3. Examples

Definition 2.3.1 a) A Minkowski space is a vector space V of dimension n ≥ 2
together with a non-degenerate, symmetric bilinear form g of index n − 1.
We call g a Minkowski scalar product.

b) A spacetime (M, g) is called Minkowski spacetime if (M, g) is isometrical to
a four-dimensional Minkowski space.

We now consider the manifold M = R4 with a Minkowski scalar product g. In
cartesian coordinates t, x1, x2 and x3 it is of the following form:

(gij) = diag(−1, 1, 1, 1).

If one prefers the notation with the help of line elements this equals

ds2 = −dt2 + d(x1)2 + d(x2)2 + d(x3)2.

In order to introduce λ ∈ (0, 1] so that the extended metrics satisfy the axioms of
the frame theory we consider

Φλ : R→ R, t 7→ 1√
λ
t,

which is a diffeomorphism from R to R for λ ∈ (0, 1]. Then the line element of
g̃ = Φ∗λg has the form

d̃s2 = −1

λ
dt2 + d(x1)2 + d(x2)2 + d(x3)2.

This, of course, does not meet the conditions of the frame theory. For g we therefore
multiply this line element with −λ 6= 0 for λ ∈ (0, 1]. Then we get

g : ds2 = dt2 − λd(x1)2 − λd(x2)2 − λd(x3)2.

For h, we just have to invert d̃s2 and so we get

(gij(λ)) = diag(1,−λ,−λ,−λ)

and
(hij(λ)) = diag(−λ, 1, 1, 1),

which satisfy the corresponding axioms of the frame theory in a natural way. For
λ→ 0 we get the limits

(gij(0)) = diag(1, 0, 0, 0)

(hij(0)) = diag(0, 1, 1, 1)

which also fulfil the conditions of the frame theory for λ = 0. The Christoffel
symbols, of course, all equal zero and the Minkowski spacetime is flat. Thus the
extended Minkowski spacetime has a genuine Newtonian limit with

(gij(0)) = diag(1, 0, 0, 0)

(hij(0)) = diag(0, 1, 1, 1)

Γkij(0) = 0, ∀i, j, k ∈ {0, 1, 2, 3}
T ij = 0, ∀i, j ∈ {0, 1, 2, 3}
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and therefore

v = 0

f = 0

f = grad(u)

⇒ u = c, with c = const.

∆u = 0

⇒ ρ = 0.

Remark:

a) It is worth noting again that we have not found a canonical way to extend a
solution of Einstein’s field equations. Here we just describe one way of finding
an extension which fulfils the conditions of the frame theory. Therefore,
we do not know if the limit of any model of General Relativity is defined
unambiguously. On the one hand we might find different extensions which
have the same Newtonian limit. On the other hand it is not clear at all that
we always get the same limit if we use a different extension.

b) Our Minkowski space M = R4 meets the topological conditions for a genuine
Newtonian limit in a natural way. The manifold M = R4 is, of course, simply
connected and geodesically complete in space direction.

2.3.2 The Schwarzschild solution

We first have a look at the Schwarzschild solution in its traditional form. In this
case the Schwarzschild metric has the form

(gij) =


−h(r) 0 0 0

0 h−1(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ


with h(r) = 1 − 2m

r
, for M = R × R+ ×r S2 with coordinates t ∈ R, r ∈ R+ and

the spherical coordinates ϑ and ϕ on S2.
We now use a similar way to introduce λ ∈ (0, 1] as before. We again consider the
diffeomorphism

Φλ : R→ R, t 7→ 1√
λ
t.

Then we get from the line element of g,

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2dσ2,

the line element of g̃ = Φ∗λg:

d̃s2 = −
(

1− 2m

r

)
d

(
1√
λ
t

)2

+
1

1− 2m
r

dr2 + r2dσ2

= −1

λ

(
1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2dσ2.
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If we now substitute m by λ, we get

ds2 = −1

λ

(
1− 2λ

r

)
dt2 +

1

1− 2λ
r

dr2 + r2dσ2,

with 0 < 2λ < r. This means that

(g̃ij(λ)) = diag

(
−1

λ

(
1− 2λ

r

)
,

1

1− 2λ
r

, r2, r2 sin2 ϑ,

)
.

Then we get the desired metrics by:

(gij(λ)) = −λ · (g̃ij(λ))

(hij(λ)) = (g̃ij(λ))−1.

As in the case of Minkowski spacetime,

(gij(λ)) = diag

(
1− 2λ

r
,
−λ

1− 2λ
r

,−λr2,−λr2 sin2 ϑ

)
and

(hij(λ)) = diag

(
−λ

(
1

1− 2λ
r

)
, 1− 2λ

r
,

1

r2
,

1

r2 sin2 ϑ

)
also meet the corresponding conditions of the frame theory. For λ ∈ (0, 1] and
0 < 2λ < r, g has rank 4 and index 3, h has rank 4 and index 1. For λ → 0 we
get the limits

(gij(0)) = diag (1, 0, 0, 0) and

(hij(0)) = diag

(
0, 1,

1

r2
,

1

r2 sin2 ϑ

)
.

Now we want to discuss the limit more closely. We first study the Christoffel
symbols in case of λ ∈ (0, 1], but also for the limit connection. We first have to
note that (gij(λ)) is no Lorentzian metric, but (hij(λ)) has Lorentzian signature.
But if we now want to calculate the Christoffel symbols for λ > 0 it does not
matter if we use g or h as they are ”quasi” inverse.
In Appendix B we calculate the Christoffel symbols, the components of the Ricci
tensor and the divergence of the function f in detail. Here we just have a look at
the results.

The Christoffel symbols of (gij(λ)) which do not vanish have the form:

Γ1
11 =

λ

2λr − r2

Γ1
00 =

r − 2λ

r3

Γ1
22 = 2λ− r

Γ1
33 = (2λ− r) sin2 ϑ

Γ2
33 = − sinϑ cosϑ
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2.3. Examples

Γ0
10 =

λ

r2 − 2λr

Γ2
12 =

1

r

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ
.

Then the Christoffel symbols of the limit connection have the form:

Γ1
00 =

1

r2

Γ1
22 = −r

Γ1
33 = −r sin2 ϑ

Γ2
33 = − sinϑ cosϑ

Γ2
12 =

1

r

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ
Γkij = 0, otherwise.

There is no component of the Ricci tensor that does not vanish. Therefore,

Ric = 0.

Then our extended Schwarzschild spacetime has a genuine Newtonian limit with

(gij(0)) = diag(1, 0, 0, 0)

(hij(0)) = diag

(
0, 1,

1

r2
,

1

r2 sin 2ϑ

)
Γkij(0) as above

T ij = 0, ∀i, j ∈ {0, 1, 2, 3}

and so

v = 0

f =

(
1

r2
, 0, 0

)
f = grad(u)

⇒ u = −1

r
+ c, with c =const.

ρ = 0

∆u = 0.

70



2.3. Examples

Remark: For the extended Schwarzschild solution the manifold M = R × R+ ×
S2 is simply connected as all components are simply connected. But it is not
geodesically complete in space direction as we only consider a solution outside the
star which is considered to be in the origin of the spacetime. In order to achieve
geodesic completeness we also have to consider the inner Schwarzschild solution
and connect the two solutions.

2.3.3 The Kerr Solution

Let us consider the Kerr Solution in its original form. In Boyer-Lindquist coordi-
nates t ∈ R, r ∈ R+, ϑ ∈ (0, π) and ϕ ∈ S1 we have:

(gij) =


−1 + 2mr

ρ
0 0 −2mra sin2 ϑ

ρ

0 ρ
∆

0 0
0 0 ρ 0

−2mra sin2 ϑ
ρ

0 0 (r2 + a2 + 2mra2 sin2 ϑ
ρ

) sin2 ϑ


with ρ := r2 + a2 cos2 ϑ and ∆ := r2− 2mr+ a2. Usually the two constants m and
a are called mass and angular momentum respectively. Now we are going to copy
the procedure of the Schwarzschild case. We first introduce λ 6= 0 with the help
of the diffeomorphism

Φλ : R→ R, t 7→ 1√
λ
t

and we get for g̃ = Φ∗λg

(g̃ij) =


− 1
λ
(1− 2mr

ρ
) 0 0 −2mra sin2 ϑ√

λρ

0 ρ
∆

0 0
0 0 ρ 0

−2mra sin2 ϑ√
λρ

0 0
(
r2 + a2 + 2mra2 sin2 ϑ

ρ

)
sin2 ϑ

 .

We then get (gij(λ)) by multiplying (g̃ij) with (−λ) 6= 0 and (hij(λ)) by inverting
(g̃ij). Furthermore, we replace m by λ. This means:

(gij(λ)) =


1− 2λr

ρ
0 0 2λ

3
2 ra sin2 ϑ
ρ

0 −λ ρe∆ 0 0

0 0 −λρ 0
2λ

3
2 ra sin2 ϑ
ρ

0 0 −λ
(
r2 + a2 + 2λra2 sin2 ϑ

ρ

)
sin2 ϑ

 ,

with ρ := r2 + a2 cos2 ϑ and ∆̃ := r2 − 2λr + a2.

The inversion of (g̃ij) is carried out in detail in Appendix B. Here we have the
result:

(hij(λ)) =


−λ
(

1 + 2mr(r2+a2)e∆ρ
)

0 0 −
√
λ2mra

ρe∆
0

e∆
ρ

0 0

0 0 1
ρ

0

−
√
λ2mra

ρe∆ 0 0 ρ−2mr

sin2 ϑ·ρe∆
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with ρ := r2 + a2 cos2 ϑ and ∆̃ := r2 − 2λr + a2. As in the cases before (gij(λ))
and (hij(λ)) meet the conditions of the frame theory: for λ ∈ (0, 1], g has rank 4
and index 3, h has rank 4 and index 1. For λ→ 0 we get the following limits:

(gij(0)) = diag(1, 0, 0, 0),

(hij(0)) = diag

(
0,

r2 + a2

r2 + a2 cos2 ϑ
,

1

r2 + a2 cos2 ϑ
,

1

(r2 + a2) sin2 ϑ

)
.

Now we again discuss the limit more closely. We first want to study the Christoffel
symbols in case of λ ∈ (0, 1], but also for the limit connection. As before you can
look at the exact calculations in Appendix B. For the divergence of f (in order
to show that ∆u = 0) one has to copy the calculations of the Schwarzschild case,
which is not carried out in detail.

The Christoffel symbols of (gij(λ)) which do not vanish have the form:

Γ1
00 =

∆̃(r2 − a2 cos2 ϑ)

ρ3

Γ2
00 =

−2ra2 sinϑ cosϑ

ρ3

Γ0
01 = Γ0

10 =
λ(r2 − a2 cos2 ϑ)(r2 + a2)

ρ2∆̃

Γ0
02 = Γ0

20 =
−4λra2 sinϑ cosϑ

ρ2

Γ3
01 = Γ3

10 =

√
λa(r2 − a2 cos2 ϑ)

∆̃ρ2

Γ3
02 = Γ3

20 =
−2
√
λra cosϑ

sinϑ · ρ2

Γ0
13 = Γ0

31 =
−λ 3

2a sin2 ϑ

ρ2∆̃
[(r2 + a2) · (r2 − a2 cos2 ϑ) + 2r2ρ]

Γ0
23 = Γ0

32 =
2λ

3
2 ra3 sin3 ϑ cosϑ

ρ2

Γ1
30 = Γ1

03 = −
√
λ∆̃ · a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ3

Γ2
30 = Γ2

03 =
2
√
λra sinϑ cosϑ(r2 + a2)

ρ3

Γ1
11 =

ra2 sin2 ϑ− λ(r2 − a2 cos2 ϑ)

ρ∆̃

Γ2
11 =

a2 sinϑ cosϑ

ρ∆̃
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Γ1
21 = Γ1

12 =
−a2 sinϑ cosϑ

ρ

Γ1
22 = −∆̃r

ρ

Γ2
21 = Γ2

12 =
r

ρ

Γ2
22 = −a

2 cosϑ sinϑ

ρ

Γ1
33 = −∆̃ sin2 ϑ(rρ2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

ρ3

Γ2
33 = −sinϑ cosϑ(∆̃ρ2 + 2λr(r2 + a2)2)

ρ3

Γ3
31 = Γ3

13 =
−λ(2r2ρ− a2 sin2 ϑ(r2 − a2 cosϑ)) + rρ2

∆̃ρ2

Γ3
32 = Γ3

23 =
cosϑ(2λra2 sin2 ϑ+ ρ2)

sinϑ · ρ2
.

Then the Christoffel symbols of the limit connection have the form:

Γ1
00 =

(r2 + a2)(r2 − a2 cos2 ϑ)

(r2 + a2 cos2 ϑ)3

Γ2
00 =

−2ra2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)3

Γ1
11 =

ra2 sin2 ϑ

(r2 + a2 cos2 ϑ)(r2 + a2)

Γ2
11 =

a2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)(r2 + a2)

Γ1
21 = Γ1

12 =
−a2 sinϑ cosϑ

r2 + a2 cos2 ϑ

Γ1
22 = − (a2 + r2)r

r2 + a2 cos2 ϑ

Γ2
21 = Γ2

12 =
r

r2 + a2 cos2 ϑ

Γ2
22 = − a2 cosϑ sinϑ

r2 + a2 cos2 ϑ

Γ1
33 = −r sin2 ϑ(r2 + a2)

r2 + a2 cos2 ϑ

Γ2
33 = −sinϑ cosϑ(r2 + a2)

r2 + a2 cos2 ϑ

Γ3
31 = Γ3

13 =
r

r2 + a2

Γ3
32 = Γ3

23 =
cosϑ

sinϑ
Γkij = 0, otherwise.
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There is no component of the Ricci tensor that does not vanish. Therefore,

Ric = 0.

Then our extended Kerr spacetime has a genuine Newtonian limit with

(gij(0)) = diag(1, 0, 0, 0),

(hij(0)) = diag

(
0,

r2 + a2

r2 + a2 cos2 ϑ
,

1

r2 + a2 cos2 ϑ
,

1

(r2 + a2) sin2 ϑ

)
,

Γkij(0) as above

T ij = 0, ∀i, j ∈ {0, 1, 2, 3}

and so

v = 0

f = (Γ1
00,Γ

2
00, 0)

f = grad(u)

ρ = 0

∆u = 0.

Remark 2.3.2 Of course, our standard examples are extensions in the above
sense. We already know that the corresponding families of Ehlers spacetimes
satisfy the conditions of the frame theory. Therefore, we just have to consider the
additional condition. Here we assume that the mass m equals one, m = 1:

a) Minkowski spacetime:
Originally the Minkowski metric has the form

(gij) = diag(−1, 1, 1, 1).

After extension we had

(gij(λ)) = diag(1,−λ,−λ,−λ),

which means that the condition

g = −g(1)

is satisfied as we can immediately see.

b) Schwarzschild spacetime:
The Schwarzschild metric is of the form

(gij) = diag(−h(r), h−1(r), r2, r2 sin2 ϑ),

with h(r) = 1− 2m
r

. After extension we get

(gij(λ)) = diag

(
1− 2λ

r
,
−λ

1− 2λ
r

,−λr2,−λr2 sin2 ϑ

)
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2.4. Existence of a limit

and therefore for λ = 1:

(gij(1)) = diag

(
1− 2

r
,
−1

1− 2
r

,−r2,−r2 sin2 ϑ

)
,

which equals −g for m = 1.

c) Kerr spacetime:
The Kerr metric is of the form

(gij) =


−1 + 2mr

ρ
0 0 −2mra sin2 ϑ

ρ

0 ρ
∆

0 0
0 0 ρ 0

−2mra sin2 ϑ
ρ

0 0 (r2 + a2 + 2mra2 sin2 ϑ
ρ

) sin2 ϑ


with ρ := r2 + a2 cos2 ϑ and ∆ := r2 − 2mr + a2. The extension mentioned
above has the form

(gij(λ)) =


1− 2λr

ρ
0 0 2λ

3
2 ra sin2 ϑ
ρ

0 −λ ρe∆ 0 0

0 0 −λρ 0
2λ

3
2 ra sin2 ϑ
ρ

0 0 −λ
(
r2 + a2 + 2λra2 sin2 ϑ

ρ

)
sin2 ϑ


with ρ := r2 + a2 cos2 ϑ and ∆̃ := r2 − 2λr + a2. This means that we get for
λ = 1:

(gij(1)) =


1− 2r

ρ
0 0 2ra sin2 ϑ

ρ

0 − ρ

∆
0 0

0 0 −ρ 0
2ra sin2 ϑ

ρ
0 0 −

(
r2 + a2 + 2ra2 sin2 ϑ

ρ

)
sin2 ϑ


with ρ := r2 + a2 cos2 ϑ and ∆ := r2 − 2r + a2. This again means that

g(1) = −g

for m = 1.

2.4 Existence of a limit

In this section we want to discuss conditions which ensure the existence of a limit
of a family of Ehlers spacetimes. Some conditions are already known, see, for
example [31], §3.2, but we also find a more geometrical equivalent of the conditions
mentioned in [31].
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2.4. Existence of a limit

2.4.1 The limit of the metrics

We start with the limit of the metrics g(λ) and h(λ). Therefore, we first discuss
the geometry of the vector space of symmetric bilinear forms. Although we have
a special situation (V = TMp, dim(V ) = 4), we carry out a general discussion of
the vector space of symmetric bilinear forms:
Let V be a finite dimensional real vector space, n = dim(V ) and W = Sym2V the
vector space of symmetric bilinear forms on V . We consider the degenerate cone

C := {s ∈ W : Deg(s) = {v ∈ V : s(v, w) = 0,∀w ∈ V } 6= 0}.

Note, that the name ”cone” is derived from the fact that for s ∈ C also λs ∈ C,
for all λ ∈ R. We now define the subset C+ ⊆ C by

C+ := {s ∈ W : s ≥ 0, dim( Deg(s)) = 1} ⊆ C.

Proposition 2.4.1 C+ ⊆ W is a hypersurface, which means that an open neigh-
bourhood U ⊆ W of s0 and a map f : U → R exist, for all s0 ∈ C+, so that

(i) C+ ∩ U = {s ∈ U : f(s) = 0};

(ii) df(s0) 6= 0.

Proof. Let s0 ∈ C+. According to the theorem of Sylvester (see (0.3.6)) there is a
basis A of V so that

M(s0; A) = diag(0, 1, ..., 1).

Without restriction let therefore W = Sym2(Rn) and s0 = diag(0, 1, ..., 1). Fur-
thermore, we define

f : Sym2(Rn)→ R
s 7→ det(s).

If now s ∈ W and

s =

(
∗ ∗
∗ A11

)
,

A11 ∈ Matn−1(R), then there is an open neighbourhood U ⊆ W of s0 so that
det(A11) 6= 0, for all s ∈ U . For s ∈ f−1(0) ⊆ U we therefore have dim(Deg(s)) = 1
and s ≥ 0, thus s ∈ U ∩ C+ and f−1(0) ⊆ U ∩ C+.
But as C+ ⊆ C, we have U ∩ C+ ⊆ f−1(0), of course, and thus

U ∩ C+ = {s ∈ U : f(s) = 0}.

Finally,
∂f

∂x11

(s0) =
d

dt

∣∣∣∣
t=0

(det(diag(t, 1, ..., 1))) = 1 6= 0

holds and therefore df(s0) 6= 0. �

76



2.4. Existence of a limit

Theorem 2.4.2 Let s ∈ C+ and v ∈ Deg (s)\{0}. Then the following holds:

TC+
s = {w ∈ W : w(v, v) = 0}.

Proof. Let s0 ∈ C+ be arbitrary. Again, we use that V = Rn and, without
restriction, s0 = diag(0, 1, ..., 1). As above, we therefore get

grad(f)(s0) = diag(1, 0, ..., 0),

since:

∂f

∂x11

(s0) =
d

dt

∣∣∣∣
t=0

(det(diag(t, 1, ..., 1))) = 1

∂f

∂xii
(s0) =

d

dt

∣∣∣∣
t=0

(det(diag(0, 1, ..., 1, t, 1, ..., 1))) = 0

∂f

∂xjk
(s0) =

d

dt

∣∣∣∣
t=0

(det(diag(0, 1, ..., 1) + t · Ejk)) = 0,

for i = 2, ..., n and 1 ≤ j, k ≤ n and j 6= k. Here Ejk is the matrix whose
components are zero, except for the component ejk which equals one, ejk = 1.
Thus we have

TC+
s0

= ker(grad(f)(s0)) = {w = (wij) ∈ W : w11 = 0}.

But, of course,
w11 = w(e1, e1)

and Deg(s0) = Re1. This shows the claim. �

After this basic discussion of the vector space of the symmetric bilinear forms,
we now start discussing the existence of the limit. Therefore, let V be a real,
finite dimensional vector space, dimV = n and W = Sym2V . Let h : [0, 1] → W
be a smooth curve so that h(λ) /∈ C, for all λ ∈ (0, 1] and h(0) ∈ C+. Let
ψ : [0, 1]→ Hom(V, V ∗) be given by λ 7→ ψλ with

〈ψλv, w〉 := hλ(v, w).

Then ψλ is invertible for λ ∈ (0, 1] and we can consider the dual curve g : (0, 1]→
Sym2(V ∗), given by

gλ(α, β) := −λhλ(ψ−1
λ α, ψ−1

λ β),

for α, β ∈ V ∗. The following holds:

Proposition 2.4.3 Suppose that g0 := limλ→0 gλ exists and g : [0, 1]→ Sym2(V ∗)
is differentiable. Then the following holds:

a) g0 6= 0 and h′(0) /∈ TC+
h(0);

b) Deg (g0) = Ann (Deg (h0));
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c) If rk (hλ) = n and index (hλ) = 1 for λ ∈ (0, 1], then rk (g0) = 1 and
index (g0) = 0.

Proof. First we define ϕ : [0, 1]→ Hom (V ∗, V ) by

〈α, ϕλβ〉 := gλ(α, β)

for α, β ∈ V ∗. Then ϕ is continuous and for λ ∈ (0, 1] the following holds:

〈α, ϕλ ◦ ψλ(v)〉 = gλ(α, ψλv) = −λhλ(ψ−1
λ α, v)

= −λ〈α, v〉
= 〈α, (−λ idV )(v)〉,

for all α ∈ V ∗ and for all v ∈ V . Thus

ϕλ ◦ ψλ = −λ idV . (2.1)

As λ ∈ (0, 1] it also holds:
ψλ ◦ ϕλ = −λ idV ∗ . (2.2)

If we consider the calculations above, we see that for the limit λ → 0, (2.1) also
holds and results in

ϕ0 ◦ ψ0 = 0. (2.3)

Now we want to show that

im(ψ0) = Ann(Deg(h0)).

We first observe that
〈ψ0(v), w〉 = h0(v, w) = 0,

for all w ∈ Deg(h0) and v ∈ V arbitrary, which means that

im(ψ0) ⊆ Ann(Deg(h0)).

But both have the same dimension, since

dim(Ann(Deg(h0))) = n− dim(Deg(h0)) = n− dim(ker(ψ0))

= dim(im(ψ0)),

because of ker(ψ0) = Deg(h0). From (2.3) now follows:

Ann(Deg(h0)) = im(ψ0) ⊆ ker(ϕ0) = Deg(g0).

As dim(Deg(h0)) = 1, the equality holds if we show that g0 6= 0. But from

ϕ(λ)ψ(λ) = −λ idV ,

for all λ ∈ [0, 1], follows after differentiation and for λ = 0:

− idV = ϕ′(0)ψ0 + ϕ0ψ
′(0). (2.4)
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If we suppose that g0 = 0, then ϕ0 = 0 and therefore ψ0 is invertible, but it is not
invertible, of course. Thus g0 6= 0 and therefore

Ann(Deg(h0)) = Deg(g0),

which shows (b).
Now we can show that from (2.3)

ψ0 ◦ ϕ0 = 0 (2.5)

also follows (remember (1.2.2), where we showed this for n = 4, but the proof is
the same). But this means that im(ϕ0) ⊆ Deg(h0). But we even have im(ϕ0) =
Deg(h0), since

ker(ϕ0) = Deg(g0) = Ann(Deg(h0)) = im(ψ0)

and so
Deg(h0) = ker(ψ0) = n− im(ψ0) = n− ker(ϕ0) = im(ϕ0).

Thus, let v0 ∈ Deg(h0)\{0}. Then there is an α0 ∈ V ∗ with v0 = ϕ0(α0) and the
following holds:

h′0(v0, v0) = 〈ψ′0v0, v0〉 = 〈ψ′0v0, ϕ0(α0)〉
= g0(ψ′0v0, α0) = g0(α0, ψ

′
0v0)

= 〈α0, ϕ0 ◦ ψ′0(v0)〉
(2.4)
= 〈α0,−v0〉 − 〈α0, ϕ

′
0 ψ0v0︸︷︷︸

=0

〉

= −〈α0, ϕ(α0)〉
= −g0(α0, α0).

Since g0(α0, α0) 6= 0, (remember that if g0(α0, α0) = 0, then g0 = 0, but g0 6= 0),
it follows (with the help of (2.4.2)) that

h′0 /∈ TC+
h0
.

This means that (a) holds.
Let finally rk(hλ) = n and index(hλ) = 1. Then hλ(v0, v0) < 0 for 0 < λ < ε and ε
small enough (otherwise hλ would be positive definite here). But then

h′0(v0, v0) = lim
λ→0

1

λ︸︷︷︸
>0

hλ(v0, v0)︸ ︷︷ ︸
<0

≤ 0

holds, which means that in this case h′0(v0, v0) < 0. Thus, g0(α0, α0) > 0 and
therefore g0 has rank 1 and index 0. But this shows (c) and the claim. �

Lemma 2.4.4 Let V be a real finite dimensional vector space, dimV = n and
W = Sym2V . Let h : [0, 1] → W be a smooth curve so that h(λ) /∈ C, for all
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λ ∈ (0, 1] and h(0) ∈ C+.
Then h′0 /∈ TC+

h0
if and only if the following holds: for A(λ) = M(h(λ); A),

d

dλ

∣∣∣∣
λ=0

det(A(λ)) 6= 0

holds. Here A is an arbitrary basis of V (and the claim does not depend on the
choice of the basis).

Proof. Again we suppose that V = Rn and h(0) = diag(0, 1, ..., 1) = A(0), without
restriction. Then we have, due to the Leibniz formula,

d

dλ

∣∣∣∣
λ=0

det(A(λ)) =
d

dλ

∣∣∣∣
λ=0

(
n∑
j=1

(−1)1+ja1j(λ) det(A1j(λ))

)

=
n∑
j=1

(−1)j+1(a′1j(0)) det(A1j)(0)︸ ︷︷ ︸
=0 for j≥2

+ a1j(0)︸ ︷︷ ︸
=0 for all j

det(A1j)′(0))

= a′11(0) det(En−1) = a′11(0)

= h′0(e1, e1).

According to (2.4.2) we know that h′0(e1, e1) 6= 0 if and only if h′0 /∈ TC+
h0

and this
shows the claim. �

Theorem 2.4.5 Let V be a real finite dimensional vector space, dimV = n and
W = Sym2V . Let h : [0, 1] → W be a smooth curve so that h(λ) /∈ C, for all
λ ∈ (0, 1] and h(0) ∈ C+. Let ψ : [0, 1]→ Hom(V, V ∗) be given by λ 7→ ψλ with

〈ψλv, w〉 := hλ(v, w).

Again we can consider the dual curve g : (0, 1]→ Sym2(V ∗), given by

gλ(α, β) := −λhλ(ψ−1
λ α, ψ−1

λ β),

for α, β ∈ V ∗.
If h′0 /∈ TC+

h0
, then there is a limit g(0) := limλ→0 g(λ) and the continued curve

g : [0, 1]→ Sym2(V ∗) is smooth if h : [0, 1]→ Sym2(V ) is smooth.

Proof. Let A be a basis of V , without restriction, A(0) = diag(0, 1, ..., 1) and

A(λ) = M(h(λ); A), B(λ) = M(g(λ); A∗).

But then we also have

M(ψ(λ); A,A∗) = A(λ), M(ϕ(λ); A∗,A) = B(λ)

and g(λ) converges if and only if B(λ) converges. Now from ϕλ ◦ ψλ = −λ idV it
follows that A(λ)B(λ) = −λEn, thus

B(λ) = −λA−1(λ) = − λ

det(A(λ))
· adj(A(λ))
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for λ 6= 0. If now h′0 /∈ TC+
h0

it follows that

lim
λ→0

det(A(λ))

λ
=

d

dλ

∣∣∣∣
λ=0

det(A(λ))

exists and is not zero due to lemma (2.4.4). But this means that limλ→0B(λ) also
exists (since, of course, adj(A(0)) exists, as A(0) exists and the components of
adj(A(0)) are only sums and products of the components of A(0)) and we have:

B0 := lim
λ→0

B(λ) =
−1

det(A)′(0)
adj(A(0)) =

−1

det(A)′(0)
diag(1, 0, ..., 0).

Finally, we want to show that g : [0, 1] → Sym2(V ∗) is smooth. We therefore
consider the following developments (remember that h : [0, 1]→ W is smooth):

A(λ) = A(0) + λ · A′(0) + o(λ)

adj(A(λ)) = adj(A(0)) + adj(A)′(0) · λ+ o(λ)

det(A(λ)) = det(A(0))︸ ︷︷ ︸
=0

+ det(A)′(0)︸ ︷︷ ︸
6=0

·λ+ o(λ)

det(A(λ))

λ
= det(A)′(0) + o(1)

λ

det(A(λ))
=

1

det(A)′(0)
+ o(1).

Therefore, the following holds:

1

λ
(B(λ)−B(0)) =

1

λ

(
− λ

det(A(λ))
· adj(A(λ)) +

1

det(A)′(0)
· adj(A(0))

)
=

1

λ

(
−
(

1

det(A)′(0)
+ o(1)

)
· (adj(A(0)) + adj(A)′(0) · λ+ o(λ))

+
1

det(A)′(0)
· adj(A(0))

)
=

1

λ

(
−adj(A)′(0)

det(A)′(0)
· λ+ o(λ)

)
= − adj(A)′(0)

det(A)′(0)
+ o(λ).

Thus, limλ→0
1
λ
(B(λ) − B(0)) does exist. The same holds for higher derivations.

Therefore, g : [0, 1]→ Sym2(V ∗) is smooth and this shows the claim. �

Remark 2.4.6 If we now want to transfer this to our theory, we just have to
show that we can use the same arguments for every TMp, p ∈M , in differentiable
dependence on p ∈M . The calculations are similar to the ones above. Therefore,
we define:

C+ = {s ∈ Γ(M ;T (2,0)M) : sp ≥ 0, dim(Deg(sp)) = 1}

and
TC+

s = {w ∈ Γ(M ;T (2,0)M) : wp(v, v) = 0, ∀v ∈ Deg(sp)\{0}}.
We then get the following result:
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2.5. Static and spherically symmetric spacetimes

Theorem 2.4.7 Let M be a four-dimensional connected smooth manifold, g :
(0, 1]→ Γ(M ;T (0,2)M), λ 7→ g(λ) and h : (0, 1]→ Γ(M ;T (2,0)M), λ 7→ h(λ). The
metrics g(λ) and h(λ) satisfy the first two conditions of the frame theory for every
λ ∈ (0, 1]. Then it is equivalent:

(i) The metrics g(λ) and h(λ) have a limit for λ = 0 and these limits satisfy the
first two conditions of the frame theory for λ = 0.

(ii) The limit
h(0) := lim

λ→0
h(λ) ∈ Γ(M ;T (2,0)M)

exists and rk(h(0)) = 3 and ind(h(0)) = 0. Furthermore,

h′(0) /∈ TC+
h(0).

2.5 Static and spherically symmetric spacetimes

In this section we want to show that a static and spherically symmetric spacetime
has a Newtonian limit. This means that we have to show that it can be extended
to a family of Ehlers spacetimes and that this family has a Newtonian limit. But
we first have to introduce some concepts.

Definition 2.5.1 Let M be a manifold, g ∈ Γ(M,T (p,q)M) a tensor field, p, q ∈
N0, and X ∈ X(M). We then define the Lie derivation L of g with respect to X
by

L : X(M)× Γ(M,T (p,q)M)→ Γ(M,T (p,q)M),

(X, g) 7→ LXg :=
d

dt

∣∣∣∣
t=0

(ϕt)∗(g),

where ϕ = (ϕt) is the flow of the vector field X.

Remark 2.5.2 Usually we will treat (0, 2)− tensors, so g ∈ Γ(M,T (0,2)M). For
p ∈M and ξ1, ξ2 ∈ TMp

(LXg)p(ξ1, ξ2) :=
d

dt

∣∣∣∣
t=0

gϕt(p)(ϕ
t
∗ξ1, ϕ

t
∗ξ2)

holds. Now, if ϕt : Dt → D−t, Dt ⊆ M , p ∈ Dt, is a 1-parameter group of
isometries, which means that (ϕt)∗g = g holds, for all t ∈ R, then we have for the
corresponding vector field X ∈ X(M), X = d

dt

∣∣
t=0

ϕt:

LXg =
d

dt

∣∣∣∣
t=0

(ϕt)∗g =
d

dt

∣∣∣∣
t=0

g = 0.

But, on the other hand:

Theorem 2.5.3 Let X ∈ X(M) with LXg = 0 and let ϕ = (ϕt) be the flow
belonging to X. Then (ϕt) is a 1-parameter group of isometries.
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2.5. Static and spherically symmetric spacetimes

Proof. For this proof we suppose that X is a complete vector field. If X is not
complete we can use the same proof for the neighbourhood Dt of p, t ∈ R, p ∈ Dt.
The following holds:

d

dt
(ϕt)∗g =

d

ds

∣∣∣∣
s=0

(ϕt+s)∗(g) =
d

ds

∣∣∣∣
s=0

(ϕs)∗((ϕt)∗g) = LX((ϕt)∗g).

In general, if Φ is a diffeomorphism on M , Φ : M →M , g ∈ Γ(M,T (0,2)M), p ∈M
and ξ1, ξ2 ∈ TMp, then we have:

LX(Φ∗g)p(ξ1, ξ2) =
d

dt

∣∣∣∣
t=0

(Φ∗g)ϕt(p)(ϕ
t
∗ξ1, ϕ

t
∗ξ2) =

d

dt

∣∣∣∣
t=0

gΦ◦ϕt(p)(Φ∗◦ϕt∗(ξ1),Φ∗◦ϕt∗(ξ2))

and

(Φ∗(LXg))p(ξ1, ξ2) = (LXg)Φ(p)(Φ∗ξ1,Φ∗ξ2) =
d

dt

∣∣∣∣
t=0

gϕt(p)◦Φ(ϕt∗◦Φ∗(ξ1), ϕt∗◦Φ∗(ξ2)).

Thus, if Φ ◦ ϕt = ϕt ◦ Φ holds for all t ∈ R, it follows that

LX(Φ∗g) = Φ∗(LXg).

But for all s, t ∈ R
ϕt ◦ ϕs = ϕt+s = ϕs ◦ ϕt

holds and therefore it follows for all t ∈ R:

d

dt
(ϕt)∗g = LX((ϕt)∗g) = (ϕt)∗(LXg) = 0.

Thus,
(ϕt)∗(g) = (ϕ0)∗g = g

for all t ∈ R, which shows the claim. �

Definition 2.5.4 A vector field X ∈ X(M) with LXg = 0 is called Killing vector
field.

Definition 2.5.5 Let (M, g) be a spacetime. A timelike future-oriented unit vec-
tor field U is called an observer.

Definition 2.5.6 We call an observer U irrotational if for all vector fields X, Y
which are orthogonal to U

〈∇YU,X〉 − 〈∇XU, Y 〉 = 0

holds.

Theorem 2.5.7 An observer U is irrotational if and only if there is a hypersurface
N ⊂M which is orthogonal to U in every p ∈M , that means that there is a three-
dimensional submanifold N ⊂M with p ∈ N and TNq⊥Uq for q ∈ N .
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2.5. Static and spherically symmetric spacetimes

Proof. The proof follows from the theorem of Frobenius (see (1.4.3)), according to
which there is such an orthogonal hypersurface N in every p ∈ U if and only if the
condition

[X, Y ] ⊥ U, ∀X, Y ∈ X(M) with X ⊥ U, Y ⊥ U

holds. But this is equivalent to the condition of irrotationality, since

〈∇YU,X〉 − 〈∇XU, Y 〉 = ∇Y 〈U,X〉 − 〈U,∇YX〉 − ∇X〈U, Y 〉+ 〈U,∇XY 〉
= 0 + 〈U,∇XY −∇YX〉
= 〈U, [X, Y ]〉.

�

Definition 2.5.8 1. A spacetime (M, g) is called stationary if there is a global
timelike Killing vector field V on M .

2. If, furthermore, the corresponding observer U = V
‖V ‖ is irrotational, the

spacetime is called static.

Theorem 2.5.9 Let the spacetime (M, g) be static and p ∈ M . Then there is a
chart ϕ = (t, x1, x2, x3) : U → I × B3, p ∈ U , and there are maps f : B3 → (0,∞)
and h : B3 → Pos3(R) so that for the representation of g with respect to ϕ

ds2 = −f 2dt2 + dσ2

holds, where h = dσ2 is a Riemannian metric on B3.

Proof. Let p ∈M , N ⊆M be the integral submanifold with p ∈ N , X the timelike
Killing vector field and (ψt) the (local) flow of isometries belonging to X. We then
consider Φ : R×N →M ,

Φ(t, q) := ψt(q),

(if (ψt) is not global, choose Φ : I×V → U with I ⊆ R an open interval and 0 ∈ I,
as well as V ⊆ N an open neighbourhood of p and U ⊆M an open neighbourhood
of p). Then:

DΦ(0,p)

(
∂

∂t

)
= Xp, DΦ|TNp = idTNp , TNp = X⊥p ,

thus, DΦ(0,p) is an isomorphism and Φ|I×V : I × V → U a diffeomorphism for
I ⊆ R an open interval and 0 ∈ I, as well as V ⊆ N an open neighbourhood of p
and U ⊆M an open neighbourhood of p. After a possible diminution of V and by
using the chart of N in a neighbourhood of p we can suppose that V = B3 without
restriction.
Φ then maps the coordinate planes {t = t0} ⊆ I ×B3 to the leaves ψt(N)∩U . We
now define ϕ := Φ−1. Then for the Lorenzian metric g with respect to ϕ

g00(t, x) = g(∂t, ∂t) = g(X,X) =: −f 2(t, x)
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2.5. Static and spherically symmetric spacetimes

holds, since ∂t = X, if ∂t denotes the coordinate vector field on U . But as X is a
Killing vector field its length stays constant along the integral curves due to the
fact that

X(ψt(q)) = Dψtq(Xq).

Therefore, f does not depend on t. Furthermore, we get

g0i(t, x) = g

(
∂t,

∂

∂xi

)
= g

(
X,

∂

∂xi

)
= 0,

for i = 1, 2, 3, since Xq is always orthogonal to Nq.
Finally, ψt maps N to ψt(N) so that the map is an isometry. Therefore,

gij(t, x) = g

(
∂

∂xi
,
∂

∂xj

)
= g

(
∂

∂xi
,
∂

∂xj

)
ψt(Φ(0,x))

= g

(
∂

∂xi
,
∂

∂xj

)
Φ(0,x)

= gij(0, x)

does not depend on t, for 1 ≤ i, j ≤ 3. If we now define h : B3 → Pos(R),

hij(x) := gij(0, x),

we finally get that
ds2 = −f 2dt2 + dσ2

holds with h =: dσ2 and g =: ds2. �

Remark 2.5.10 Theorem (2.5.9) only provides a local product structure, of course.
But in the following we want to have a global structure so that

M ∼= I ×M3.

But this is clearly not the case for every static spacetime. We therefore have to
require that

Φ : I ×M3 →M, Φ(t, p) = ψt(p),

is a diffeomorphism, where (ψt) is the flow belonging to the Killing vector field X.
Then M has the desired form. If we talk about a static spacetime in the following,
we always mean that this addition requirement is satisfied and thus the manifold
is of the desired form.

Definition 2.5.11 A spacetime (M, g) is called spherically symmetric, if SO(3)
operates as a group of isometries so that the orbits are diffeomorphic to S2.

Remark 2.5.12 Sometimes, a spacetime (M, g) is called spherically symmetric,
if SO(3) operates as a group of isometries so that the orbits are two-dimensional
spacelike surfaces. If we then consider the operation

τ : SO(3)×M →M,
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2.5. Static and spherically symmetric spacetimes

with dimM = 3, we get for the isotropy group H:

B ∼= SO(3)/H,

where B denotes the orbit, thus dim(B) = 2. Furthermore, dim(SO(3)) = 3,
therefore it follows that dim(H) = 1. But we know that the only one-dimensional
subgroups of SO(3) are conjugates of SO(2) and O(2). The first case provides

SO(3)/SO(2) ∼= S2,

which also holds according to our definition. In the other case we get

SO(3)/O(2) ∼= P2,

which is not the result we want to have. But if you do not want to use the stronger
definition of spherically symmetric spacetimes you can also require the orbits to
be simply connected or the manifold to be oriented. This also excludes the second
case and the orbits are S2 indeed.

Theorem 2.5.13 Let (M, g) be a spacetime which is static and spherically sym-
metric. Furthermore, let M be simply connected. Then,

M ∼= I × J × S2

as manifolds, where I ⊆ R and J ⊆ R are open intervals.

Proof. As mentioned in (2.5.10), we suppose that M = I ×M3 due to the fact
that M is static. We now define

N := M3/SO(3).

As SO(3) operates as a group of isometries so that all the orbits are diffeomorphic
to S2, all the isometry groups Hp are conjugates. We can therefore use the slice
theorem (see [3], chap. 2, §5) which guarantees that N is a smooth manifold.
Furthermore, it provides that M is an S2−bundle. Therefore, M3 →M3/SO(3) =
N is a fibration with fibre S2. As N = M3/SO(3), we know that dimN = 1 and N
is either an open interval or N = S1. But we required that M is simply connected,
and thus, M3 is also simply connected. Therefore, the long homotopy sequence

π1(M3) → π1(N) → π0(S2) → π0(M3)
= (1) = (0) = (0)

for S2 → M3 → N is exact. Thus, π1(N) = (1), which means that N is simply
connected and therefore, N ∼= J , where J ⊆ R is an open interval.
Thus, M is a trivial bundle since J is simply connected, which means that

M ∼= I × J × S2.

�
Now we know the structure of the manifold and we also know that

ds2 = −f 2dt2 + dσ2

holds. Now we deal with the metric h := dσ2. We have:
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2.5. Static and spherically symmetric spacetimes

Lemma 2.5.14 Let g be a metric on S2 which is invariable under SO(3)-transfor-
mations (this means that for all Φ ∈ SO(3), Φ : S2 → S2, Φ∗g = g holds). Then
there is a constant c > 0 so that g = cgsph, where gsph is the standard metric on
S2.

Proof. Let N be the north pole of S2, TS2
N the tangent space in the north pole and

gN the metric in the north pole. Since SO(3) operates as a group of isometries on
S2, the metric also has to be invariable under rotations around the x3-axis. The
only metrics that satisfy this condition are of the form

gN = c〈 , 〉sph,N ,

here TS2
N is identified with R2. Now this holds since the symmetric bilinear form

B : Rn × Rn → R is defined by its corresponding quadratic form qB : Rn → R,
qB(v) := B(v, v). But, on the other hand, this quadratic form is fixed by its values
on Sn−1 ⊆ Rn, since qB(λv) = λ2qB(v). If now B is invariable under SO(n),
qB
∣∣
Sn−1 is also invariable and therefore constant, as SO(n) operates transitively on

Sn−1. Thus, qB
∣∣
Sn−1 = c. But this means that B = c〈 , 〉std.

However, c could vary from one point to another. But, since SO(3) operates as a
group of isometries on S2 and furthermore transitively, it follows from Φ∗gsph = gsph

and Φ∗g = g, ∀ Φ ∈ SO(3) that Φ∗c = c and therefore for every p ∈ S2:

gp = c〈 , 〉sph,p.

Thus, all in all,
g = c〈 , 〉sph = cgsph

holds. �

Lemma 2.5.15 Let g be a Riemannian metric on M = R+ × S2 and let SO(3)
operate as a group of isometries on S2. Then:

g(ρ,ξ)(∂ρ, Y ) = 0, ∀ Y ∈ X(S2),

where ρ is a ”proper coordinate” on R+ and ξ a ”generalized coordinate” on S2.

Proof. Let ξ ∈ S2 be arbitrary and η ∈ TS2
ξ ⊆ R3, thus ξ⊥η. Then there is an

A ∈ SO(3) with A(ξ) = ξ and A(η) = −η (for example, reflection at the plane
span(ξ, ζ), if ζ⊥ξ and ζ⊥η). Furthermore, let

Φ : M →M

(ρ, ξ) 7→ (ρ,Aξ).

Then Φ∗g = g as well as Φ(ρ, ξ) = (ρ, ξ) hold and it follows:

g(ρ,ξ)(∂ρ, η) = (Φ∗g)(ρ,ξ)(∂ρ, η)

= g(ρ,ξ)(Φ∗∂ρ,Φ∗η)

= g(ρ,ξ)(∂ρ,−η)

= −g(ρ,ξ)(∂ρ, η)

⇒ g(ρ,ξ)(∂ρ, η) = 0,
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2.5. Static and spherically symmetric spacetimes

∀ η ∈ TS2
ξ . Since ξ ∈ S2 is arbitrary, we have

g(ρ,ξ)(∂ρ, Y ) = 0, ∀ Y ∈ X(S2).

�
We now want to show that a static and spherically symmetric spacetime has a
genuine Newtonian limit. We therefore have to consider the following:

Theorem 2.5.16 Let (M, g) be a static and spherically symmetric spacetime.
Then

M ∼= I × J × S2

as manifold and the diffeomorphism Φ : M → I×J ×S2 provides coordinates with
respect to which

ds2 = A(ρ)dt2 +B(ρ)dρ2 + C(ρ)dσ2

holds, with g = ds2 and dσ2 the standard metric on S2.

Proof. First we have to consider that we already know from (2.5.13) and (2.5.9)
that the manifold is of the form M = I × J × S2 and that there are functions
f : J × S2 → (0,∞) and h : J × S2 → Pos3(R) so that for g

ds2 = −f 2dt2 + dτ 2

holds, where h = dτ 2 is a Riemannian metric on J × S2.
Thus we now have to show that the Riemannian metric h has diagonal form and
that all components of g only depend on one coordinate. Therefore, let (t, ρ, ξ)
be the coordinates for M . Here (t, ρ) are ”regular coordinates”, ξ ∈ S2 is a
”generalized coordinate” on S2.
First we consider the Riemannian metric on J × S2. According to lemma (2.5.14)
and lemma (2.5.15) we already know that the metric is diagonal and has the form

g(ρ, ξ) = B(ρ, ξ)dρ2 + C(ρ, ξ)dσ2,

where dσ2 is the standard metric on S2.
Therefore, the metric g on M has the form

g(ρ, ξ) = A(ρ, ξ)dt2 +B(ρ, ξ)dρ2 + C(ρ, ξ)dσ2.

But since SO(3) operates as a group of isometries,

g(ρ,Φξ) = g(ρ, ξ)

holds ∀Φ ∈ SO(3). Thus it already follows that A, B and C do not depend on ξ.
But this means the g is of the form

ds2 = A(ρ)d2 +B(ρ)dρ2 + C(ρ)dσ2.

This shows the claim. �
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Theorem 2.5.17 Let (M, g) be a static and spherically symmetric spacetime.
Then we can find an extension of this spacetime so that the resulting bilinear forms
g(λ) and h(λ) have limits for λ = 0 which satisfy the axioms of the frame theory
for λ = 0.

Proof. We already know that for the static and spherically symmetric manifold M
and its metric g

M = I × J × S2

and
ds2 = A(ρ)dt2 +B(ρ)dρ2 + C(ρ)dσ2

hold. Of course, the metric is a Lorentzian metric, therefore it has index 1 and is
of full rank. Since t is the time coordinate, it follows that A(ρ) is negative, while
the other functions are positive. We now choose the following diffeomorphism for
λ > 0:

Φ : I → Ĩ := Φ(I)

t 7→ 1√
λ
t.

We therefore now get a metric depending on λ which is of the form

ds̃2 =
1

λ
A(ρ)dt2 +B(ρ)dρ2 + C(ρ)dσ2.

In order to get the metric g(λ), we now have to multiply ds̃2 with −λ, which is
not zero for λ > 0, and we get:

ds2 = −A(ρ)dt2 − λB(ρ)dρ2 − λC(ρ)dσ2.

Therefore, g(λ) has index 3 (as we multiply a Lorentzian metric with a negative
number) and is still of full rank.
Now we want to find the metric h(λ). We again start with

ds̃2 =
1

λ
A(ρ)dt2 +B(ρ)dρ2 + C(ρ)dσ2.

If we now invert this metric we get for h(λ) :(
∂

∂s

)2

=
λ

A(ρ)

(
∂

∂t

)2

+
1

B(ρ)

(
∂

∂ρ

)2

+
1

C(ρ)

(
∂

∂σ

)2

.

Thus, h(λ) is of full rank and has index 1 due to the fact that λ > 0. For the
corresponding transitions from tangent space to the cotangent space and vice versa,
ϕp(λ) ◦ψp(λ) = −λ idTM∗p holds, of course. Thus, the extended metrics satisfy the
first two axioms of the frame theory for λ > 0.
Now we have to consider the limits. For λ→ 0 we then have for g(0):

ds2 = −A(ρ)dt2.
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Therefore, g(0) has rank 1 and index 0, since−A(ρ) is positive. Moreover, it is clear
that the limit exists since λ only appears as a factor in the last two components
of the metric.
Now we talk about the limit h(0). It has the form(

∂

∂s

)2

=
1

B(ρ)

(
∂

∂ρ

)2

+
1

C(ρ)

(
∂

∂σ

)2

.

Thus, h(0) has rank 3 as well as index 0, since B(ρ) and C(ρ) are positive.
In this case ϕp(0)◦ψp(0) = 0 holds for the corresponding maps as well. Therefore,
the limits also satisfy the first two axioms of the frame theory and we have found
a possible extension of the metric. �

Remark 2.5.18 a) First, we have to comment on the extension that we have
chosen in this theorem. We chose the simplest possibility to extend the
metrics. In this extension the functions A(ρ), B(ρ) and C(ρ) do not depend
on λ, so the extension here is just Aλ(ρ) := A(ρ), Bλ(ρ) := B(ρ) and Cλ(ρ) :=
C(ρ). If you consider the extensions of the Minkowski, Schwarzschild or
Kerr spacetimes (see section 2.3), you realize that these extensions are not
so simple, as the functions there also depend on λ. As we will soon see, we
have to use another extension in order to make sure that not only the metrics
but also the connections have a limit for λ = 0.

b) According to section (2.4) the metrics g(λ) have a limit if the metrics h(λ)
have one and h′(0) /∈ TC+

h(0). But this is the case for our extension due to
the fact that

d

dλ

∣∣∣∣
λ=0

λ

A(ρ)
=
A(ρ)− λ · 0

(A(ρ))2

∣∣∣∣
λ=0

=
1

A(ρ)
6= 0.

Theorem 2.5.19 Let (M, g) be a static and spherically symmetric spacetime.
Then there is an extension of (M, g) so that the connections ∇(λ) belonging to
g(λ) have a limit for λ = 0.

Proof. We already know that there is an extension of a static and spherically
symmetric spacetime so that the metrics have limits which satisfy the conditions
of the frame theory. In order to guarantee that the connection also has a limit we
have to use an extension of the form

ds2 = −Aλ(ρ)dt2 − λBλ(ρ)dρ2 − λCλ(ρ)dσ2

for g and (
∂

∂s

)2

=
λ

Aλ(ρ)

(
∂

∂t

)2

+
1

Bλ(ρ)

(
∂

∂ρ

)2

+
1

Cλ(ρ)

(
∂

∂σ

)2

for h. In the following we will discuss the functions Aλ(ρ), Bλ(ρ) and Cλ(ρ) more
closely.
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We now first consider the components of the extended connection. As for λ > 0 the
connection∇(λ) is the Levi-Civita connection of g(λ) we can get the components of
the connection from the components of the extended metric. We therefore consider
the metric g(λ) with respect to the coordinates (t, ρ, ϑ, ϕ). We then get (remember
that the standard metric dσ2 on S2 in spherical coordinates (ϑ, ϕ) ∈ (0, π)×(0, 2π)
is of the form dσ2 = dϑ2 + sin2 ϑdϕ2):

(gij(λ)) = diag(−Aλ(ρ),−λBλ(ρ),−λCλ(ρ),−λ · sin 2ϑCλ(ρ)),

as well as

(gij(λ)) = diag

(
1

−Aλ(ρ)
,

1

−λBλ(ρ)
,

1

−λCλ(ρ)
,

1

−λ · sin 2ϑCλ(ρ)

)
.

Due to the diagonal form of the metric the following holds for the components of
the connection:

Γiii =
1

2
gii∂igii, i = 0, ..., 3;

Γkii = −1

2
gkk∂kgii, i, k = 0, ..., 3; i 6= k;

Γjij =
1

2
gjj∂igjj, i, j = 0, ..., 3; i 6= j;

Γkij = 0 otherwise.

Furthermore, we have to bear in mind that the components of the metric only
depend on ρ and ϑ. Therefore, the derivations with respect to t and ϕ vanish
immediately. The components of the connection that are not zero are:

Γ1
00 = −1

2

1

−λBλ(ρ)
· ∂1(−Aλ(ρ)) = −1

2

∂1(Aλ(ρ))

λBλ(ρ)

Γ1
11 =

1

2

1

−λBλ(ρ)
· ∂1(−λBλ(ρ)) =

1

2

∂1(Bλ(ρ))

Bλ(ρ)

Γ1
22 = −1

2

1

−λBλ(ρ)
· ∂1(−λCλ(ρ)) = −1

2

∂1(Cλ(ρ))

Bλ(ρ)

Γ1
33 = −1

2

1

−λBλ(ρ)
· ∂1(−λ sin 2ϑ · Cλ(ρ)) = −1

2

∂1(sin 2ϑ · Cλ(ρ))

Bλ(ρ)

Γ2
33 = −1

2

1

−λCλ(ρ)
· ∂2(−λ sin 2ϑ · Cλ(ρ)) = −1

2
· 2 sinϑ · cosϑ = − sinϑ · cosϑ

Γ0
10 =

1

2

1

−Aλ(ρ)
· ∂1(−Aλ(ρ)) =

1

2

∂1(Aλ(ρ))

Aλ(ρ)

Γ2
12 =

1

2

1

−λCλ(ρ)
· ∂1(−λCλ(ρ)) =

1

2

∂1(Cλ(ρ))

Cλ(ρ)

Γ3
13 =

1

2

1

−λ sin 2ϑ · Cλ(ρ)
· ∂1(−λ sin 2ϑ · Cλ(ρ)) =

1

2

∂1(Cλ(ρ))

Cλ(ρ)

Γ3
23 =

1

2

1

−λ sin 2ϑ · Cλ(ρ)
· ∂2(−λ sin 2ϑ · Cλ(ρ)) =

1

2

2 sinϑ · cosϑ

sin 2ϑ
=

cosϑ

sinϑ
.
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2.5. Static and spherically symmetric spacetimes

If we want the limit to exist, we have to require for the extension:

lim
λ→0

∂1(Aλ(ρ))

λBλ(ρ)
does exist;

lim
λ→0

(Aλ(ρ)) 6= 0;

lim
λ→0

(Bλ(ρ)) 6= 0;

lim
λ→0

(Cλ(ρ)) 6= 0.

If we therefore require that

Aλ(ρ) := 1 + (A(ρ)− 1)λ

Bλ(ρ) := B(ρ)

Cλ(ρ) := C(ρ)

for λ ∈ [0, 1] we have found an extension which ensures the existence of the limit.
First we have to make sure that this is an extension of the metric g, but this is
clearly the case since

A1(ρ) = 1 + A(ρ)− 1 = A(ρ).

Furthermore, the conditions from above are satisfied since

lim
λ→0

∂1(Aλ(ρ))

λBλ(ρ)
= lim

λ→0

∂1(1 + (A(ρ)− 1)λ)

λB(ρ)
= lim

λ→0

λ∂1(A(ρ))

λB(ρ)
= lim

λ→0

∂1(A(ρ))

B(ρ)

=
∂1(A(ρ))

B(ρ)
exists, since B(ρ) 6= 0;

lim
λ→0

(Aλ(ρ)) = lim
λ→0

(1 + (A(ρ)− 1)λ) = 1;

lim
λ→0

(Bλ(ρ)) = lim
λ→0

(B(ρ)) = B(ρ) 6= 0;

lim
λ→0

(Cλ(ρ)) = lim
λ→0

(C(ρ)) = C(ρ) 6= 0.

Therefore, the connections ∇(λ) have a limit for λ = 0. �

Remark 2.5.20 Of course, we do not only want to have a limit connection but
we also want it to satisfy the corresponding axioms of the frame theory for λ = 0.
We therefore have to guarantee that the connections converge in a C2−sense at
least. Then the limits of the first and second derivations also exist and the axioms
five and six follow immediately. Moreover, ∇g = 0 as well as ∇h = 0 also follow
since, in this case, forming of limits and derivations can be exchanged. But this
means that you just have to derivate the Christoffel symbols from above and then
adapt the functions Aλ(ρ), Bλ(ρ) and Cλ(ρ) as we did in the proof of theorem
(2.5.19).
Using the same approach we can also make sure that the matter tensor T (λ)
(remember that T (λ) is fixed by g(λ) for λ ∈ (0, 1]) has a limit for λ = 0 and that
this limit satisfies the corresponding axioms of the frame theory for λ = 0. But
this now shows that we get the following theorem:
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2.5. Static and spherically symmetric spacetimes

Theorem 2.5.21 Let (M, g) be a static and spherically symmetric spacetime.
Then there is an extension g(λ) of the metric g so that g(λ) and the corresponding
objects h(λ), ∇(λ) and T (λ) for λ ∈ (0, 1] have a limit for λ = 0. Furthermore,
these limits satisfy the axioms of the frame theory.
Thus, the extended family of Ehlers spacetimes (g(λ), h(λ),∇(λ), T (λ), λ) has a
quasi-Newtonian limit.

We even get the following result:

Theorem 2.5.22 Let (M, g) be a static and spherically symmetric spacetime.
Then there is an extension g(λ) of the metric g so that g(λ) and the corresponding
objects h(λ), ∇(λ) and T (λ) for λ ∈ (0, 1] have a limit for λ = 0. These limits
satisfy the axioms of the frame theory. Furthermore, v = 0 in the corresponding
coordinates.
Thus, the extended family of Ehlers spacetimes (g(λ), h(λ),∇(λ), T (λ), λ) has a
genuine Newtonian limit.

Proof. As we already know that the family of Ehlers spacetimes has a quasi-
Newtonian limit we just have to discuss the condition v = 0. We already know that
the metrics g(λ) have diagonal form for λ > 0. Then we have for the Christoffel
symbols:

Γiii =
1

2
gii∂igii, i = 0, ..., 3;

Γkii = −1

2
gkk∂kgii, i, k = 0, ..., 3; i 6= k;

Γjij =
1

2
gjj∂igjj, i, j = 0, ..., 3; i 6= j;

Γkij = 0 otherwise.

If we now define v(λ) by v(λ) = (Γ3
02,Γ

1
03,Γ

2
01), we already have v(λ) = 0 for λ > 0.

If we consider the limit for λ → 0 we still have v = 0 in case of λ = 0. But this
exactly means that the limit is a genuine Newtonian one in the coordinates given
above. �
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Chapter 3

Existence of genuine Newtonian
limits

In this chapter we will discuss the question when a quasi-Newtonian limit is a
genuine Newtonian one. Let therefore Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ), λ ∈
(0, 1], be a family of Ehlers spacetimes and M0 = (M, g(0), h(0),∇(0), T (0)) its
quasi-Newtonian limit. According to the first chapter we know that in case of
λ = 0 we can find an adapted coordinate system (t, x) ∈ I ×U , I ⊆ R, U ⊆ R3 in
a neighbourhood of every p ∈M . In the following we suppose that the topological
conditions (simply connected and geodesically complete) are satisfied. Thus the
manifold is of the form

M ∼= R× R3

and we get a global, adapted coordinate system (t, x) ∈ R×R3. Furthermore, we
know that the admitted coordinate transformations are of the form

τ : R× R3 → R× R3,

(t, x) 7→ (±t+ c, S(t)x+ b(t))

with c ∈ R, b : R→ R3 and S : R→ O(3).
If we now want to get a genuine Newtonian limit, we know from its definition that
we have to show that there is an adapted coordinate system with respect to which

v = 0

holds, where v = (v1, v2, v3) and vi := εkijv
j
k, 1 ≤ i, j, k ≤ 3.

We therefore first have a look at the behaviour of v in case of transformation of
coordinates. This then gives us a first condition which ensures the existence of
such an adapted coordinate system and therefore of a genuine Newtonian limit.
Then we will discuss some conditions for the curvature tensor which guarantee that
there is a genuine Newtonian limit. Eventually we will examine the asymptotically
flat case which leads to the existence of a genuine Newtonian limit under certain
circumstances.
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3.1. Transformation of coordinates

3.1 Transformation of coordinates

We first have a look at the definition of v of chapter one. Let (t, x1, x2, x3) be an
adapted coordinate system for M . Then we have

∇∂i
B = Γji0∂j =: vji ∂j

for 1 ≤ i, j ≤ 3 and B := ∂
∂t

. Therefore, we now study the behaviour of the
Christoffel symbols in case of transformation of coordinates.

Let ∂i := ∂
∂xi as well as ∂̃i := ∂

∂yi , i = 0, ..., 3, be the coordinate vector fields with
regard to maps x and y respectively. With regard to these coordinate vector fields
we then have:

∇∂i
∂j = Γkij(x)∂k and ∇e∂i

∂̃j = Γ̃kij(y)∂̃k.

If we now consider y = y(x) as a map of x, the coordinate vector fields and 1-forms
transform to

∂̃i =
∂xi

∂yj
∂i and dyk =

∂yk

∂xi
dxi.

The transformed Christoffel symbols Γ̃kij then have the form (we omit ◦y(x) in the
following calculation):

Γ̃kij = dyk
(
∇e∂i

∂̃j

)
=
∂yk

∂xp
dxp

(
∇ ∂xm

∂yi ∂m

(
∂xn

∂yj
∂n

))
=
∂yk

∂xp
∂xm

∂yi
dxp

(
∂2xn

∂yj∂yl
· ∂y

l

∂xm
∂n +

∂xn

∂yj
∇∂m∂n

)
=
∂yk

∂xp
∂xm

∂yi

(
∂2xp

∂yj∂yl
· ∂y

l

∂xm
+
∂xn

∂yj
dxp (Γqmn∂q)

)
=
∂yk

∂xp
∂xm

∂yi

(
∂2xp

∂yj∂yl
· ∂y

l

∂xm
+
∂xn

∂yj
Γpmn

)
.

Altogether we then have:

Γ̃kij(y(x)) =

(
∂yk

∂xp
· ∂x

m

∂yi
◦ y
(

∂2xp

∂yj∂yl
◦ y · ∂y

l

∂xm
+
∂xn

∂yj
◦ y · Γpmn

))
(x).

Now we know how the Christoffel symbols behave under coordinate transformation.
Furthermore, the admitted coordinate transformations are given by

τ : R× R3 → R× R3

(t, x) 7→ (±t+ c, S(t)x+ b(t)),

where c ∈ R, S : R→ O(3) and b : R→ R3.
Now let x′ = (t, x1, x2, x3) and y′ = (s, y1, y2, y3) be adapted coordinate systems
for M . Given a coordinate transformation from x′ to y′, which means that

y′ =

(
s
y

)
=

(
±t+ c

S(t)x+ b(t)

)
,
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3.1. Transformation of coordinates

the transformation matrix
(
∂y′

∂x′

)
has the form

(
∂y′

∂x′

)
=


±1 0 0 0

Ṡ1j(t)x
j + ḃ1(t) S11(t) S12(t) S13(t)

Ṡ2j(t)x
j + ḃ2(t) S21(t) S22(t) S23(t)

Ṡ3j(t)x
j + ḃ3(t) S31(t) S32(t) S33(t)

 ,

where j runs from 1 to 3. If we now calculate the transformation matrix
(
∂x′

∂y′

)
,

we first have to keep in mind that from

s = ±t+ c and y = S(t)x+ b(t)

follows
t = ±s∓ c and x = S−1(t)y − S−1(t)b(t).

If we consider in addition that S ∈ O(3) for every t, we get

x′(y′) =

(
±s± c

ST (t)y − ST (t)b(t)

)
.

In order to get the transformation matrix
(
∂x′

∂y′

)
in dependence on t we also have

to calculate:

dt

ds
=

(
ds

dt

)−1

= ±1

d

ds
(ST (t(s))) = ṠT (t) · dt

ds
= ±ṠT (t)

d

ds
(ST (t(s))b(t(s))) = (ṠT (t)b(t) + ST ḃ(t)) · dt

ds
= ±(ṠT (t)b(t) + ST ḃ(t))

d

ds
(ST (t(s))y − ST (t(s))b(t(s))) = ±

(
ṠT (t)y − ṠT (t)b(t)− ST ḃ(t)

)
.

Altogether, the transformation matrix
(
∂x′

∂y′

)
has the form

(
∂x′

∂y′

)
=


±1 0 0 0

±
(
Ṡi1(t)yi − Ṡi1(t)bi(t)− Si1(t)ḃi(t)

)
S11(t) S21(t) S31(t)

±
(
Ṡi2(t)yi − Ṡi2(t)bi(t)− Si2(t)ḃi(t)

)
S12(t) S22(t) S32(t)

±
(
Ṡi3(t)yi − Ṡi3(t)bi(t)− Si3(t)ḃi(t)

)
S13(t) S23(t) S33(t)

 .

Again i ∈ {1, 2, 3}. Making use of all this it is now possible to study the behaviour
of the Christoffel symbols with regard to our admitted transformations. In the
following we will first consider only one of the Christoffel symbols contained in
v. Then we know the transformation behaviour of v, since all components of v
transform the same way.
Therefore, we now study the Christoffel symbol Γ̃3

02(y(x)) = ṽ1 ◦ y(x). The other
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3.1. Transformation of coordinates

components of ṽ then arise from cyclical permutation. Note that only Γkij 6= 0, for
i = j = 0, k 6= 0 or i = 0, j 6= 0, k 6= 0 or i 6= 0, j = 0, k 6= 0 respectively. If we use
Greek letters in the following, the indices run from 1 to 3. Now we have:

Γ̃3
02 =

∂y3

∂xp
∂xm

∂y0

(
∂2xp

∂y2∂yl
· ∂y

l

∂xm
+
∂xn

∂y2
Γpmn

)

=
∂y3

∂x0

∂xm

∂y0

 ∂2x0

∂y2∂yl︸ ︷︷ ︸
=0

· ∂y
l

∂xm
+
∂xn

∂y2
Γ0
mn︸︷︷︸

=0

+
∂y3

∂xα
∂xm

∂y0

(
∂2xα

∂y2∂yl
· ∂y

l

∂xm
+
∂xn

∂y2
Γαmn

)

=
∂y3

∂xα
∂x0

∂y0

(
∂2xα

∂y2∂yl
· ∂y

l

∂x0
+
∂xn

∂y2
Γα0n

)
+
∂y3

∂xα
∂xβ

∂y0

 ∂2xα

∂y2∂yl
· ∂y

l

∂xβ
+
∂xn

∂y2
Γαβn︸︷︷︸
⇒n=0



=
∂y3

∂xα
∂x0

∂y0

 ∂2xα

∂y2∂y0
· ∂y

0

∂x0
+

∂2xα

∂y2∂yγ︸ ︷︷ ︸
=0

·∂y
γ

∂x0
+
∂x0

∂y2︸︷︷︸
=0

Γα00 +
∂xδ

∂y2
Γα0δ



+
∂y3

∂xα
∂xβ

∂y0

 ∂2xα

∂y2∂y0
· ∂y

0

∂xβ︸︷︷︸
=0

+
∂2xα

∂y2∂yγ︸ ︷︷ ︸
=0

· ∂y
0

∂xβ
+
∂x0

∂y2︸︷︷︸
=0

Γαβ0


=

3∑
α=1

(S3α(t) · Ṡ2α(t))±
3∑

α,δ=1

S3α(t) · S2α(t) · Γα0δ

=
3∑

α=1

(S3α(t) · Ṡ2α(t))± (S31(t) · S23(t) · Γ1
03 + S31(t) · S22(t) · Γ1

02

+ S32(t) · S21(t) · Γ2
01 + S32(t) · S23(t) · Γ2

03 + S33(t) · S21(t) · Γ3
01

+ S33(t) · S22(t) · Γ3
02)

=
3∑

α=1

(S3α(t) · Ṡ2α(t))± (Γ3
02(S33(t)S22(t)− S32(t)S23(t))

+ Γ1
03(S31(t)S23(t)− S33(t)S21(t)) + Γ2

01(S32(t)S21(t)− S31(t)S22(t))).

For the other components of ṽ we get

Γ̃1
03 =

3∑
α=1

(S1α(t) · Ṡ3α(t))± (Γ1
03(S11(t)S33(t)− S13(t)S31(t))

+ Γ2
01(S12(t)S31(t)− S11(t)S32(t)) + Γ3

02(S13(t)S32(t)− S12(t)S33(t)))

Γ̃2
01 =

3∑
α=1

(S2α(t) · Ṡ1α(t))± (Γ2
01(S22(t)S11(t)− S21(t)S12(t))

+ Γ3
02(S23(t)S12(t)− S22(t)S13(t)) + Γ1

03(S21(t)S13(t)− S23(t)S11(t))).

After studying the transformation behaviour more closely, we are going to demon-
strate a theorem which will make it easier to achieve our aim v = 0:
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3.1. Transformation of coordinates

Theorem 3.1.1 There is an adapted coordinate system so that v = (Γ3
02,Γ

1
03,Γ

2
01)

only depends on t if and only if there is an admitted coordinate transformation
with

ṽ = (Γ̃3
02, Γ̃

1
03, Γ̃

2
01) = 0.

Proof.

”⇒ ”: Suppose, there is an adapted coordinate system so that v = (Γ3
02,Γ

1
03,Γ

2
01)

only depends on t. We now first consider the following:
Let S ∈ O(3) be arbitrary. We now consider O(3) =: G as Lie group and we
try to demonstrate that the required transformation does exist.
Let G = so(3) be the Lie algebra belonging to G, so G = TGE. We first
show that

TGS = TGE · S.
Here we consider O(3) as submanifold of Mat3(R) and therefore TGE and
TGS as linear subspaces of Mat3(R).

′′ ⇒′′: Let B ∈ TGS. We choose a smooth curve β : (−ε, ε) → G which is
appropriate for B. This means:

β(0) = S and β̇(0) = B.

Now consider the (smooth) curve α : (−ε, ε)→ G with

α(u) = β(u) · ST .

Then
α(0) = β(0) · ST = S · ST = E and so α̇(t) ∈ TGE.

But we also have α̇(0) = B · ST , altogether we get B · ST ∈ TGE. So it
immediately follows that

B = B · E = B · (ST · S) = (B · ST ) · S ∈ TGE · S.
′′ ⇐′′: Now let B ∈ TGE · S be arbitrary. Then there is an A ∈ TGE so that

B = A · S.

Again let α : (−ε, ε)→ G be a smooth curve appropriate for A, so

α(0) = E and α̇(0) = A.

Then we have for B:
B = α̇(0) · S.

We now choose the (smooth) curve β : (−ε, ε)→ G with

β(u) = α(u) · S.

Then follows

β(0) = α(0) · S = E · S = S and so β̇(0) ∈ TGS.

On the other hand

B = α̇(0) · S = β̇(0) ∈ TGS.
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3.1. Transformation of coordinates

Now it is clear that TGS = TGE · S = G · S. Then we have for S(t) ∈ O(3)

Ṡ(t) ∈ TGS = G · S.

So there is an a(t) ∈ G with Ṡ(t) = a(t) · S. But then we get

ṠT (t) = ST · aT (t) = −ST · a(t),

since a(t) ∈ G = so(3), which are the skew symmetric matrices,

so(3) = {a ∈ Mat3(R) : aT + a = 0}.

But as S ∈ O(3), we eventually get

S · ṠT = −S · ST · a(t) = −a(t) ∈ so(3).

It follows that S · ṠT is unambiguously determined by the components (S ·
ṠT )13, (S · ṠT )21 and (S · ṠT )32.
Let us now go back to our original problem. We want to show that - with
the help of a special choice of t 7→ S(t) - we can achieve

0 =
3∑

α=1

(S3α(t) · Ṡ2α(t))± (Γ3
02(S33(t)S22(t)− S32(t)S23(t))

+ Γ1
03(S31(t)S23(t)− S33(t)S21(t)) + Γ2

01(S32(t)S21(t)− S31(t)S22(t)))

0 =
3∑

α=1

(S1α(t) · Ṡ3α(t))± (Γ1
03(S11(t)S33(t)− S13(t)S31(t))

+ Γ2
01(S12(t)S31(t)− S11(t)S32(t)) + Γ3

02(S13(t)S32(t)− S12(t)S33(t)))

0 =
3∑

α=1

(S2α(t) · Ṡ1α(t))± (Γ2
01(S22(t)S11(t)− S21(t)S12(t))

+ Γ3
02(S23(t)S12(t)− S22(t)S13(t)) + Γ1

03(S21(t)S13(t)− S23(t)S11(t))).

If we write this in a different way we get

3∑
α=1

(S3α(t) · Ṡ2α(t)) =∓ (Γ3
02(S33(t)S22(t)− S32(t)S23(t)) + Γ1

03(S31(t)S23(t)

− S33(t)S21(t)) + Γ2
01(S32(t)S21(t)− S31(t)S22(t)))

3∑
α=1

(S1α(t) · Ṡ3α(t)) =∓ (Γ1
03(S11(t)S33(t)− S13(t)S31(t)) + Γ2

01(S12(t)S31(t)

− S11(t)S32(t)) + Γ3
02(S13(t)S32(t)− S12(t)S33(t)))

3∑
α=1

(S2α(t) · Ṡ1α(t)) =∓ (Γ2
01(S22(t)S11(t)− S21(t)S12(t)) + Γ3

02(S23(t)S12(t)

− S22(t)S13(t)) + Γ1
03(S21(t)S13(t)− S23(t)S11(t))).
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3.1. Transformation of coordinates

Now we can realize that these very components (S · ṠT )13, (S · ṠT )21 and
(S · ṠT )32 are on the left hand side. The right hand side only depends on S(t)
and t. So we can put together the three equations to an ordinary differential
equation on so(3). For the right hand side we put f(S, t) and so we get the
equation

S · ṠT = f(S, t),

which is equal to
ṠT = S−1 · f(S, t) = ST · f(S, t),

and we finally get
Ṡ = f(S, t)T · S =: g(S, t). (3.1)

The existence of a solution for all t ∈ R follows from the compactness of
O(3). In fact, the differential equation (3.1) therefore is equivalent to the
system {

v̇ = 1

Ṡ = g(S, v)

on K × R, K := O(3) compact, with initial values{
v(0) = 0
S(0) = E.

But this system has a unique solution v(t) = t and t 7→ Ŝ(t) for all t ∈ R
due to the usual theorems of the theory of ordinary differential equations.
As the transformation does not depend on b : R→ R3 we can choose b(t) = 0

for all t ∈ R. So we have found a solution Ŝ(t) which exists for all t ∈ R and
which fulfils

˙̂
S(t) = g(Ŝ(t), t).

If we now put the particular component of this solution in one of the three
equations of the transformed Christoffel symbols we get, according to the
construction of the solution,

ṽ = (Γ̃3
02, Γ̃

1
03, Γ̃

2
01) = 0,

which is what we wanted to show.

”⇐ ”: Now let us suppose that there is an admitted coordinate transformation
with ṽ = 0. Then v only depends on t since all terms which appear by any
transformation depend on t only.

�
Now we are also able to talk about the coordinate transformations which respect
v = 0. The following theorem holds:

Theorem 3.1.2 Let us suppose that there is an adapted coordinate system respect
to which v = 0. Then the coordinate transformations of the form

τ : R× R3 → R× R3

(t, x) 7→ (±t+ c, Sx+ b(t)),

101



3.1. Transformation of coordinates

where c ∈ R, b : R→ R3 and S ∈ O(3), respect v = 0. These transformations are
called Galiläi-transformations.

Proof. We already know that the components of v transform in the following way:

v1 =
3∑

α=1

(S3α(t) · Ṡ2α(t))± (v1(S33(t)S22(t)− S32(t)S23(t))

+ v2(S31(t)S23(t)− S33(t)S21(t)) + v3(S32(t)S21(t)− S31(t)S22(t)))

v2 =
3∑

α=1

(S1α(t) · Ṡ3α(t))± (v2(S11(t)S33(t)− S13(t)S31(t))

+ v3(S12(t)S31(t)− S11(t)S32(t)) + v1(S13(t)S32(t)− S12(t)S33(t)))

v3 =
3∑

α=1

(S2α(t) · Ṡ1α(t))± (v3(S22(t)S11(t)− S21(t)S12(t))

+ v1(S23(t)S12(t)− S22(t)S13(t)) + v2(S21(t)S13(t)− S23(t)S11(t))).

If we now suppose that there is an adapted coordinate system respect to which
v = 0, this results in

v1 =
3∑

α=1

(S3α(t) · Ṡ2α(t))

v2 =
3∑

α=1

(S1α(t) · Ṡ3α(t))

v3 =
3∑

α=1

(S2α(t) · Ṡ1α(t)).

If we now want the coordinate transformation to respect v = 0, we have to consider

0 =
3∑

α=1

(S3α(t) · Ṡ2α(t))

0 =
3∑

α=1

(S1α(t) · Ṡ3α(t))

0 =
3∑

α=1

(S2α(t) · Ṡ1α(t)).

But, of course, this is the case for S ∈ O(3), which does not depend on t. �

Remark 3.1.3 Note that we can not say that these are the only coordinate trans-
formations that respect v = 0. For instance, let S : R→ O(3) be of the form

S(t) =

 t 0 −1
0 1 0
1 0 0

 .
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3.2. Conditions for the curvature tensor

Then, det(S(t)) = 1 holds for all t ∈ R, thus S(t) ∈ O(3), for all t ∈ R. But the
following also holds:

3∑
α=1

(S3α(t) · Ṡ2α(t)) = 0 · 1 + 1 · 0 + 0 · 0 = 0

3∑
α=1

(S1α(t) · Ṡ3α(t)) = t · 0 + 0 · 0 + (−1) · 0 = 0

3∑
α=1

(S2α(t) · Ṡ1α(t)) = 1 · 0 + 0 · 0 + 0 · 0 = 0.

But, of course, S depends on t.

3.2 Conditions for the curvature tensor

In this section we want to assemble some conditions for the curvature tensor which
are already known (see for example [10] and [42]).

Theorem 3.2.1 Let (t, x1, x2, x3) be an adapted coordinate system for M , B := ∂
∂t

and ∇∂i
B = vji ∂j. Then the following holds: v only depends on t if and only if

R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3.

Proof.

”⇒” The condition that v only depends on t means that

Div
k
j = 0,

for all 1 ≤ i, j, k ≤ 3. We now consider

R(∂i, ∂j)B = ∇∂i
∇∂j

B −∇∂j
∇∂i

B = ∇∂i
vkj ∂k −∇∂j

vki ∂k

= Div
k
j ∂k + vkj ∇∂i

∂k︸ ︷︷ ︸
=0

+Djv
k
i ∂k + vki ∇∂j

∂k︸ ︷︷ ︸
=0

= (Div
k
j −Djv

k
i )∂k.

If v only depends on t this exactly means that

R(∂i, ∂j)B = (Div
k
j −Djv

k
i )∂k = 0.

”⇐” Now let R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3. We know that for v

rot(v) = 0

holds, see (1.8). Therefore, we know that (locally) v = grad(u) for a function
u and we have

vkj = εklj Dlu.
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3.2. Conditions for the curvature tensor

Due to the fact that 0 = R(∂i, ∂j)B = (Div
k
j −Djv

k
i )∂k,

εklj DiDlu− εkli DjDlu = 0

holds, for all 1 ≤ i, j, k, l ≤ 3. But this means that we get

DiDju = 0

for all 1 ≤ i, j ≤ 3, since, for instance,

0 = ε23
1 D2D3u− ε23

2 D1D3lu = D2D3u

and so on. But this means that v only depends on t.

�

Remark 3.2.2 If we remember the structure of (M,H) for λ = 0 (see chapter
one), we already know that the leaves of the foliation are totally geodesic and flat,
Rp|Hp×Hp×Hp = 0. Therefore, the condition

Rp(ξ, η)Bp = 0,

for all ξ, η ∈ Hp is equivalent to

Rp|Hp×Hp = 0,

for all p ∈M . We therefore have

Corollary 3.2.3 v only depends on t if and only if Rp|Hp×Hp = 0, for all p ∈M .

Trautman ([42]) gives us another equivalent formulation of the problem:

Theorem 3.2.4 Let (t, x1, x2, x3) be an adapted coordinate system for M and
B := ∂

∂t
. Then the following holds: R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3, if

and only if the bundle H →M is flat, RH = 0.

Proof. We already know that H ⊆ TM is totally geodesic, which implies that

RH
p (ξ, η)ζ = Rp(ξ, η)ζ, for all ξ, η ∈ TMp and ζ ∈ Hp.

Furthermore, we already know that

Rp(ξ, η)ζ = 0, for all ξ, η, ζ ∈ Hp,

since the leaves of H are flat. Thus, the condition that H →M is a flat bundle is
equivalent to

Rp(Bp, ξ)η = 0, for all ξ, η ∈ Hp, (3.2)

since we get

Rp(ξ, η)ζ = 0 for all ξ, η ∈ TMp and for all ζ ∈ Hp

due to the identities of Rp.
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3.2. Conditions for the curvature tensor

”⇒” Let R(∂i, ∂j)B = 0 for all 1 ≤ i, j ≤ 3 and let ξ, η ∈ Hp. Due to the first
Bianchi identity

Rp(Bp, ξ)η = −Rp(η,Bp)ξ −Rp(ξ, η)Bp︸ ︷︷ ︸
=0

= Rp(Bp, η)ξ (3.3)

holds. Now we consider the tri-linear map

Φp : Hp ×Hp ×Hp → R, (ξ, η, ζ) 7→ h̃p(Rp(Bp, ξ)η, ζ),

where h̃ is the bundle metric on H defined in the first chapter. As ∇H is
metric with respect to h̃, we know that h̃p(Rp(Bp, ξ)η, ζ) is anti-symmetric
in the last two arguments,

h̃p(Rp(Bp, ξ)η, ζ) = −h̃p(Rp(Bp, ξ)ζ, η),

but due to (3.3) also symmetric in ξ and η:

h̃p(Rp(Bp, ξ)η, ζ) = h̃p(Rp(Bp, η)ξ, ζ).

But this means that

h̃p(Rp(Bp, ξ)η, ζ) = h̃p(Rp(Bp, η)ξ, ζ) = −h̃p(Rp(Bp, η)ζ, ξ)

= −h̃p(Rp(Bp, ζ)η, ξ) = h̃p(Rp(Bp, ζ)ξ, η)

= h̃p(Rp(Bp, ξ)ζ, η) = −h̃p(Rp(Bp, ξ)η, ζ).

Thus,
h̃p(Rp(Bp, ξ)η, ζ) = 0

and therefore
Rp(Bp, ξ)η = 0, for all ξ, η ∈ Hp.

But, as already mentioned at the beginning of the proof, this is equivalent
to the fact that H →M is a flat bundle.

”⇐” Now let H → M be a flat bundle, which means that (3.2) holds. But then
(with the help of the first Bianchi identity)

Rp(ξ, η)Bp = −Rp(Bp, ξ)η︸ ︷︷ ︸
=0

−Rp(η,Bp)ξ︸ ︷︷ ︸
=0

= 0

holds, which means that R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3.

�

Corollary 3.2.5 v only depends on t if and only if the bundle H → M is flat,
RH = 0.

All in all, the following theorem holds:
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3.3. Asymptotically flat spacetimes

Theorem 3.2.6 Let (t, x1, x2, x3) be an adapted coordinate system for M , B := ∂
∂t

and ∇∂i
B = vji ∂j. Then the following are equivalent:

(i) v only depends on t.

(ii) R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3.

(iii) Rp|Hp×Hp = 0, for all p ∈M .

(iv) The bundle H →M is flat, RH = 0.

Remark 3.2.7 The equivalent formulations mentioned above are of different qual-
ities in the sense that some depend on a coordinate system and others do not. The
assertions, for instance, ”v only depends on t” or ”v = 0” depend on the adapted
coordinate system. Condition (ii), R(∂i, ∂j)B = 0, for all 1 ≤ i, j ≤ 3, does not
depend on the choice of the coordinate system, since we can reformulate it as

Rp(ξ, η)Bp = 0, for all ξ, η ∈ Hp and for all p ∈M,

but it does depend on the choice of B. Condition (iii) and (iv) do not depend
on the adapted coordinate system or the choice of B. Condition (iv) is the most
elegant equivalent as it just requires the flatness of a bundle.

3.3 Asymptotically flat spacetimes

In this section we want to discuss a further condition which ensures the existence
of a genuine Newtonian limit. We first give a precise definition of asymptotically
flat spacetimes and then adapt it to our case. It seems to be a natural assumption
that isolated systems have a genuine Newtonian limit, since traditionally, New-
tonian models only describe isolated systems. The mathematical equivalence to
isolated systems is exactly the concept of asymptotically flat spacetimes.
Already in Ehlers’ papers and Lottermoser’s dissertation it is mentioned that the
right definition of asymptotically flat spacetimes might provide a condition for the
existence of a genuine Newtonian limit. We here define the concept of asymptoti-
cally flat Ehlers spacetimes and show that it offers a condition for the existence of
a genuine Newtonian limit. But we also show that our standard examples satisfy
the definition of asymptotically flat Ehlers spacetimes, which guarantees that our
definition is reasonable.
As a motivation, we first give a definition of asymptotically flat spacetimes used
in General Relativity (see, for instance, [18]). Let therefore (M, g) be a spacetime.

Definition 3.3.1 Let f : M → R be a global map, c ∈ R a regular value of f , so
dfp 6= 0, for all p ∈ M , and N ⊆ M the hypersurface defined by N := {p ∈ M :
f(p) = c}.

(i) We first define the co-normal of (N, f) by n := df |N ∈ Γ(N, TM |N). With
regard to a coordinate system x on M in p ∈ N we get for n = (ni), ni := ∂f

∂xi

due to the fact that

n = df =
∂f

∂xi
dxi.
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3.3. Asymptotically flat spacetimes

It induces a normal vector ν = (νi) by h(n, ) = 〈 , ν〉, where 〈 , 〉 denotes
the natural pairing and h ∈ Γ(M,T (2,0)M) the by g induced tensor field on
T (2,0)M . In coordinates we then get νi = hijnj.

(ii) A hypersurface N is called spacelike, if its normal vector is timelike.

Definition 3.3.2 The standard Lorentzian metric η = (ηij) on R×R3 is given by

ηij =


−1 for i = j = 0

1 for i = j ≥ 1
0 otherwise.

Definition 3.3.3 (i) We call BR(0) := {p ∈ R3 : ||p|| ≤ R}, with R > 0 the
three-dimensional ball around zero of radius R.

(ii) The four-dimensional cylinder around zero of radius R is given by ZR(0) :=
R× BR(0).

Definition 3.3.4 A spacetime (M, g) is called asymptotically flat at spacelike
infinity with regard to a map x : M \A→ R4 \ZR(0) (short: asymptotically flat),
where A ⊆M is a closed subset and:

(i) Nt := {p ∈M \A : x0(p) = t} ⊆M \A is a spacelike hypersurface in M \A
for all t ∈ R, where im(x0) = R and all t ∈ R are regular values of x0. We
call Nt a spaceleaf.

(ii) For every spaceleaf we have the fading out conditions

(||x|| : U ⊆ R3 → (0,∞), ||x|| :=
√∑3

i=1(xi)2):

a) gij − ηij = O(||x||−1), 0 ≤ i, j ≤ 3,

b) ∂kgij = O(||x||−2), 0 ≤ i, j, k ≤ 3,

c) ∂l∂kgij = O(||x||−3), 0 ≤ i, j, k, l ≤ 3,

uniformly on compact x0− intervals.

As mentioned before, the definition stems from ([18]).

Remark 3.3.5 In this definition, gij − ηij = O(||x||−1), 0 ≤ i, j ≤ 3, means:
for all t ∈ R and for all 0 ≤ i, j ≤ 3 there is a cij(t) > 0 and an r0 > 0 so that

|gij(t, x)− ηij| ≤
cij(t)

||x||
, ∀x with |x| ≥ r0.

”Uniformly on compact x0− intervals I” means that the time-dependent maps
cij(t) are limited on I by a constant C > 0 (possibly depending on I), so

cij(t) < C, ∀0 ≤ i, j ≤ 3, ∀t ∈ I.

The same holds for the higher derivations respectively.
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3.3. Asymptotically flat spacetimes

Now we have to adapt the concept of asymptotically flat spacetimes to our case.
We define when a family of Ehlers spacetimes which has a quasi-Newtonian limit
is called asymptotically flat. Thus, we first have to define the standard Lorentzian
metric in dependence on λ:

Definition 3.3.6 The standard Lorentzian metric η(λ) = (ηij(λ)) on R × R3 in
dependence on λ is given by

ηij(λ) =


1 for i = j = 0
−λ for i = j ≥ 1

0 otherwise.

Remark 3.3.7 a) In the following definition we will see that we have to com-
pare Ehlers spacetimes with the standard Lorentzian metric and its deriva-
tions. If we bear in mind that many solutions of Einstein’s field equations
(and therefore also their extensions) use spherical coordinates it is sometimes
easier to consider the Lorentzian metric in spherical coordinates. Then the
standard Lorentzian metric in dependence on λ has the form:

ηij(λ) = diag(1,−λ,−λr2,−λr2 sin2 ϑ).

b) If we have a look at the index and signature of ηij(λ), we see that it is not
a Lorentzian metric in the original sense (it has index 3). But we have to
remember that in case of λ > 0, h has the structure of a Lorentzian metric
and g does not have the right index. But as for λ > 0 the two metrics are
non-degenerate and almost inverse it makes no difference whether we discuss
the following for g or h.

c) Now we can adapt the definition of asymptotically flat spacetimes to our
case. We therefore have to remember that a family of Ehlers spacetimes
Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ), λ ∈ (0, 1], has a quasi-Newtonian limit
for λ = 0, if all the fields have a pointwise limit, the convergence is of right
order and if the limit satisfies the frame theory for λ = 0.

Definition 3.3.8 Let Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ), λ ∈ (0, 1] be a fam-
ily of Ehlers spacetimes which has a quasi-Newtonian limit. We call this family
asymptotically flat at spacelike infinity, if there is a global coordinate system
(t, x) : M → I × R3 so that

(i) for every spaceleaf Nt0 := {p ∈M : t(p) = t0} ⊆M the fading out conditions

a) gij(λ, t, x)− ηij(λ, t, x) = O(||x||−1), 0 ≤ i, j ≤ 3,

b) Γkij(λ, t, x) = O(||x||−2), 0 ≤ i, j, k ≤ 3,

c) Rl
ijk(λ, t, x) = O(||x||−3), 0 ≤ i, j, k, l ≤ 3

hold, uniformly on compact t− intervals;
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3.3. Asymptotically flat spacetimes

(ii) for limλ→0Mλ =: M0 these global coordinates turn into special Newtonian
ones;

(iii) the limits for λ→ 0 and ||x|| → ∞ can be exchanged.

Remark 3.3.9 a) In the first chapter we have already seen that in case of
λ = 0 we can detect special Newtonian coordinates. With regard to these
coordinates we calculated the quasi-Newtonian equations and v. At the be-
ginning of this chapter we discussed which coordinate transformations are
permitted in case of λ = 0.

b) This definition of asymptotically flat Ehlers spacetimes includes the fact that
the respective spacetimes for λ fixed are asymptotically flat in the former
sense. Furthermore, it demands compatibility with the limit process and
thus with the transition from λ > 0 to λ = 0. This is not surprising since
the structures of the manifold have to turn into the Newtonian structure.

c) Our standard examples Minkowski (of course), Schwarzschild and Kerr sat-
isfy this definition. This will be discussed more closely in (3.3.11).

Theorem 3.3.10 Let Mλ = (M, g(λ), h(λ),∇(λ), T (λ), λ), λ ∈ (0, 1] be a family
of Ehlers spacetimes which has a quasi-Newtonian limit. Let the family of Ehlers
spacetimes be asymptotically flat at spacelike infinity. Then the limit is a genuine
Newtonian one.

Proof. As the family of Ehlers spacetimes is asymptotically flat, we know from
definition (3.3.8) that there are global coordinates (t, x) : M → I×R3. Therefore,
the manifold M is already simply connected and geodesically complete in space
direction. Thus, we just have to show that v(x, t) = 0. We therefore consider
the Christoffel symbols Γ3

02(λ, t, x), Γ1
03(λ, t, x) and Γ2

01(λ, t, x) for λ ∈ (0, 1] in the
special coordinates given by the definition of asymptotically flat spacetimes. This
definition then provides that for λ ∈ (0, 1]

Γ3
02(λ, t, x)→ 0, Γ1

03(λ, t, x)→ 0 and Γ2
01(λ, t, x)→ 0,

for ||x|| → ∞.
In addition we can exchange the limits for λ→ 0 and ||x|| → ∞ due to definition
(3.3.8). Then

Γ3
02(0, t, x)→, Γ1

03(0, t, x)→ 0 and Γ2
01(0, t, x)→ 0, (3.4)

for ||x|| → ∞.
Furthermore, we have to consider that ∆v = 0 for t fixed, since

∆v = grad(div v)− rot(rot v).

As shown in the first chapter, div(v) = 0 and rot(v) = 0 hold for v in spe-
cial Newtonian coordinates (see equations (1.12) and (1.8)). As the definition
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3.3. Asymptotically flat spacetimes

of asymptotically flat spacetimes requires that the global coordinates turn into
special Newtonian ones for λ→ 0, this condition is satisfied and we actually get

∆v = grad(div v)− rot(rot v) = 0.

If we have a look at the definition of ∆v,

∆v =


∂2v1

(∂x1)2
+ ∂2v1

(∂x2)2
+ ∂2v1

(∂x3)2

∂2v2

(∂x1)2
+ ∂2v2

(∂x2)2
+ ∂2v2

(∂x3)2

∂2v3

(∂x1)2
+ ∂2v3

(∂x2)2
+ ∂2v3

(∂x3)2

 =

 ∆v1

∆v2

∆v3

 ,

∆v = 0 implies ∆vi = 0 for i ∈ {1, 2, 3}.
Finally, we know with the help of Hopf’s maximum principle that vi( , t) : R3 → R
is constant, thus, due to (3.4), vi(x) = 0 for every (x, t) and i ∈ {1, 2, 3}. This
shows the claim. �

Example 3.3.11 Now we want to show that the definition of asymptotically flat
families is reasonable. This is the case, if the standard examples fulfil the conditions
of the definition. We do not have to consider Minkowski spacetime as it obviously
meets the conditions. Therefore, we discuss the extended Schwarzschild and Kerr
case.
We consider the Minkowski spacetime in spherical coordinates. Then gM(λ, r, ϑ, ϕ)
has the form

(gM(λ, r, ϑ, ϕ)ij) = diag(1,−λ,−λr2,−λr2 sin2 ϑ),

where r > 0, ϑ ∈ (0, π), ϕ ∈ (0, 2π). The Christoffel symbols in spherical coordi-
nates which do not vanish have the form

Γ1
22(λ, r, ϑ, ϕ) = −r

Γ2
12(λ, r, ϑ, ϕ) =

1

r

Γ3
13(λ, r, ϑ, ϕ) =

1

r
Γ1

33(λ, r, ϑ, ϕ) = −r sin2 ϑ

Γ2
33(λ, r, ϑ, ϕ) = − sinϑ cosϑ

Γ3
23(λ, r, ϑ, ϕ) =

cosϑ

sinϑ
.

a) Schwarzschild spacetime (see (A.1) and (2.3.2)):
First we have a look at the metric components. The only differences which
do not vanish are the following:

|gS00(λ)− gM00 | =
∣∣∣∣1− 2λ

r
− 1

∣∣∣∣ =
2λ

r

|gS11(λ)− gM11 | =
∣∣∣∣ −λrr − 2λ

+ λ

∣∣∣∣ =

∣∣∣∣−λr + λr − 2λ2

r − 2λ

∣∣∣∣ =
2λ2

r − 2λ
,
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which are of order
(

1
r

)
, of course. For the Christoffel symbols we have

|SΓ1
00(λ)−M Γ1

00(λ)| =
∣∣∣∣r − 2λ

r3

∣∣∣∣ =

∣∣∣∣ 1

r2
− 2λ

r3

∣∣∣∣
|SΓ0

10(λ)−M Γ0
10(λ)| =

∣∣∣∣ λ

r2 − 2λr

∣∣∣∣
|SΓ1

11(λ)−M Γ1
11(λ)| =

∣∣∣∣ λ

r2 − 2λr

∣∣∣∣
|SΓ1

22(λ)−M Γ1
22(λ)| = |2λ− r + r| = 2λ

|SΓ2
12(λ)−M Γ2

12(λ)| =
∣∣∣∣1r − 1

r

∣∣∣∣ = 0

|SΓ1
33(λ)−M Γ1

33(λ)| =
∣∣2λ sin 2ϑ− r sin2 ϑ+ r sin2 ϑ

∣∣ = 2λ sin2 ϑ

|SΓ3
13(λ)−M Γ3

13(λ)| =
∣∣∣∣1r − 1

r

∣∣∣∣ = 0

|SΓ2
33(λ)−M Γ2

33(λ)| = |− sinϑ cosϑ+ sinϑ cosϑ| = 0

|SΓ1
00(λ)−M Γ1

00(λ)| =
∣∣∣∣cosϑ

sinϑ
− cosϑ

sinϑ

∣∣∣∣ = 0.

If we have a look at this list we see that the differences are zero, of order
(

1
r2

)
or constant. In case of Γ1

22(λ) and Γ1
33(λ) the condition (i)b) of definition

(3.3.8) is not satisfied. But this does not depend on the extension of the
Schwarzschild spacetime as for the standard Schwarzschild case the following
holds:

|SΓ1
22 −M Γ1

22| = |2m− r + r| = 2m

|SΓ1
33 −M Γ1

33| =
∣∣2m sin 2ϑ− r sin2 ϑ+ r sin2 ϑ

∣∣ = 2m sin2 ϑ.

Thus, the standard Schwarzschild spacetime in spherical coordinates does not
satisfy the definition of being asymptotically flat in this point, which means
that spherical coordinates are not the suitable ones. Therefore, we have to
transform the metric and the Christoffel symbols into cartesian coordinates.
Let u = (t, r, ϑ, ϕ) be spherical and x = (t, x1, x2, x3) cartesian coordinates.
Then the transformation matrices have the form

(
∂x

∂u

)
=


1 0 0 0
0 cosϑ sinϕ −r sinϑ sinϕ r cosϑ cosϕ
0 sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ
0 cosϕ 0 −r sinϕ

 ,

and (
∂u

∂x

)
=


1 0 0 0
0 cosϑ sinϕ sinϑ sinϕ cosϕ
0 − sinϑ

r sinϕ
cosϑ
r sinϕ

0

0 cosϑ cosϕ
r

sinϑ cosϕ
r

− sinϕ
r

 .

First we have a look at the transformation behaviour of the metric:

gij(x(u)) =
∂uα

∂xi
(x)gαβ(u(x))

∂uβ

∂xj
(x).
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Since the matrix
(
∂u
∂x

)
only has components which are either constant with

regard to r or of order
(

1
r

)
the transformation just improves the behaviour for

r → ∞. As the components of the metric already have the right vanishing
behaviour, we do not have to care about them.
Thus, let us have a look at the Christoffel symbols. We already know their
transformation behaviour:

Γ̃kij(x(u)) =

(
∂xk

∂up
· ∂u

m

∂xi
(x)

(
∂2up

∂xj∂xl
(x) · ∂x

l

∂um
+
∂un

∂xj
(x) · Γpmn

))
(u).

As we only want to understand the behaviour of the differences SΓkij −M Γkij,
we just have to consider the last part of this transformation formula, since
the first part vanishes. This means, we have to look at the following:

SΓ̃kij −M Γ̃kij =
∂xk

∂up
·
(
∂um

∂xi
∂un

∂xj

)
· (SΓpmn −M Γpmn).

We first put forward an argument which shows that the vanishing behaviour
of the Christoffel symbols does not get worse. We then show that the two
Christoffel symbols which do not have the right vanishing behaviour in spher-
ical coordinates have the right behaviour after the transformation.
For all the differences SΓpmn −M Γpmn in spherical coordinates which do not
vanish, p equals either 0 or 1. We therefore multiply the differences with
components of

(
∂u
∂x

)
(which are either constant with regard to r or of order(

1
r

)
) and with components of the first two columns of

(
∂x
∂u

)
, which do not

depend on r. Thus, the vanishing behaviour does not get worse.
Now we have a look at the two differences which do not have the right be-
haviour. After transformation they are of the following form:

(SΓ1
22 −M Γ1

22) =

(
∂u1

∂x2

)2

· ∂x
1

∂u1
· λ

r2 − 2λr
+

(
∂u2

∂x2

)2

· ∂x
1

∂u1
· 2λ

+

(
∂u3

∂x2

)2

· ∂x
1

∂u1
· 2λ sin2 ϑ

=
λ · sin2 ϑ sin3 ϕ cosϑ

r2 − 2λr
+

2λ · cos3 ϑ

r2 sinϕ

+
2λ · sin4 ϑ cosϑ sinϕ cos2 ϕ

r2

= O
(

1

r2

)
(SΓ1

33 −M Γ1
33) =

(
∂u1

∂x3

)2

· ∂x
1

∂u1
· λ

r2 − 2λr
+

(
∂u2

∂x3

)2

· ∂x
1

∂u1
· 2λ

+

(
∂u3

∂x3

)2

· ∂x
1

∂u1
· 2λ sin2 ϑ

=
λ · cosϑ sinϕ cos2 ϕ

r2 − 2λr
+ 0 +

2λ · sin2 ϑ cosϑ sin3 ϕ

r2

= O
(

1

r2

)
.
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This shows that the Christoffel symbols have the right vanishing behaviour
and therefore meet the conditions of the definition of asymptotically flat
families of Ehlers spacetimes.
Now we have to discuss the vanishing behaviour of the components of the
curvature tensor. As the curvature tensor of the Minkowski spacetime van-
ishes for all coordinates (remember that the components vanish for cartesian
coordinates and, as it is a tensor, also for all the other coordinates), we only
have to consider the vanishing behaviour of the components of the curvature
tensor of Schwarzschild spacetime. The ones which do not vanish immedi-
ately are (see (A.1.5)):

|R0
101| =

∣∣∣∣ −2λr

(r2 − 2λr)2

∣∣∣∣ = O
(

1

r3

)
|R0

202| =
∣∣∣∣λr
∣∣∣∣ = O

(
1

r

)
|R0

303| =
∣∣∣∣−λ sin 2ϑ

r

∣∣∣∣ = O
(

1

r

)
|R1

010| =
∣∣∣∣4λ− 2r

r4

∣∣∣∣ = O
(

1

r3

)
|R2

020| =
∣∣∣∣r − 2λ

r4

∣∣∣∣ = O
(

1

r3

)
|R3

030| =
∣∣∣∣r − 2λ

r4

∣∣∣∣ = O
(

1

r3

)
|R1

212| =
∣∣∣∣−λr

∣∣∣∣ = O
(

1

r

)
|R2

121| =
∣∣∣∣ λ

r2(2λ− r)

∣∣∣∣ = O
(

1

r3

)
|R1

313| =
∣∣∣∣−λ sin2 ϑ

r

∣∣∣∣ = O
(

1

r

)
|R3

131| =
∣∣∣∣ λ

r2(2λ− r)

∣∣∣∣ = O
(

1

r3

)
|R2

323| =
∣∣∣∣sin2 ϑ · 2λ

r

∣∣∣∣ = O
(

1

r

)
|R3

232| =
∣∣∣∣2λr

∣∣∣∣ = O
(

1

r

)
.

Now we again have to consider the transformation behaviour. For the cur-
vature tensor

R̃l
ijk =

∂uα

∂xi
∂uβ

∂xj
∂uγ

∂xk
Rδ
αβγ

∂xl

∂uδ

holds. As the R̃l
ijk are sums of the transformed Rδ

αβγ, we just have a look at
the vanishing behaviour of the latter. Therefore, if δ is 1 or 0, the behaviour
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does not deteriorate. So we do not have to care about those components
with δ = 0 or δ = 1 which already have the right behaviour. For the other
ones we have to count how many of the indices α, β or γ equal 2 or 3. Then
the transformed component either equals zero or the vanishing behaviour
improves (for every index which equals 2 or 3 we get an O

(
1
r

)
). Then the

following holds (if the components do not vanish):

|R0
101| = O

(
1

r3

)
|R0

202| = O
(

1

r2

)
· O
(

1

r2

)
= O

(
1

r4

)
|R0

303| = O
(

1

r2

)
· O
(

1

r2

)
= O

(
1

r4

)
|R1

010| = O
(

1

r3

)
|R2

020| = O
(

1

r

)
· O
(

1

r3

)
· O(r) = O

(
1

r3

)
|R3

030| = O
(

1

r

)
· O
(

1

r3

)
· O(r) = O

(
1

r3

)
|R1

212| = O
(

1

r2

)
· O
(

1

r2

)
= O

(
1

r4

)
|R2

121| = O
(

1

r

)
· O
(

1

r3

)
· O(r) = O

(
1

r3

)
|R1

313| = O
(

1

r2

)
· O
(

1

r2

)
= O

(
1

r4

)
|R3

131| = O
(

1

r

)
· O
(

1

r3

)
· O(r) = O

(
1

r3

)
|R2

323| = O
(

1

r3

)
· O
(

1

r3

)
· O(r) = O

(
1

r5

)
|R3

232| = O
(

1

r3

)
· O
(

1

r3

)
· O(r) = O

(
1

r5

)
.

This means that the components of the curvature tensor have the required
vanishing behaviour and the extended Schwarzschild spacetime here also
satisfies the definition of asymptotically flat spacetimes.
If we have a look at the Christoffel symbols for λ ∈ (0, 1] which do not vanish,

Γ1
11 =

λ

2λr − r2

Γ1
00 =

r − 2λ

r3

Γ1
22 = 2λ− r
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Γ1
33 = (2λ− r) sin2 ϑ

Γ2
33 = − sinϑ cosϑ

Γ0
10 =

λ

r2 − 2λr

Γ2
12 =

1

r

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ
,

we see that there is no problem if we want to exchange the limits for λ→ 0
and r → ∞. Thus, all in all, we can say that the extended Schwarzschild
spacetime satisfies the definition of asymptotically flat spacetimes.

b) Kerr spacetime (see (A.2) and (2.3.3)):
Again we first have a look at the metric components. We have:

|gK00(λ)− gM00 (λ)| =
∣∣∣∣1− 2λr

r2 + a2 cos2 ϑ
− 1

∣∣∣∣ =
2λr

r2 + a2 cos2 ϑ

|gK03(λ)− gM03 (λ)| =

∣∣∣∣∣ 2λ
3
2 ra sin2 ϑ

r2 + a2 cos2 ϑ

∣∣∣∣∣ =
2λ

3
2 ra sin2 ϑ

r2 + a2 cos2 ϑ

|gK11(λ)− gM11 (λ)| =
∣∣∣∣−λ r2 + a2 cos2 ϑ

r2 − 2λr + a2
+ λ

∣∣∣∣
=

∣∣∣∣λr2 − 2λr + a2 − r2 − a2 cos2 ϑ

r2 − 2λr + a2

∣∣∣∣ =

∣∣∣∣λ−2λr + a2 sin2 ϑ

r2 − 2λr + a2

∣∣∣∣
|gK22(λ)− gM22 (λ)| =

∣∣−λ(r2 + a2 cos2 ϑ) + λr2
∣∣ = λa2 cos2 ϑ

|gK33(λ)− gM33 (λ)| =
∣∣∣∣−λ sin2 ϑ

(
r2 + a2 +

2λra2 sin 2ϑ

r2 + a2 cos2 ϑ

)
+ λr2 sin2 ϑ

∣∣∣∣
=

∣∣∣∣−λa2 sin2 ϑ− λ sin2 ϑ
2λra2 sin 2ϑ

r2 + a2 cos2 ϑ

∣∣∣∣ .
Here we also have the problem that the two last differences do not satisfy the
first condition of definition (3.3.8). Again we have to discuss the transforma-
tion behaviour. As we already know the transformation (which is the same
as in case of Schwarzschild) only improves the behaviour. For the critical
components of the metric we get:

gK22 − gM22 =

(
∂u1

∂x2

)2

· λ · −2λr + a2 sin2 ϑ

r2 − 2λr + a2
+

(
∂u2

∂x2

)2

· λa2 cos2 ϑ

+

(
∂u3

∂x2

)2

·
(
−λa2 sin2 ϑ− λ sin2 ϑ · 2λra2 sin2 ϑ

r2 + a2 cos2 ϑ

)
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=
λ(−2λr + a2 sin2 ϑ) sin2 ϑ sin2 ϕ

r2 − 2λr + a2
+
λa2 cos4 ϑ

r2 sin2 ϕ

+
sin2 ϑ cos2 ϕ

r2
·
(
−λa2 sin2 ϑ− λ sin2 ϑ · 2λra2 sin2 ϑ

r2 + a2 cos2 ϑ

)
= O

(
1

r

)
gK33 − gM33 =

(
∂u1

∂x3

)2

· λ · −2λr + a2 sin2 ϑ

r2 − 2λr + a2
+

(
∂u2

∂x3

)2

· λa2 cos2 ϑ

+

(
∂u3

∂x3

)2

·
(
−λa2 sin2 ϑ− λ sin2 ϑ · 2λra2 sin2 ϑ

r2 + a2 cos2 ϑ

)
=
λ(−2λr + a2 sin2 ϑ) cos2 ϕ

r2 − 2λr + a2
+ 0

+
sin2 ϕ

r2
·
(
−λa2 sin2 ϑ− λ sin2 ϑ · 2λra2 sin2 ϑ

r2 + a2 cos2 ϑ

)
= O

(
1

r

)
.

Thus, the components of the metric have the right vanishing behaviour. Now
we have to consider the Christoffel symbols. The following holds:

∣∣KΓ1
00 −M Γ1

00

∣∣ =

∣∣∣∣(r2 − 2λr + a2)(r2 − a2 cos2 ϑ)

(r2 + a2 cos2 ϑ)3

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ2

00 −M Γ2
00

∣∣ =

∣∣∣∣−2ra2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)3

∣∣∣∣ = O
(

1

r5

)
∣∣KΓ0

01 −M Γ0
01

∣∣ =

∣∣∣∣ λ(r2 − a2 cos2 ϑ)(r2 + a2)

(r2 + a2 cos2 ϑ)2(r2 − 2λr + a2)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ0

02 −M Γ0
02

∣∣ =

∣∣∣∣−4λra2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)2

∣∣∣∣ = O
(

1

r3

)
∣∣KΓ3

01 −M Γ3
01

∣∣ =

∣∣∣∣∣
√
λa(r2 − a2 cos2 ϑ)

(r2 − 2λr + a2)(r2 + a2 cos2 ϑ)2

∣∣∣∣∣ = O
(

1

r4

)
∣∣KΓ3

02 −M Γ3
02

∣∣ =

∣∣∣∣∣ −2
√
λra cosϑ

sinϑ · (r2 + a2 cos2 ϑ)2

∣∣∣∣∣ = O
(

1

r3

)
∣∣KΓ0

13 −M Γ0
13

∣∣ =

∣∣∣∣∣−λ
3
2a sin2 ϑ[(r2 + a2)(r2 − a2 cos2 ϑ) + 2r2ρ]

(r2 + a2 cos2 ϑ)2(r2 − 2λr + a2)

∣∣∣∣∣ = O
(

1

r3

)
∣∣KΓ0

23 −M Γ0
23

∣∣ =

∣∣∣∣∣2λ
3
2 ra3 sin3 ϑ cosϑ

(r2 + a2 cos2 ϑ)2

∣∣∣∣∣ = O
(

1

r3

)
∣∣KΓ1

30 −M Γ1
30

∣∣ =

∣∣∣∣∣−
√
λ(r2 − 2λr + a2) · a sin2 ϑ(r2 − a2 cos2 ϑ)

(r2 + a2 cos2 ϑ)3

∣∣∣∣∣ = O
(

1

r2

)
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∣∣KΓ2
30 −M Γ2

30

∣∣ =

∣∣∣∣∣2
√
λra sinϑ cosϑ(r2 + a2)

(r2 + a2 cos2 ϑ)3

∣∣∣∣∣ = O
(

1

r3

)
∣∣KΓ1

11 −M Γ1
11

∣∣ =

∣∣∣∣ ra2 sin2 ϑ− λ(r2 − a2 cos2 ϑ)

(r2 + a2 cos2 ϑ)(r2 − 2λr + a2)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ2

11 −M Γ2
11

∣∣ =

∣∣∣∣ a2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)(r2 − 2λr + a2)

∣∣∣∣ = O
(

1

r4

)
∣∣KΓ1

21 −M Γ1
21

∣∣ =

∣∣∣∣ −a2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ1

22 −M Γ1
22

∣∣ =

∣∣∣∣−(r2 − 2λr + a2)r

(r2 + a2 cos2 ϑ)
+
r(r2 + a2 cos2 ϑ)

r2 + a2 cos2 ϑ

∣∣∣∣
=

∣∣∣∣2λr2 − ra2 + ra2 cos2 ϑ

r2 + a2 cos2 ϑ

∣∣∣∣ = 2λ+O
(

1

r

)
∣∣KΓ2

21 −M Γ2
21

∣∣ =

∣∣∣∣ r2

r(r2 + a2 cos2 ϑ)
− r2 + a2 cos2 ϑ

r(r2 + a2 cos2 ϑ)

∣∣∣∣
=

∣∣∣∣ −a2 cos2 ϑ

r3 + ra2 cos2 ϑ

∣∣∣∣ = O
(

1

r3

)
∣∣KΓ2

22 −M Γ2
22

∣∣ =

∣∣∣∣− a2 cosϑ sinϑ

(r2 + a2 cos2 ϑ)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ1

33 −M Γ1
33

∣∣ =

∣∣∣∣−(r2 − 2λr + a2) sin2 ϑ(r(r2 + a2 cos2 ϑ)2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

(r2 + a2 cos2 ϑ)3

+
r sin2 ϑ(r2 + a2 cos2 ϑ)3

(r2 + a2 cos2 ϑ)3

∣∣∣∣
=

∣∣∣∣−r7 sin2 ϑ+ r7 sin2 ϑ+ 2λ sin2 ϑr6 +O(r5)

r6 +O(r4)

∣∣∣∣ = 2λ sin2 ϑ+O
(

1

r

)
∣∣KΓ2

33 −M Γ2
33

∣∣ =

∣∣∣∣−sinϑ cosϑ((r2 − 2λr + a2)(r2 + a2 cos2 ϑ)2 + 2λr(r2 + a2)2)

(r2 + a2 cos2 ϑ)3

∣∣∣∣
=

∣∣∣∣−r6 sinϑ cosϑ− 2λr5 + 2λr5 + r6 sinϑ cosϑ+O(r4)

O(r6)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ3

31 −M Γ3
31

∣∣ =

∣∣∣∣−λr(2r2(r2 + a2 cos2 ϑ)2 − (r2 + a2 cos2 ϑ)a2 sin2 ϑ(r2 − a2 cosϑ))

r(r2 − 2λr + a2)(r2 + a2 cos2 ϑ)2

+
r2(r2 + a2 cos2 ϑ)2

(r2 − 2λr + a2)(r2 + a2 cos2 ϑ)2
− (r2 + a2 cos2 ϑ)2(r2 − 2λr + a2)

r(r2 + a2 cos2 ϑ)2(r2 − 2λr + a2)

∣∣∣∣
=

∣∣∣∣r6 − r6 +O(r5)

O(r7)

∣∣∣∣ = O
(

1

r2

)
∣∣KΓ3

32 −M Γ3
32

∣∣ =

∣∣∣∣cosϑ(2λra2 sin2 ϑ+ (r2 + a2 cos2 ϑ)2)

sinϑ · (r2 + a2 cos2 ϑ)2
− cosϑ(r2 + a2 cos2 ϑ)2

sinϑ(r2 + a2 cos2 ϑ)2

∣∣∣∣
=

∣∣∣∣2λra2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)2

∣∣∣∣ = O
(

1

r3

)
.

Again we see that at two points the condition is not satisfied. Therefore,
we have to consider the transformation behaviour. As we have already seen
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only
(
∂x
∂u

)
has components of order r. Since we just have to multiply the

Christoffel symbols with one component of this matrix, we do not have to
consider the differences which are of order

(
1
r3

)
or higher powers. As the two

first columns of
(
∂x
∂u

)
do not depend on r, we do not have to care about the

differences of order
(

1
r2

)
with p = 0 or p = 1. So we just have to discuss the

following cases:

(i)

Γ1
22 :

∂u2

∂xα
· ∂u

2

∂xβ
· ∂x

γ

∂u1
(KΓ1

22 −M Γ1
22)

for α, β, γ ∈ {0, 1, 2, 3}. As p = 1, the behaviour does not get worse.
For α, β ∈ {0, 3} the Christoffel symbol equals zero, for α, β ∈ {1, 2} it
is of order

(
1
r2

)
.

(ii)

Γ2
22 :

∂u2

∂xα
· ∂u

2

∂xβ
· ∂x

γ

∂u2
(KΓ2

22 −M Γ2
22)

for α, β, γ ∈ {0, 1, 2, 3}. In this case p = 2, so we just have to show that
it does not deteriorate: KΓ2

22−MΓ2
22 is of order

(
1
r2

)
and for α, β ∈ {0, 3}

it equals zero. For α, β ∈ {1, 2} we get a O(r)− and an O
(

1
r2

)
− term.

Altogether, it then is of order
(

1
r3

)
.

For the other critical cases we always have to use the same arguments. For
Γ1

33 we again have case (i), for Γ2
33 and Γ3

31 we use case (ii). But this already
shows that the vanishing behaviour of the Kerr Christoffel symbols is of order(

1
r2

)
which shows that the extended Kerr spacetime meets the conditions of

definition (3.3.8) since now all transformed Christoffel symbols are of order(
1
r2

)
as sums of O

(
1
r2

)
−terms.

Now we have a look at the components of the curvature tensor. Again we
are interested in the vanishing behaviour after transformation. As before,
for

Rl
ijk

we can get a factor of order r, if l = 2 or l = 3 (or the component already
equals 0) and a factor of order

(
1
r

)
, if i, j or k equal 2 or 3. The orders

before transformation are calculated in (A.2.5). The orders after transfor-
mation can be found in the following table:

component order before number of number of order after

transformation O(r)-factors O
(

1
r

)
-factors transformation

R0
030 O

(
1
r4

)
0 1 O

(
1
r5

)
R0

110 O
(

1
r3

)
0 0 O

(
1
r3

)
R0

220 O
(

1
r

)
0 2 O

(
1
r3

)
R0

330 O
(

1
r

)
0 2 O

(
1
r3

)
R0

120 O
(

1
r4

)
0 1 O

(
1
r5

)
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component order before number of number of order after

transformation O(r)-factors O
(

1
r

)
-factors transformation

R0
210 O

(
1
r4

)
0 1 O

(
1
r5

)
R0

012 O
(

1
r4

)
0 1 O

(
1
r5

)
R1

010 O
(

1
r3

)
0 0 O

(
1
r3

)
R2

020 O
(

1
r3

)
1 1 O

(
1
r3

)
R3

030 O
(

1
r3

)
1 1 O

(
1
r3

)
R1

020 O
(

1
r4

)
0 1 O

(
1
r5

)
R2

010 O
(

1
r6

)
1 0 O

(
1
r5

)
R0

113 O
(

1
r3

)
0 1 O

(
1
r4

)
R3

110 O
(

1
r5

)
1 0 O

(
1
r4

)
R1

310 O
(

1
r3

)
0 1 O

(
1
r4

)
R1

130 O
(

1
r3

)
0 1 O

(
1
r4

)
R1

013 O
(

1
r3

)
0 1 O

(
1
r4

)
R0

223 O
(

1
r

)
0 3 O

(
1
r4

)
R3

220 O
(

1
r3

)
1 2 O

(
1
r4

)
R2

320 O
(

1
r3

)
1 2 O

(
1
r4

)
R2

230 O
(

1
r3

)
1 2 O

(
1
r4

)
R2

023 O
(

1
r3

)
1 2 O

(
1
r4

)
R0

123 O
(

1
r2

)
0 2 O

(
1
r4

)
R0

213 O
(

1
r

)
0 2 O

(
1
r3

)
R0

312 O
(

1
r2

)
0 2 O

(
1
r4

)
R3

012 O
(

1
r4

)
1 1 O

(
1
r4

)
R3

102 O
(

1
r4

)
1 1 O

(
1
r4

)
R3

201 O
(

1
r4

)
1 1 O

(
1
r4

)
R1

023 O
(

1
r2

)
0 2 O

(
1
r4

)
R1

203 O
(

1
r2

)
0 2 O

(
1
r4

)
R1

302 O
(

1
r2

)
0 2 O

(
1
r4

)
R2

013 O
(

1
r4

)
1 1 O

(
1
r4

)
R2

103 O
(

1
r4

)
1 1 O

(
1
r4

)
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component order before number of number of order after

transformation O(r)-factors O
(

1
r

)
-factors transformation

R2
310 O

(
1
r4

)
1 1 O

(
1
r4

)
R3

330 O
(

1
r3

)
1 2 O

(
1
r4

)
R1

112 O
(

1
r3

)
0 1 O

(
1
r4

)
R2

221 O
(

1
r3

)
1 2 O

(
1
r4

)
R1

212 O
(

1
r

)
0 2 O

(
1
r3

)
R2

121 O
(

1
r3

)
1 1 O

(
1
r3

)
R1

313 O
(

1
r

)
0 2 O

(
1
r3

)
R3

131 O
(

1
r3

)
1 1 O

(
1
r3

)
R2

323 O
(

1
r

)
1 3 O

(
1
r3

)
R3

232 O
(

1
r

)
1 3 O

(
1
r3

)
R3

312 O
(

1
r4

)
1 2 O

(
1
r5

)
R3

132 O
(

1
r2

)
1 2 O

(
1
r3

)
R3

231 O
(

1
r2

)
1 2 O

(
1
r3

)
R1

332 const. 0 3 O
(

1
r3

)
R2

331 O
(

1
r2

)
1 2 O

(
1
r3

)
Now we can see that the components of the curvature tensor have the right
vanishing behaviour after transformation. As in the case of Schwarzschild,
we can also exchange the limits for λ → 0 and r → ∞ in the Christof-
fel symbols. Therefore, the extended Kerr spacetime is an example of an
asymptotically flat family of Ehlers spacetimes.

Thus, we can say that our standard extended examples satisfy the definition of
asymptotically flat families. This is a very important confirmation of our definition.
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Appendix A

Appendix

A.1 The Schwarzschild spacetime

In Appendix A.1 we are going to discuss the calculations for the Schwarzschild
solution more closely.

The Christoffel symbols A.1.1 We first calculate the Christoffel symbols of
the extended Schwarzschild solution:
Generally, the following equations hold for a metric in diagonal form:

Γiii =
1

2
gii∂igii, i = 0, .., 3;

Γkii = −1

2
gkk∂kgii, k 6= i;

Γjij =
1

2
gjj∂igjj, j 6= i;

Γkij = 0, otherwise.

Now we have to consider the following

(gij(λ)) = diag

(
1− 2λ

r
,
−rλ
r − 2λ

,−λr2,−λr2 sin2 ϑ

)
,

(gij(λ)) = diag

(
r

r − 2λ
,
r − 2λ

−rλ
,− 1

λr2
,− 1

λr2 sin2 ϑ

)
.

The Christoffel symbols have the form (with ∂0 = ∂t, ∂1 = ∂r, ∂2 = ∂ϑ and
∂3 = ∂ϕ):

Γ0
00 = 0

Γ1
11 =

1

2

(
r − 2λ

−rλ

)
∂r

(
−rλ
r − 2λ

)
=

1

2

(
r − 2λ

−rλ

)(
−λr + 2λ2 + λr

(r − 2λ)2

)
=

λ

2λr − r2

Γ2
22 = 0

Γ3
33 = 0

Γ1
00 = −1

2

(
r − 2λ

−rλ

)
∂r

(
1− 2λ

r

)
= −1

2

(
r − 2λ

−rλ

)(
2λ

r2

)
=
r − 2λ

r3
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A.1. The Schwarzschild spacetime

Γ2
00 = 0

Γ3
00 = 0

Γ0
11 = 0

Γ2
11 = 0

Γ3
11 = 0

Γ0
22 = 0

Γ1
22 = −1

2

(
r − 2λ

−rλ

)
∂r(−λr2) = −1

2

(
r − 2λ

−rλ

)
(−2λr) = 2λ− r

Γ3
22 = 0

Γ0
33 = 0

Γ1
33 = −1

2

(
r − 2λ

−rλ

)
∂r(−λr2 sin2 ϑ) =

1

2

(
r − 2λ

rλ

)
(−2λr sin2 ϑ) = (2λ− r) sin2 ϑ

Γ2
33 = −1

2

(
− 1

λr2

)
∂ϑ(−λr2 sin2 ϑ) =

1

2

(
1

λr2

)
(−2λr2 sinϑ cosϑ) = − sinϑ cosϑ

Γ1
01 = 0

Γ2
02 = 0

Γ3
03 = 0

Γ0
10 =

1

2

(
r

r − 2λ

)
∂r

(
1− 2λ

r

)
=

1

2

(
r

r − 2λ

)(
2λ

r2

)
=

λ

r2 − 2λr

Γ2
12 =

1

2

(
− 1

λr2

)
∂r(−λr2) =

1

2

(
− 1

λr2

)
(−2λr) =

1

r

Γ3
13 =

1

2

(
− 1

λr2 sin2 ϑ

)
∂r(−λr2 sin2 ϑ) =

1

2

(
− 1

λr2 sin2 ϑ

)
(−2λr sin2 ϑ) =

1

r

Γ0
20 = 0

Γ1
21 = 0

Γ3
23 =

1

2

(
− 1

λr2 sin2 ϑ

)
∂ϑ(−λr2 sin2 ϑ) =

1

2

(
− 1

λr2 sin2 ϑ

)
(−2λr2 sinϑ cosϑ)

=
cosϑ

sinϑ
Γ0

30 = 0

Γ1
31 = 0

Γ2
32 = 0.

The Christoffel symbols of the limit connection A.1.2 The Christoffel sym-
bols of the limit connection take the form

Γ1
00 =

1

r2

Γ1
22 = −r

Γ1
33 = −r sin2 ϑ

Γ2
33 = − sinϑ cosϑ
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A.1. The Schwarzschild spacetime

Γ2
12 =

1

r

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ
Γkij = 0, otherwise.

The components of the Ricci tensor of the limit A.1.3 In the following we
calculate the components of the Ricci tensor. As it is symmetric we only have to
study the following components:

Ric00 = ∂jΓ
j
00 − ∂0Γjj0 + ΓjjrΓ

r
00 − Γj0rΓ

r
j0 = ∂r

(
1

r2

)
− 0 +

1

r
· 1

r2
+

1

r
· 1

r2
− 0

= − 2

r3
+

2

r3
= 0

Ric01 = ∂jΓ
j
10 − ∂1Γjj0 + ΓjjrΓ

r
10 − Γj1rΓ

r
j0 = 0

Ric02 = ∂jΓ
j
20 − ∂2Γjj0 + ΓjjrΓ

r
20 − Γj2rΓ

r
j0 = 0

Ric03 = ∂jΓ
j
30 − ∂3Γjj0 + ΓjjrΓ

r
30 − Γj3rΓ

r
j0 = 0

Ric11 = ∂jΓ
j
11 − ∂1Γjj1 + ΓjjrΓ

r
11 − Γj1rΓ

r
j1 = 0− ∂r

(
1

r

)
− ∂r

(
1

r

)
+ 0− 1

r2
− 1

r2

=
2

r2
− 2

r2
= 0

Ric12 = ∂jΓ
j
21 − ∂2Γjj1 + ΓjjrΓ

r
21 − Γj2rΓ

r
j1 = 0− 0 +

cosϑ

sinϑ
· 1

r
− 1

r
· cosϑ

sinϑ
= 0

Ric13 = ∂jΓ
j
31 − ∂3Γjj1 + ΓjjrΓ

r
31 − Γj3rΓ

r
j1 = 0

Ric22 = ∂jΓ
j
22 − ∂2Γjj2 + ΓjjrΓ

r
22 − Γj2rΓ

r
j2

= ∂1Γ1
22 − ∂2Γ3

32 + Γ2
21Γ1

22 + Γ3
31Γ1

22 − Γ2
21Γ1

22 − Γ1
22Γ2

12 − Γ3
23Γ3

32

= ∂1Γ1
22 − ∂2Γ3

32 + Γ3
31Γ1

22 − Γ1
22Γ2

12 − Γ3
23Γ3

32

= ∂r(−r)− ∂ϑ
(

cosϑ

sinϑ

)
+

1

r
· (−r)− (−r) · 1

r
− cos2 ϑ

sin2 ϑ

= − 1 +
sin2 ϑ+ cos2 ϑ

sin2 ϑ
− 1 + 1− cos2 ϑ

sin2 ϑ
= −1 +

1− cos2 ϑ

sin2 ϑ
= 0

Ric23 = ∂jΓ
j
32 − ∂3Γjj2 + ΓjjrΓ

r
32 − Γj3rΓ

r
j2 = 0

Ric33 = ∂jΓ
j
33 − ∂3Γjj3 + ΓjjrΓ

r
33 − Γj3rΓ

r
j3

= ∂1Γ1
33 + ∂2Γ2

33 + Γ2
21Γ1

33 + Γ3
31Γ1

33 + Γ3
32Γ2

33 − Γ1
33Γ3

13 − Γ2
33Γ3

23 − Γ3
31Γ1

33 − Γ3
32Γ2

33

= ∂1Γ1
33 + ∂2Γ2

33 + Γ2
21Γ1

33 − Γ1
33Γ3

13 − Γ2
33Γ3

23

= ∂r(−r sin2 ϑ) + ∂ϑ(− sinϑ cosϑ) +
1

r
· (−r sinϑ)− (−r sin2 ϑ) · 1

r

− (− sinϑ cosϑ) · cosϑ

sinϑ
= − sin2 ϑ− cos2 ϑ+ sin2 ϑ− sin2 ϑ+ sin2 ϑ+ cos2 ϑ = 0.
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A.1. The Schwarzschild spacetime

The divergence of the function f A.1.4 Since the Ricci tensor of the limit of
Schwarzschild spacetime vanishes, we already know that ρ = 0. Therefore, we now
have to show that the equation

∆u = 0

holds. As we already have
f = grad(u),

we just have to demonstrate that

div(f) = 0.

In cartesian coordinates div(f) is given by

div(f) =
∂

∂x1
f 1 +

∂

∂x2
f 2 +

∂

∂x3
f 3.

But in our case we use spherical coordinates. We therefore have to transform the
components of the function and the differential operators. Since f is defined by
the Christoffel symbols of the connection, its transformation behaviour is given by

Γ̃kij(x(u)) =

(
∂xk

∂up
· ∂u

m

∂xi
◦ x
(

∂2up

∂xj∂xl
◦ x · ∂x

l

∂um
+
∂un

∂xj
◦ x · Γpmn

))
(u).

Therefore, let u = (t, r, ϑ, ϕ) be spherical and x = (t, x1, x2, x3) cartesian coordi-
nates. Then the transformation matrices have the form

(
∂x

∂u

)
=


1 0 0 0
0 cosϑ sinϕ −r sinϑ sinϕ r cosϑ cosϕ
0 sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ
0 cosϕ 0 −r sinϕ

 ,

and (
∂u

∂x

)
=


1 0 0 0
0 cosϑ sinϕ sinϑ sinϕ cosϕ
0 − sinϑ

r sinϕ
cosϑ
r sinϕ

0

0 cosϑ cosϕ
r

sinϑ cosϕ
r

− sinϕ
r

 .

In our case f is of the form

f = (Γ1
00,Γ

2
00,Γ

3
00) =

(
1

r2
, 0, 0

)
.

We now have:

Γ̃k00 =
∂xk

∂up
· ∂u

m

∂x0︸︷︷︸
⇒m=0

 ∂2up

∂x0∂xl︸ ︷︷ ︸
=0

· ∂x
l

∂um
+
∂un

∂x0︸︷︷︸
⇒n=0

·Γpmn


=
∂xk

∂up
· Γp00.
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A.1. The Schwarzschild spacetime

Therefore, we get:

Γ̃1
00 = cosϑ sinϕ · Γ1

00 =
cosϑ sinϕ

r2

Γ̃2
00 = sinϑ sinϕ · Γ1

00 =
sinϑ sinϕ

r2

Γ̃3
00 = cosϕ · Γ1

00 =
cosϕ

r2
.

For the differential operators we get:

∂

∂x1
=

∂r

∂x1

∂

∂r
+
∂ϑ

∂x1

∂

∂ϑ
+
∂ϕ

∂x1

∂

∂ϕ

= cosϑ sinϕ
∂

∂r
− sinϑ

r sinϕ

∂

∂ϑ
+

cosϑ cosϕ

r

∂

∂ϕ
∂

∂x2
=

∂r

∂x2

∂

∂r
+
∂ϑ

∂x2

∂

∂ϑ
+
∂ϕ

∂x2

∂

∂ϕ

= sinϑ sinϕ
∂

∂r
+

cosϑ

r sinϕ

∂

∂ϑ
+

sinϑ cosϕ

r

∂

∂ϕ
∂

∂x3
=

∂r

∂x3

∂

∂r
+
∂ϑ

∂x3

∂

∂ϑ
+
∂ϕ

∂x3

∂

∂ϕ

= cosϕ
∂

∂r
− sinϕ

∂

∂ϕ
.

That is why the following holds for the divergence of f :

div(f) =
∂

∂x1
f 1 +

∂

∂x2
f 2 +

∂

∂x3
f 3

=

(
cosϑ sinϕ

∂

∂r
− sinϑ

r sinϕ

∂

∂ϑ
+

cosϑ cosϕ

r

∂

∂ϕ

)(
cosϑ sinϕ

r2

)
+

(
sinϑ sinϕ

∂

∂r
+

cosϑ

r sinϕ

∂

∂ϑ
+

sinϑ cosϕ

r

∂

∂ϕ

)(
sinϑ sinϕ

r2

)
+

(
cosϕ

∂

∂r
− sinϕ

∂

∂ϕ

)(cosϕ

r2

)
=
−2 cos2 ϑ sin2 ϕ

r3
+

sin2 ϑ

r3
+

cos2 ϑ cos2 ϕ

r3
− 2 sin2 ϑ sin2 ϕ

r3
+

cos2 ϑ

r3

+
sin2 ϑ cos2 ϕ

r3
− 2 cos2 ϕ

r3
+

sin2 ϕ

r3

=
1

r3
(−2 sin2 ϕ(cos2 ϑ+ sin2 ϑ) + sin2 ϑ+ cos2 ϑ+ cos2 ϕ(cos2 ϑ+ sin2 ϑ)

− 2 cos2 ϕ+ sin2 ϕ)

=
1

r3
(− sin2 ϕ− cos2 ϕ+ 1)

= 0.

But this is just what we wanted to show. Therefore,

∆u = 0

holds.
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A.1. The Schwarzschild spacetime

The components of the curvature tensor A.1.5 We now calculate the com-
ponents of the curvature tensor. The following holds:

Rl
ijk = ∂jΓ

l
ki − ∂kΓlji + ΓljrΓ

r
ki − ΓlkrΓ

r
ij.

As the connection is symmetric,

Rl
ijk = −Rl

ikj

also holds. We only care for the components which do not vanish immediately.
First, we have to calculate the derivations of the Christoffel symbols - of course,
only for i = 1 (which means for r) and for i = 2 (which means for ϑ). We get:

∂1Γ1
11 = ∂1

(
λ

2λr − r2

)
=

2λ(r − λ)

(2λr − r2)2

∂1Γ1
00 = ∂1

(
r − 2λ

r3

)
=

6λ− 2r

r4

∂1Γ1
22 = ∂1(2λ− r) = −1

∂1Γ1
33 = ∂1((2λ− r) sin2 ϑ) = − sin2 ϑ

∂1Γ2
33 = ∂1(− sinϑ cosϑ) = 0

∂1Γ0
10 = ∂1

(
λ

r2 − 2λr

)
=

2λ2 − 2λr

(r2 − 2λr)2

∂1Γ2
12 = ∂1

(
1

r

)
= − 1

r2

∂1Γ3
13 = ∂1

(
1

r

)
= − 1

r2

∂1Γ3
23 = ∂1

(
cosϑ

sinϑ

)
= 0

∂2Γ1
11 = ∂2

(
r − 2λ

r3

)
= 0

∂2Γ1
00 = ∂2

(
r − 2λ

r3

)
= 0

∂2Γ1
22 = ∂2(2λ− r) = 0

∂2Γ1
33 = ∂2((2λ− r) sin2 ϑ) = 2(2λ− r) sinϑ cosϑ

∂2Γ2
33 = ∂2(− sinϑ cosϑ) = sin 2ϑ− cos2 ϑ

∂2Γ0
10 = ∂2

(
λ

r2 − 2λr

)
= 0

∂2Γ2
12 = ∂2

(
1

r

)
= 0

∂2Γ3
13 = ∂2

(
1

r

)
= 0

∂2Γ3
23 = ∂2

(
cosϑ

sinϑ

)
= − 1

sin2 ϑ
.
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A.1. The Schwarzschild spacetime

Now we calculate the components of the curvature tensor which do not vanish
immediately:

R0
101 = −R0

110 = −∂1Γ1
01 + Γ0

0rΓ
r
11 − Γ0

1rΓ
r
10 = −∂1Γ1

01 + Γ0
01Γ1

11 − Γ0
10Γ0

10

=
2λ2 − 2λr

(r2 − 2λr)2
+

λ

r2 − 2λr
· λ

2λr − r2
− λ2

(r2 − 2λr)2
=

−2λr

(r2 − 2λr)2

R0
202 = −R0

220 = Γ0
0rΓ

r
22 = Γ0

01Γ1
22 =

λ

r2 − 2λr
· (2λ− r) =

λ

r

R0
303 = −R0

330 = Γ0
0rΓ

r
33 = Γ0

01Γ1
33 =

λ

r2 − 2λr
· (2λ− r) sin2 ϑ = −λ sin 2ϑ

r

R1
010 = −R1

001 = ∂1Γ1
00 + Γ1

1rΓ
r
00 − Γ1

0rΓ
r
01 = ∂1Γ1

00 + Γ1
11Γ1

00 − Γ1
00Γ0

01

=
6λ− 2r

r4
+

λ

2λr − r2
· r − 2λ

r3
− r − 2λ

r3
· λ

r2 − 2λr
=

6λ− 2r

r4
− 2λ

r4

=
−4λ− 2r

r4

R2
020 = −R2

002 = Γ2
2rΓ

r
00 = Γ2

21Γ1
00 =

1

r
· r − 2λ

r3
=
r − 2λ

r4

R3
030 = −R3

003 = Γ3
3rΓ

r
00 = Γ3

31Γ1
00 =

1

r
· r − 2λ

r3
=
r − 2λ

r4

R1
212 = −R1

221 = ∂1Γ1
22 + Γ1

1rΓ
r
22 − Γ1

2rΓ
r
21 = ∂1Γ1

22 + Γ1
11Γ1

22 − Γ1
22Γ2

21

= −1 +
λ

r(2λ− r)
· (2λ− r)− (2λ− r) · 1

r
= −1 +

λ

r
− 2λ

r
+ 1 = −λ

r

R2
121 = −R2

112 = −∂1Γ2
21 + Γ2

2rΓ
r
11 − Γ2

1rΓ
r
12 = −∂1Γ2

21 + Γ2
21Γ1

11 − Γ2
12Γ2

12

=
1

r2
+

1

r
· λ

r(2λ− r)
− 1

r2
=

λ

r2(2λ− r)
R1

313 = −R1
331 = ∂1Γ1

33 + Γ1
1rΓ

r
33 − Γ1

3rΓ
r
31 = ∂1Γ1

33 + Γ1
11Γ1

33 − Γ1
33Γ3

31

= − sin 2ϑ+
λ

r(2λ− r)
· (2λ− r) sin2 ϑ− (2λ− r) sin2 ϑ · 1

r

= − sin2 ϑ+
λ sin2 ϑ

r
− 2λ sin2 ϑ

r
+ sin2 ϑ = −λ sin2 ϑ

r
R3

131 = −R3
113 = −∂1Γ3

31 + Γ3
3rΓ

r
11 − Γ3

1rΓ
r
13 = −∂1Γ3

31 + Γ3
31Γ1

11 − Γ3
13Γ3

13

=
1

r2
+

1

r
· λ

r(2λ− r)
− 1

r2
=

λ

r2(2λ− r)
R2

323 = −R2
332 = ∂2Γ2

33 + Γ2
2rΓ

r
33 − Γ2

3rΓ
r
32 = ∂2Γ2

33 + Γ2
21Γ1

33 − Γ2
33Γ3

32

= sin2 ϑ− cos2 ϑ+
1

r
· (2λ− r) sin2 ϑ+ sinϑ cosϑ · cosϑ

sinϑ
=

2λ sin2 ϑ

r
R3

232 = −R3
223 = −∂2Γ3

32 + Γ3
3rΓ

r
22 − Γ3

2rΓ
r
23 = −∂2Γ3

32 + Γ3
31Γ1

22 − Γ3
23Γ3

23

=
1

sin2 ϑ
+

1

r
· (2λ− r)− cos2 ϑ

sin2 ϑ
=

2λ

r
R3

312 = −R3
321 = Γ3

13Γ3
23 − Γ3

23Γ3
31 = 0

R3
132 = −R3

123 = Γ3
32Γ2

21 − Γ3
23Γ3

13 =
cosϑ

sinϑ
· 1

r
− cosϑ

sinϑ
· 1

r
= 0
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R3
231 = −R3

213 = Γ3
32Γ2

12 − Γ3
13Γ3

23 =
cosϑ

sinϑ
· 1

r
− 1

r
· cosϑ

sinϑ
= 0

R1
332 = −R1

323 = −∂2Γ1
33 + Γ1

33Γ3
23 − Γ1

22Γ1
33

= −2(2λ− r) sinϑ cosϑ+ (2λ− r) sin 2ϑ · cosϑ

sinϑ
+ (2λ− r) sinϑ cosϑ = 0

R2
331 = −R2

313 = Γ2
33Γ3

13 − Γ2
12Γ2

33 = − sinϑ cosϑ · 1

r
− 1

r
· (− sinϑ cosϑ) = 0.

A.2 The Kerr spacetime

In Appendix A.2 we are going to discuss the calculations for the Kerr solution
more closely.

The inverse of (g̃ij) A.2.1 First we have to calculate the inverse of (g̃ij). For a
matrix in ”Kerr”-form we get

a 0 0 b
0 c 0 0
0 0 d 0
b 0 0 e


−1

=


e

ae−b2 0 0 −b
ae−b2

0 1
c

0 0
0 0 1

d
0

−b
ae−b2 0 0 a

ae−b2

 .

In case of

(g̃ij) =


− 1
λ
(1− 2mr

ρ
) 0 0 −2mra sin2 ϑ√

λρ

0 ρ
∆

0 0
0 0 ρ 0

−2mra sin2 ϑ√
λρ

0 0
(
r2 + a2 + 2mra2 sin2 ϑ

ρ

)
sin2 ϑ

 ,

with ρ := r2 + a2 cos2 ϑ and ∆ := r2 − 2mr + a2, this exactly means that we have
to calculate the following:

ae− b2 = − 1

λ

(
1− 2mr

ρ

)
· sin2 ϑ

(
r2 + a2 +

2mra2 sin2 ϑ

ρ

)
− 4m2r2a2 sin4 ϑ

λρ2

=
−ρ+ 2mr

λρ
· sin2 ϑ(r2 + a2) +

−ρ+ 2mr

λρ
· 2mra2 sin4 ϑ

ρ
− 4m2r2a2 sin4 ϑ

λρ2

=
(−ρ+ 2mr) · sin2 ϑ(r2 + a2)

λρ
− 2mra2 sin4 ϑ

λρ
+

4m2r2a2 sin4 ϑ

λρ2

− 4m2r2a2 sin4 ϑ

λρ2

=
−ρ sin2 ϑ(a2 + r2) + 2mr3 sin2 ϑ+ 2mra2 sin2 ϑ cos2 ϑ

λρ

=
−ρ sin2 ϑ(a2 + r2) + 2mr sin2 ϑ(r2 + a2 cos2 ϑ)

λρ

=
ρ(− sin2 ϑ(r2 + a2 − 2mr))

λρ
= −1

λ
sin2 ϑ ·∆
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b

ae− b2
=

2mra sin2 ϑ√
λρ

− 1
λ

sin2 ϑ ·∆
= −
√
λ

2mra

ρ∆

a

ae− b2
=
− 1
λ

(
a− 2mr

ρ

)
− 1
λ

sin2 ϑ ·∆
=

ρ− 2mr

sin2 ϑ · ρ∆

e

ae− b2
=

(
r2 + a2 + 2mra2 sin2 ϑ

ρ

)
sin2 ϑ

− 1
λ

sin2 ϑ ·∆

=
−λ((r2 + a2)ρ+ 2mra2 − 2mra2 cos2 ϑ)

∆ρ

=
−λ
∆ρ

(r4 + r2a2 cos2 ϑ+ a2r2 + a4 cos2 +2mra2 − 2mra2 cos2 ϑ)

=
−λ
∆ρ

(a2 cos2 ϑ(r2 − 2mr + a2) + r2(r2 − 2mr + a2) + 2mr(r2 + a2))

=
−λ
∆ρ

(∆ρ+ 2mr(r2 + a2)) = −λ
(

1 +
2mr(r2 + a2)

∆ρ

)
.

If we now again replace m by λ we get for (hij(λ)):

(hij(λ)) =


−λ
(

1 + 2mr(r2+a2)e∆ρ
)

0 0 −
√
λ2mra

ρe∆
0

e∆
ρ

0 0

0 0 1
ρ

0

−
√
λ2mra

ρe∆ 0 0 ρ−2mr

sin2 ϑ·ρe∆

 ,

with ρ := r2 + a2 cos2 ϑ and ∆̃ := r2 − 2λr + a2.

The Christoffel symbols A.2.2 For the Christoffel symbols of the extended
Kerr spacetime we first have to invert (gij(λ)). The calculations are very simi-
lar to the ones above:

a 0 0 b
0 c 0 0
0 0 d 0
b 0 0 e


−1

=


e

ae−b2 0 0 −b
ae−b2

0 1
c

0 0
0 0 1

d
0

−b
ae−b2 0 0 a

ae−b2

 .

Now we have to consider

(gij(λ)) =


1− 2λr

ρ
0 0 2λ

3
2 ra sin2 ϑ
ρ

0 −λ ρe∆ 0 0

0 0 −λρ 0
2λ

3
2 ra sin2 ϑ
ρ

0 0 −λ
(
r2 + a2 + 2λra2 sin2 ϑ

ρ

)
sin2 ϑ


with ρ := r2 + a2 cos2 ϑ and ∆̃ := r2 − 2λr + a2.
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So we have to calculate the following:

ae− b2 =

(
1− 2λr

ρ

)
·
(
−λ sin2 ϑ

(
r2 + a2 +

2λra2 sin2 ϑ

ρ

))
− 4λ3r2a2 sin4 ϑ

ρ2

= − λ sin2 ϑ(r2 + a2)− 2λ2ra2 sin4 ϑ

ρ
+

2λ2r sin2 ϑ(r2 + a2)

ρ

+
4λ3r2a2 sin4 ϑ

ρ2
− 4λ3r2a2 sin4 ϑ

ρ2

= − λ sin2 ϑ

(
(r2 + a2)(r2 + a2 cos2 ϑ)− 2λra2 cos2 ϑ− 2λr3

ρ

)
= − λ sin2 ϑ

(
(r2 + a2)(r2 + a2 cos2 ϑ)− 2λr(a2 cos2 ϑ+ r2)

ρ

)
= − λ sin2 ϑ

(
ρ(r2 − 2λr + a2)

ρ

)
= −λ sin2 ϑ · ∆̃

e

ae− b2
=
−λ sin2 ϑ

(
r2 + a2 + 2λra2 sin2 ϑ

ρ

)
−λ sin2 ϑ · ∆̃

=
(r2 + a2)ρ+ 2λra2 − 2λra2 cos2 ϑ

∆̃ρ

=
(r4 + r2a2 cos2 ϑ+ a2r2 + a4 cos2 ϑ+ 2λra2 − 2λra2 cos2 ϑ)

∆̃ρ

=
1

∆̃ρ
(a2 cos2 ϑ(r2 − 2λr + a2) + r2(r2 − 2λr + a2) + 2λr(r2 + a2))

=
(∆̃ρ+ 2λr(r2 + a2))

∆̃ρ
= 1 +

2λr(r2 + a2)

∆̃ρ

− b

ae− b2
=
−2λ

3
2 ra sin2 ϑ

−λ sin2 ϑ · ∆̃ρ
=

2
√
λra

∆̃ρ

a

ae− b2
=

1− 2λr
ρ

−λ sin2 ϑ · ∆̃
=

ρ− 2λr

−λ sin2 ϑ · ∆̃ρ
.

Now we calculate the derivations of the components of (gij(λ)) with regard to the
corresponding coordinates. As the components only depend on r and ϑ, we only
have to calculate the following:

∂a

∂r
= ∂r

(
1− 2λr

r2 + a2 cos2 ϑ

)
=
−2λ(r2 + a2 cos2 ϑ) + 2λr · 2r

ρ2

=
2λ(r2 − a2 cos2 ϑ)

ρ2

∂b

∂r
= ∂r

(
2λ

3
2 ra sin2 ϑ

r2 + a2 cos2 ϑ

)
=

2λ
3
2a sin2 ϑ(r2 + a2 cos2 ϑ)− 4λ

3
2 r2a sin2 ϑ

ρ2

=
−2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2
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∂c

∂r
= ∂r

(
−λ r

2 + a2 cos2 ϑ

r2 − 2λr + a2

)
= −λ2r(r2 − 2λr + a2)− (r2 + a2 cos2 ϑ)(2r − 2λ)

∆̃2

=− λ2ra2 sin2 ϑ− 2λ(r2 − a2 cos2 ϑ)

∆̃2

∂d

∂r
= ∂r

(
−λ(r2 + a2 cos2 ϑ)

)
= −2λr

∂e

∂r
= ∂r

(
−λ sin2 ϑ

(
r2 + a2 +

2λra2 sin2 ϑ

r2 + a2 cos2 ϑ

))
=− 2λr sin2 ϑ− λ sin2 ϑ

2λa2 sin2 ϑ(r2 + a2 cos2 ϑ)− 4λr2a2 sin2 ϑ

ρ2

=− 2λ sin2 ϑ

(
rρ2 − λa2 sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

)
∂a

∂ϑ
= ∂ϑ

(
1− 2λr

r2 + a2 cos2 ϑ

)
=
−2λr · 2a2 cosϑ sinϑ

ρ2
=
−4λra2 sinϑ cosϑ

ρ2

∂b

∂ϑ
= ∂ϑ

(
2λ

3
2 ra sin2 ϑ

r2 + a2 cos2 ϑ

)

=
4λ

3
2 ra sinϑ cosϑ(r2 + a2 cos2 ϑ) + 4λ

3
2 ra3 sin3 ϑ cosϑ

ρ2

=
4λ

3
2 ra sinϑ cosϑ(r2 + a2 sin 2ϑ+ a2 cos2 ϑ)

ρ2
=

4λ
3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

∂c

∂ϑ
= ∂ϑ

(
−λ r

2 + a2 cos2 ϑ

r2 − 2λr + a2

)
=

2λa2 sinϑ cosϑ

∆̃
∂d

∂ϑ
= ∂ϑ

(
−λ(r2 + a2 cos2 ϑ)

)
= 2λa2 sinϑ cosϑ

∂e

∂ϑ
= ∂ϑ

(
−λ(r2 + a2) sin2 ϑ− 2λ2ra2 sin4 ϑ

r2 + a2 cos2 ϑ

)
= −2λ(r2 + a2) sinϑ cosϑ

− 8λ2ra2 sin3 ϑ cosϑ(r2 + a2 cos2 ϑ) + 2λ2ra2 sin4 ϑ(2a2 sinϑ cosϑ)

ρ2

=
−2λ sinϑ cosϑ

ρ2
(r6 + a2r4 + 2r4a2 cos2 ϑ+ 2r2a4 cos2 ϑ+ r2a4 cos4 ϑ

+ a6 cos4 ϑ+ 4λr3a2 − 4λr3a2 cos2 ϑ+ 2λra4 − 2λra4 cos2 ϑ

+ 2λra4 cos2 ϑ− 2λra4 cos4 ϑ)

=
−2λ sinϑ cosϑ

ρ2
(a4 cos4 ϑ(a2 − 2λr + r2) + 2r2a2 cos2 ϑ(a2 − 2λr + r2)

+ r4(a2 − 2λr + r2) + 2λr5 + 4λr3a2 + 2λra4)

=
−2λ sinϑ cosϑ(∆̃ρ2 + 2λr(r2 + a2)2)

ρ2
.
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Now we are able to calculate the Christoffel symbols of the extended Kerr space-
time. We get:

Γ0
00 = 0

Γ1
00 =

1

2
g11(∂0g01 + ∂0g01 − ∂1g00) = −1

2

(
−1

λ
· ∆̃

ρ
· 2λ(r2 − a2 cos2 ϑ)

ρ2

)

=
∆̃(r2 − a2 cos2 ϑ)

ρ3

Γ2
00 =

1

2
g22(−∂2g00) =

1

2

(
− 1

λρ
· 4λra2 sinϑ cosϑ

ρ2

)
=
−2ra2 sinϑ cosϑ

ρ3

Γ3
00 = 0

Γ0
01 = Γ0

10 =
1

2
g00(∂0g10 + ∂1g00 − ∂0g01) +

1

2
g03(∂0g13 + ∂1g03 − ∂3g01)

=
1

2

(
(∆̃ρ+ 2λr(r2 + a2))

∆̃ρ
· 2λ(r2 − a2 cos2 ϑ)

ρ2

+
2
√
λra

∆̃ρ
· −2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

)

=
λ(r2 − a2 cos2 ϑ)

ρ3∆̃
(ρ∆̃ + 2λr((r2 + a2)− a2 sin2 ϑ))

=
λ(r2 − a2 cos2 ϑ)

ρ3∆̃
(ρ∆̃ + 2λr · ρ)

=
λ(r2 − a2 cos2 ϑ)

ρ3∆̃
(ρ(r2 − 2λr + a2 + 2λr))

=
λ(r2 − a2 cos2 ϑ)(r2 + a2)

ρ2∆̃

Γ0
02 = Γ0

20 =
1

2
g00(∂0g20 + ∂2g00 − ∂0g02) +

1

2
g03(∂0g23 + ∂2g03 − ∂3g02)

=
1

2

(
(∆̃ρ+ 2λr(r2 + a2))

∆̃ρ
· −4λra2 sinϑ cosϑ

ρ2

+
2
√
λra

∆̃ρ
· 4λ

3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

)

=
4λra2 sinϑ cosϑ

ρ3∆̃
(−ρ∆̃− 2λr(r2 + a2) + 2λr(r2 + a2))

=
−4λra2 sinϑ cosϑ

ρ2

Γ0
03 = Γ0

30 = 0

Γ0
11 = 0
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Γ0
22 = 0

Γ0
33 = 0

Γ1
01 = Γ1

10 = 0

Γ2
02 = Γ2

20 = 0

Γ3
03 = Γ3

30 = 0

Γ2
01 = Γ2

10 = 0

Γ1
02 = Γ1

20 = 0

Γ0
12 = Γ0

21 = 0

Γ3
01 = Γ3

10 =
1

2
g30(∂0g10 + ∂1g00 − ∂0g01) +

1

2
g33(∂0g13 + ∂1g03 − ∂3g01)

=
1

2

(
2
√
λra

∆̃ρ
· 2λ(r2 − a2 cos2 ϑ)

ρ2

+
ρ− 2λr

−λ sin2 ϑ · ∆̃ρ
· −2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

)

=

√
λa(r2 − a2 cos2 ϑ)(2λr + ρ− 2λr)

∆̃ρ3
=

√
λa(r2 − a2 cos2 ϑ)

∆̃ρ2

Γ3
02 = Γ3

20 =
1

2
g30(∂0g20 + ∂2g00 − ∂0g02) +

1

2
g33(∂0g23 + ∂2g03 − ∂3g02)

=
1

2

(
2
√
λra

∆̃ρ
· −4λra2 sinϑ cosϑ

ρ2

+
ρ− 2λr

−λ sin2 ϑ · ∆̃ρ
· 4λ

3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

)

=
−2
√
λra cosϑ

sinϑ · ∆̃ρ3
(ρ(r2 + a2)− 2λr(r2 + a2 − a2 sin 2ϑ))

=
−2
√
λra cosϑ

sinϑ · ∆̃ρ3
(ρ(r2 + a2)− 2λr · ρ) =

−2
√
λra cosϑ

sinϑ · ρ2

Γ0
13 = Γ0

31 =
1

2
g00(∂1g30 + ∂3g10 − ∂0g13) +

1

2
g03(∂1g33 + ∂3g13 − ∂3g13)

=
1

2

(
ρ∆̃ + 2λr(r2 + a2)

ρ∆̃
· −2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

+
2
√
λra

∆̃ρ
· −2λ sin2 ϑ

ρ2
(rρ2 − λa2 sin2 ϑ(r2 − a2 cos2 ϑ))

)

=
−λ 3

2a sin2 ϑ

ρ3∆̃
[(ρ∆̃ + 2λr(r2 + a2)) · (r2 − a2 cos2 ϑ) + 2r2ρ2

− 2λra2 sin2 ϑ(r2 − a2 cos2 ϑ)]

=
−λ 3

2a sin2 ϑ

ρ3∆̃
[(ρ∆̃ + 2λr(r2 + a2 − a2 sin2 ϑ)) · (r2 − a2 cos2 ϑ) + 2r2ρ2]
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=
−λ 3

2a sin2 ϑ

ρ3∆̃
[ρ(r2 + a2) · (r2 − a2 cos2 ϑ) + 2r2ρ2]

=
−λ 3

2a sin2 ϑ

ρ2∆̃
[(r2 + a2) · (r2 − a2 cos2 ϑ) + 2r2ρ]

Γ0
23 = Γ0

32 =
1

2
g00(∂2g30 + ∂3g20 − ∂0g23) +

1

2
g03(∂2g33 + ∂3g23 − ∂3g23)

=
1

2

(
ρ∆̃ + 2λr(r2 + a2)

ρ∆̃
· 4λ

3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

+
2
√
λra

∆̃
· −2λ sinϑ cosϑ

ρ2
(∆̃ρ2 + 2λr(r2 + a2)2)

)

=
2λ

3
2 ra sinϑ cosϑ

ρ3∆̃
[ρ∆̃((r2 + a2)− ρ) + 2λr(r2 + a2)2 − 2λr(r2 + a2)2]

=
2λ

3
2 ra sinϑ cosϑ

ρ2
[(r2 + a2 − r2 − a2 cos2 ϑ)] =

2λ
3
2 ra3 sin3 ϑ cosϑ

ρ2

Γ1
30 = Γ1

03 =
1

2
g11(∂0g31 + ∂3g01 − ∂1g03) =

1

2

(
− ∆̃

λρ

)
· 2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

=−
√
λ∆̃ · a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ3

Γ2
30 = Γ2

03 =
1

2
g22(∂0g32 + ∂3g02 − ∂2g03) =

1

2

(
− 1

λρ

)
·

(
−4λ

3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

)

=
2
√
λra sinϑ cosϑ(r2 + a2)

ρ3

Γ1
11 =

1

2
g11(∂1g11 + ∂1g11 − ∂1g11)

=
1

2

(
− ∆̃

λρ

)
·
(
−λ2ra2 sin2 ϑ− 2λ(r2 − a2 cos2 ϑ)

∆̃2

)
=
ra2 sin2 ϑ− λ(r2 − a2 cos2 ϑ)

ρ∆̃

Γ2
11 =

1

2
g22(∂1g12 + ∂1g12 − ∂2g11) =

1

2

(
− 1

λρ

)
·
(
−2λa2 sinϑ cosϑ

∆̃

)
=
a2 sinϑ cosϑ

ρ∆̃

Γ3
11 = 0

Γ1
21 = Γ1

12 =
1

2
g11(∂2g11 + ∂1g21 − ∂1g21) =

1

2

(
− ∆̃

λρ

)
·
(

2λa2 sinϑ cosϑ

∆̃

)
=
−a2 sinϑ cosϑ

ρ
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Γ1
31 = Γ1

13 = 0

Γ3
12 = Γ3

21 = 0

Γ2
13 = Γ2

31 = 0

Γ1
23 = Γ1

32 = 0

Γ1
22 =

1

2
g11(∂2g21 + ∂2g21 − ∂1g22) =

1

2

(
−∆̃

λρ

)
· (2λr) = −∆̃r

ρ

Γ3
22 = 0

Γ2
21 = Γ2

12 =
1

2
g22(∂2g12 + ∂1g22 − ∂2g21) =

1

2

(
−1

λρ

)
· (−2λr) =

r

ρ

Γ2
22 =

1

2
g22(∂2g22 + ∂2g22 − ∂2g22) =

1

2

(
− 1

λρ

)
· 2λa2 cosϑ sinϑ

=− a2 cosϑ sinϑ

ρ

Γ2
23 = Γ2

32 = 0

Γ1
33 =

1

2
g11(∂3g31 + ∂3g31 − ∂1g33)

=
1

2

(
− ∆̃

λρ

)
· 2λ sin2 ϑ(rρ2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

ρ2

=− ∆̃ sin2 ϑ(rρ2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

ρ3

Γ2
33 =

1

2
g22(∂3g32 + ∂3g32 − ∂2g33)

=
1

2

(
− 1

λρ

)
· 2λ sinϑ cosϑ(∆̃ρ2 + 2λr(r2 + a2)2)

ρ2

=− sinϑ cosϑ(∆̃ρ2 + 2λr(r2 + a2)2)

ρ3

Γ3
33 = 0

Γ3
31 = Γ3

13 =
1

2
g30(∂3g10 + ∂1g30 − ∂0g31) +

1

2
g33(∂3g13 + ∂1g33 − ∂3g31)

=
1

2

(
2
√
λra

∆̃ρ
·

(
−2λ

3
2a sin2 ϑ(r2 − a2 cos2 ϑ)

ρ2

))

+
1

2
· ρ− 2λr

−λ sin2 ϑ · ∆̃ρ
· −2λ sin2 ϑ(rρ2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

ρ2

=
−2λ2ra2 sin2 ϑ(r2 − a2 cos2 ϑ)

∆̃ρ3

+
(ρ− 2λr)(rρ2 − λa2 sin2 ϑ(r2 − a2 cosϑ))

∆̃ρ3

=
−λ(2r2ρ− a2 sin2 ϑ(r2 − a2 cosϑ)) + rρ2

∆̃ρ2
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Γ3
32 = Γ3

23 =
1

2
g30(∂3g20 + ∂2g30 − ∂0g32) +

1

2
g33(∂3g23 + ∂2g33 − ∂3g32)

=
1

2

(
2
√
λra

∆̃ρ
·

(
4λ

3
2 ra sinϑ cosϑ(r2 + a2)

ρ2

))

+
1

2
· ρ− 2λr

−λ sin2 ϑ · ∆̃ρ
· −2λ cosϑ sinϑ(∆̃ρ2 + 2λr(a2 + r2)2)

ρ2

=
cosϑ(4λ2r2a2 sin2 ϑ(r2 + a2) + (ρ− 2λr)(∆̃ρ2 + 2λr(r2 + a2)2))

sinϑ · ∆̃ρ3

=
cosϑ(4λ2r2a2 sin2 ϑ(r2 + a2) + ρ3∆̃− 2λr∆̃ρ2 + 2λr(r2 + a2)2 · ρ)

sinϑ · ∆̃ρ3

+
cosϑ(−4λ2r2(r2 + a2)2)

sinϑ · ∆̃ρ3

=
cosϑ(−4λ2r2(r2 + a2)(−a2 sin2 ϑ+ r2 + a2) + ρ3∆̃− 2λr∆̃ρ2)

sinϑ · ∆̃ρ3

+
cosϑ(2λr(r2 + a2)2 · ρ)

sinϑ · ∆̃ρ3

=
cosϑ(2λr · ρ(r2 + a2)(−2λr + r2 + a2) + ρ3∆̃− 2λr∆̃ρ2

sinϑ · ∆̃ρ3

=
cosϑ(2λr · ρ∆̃(r2 + a2 − r2 − a2 cos2 ϑ) + ρ3∆̃

sinϑ · ∆̃ρ3

=
cosϑ(2λra2 sin2 ϑ+ ρ2)

sinϑ · ρ2
.

The Christoffel symbols of the limit connection A.2.3 The Christoffel sym-
bols of the limit connection have the form:

Γ1
00 =

(r2 + a2)(r2 − a2 cos2 ϑ)

(r2 + a2 cos2 ϑ)3

Γ2
00 =

−2ra2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)3

Γ1
11 =

ra2 sin2 ϑ

(r2 + a2 cos2 ϑ)(r2 + a2)

Γ2
11 =

a2 sinϑ cosϑ

(r2 + a2 cos2 ϑ)(r2 + a2)

Γ1
21 = Γ1

12 =
−a2 sinϑ cosϑ

r2 + a2 cos2 ϑ

Γ1
22 = − (a2 + r2)r

r2 + a2 cos2 ϑ
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Γ2
21 = Γ2

12 =
r

r2 + a2 cos2 ϑ

Γ2
22 = − a2 cosϑ sinϑ

r2 + a2 cos2 ϑ

Γ1
33 = −r sin2 ϑ(r2 + a2)

r2 + a2 cos2 ϑ

Γ2
33 = −sinϑ cosϑ(r2 + a2)

r2 + a2 cos2 ϑ

Γ3
31 = Γ3

13 =
r

r2 + a2

Γ3
32 = Γ3

23 =
cosϑ

sinϑ
Γkij = 0, otherwise.

The components of the Ricci tensor of the limit A.2.4 Now we calculate the
components of the Ricci tensor of the limit. The following holds:

Ric00 = ∂jΓ
j
00 − ∂0Γjj0 + ΓrjrΓ

r
00 − Γj0rΓ

r
j0

= ∂1Γ1
00 + ∂2Γ2

00 + Γ1
00(Γ1

11 + Γ2
21 + Γ3

31) + Γ2
00(Γ1

12 + Γ2
22 + Γ3

32)

=
1

ρ4
(−2r5 + 4r3a2 cos2 ϑ− 4r3a2 sin2 ϑ+ 2ra4 sin 2ϑ cos2 ϑ+ 6ra4 cos2 ϑ

− 2r3a2 cos2 ϑ+ 2r3a2 sin2 ϑ− 2ra4 cos4 ϑ− 10ra4 sin2 ϑ cos2 ϑ)

+
(r2 + a2)(r2 − a2 cos2 ϑ)

ρ3

(
ra2 sin2 ϑ

ρ(r2 + a2)
+
r

ρ
+

r

r2 + a2

)
− 2ra2 sinϑ cosϑ

ρ3

(
−2a2 sinϑ cosϑ

ρ
+

cosϑ

sinϑ

)
=

1

ρ4
(−2r5 + 2r3a2 cos2 ϑ− 2r3a2 sin2 ϑ− 8ra4 sin2 ϑ cos2 ϑ

+ 6ra4 cos4 ϑ− 2ra4 cos4 ϑ+ r3a2 sin2 ϑ+ (r3 + ra2)(r2 − a2 cos2 ϑ)

+ r(r4 − a4 cos4 ϑ) + 4ra4 sin2 ϑ cos2 ϑ− 2ra2 cos2 ϑ(r2 + a2 cos2 ϑ)

=
1

ρ4
(−2r5 + 2r3a2 cos2 ϑ− r3a2 sin2 ϑ− 5ra4 sin2 ϑ cos2 ϑ+ 6ra4 cos2 ϑ

− 2ra4 cos4 ϑ+ r5 + r3a2 − r3a2 cos2 ϑ− ra4 cos2 ϑ+ r5 − ra4 cos4 ϑ

− 2r3a2 cos2 ϑ− 2ra4 cos4 ϑ)

=
1

ρ4
(−5ra4 cos4 ϑ− 5ra4 sin2 ϑ cos2 ϑ+ 5ra4 cos2 ϑ)

=
−5ra4 cos2 ϑ

ρ4
(sin2 ϑ+ cos2 ϑ− 1) = 0

Ric01 = Ric10 = ∂jΓ
j
01 − ∂0Γjj1 + ΓrjrΓ

r
01 − Γj0rΓ

r
j1 = 0

Ric02 = Ric20 = ∂jΓ
j
02 − ∂0Γjj2 + ΓrjrΓ

r
02 − Γj0rΓ

r
j2 = 0

Ric03 = Ric30 = ∂jΓ
j
03 − ∂0Γjj3 + ΓrjrΓ

r
03 − Γj0rΓ

r
j3 = 0
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Ric11 = ∂jΓ
j
11 − ∂1Γjj1 + ΓrjrΓ

r
11 − Γj1rΓ

r
j1

= ∂1Γ1
11 + ∂2Γ2

11 − ∂1Γ1
11 − ∂1Γ2

21 − ∂1Γ3
31 + Γ1

11(Γ1
11 + Γ2

21 + Γ3
31)

+ Γ2
11(Γ1

12 + Γ2
22 + Γ3

32)− Γ1
11Γ1

11 − Γ2
11Γ1

21 − Γ1
12Γ2

11 − Γ2
12Γ2

21 − Γ3
13Γ3

31

=
a2 cos2 ϑ(r2 + a2)− a2r2 sin2 ϑ

ρ2(r2 + a2)
− −r

2 + a2 cos 2ϑ

ρ2
− −r

2 + a2

(r2 + a2)2

+
ra2 sin2 ϑ

ρ(r2 + a2)

(
r

ρ
+

r

(r2 + a2)

)
+
a2 sinϑ cosϑ

ρ(r2 + a2)
· cosϑ

sinϑ

− r2

ρ2
− r2

(r2 + a2)2

=
1

ρ2(r2 + a2)2
[−a2r4 sin2 ϑ− a2(r4 + 2r2a2 cos2 ϑ+ a4 cos4 ϑ)

+ 2r4a2 sin2 ϑ+ r2a4 sin2 ϑ cos2 ϑ+ (r2a2 cos2 ϑ+ a4 cos4 ϑ)(r2 + a2)]

=
1

ρ2(r2 + a2)2
[−a2r4 − 2r2a4 cos2 ϑ− a6 cos4 ϑ+ r4a2 sin2 ϑ

+ r2a4 sin2 ϑ cos2 ϑ+ r4a2 cos2 ϑ+ r2a4 cos2 ϑ+ a4r2 cos4 ϑ+ a6 cos4 ϑ]

=
1

ρ2(r2 + a2)2
[−a2r4 − 2r2a4 cos2 ϑ+ r4a2 − r4a2 cos2 ϑ

+ r2a4 cos2 ϑ− r2a4 cos4 ϑ+ r4a2 cos2 ϑ+ r2a4 cos2 ϑ

+ a4r2 cos4 ϑ] = 0

Ric21 = Ric12 = ∂jΓ
j
21 − ∂2Γjj1 + ΓrjrΓ

r
21 − Γj2rΓ

r
j1

= ∂1Γ1
21 + ∂2Γ2

21 − ∂2Γ1
11 − ∂2Γ2

21 − ∂2Γ3
31 + Γ2

21(Γ1
12 + Γ2

22 + Γ3
32)

+ Γ1
21(Γ1

11 + Γ2
21 + Γ3

31)− Γ1
21Γ1

11 − Γ2
21Γ1

21 − Γ1
22Γ2

11 − Γ2
22Γ2

21 − Γ3
23Γ3

31

=
2ra2 sinϑ cosϑ

ρ2
− 2ra2 sinϑ cosϑ

ρ2
+
r

ρ
· cosϑ

sinϑ

− a2 sinϑ cosϑ

ρ2

(
r

ρ
+

r

r2 + a2

)
+
r(a2 + r2)

ρ
· a

2 sinϑ cosϑ

ρ(r2 + a2)

− r

r2 + a2
· cosϑ

sinϑ

=
cosϑ

sinϑ

(
r

ρ
− r

r2 + a2

)
− 2r3a2 sinϑ cosϑ+ ra4 sinϑ cosϑ+ ra4 sinϑ cos3 ϑ

ρ2(r2 + a2)

+
ra4 sinϑ cosϑ+ r3a2 sinϑ cosϑ

ρ2(r2 + a2)

=
r3a2 sinϑ cosϑ+ ra4 sinϑ cos3 ϑ

ρ2(r2 + a2)
− r3a2 sinϑ cosϑ+ ra4 sinϑ cos3 ϑ

ρ2(r2 + a2)

= 0

Ric31 = Ric13 = ∂jΓ
j
31 − ∂3Γjj1 + ΓrjrΓ

r
31 − Γj3rΓ

r
j1 = 0
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Ric22 = ∂jΓ
j
22 − ∂2Γjj2 + ΓrjrΓ

r
22 − Γj2rΓ

r
j2

= ∂1Γ1
22 + ∂2Γ2

22 − ∂2Γ1
12 − ∂2Γ2

22 − ∂2Γ3
32 + Γ1

22(Γ1
11 + Γ2

21 + Γ3
31)

+ Γ2
22(Γ1

12 + Γ2
22 + Γ3

32)− Γ1
21Γ1

12 − Γ2
21Γ1

22 − Γ1
22Γ2

12 − Γ2
22Γ2

22 − Γ3
23Γ3

32

=
−r4 + r2a2 − 3r2a2 cos2 ϑ− a2 cos2 ϑ

ρ2

− r2a2 sin2 ϑ− r2a2 cos2 ϑ− a4 cos2 ϑ

ρ2

+
1

sin2 ϑ
− r2(r2 + a2)

ρ

(
ra2 sin2 ϑ

ρ(r2 + a2)
+

r

r2 + a2

)
− a2 cosϑ sinϑ

ρ
· cosϑ

sinϑ
+
r2(r2 + a2)

ρ2
− cos2 ϑ

sin2 ϑ

=
1

ρ2
[−r4 + r2a2 − 2r2a2 cos2 ϑ− r2a2 sin2 ϑ− r2a2 sin2 ϑ− r4 − r2a2 cos2 ϑ

− a2 cos2 ϑ(r2 + a2 cos2 ϑ) + (r2 + a2 cos2 ϑ)2 + a2r2 + r4]

=
1

ρ2
[2r2a2 − 3r2a2 cos2 ϑ− 2r2a2 sin2 ϑ− a2r2 cos2 ϑ− a4 cos4 ϑ

− r4 + r4 + 2r2a2 cos2 ϑ+ a4 cos4 ϑ]

=
1

ρ2
[2r2a2 − 2r2a2(cos2 ϑ+ sin2 ϑ)] = 0

Ric23 = Ric32 = ∂jΓ
j
23 − ∂2Γjj3 + ΓrjrΓ

r
23 − Γj2rΓ

r
j3 = 0

Ric33 = ∂jΓ
j
33 − ∂3Γjj3 + ΓrjrΓ

r
33 − Γj3rΓ

r
j3

= ∂1Γ1
33 + ∂2Γ2

33 + Γ1
33(Γ1

11 + Γ2
21 + Γ3

31) + Γ2
33(Γ1

12 + Γ2
22 + Γ3

32)

− Γ1
33Γ3

13 − Γ2
33Γ3

23 − Γ3
31Γ1

33 − Γ3
32Γ2

33

=
−r4 sin2 ϑ− a4 sin2 ϑ− 3r2a2 sin2 ϑ cos2 ϑ+ r2a2 sin2 ϑ

ρ2

+
−r4 cos2−r2a2 cos4 ϑ− r2a2 cos2 ϑ− a4 cos4 ϑ

ρ2

+
r4 sin 2ϑ+ r2a2 sin2 ϑ

ρ2
− r sin2 ϑ(r2 + a2)

ρ

(
ra2 sin2 ϑ

ρ(r2 + a2)
+

r3 + ra2

ρ(r2 + a2)

)
− sinϑ cosϑ(r2 + a2)

ρ

(
−2a2 cosϑ sinϑ

ρ

)
+
r sin2 ϑ(r2 + a2)

ρ
· r

r2 + a2
+

sinϑ cosϑ(r2 + a2)

ρ
· cosϑ

sinϑ

=
1

ρ2
[−r4 sin2 ϑ− a4 sin2 ϑ cos2 ϑ− 3r2a2 sin2 ϑ cos2 ϑ+ r2a2 sin2 ϑ

− r4 cos2 ϑ− r2a2 cos4 ϑ− r2a2 cos2 ϑ− a4 cos4 ϑ+ r4 sin2 ϑ

+ r2a2 sin 2ϑ− r2a2 sin2 ϑ cos2 ϑ− a4 sin2 ϑ cos2 ϑ− r2a2 sin4 ϑ

− r4 sin2 ϑ− r2a2 sin2 ϑ+ 2r2a2 sin2 ϑ cos2 ϑ+ 2a4 sin2 ϑ cos2 ϑ

+ r4 sin2 ϑ+ r2a2 sin2 ϑ cos2 ϑ+ r4 cos2 ϑ+ r2a2 cos4 ϑ

+ a2r2 cos2 ϑ+ a4 cos4 ϑ]

139



A.2. The Kerr spacetime

=
1

ρ2
[−r2a2 sin2 ϑ cos2 ϑ+ r2a2 sin2 ϑ− r2a2 sin4 ϑ]

=
1

ρ2
[−r2a2 sin2 ϑ cos2 ϑ+ r2a2 sin2 ϑ− r2a2 sin2 ϑ+ r2a2 sin2 ϑ cos2 ϑ] = 0.

The components of the curvature tensor A.2.5 Now we calculate the com-
ponents of the curvature tensor. The following holds:

Rl
ijk = ∂jΓ

l
ki − ∂kΓlji + ΓljrΓ

r
ki − ΓlkrΓ

r
ij.

As the connection is symmetric,

Rl
ijk = −Rl

ikj

also holds. We only care for the components which do not vanish immediately.
First, we have to calculate the derivations of the Christoffel symbols - of course,
only for i = 1 (which means for r) and for i = 2 (which means for ϑ). As we
are only interested in the asymptotical behaviour of the components in r, we just
examine this behaviour. We then get:

∂1Γ1
00 = ∂r

(
r4 − 2λr3 + a2r2 sin 2ϑ+ 2λra2 cos2 ϑ− a4 cos2 ϑ

(r2 + a2 cos2 ϑ)3

)
=

4r3 − 6λr2 + 2ra2 sin2 ϑ+ 2λa2 cos2 ϑ

ρ3

− (r4 − 2λr3 + r2a2 sin 2ϑ+ 2λra2 cos2 ϑ− a4 cos2 ϑ) · 3 · 2r
ρ4

= O
(

1

r3

)
∂2Γ1

00 = ∆̃ · ρ · 2a
2 sinϑ cosϑ+ (r2 − a2 cos2 ϑ) · 3 · 2a2 cosϑ sinϑ

ρ4
= O

(
1

r4

)
∂1Γ2

00 =
−2a2 cos2 ϑ · ρ+ 2ra2 sinϑ cosϑ · 3 · 2r

ρ4
= O

(
1

r6

)
∂2Γ2

00 =
ρ · (−2ra2 cos2 ϑ+ 2ra2 sin 2ϑ) + 2ra2 sinϑ cosϑ · 3 · (−2a2 cosϑ sinϑ)

ρ4

= O
(

1

r5

)
∂1Γ0

01 = λ ·

(
(4r3 + 2ra2 sin2 ϑ)ρ∆̃− (r4 + r2a2 sin 2ϑ− a4 cos2 ϑ)(4r∆̃ + ρ(2r − 2λ))

ρ3∆̃2

)

= O
(

1

r3

)
∂2Γ0

01 =
λ(r2 + a2)

∆̃
· 2a2 sinϑ cosϑ · ρ− (r2 − a2 cos2 ϑ) · 2 · (−2a2 sinϑ cosϑ)

ρ3

= O
(

1

r4

)
∂1Γ0

02 =
−4λa2 sinϑ cosϑ · ρ+ 4λra2 sinϑ cosϑ · 2 · 2r

ρ3
= O

(
1

r4

)
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∂2Γ0
02 =

(−4λra2 cos2 ϑ+ 4λra2 sin2 ϑ)ρ+ 4λra2 sinϑ cosϑ · 2 · (−2a2 sinϑ cosϑ)

ρ3

= O
(

1

r3

)
∂1Γ3

01 =
√
λa · 2r∆̃ρ− (r2 − a2 cos2 ϑ)((2λ− 2r)ρ+ 2 · 2r∆̃)

∆̃2ρ3
= O

(
1

r5

)
∂2Γ3

01 =
2
√
λa3 sinϑ cosϑ(3r2 − a2 cos2 ϑ)

∆̃ρ3
= O

(
1

r6

)
∂1Γ3

02 =
2
√
λa cosϑ(3r2 − a2 cos2 ϑ)

sinϑρ3
= O

(
1

r4

)
∂2Γ3

02 =
−2
√
λra(−ρ+ 4a2 sin 2ϑ cos2 ϑ)

sin 2ϑρ3
= O

(
1

r3

)
∂1Γ0

13 =

(
(4r3 + 2ra2 sin2 ϑ)ρ∆̃− (r4 + r2a2 sin 2ϑ− a4 cos2 ϑ)(4r∆̃ + ρ(2r − 2λ))

ρ3∆̃2

+
2∆̃ρ− 2r2(2r∆̃ + (2r − 2λ)ρ)

ρ2∆̃2

)
· (−λ

3
2a sin2 ϑ) = O

(
1

r3

)
∂2Γ0

13 =
−λ 3

2a

∆̃

(
(r2 + a2)(2 sinϑ cosϑ(r2 − a2 cos2 ϑ) + sin 2ϑ(2a2 sinϑ cosϑ))

ρ2

−sin 2ϑ(r2 − a2 cos2 ϑ) · 2 · (−2a2 cosϑ sinϑ)

ρ3
− 2r2(−2a2 sinϑ cosϑ)

ρ2

)
= O

(
1

r2

)
∂1Γ0

23 =
2λ

3
2a2 sin3 ϑ cosϑ(−3r2 + a2 cos2 ϑ)

ρ3
= O

(
1

r4

)
∂2Γ0

23 =
2λ

3
2a2r((3 sin2 ϑ cos2 ϑ− sin4 ϑ)ρ− sin3 ϑ cosϑ · 2(−2a2 sinϑ cosϑ))

ρ3

= O
(

1

r3

)
∂1Γ1

30 = −
√
λa sin2 ϑ

((2r − 2λ)(r2 − a2 cos2 ϑ) + 2r · ∆̃)ρ− (r2 − a2 cos2 ϑ)∆̃ · 3 · 2r
ρ4

= O
(

1

r3

)
∂2Γ1

30 = −
√
λa · ∆̃

(
2 sinϑ cosϑ(r2 − a2 cos2 ϑ) + sin2 ϑ · 2a2 sinϑ cosϑ

ρ3

−sin2 ϑ(r2 − a2 cos2 ϑ) · 3(−2a2 sinϑ cosϑ)

ρ4

)
= O

(
1

r2

)
∂1Γ2

30 = 2
√
λa sinϑ cosϑ

(3r2 + a2)ρ− (r3 + ra2) · 3 · 2r
ρ4

= O
(

1

r4

)
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∂2Γ2
30 = 2

√
λra(r2 + a2)

(cos2 ϑ− sin2 ϑ)ρ− sinϑ cosϑ · 3(−2a2 sinϑ cosϑ)

ρ4

= O
(

1

r3

)
∂1Γ1

11 =
(a2 sin2 ϑ− 2λr)∆̃ρ− (ra2 sin2 ϑ− λ(r2 − a2 cos2 ϑ))(2r · ∆̃ + (2r − 2λ)ρ)

∆̃2ρ2

= O
(

1

r3

)
∂2Γ1

11 =
1

∆̃
· 2a2 sinϑ cosϑ(r − λ)ρ− (ra2 sin2 ϑ− λ(r2 − a2 cos2 ϑ))(−2a2 sinϑ cosϑ)

ρ2

= O
(

1

r3

)
∂1Γ2

11 =
−a2 sinϑ cosϑ(2r∆̃ + (2r − 2λ)ρ)

ρ2∆̃2
= O

(
1

r5

)
∂2Γ2

11 =
(a2 cos2 ϑ− a2 sin2 ϑ)ρ− a2 sinϑ cosϑ(−2a2 sinϑ cosϑ)

∆̃ρ2
= O

(
1

r4

)
∂1Γ1

21 =
2ra2 sinϑ cosϑ

ρ2
= O

(
1

r3

)
∂2Γ1

21 =
−(−a2 sinϑ+ a2 cosϑ)ρ+ a2 sinϑ cosϑ(−2a2 sinϑ cosϑ)

ρ2
= O

(
1

r2

)
∂1Γ2

22 = ∂1Γ1
21 = O

(
1

r3

)
∂2Γ2

22 = ∂2Γ1
21 = O

(
1

r2

)
∂1Γ1

22 =
(−3r2 + 4λr − a2)ρ− (−r3 + 2λr2 − ra2) · 2r

ρ2
= const.

∂2Γ1
22 =

−2ra2 sinϑ cosϑ · ∆̃
ρ2

= O
(

1

r

)
∂1Γ2

21 =
a2 cos2 ϑ− r2

ρ2
= O

(
1

r2

)
∂2Γ2

21 =
2ra2 sinϑ cosϑ

ρ2
= O

(
1

r3

)
∂1Γ1

33 =− sin2 ϑ

(
((2r − 2λ)r + ∆̃)ρ− r · 2r · ∆̃

ρ2

−λa2 sin2 ϑ
ρ((2r − 2λ)(r2 − a2 cos2 ϑ) + 2r · ∆̃)− 2 · 2r(r2 − a2 cos2 ϑ)∆̃

ρ3

)
= const.
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∂2Γ1
33 =− ∆̃

(
2r sinϑ cosϑ · ρ− r sin2 ϑ(−2a2 sinϑ cosϑ)

ρ2

− λa2(4 sin3 ϑ cosϑ(r2 − a2 cos2 ϑ) + a2 sin4 ϑ(2a2 sinϑ cosϑ))

ρ3

+
λa2 sin4 ϑ(r2 − a2 cos2 ϑ) · 3(−2a2 sinϑ cosϑ)

ρ4

)
= O (r)

∂1Γ2
33 =− sinϑ cosϑ

(
(2r − 2λ)ρ− 2r∆̃

ρ2

+
(10λr4 + 12λr2a2 + 2λa4)ρ− (2λr5 + 4λr3a2 + 2λra4) · 3 · 2r

ρ4

)
= O

(
1

r2

)
∂2Γ2

33 =− ∆̃ · (cos2 ϑ− sin2 ϑ)ρ− sinϑ cosϑ(−2a2 sinϑ cosϑ)

ρ2

− 2λr(r2 + a2)2 · −2(−2a2 sinϑ cosϑ)

ρ4
= const.

∂1Γ3
31 =− 2λ · 2r · ∆̃ρ− r2((2r − 2λ)ρ+ 2r · ∆̃)

∆̃2ρ2

+ λa2 sin2 ϑ
2r · ∆̃ρ− (r2 − a2 cos2 ϑ)((2r − 2λ)ρ+ 2 · 2r · ∆̃)

∆̃2ρ3

+
∆̃− r(2r − 2λ)

∆̃2
= O

(
1

r2

)
∂2Γ3

31 =
1

∆̃

(
−2λr2 · 2a2 sinϑ cosϑ

ρ2

+ λa2 · 2 sinϑ cosϑ(r2 − a2 cos2 ϑ) + sin2 ϑ(2a2 sinϑ cosϑ)

ρ2

−sin2 ϑ(r2 − a2 cos2 ϑ) · 2(−2a2 sinϑ cosϑ)

ρ3

)
= O

(
1

r4

)
∂1Γ3

32 =
cosϑ

sinϑ
· 2λa2 sin2 ϑ · ρ− r · 2 · 2r

ρ3
= O

(
1

r4

)
∂2Γ3

32 = 2λra2 · (cos2 ϑ− sin2 ϑ)ρ− sinϑ cosϑ · 2(−2a2 sinϑ cosϑ)

ρ3
− 1

sin2 ϑ
= const.

Now we are able to calculate the asymptotical behaviour in r of the curvature
tensor of the extended Kerr spacetime. We only consider those components which
do not vanish immediately. (Remember:

Rl
ijk = ∂jΓ

l
ki − ∂kΓlji + ΓljrΓ

r
ki − ΓlkrΓ

r
ij,

and as the connection is symmetric, Rl
ijk = −Rl

ikj also holds.) We then get:

R0
030 = −R0

003 = Γ0
31Γ1

00 + Γ0
32Γ2

00 − Γ0
01Γ1

03 − Γ0
02Γ2

03

= O
(

1

r4

)
+O

(
1

r8

)
+O

(
1

r4

)
+O

(
1

r6

)
= O

(
1

r4

)
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R0
110 = −R0

101 = ∂1Γ0
01 + Γ0

10Γ0
01 + Γ0

13Γ3
01 − Γ0

01Γ1
11 − Γ0

02Γ2
11

= O
(

1

r3

)
+O

(
1

r4

)
+O

(
1

r6

)
+O

(
1

r4

)
+O

(
1

r7

)
= O

(
1

r3

)
R0

220 = −R0
202 = ∂2Γ0

02 + Γ0
20Γ0

02 + Γ0
23Γ3

02 − Γ0
01Γ1

22 − Γ0
02Γ2

22

= O
(

1

r3

)
+O

(
1

r6

)
+O

(
1

r6

)
+O

(
1

r

)
+O

(
1

r5

)
= O

(
1

r

)
R0

330 = −R0
303 = Γ0

31Γ1
03 + Γ0

32Γ2
03 − Γ0

01Γ1
33 − Γ0

02Γ2
33

= O
(

1

r4

)
+O

(
1

r6

)
+O

(
1

r

)
+O

(
1

r3

)
= O

(
1

r

)
R0

120 = −R0
102 = ∂2Γ0

01 + Γ0
20Γ0

01 + Γ0
23Γ3

01 − Γ0
01Γ1

12 − Γ0
02Γ2

12

= O
(

1

r4

)
+O

(
1

r5

)
+O

(
1

r7

)
+O

(
1

r4

)
+O

(
1

r4

)
= O

(
1

r4

)
R0

210 = −R0
201 = ∂1Γ0

02 + Γ0
10Γ0

02 + Γ0
13Γ3

02 − Γ0
01Γ1

21 − Γ0
02Γ2

21

= O
(

1

r4

)
+O

(
1

r5

)
+O

(
1

r5

)
+O

(
1

r4

)
+O

(
1

r4

)
= O

(
1

r4

)
R0

012 = −R0
021 = ∂1Γ0

20 − ∂2Γ0
10 + Γ0

13Γ3
20 − Γ0

23Γ3
01

= O
(

1

r4

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r7

)
= O

(
1

r4

)
R1

010 = −R1
001 = ∂1Γ1

00 + Γ1
11Γ1

00 + Γ1
12Γ2

00 − Γ1
00Γ0

01 − Γ1
03Γ3

01

= O
(

1

r3

)
+O

(
1

r4

)
+O

(
1

r7

)
+O

(
1

r4

)
+O

(
1

r6

)
= O

(
1

r3

)
R2

020 = −R0
002 = ∂2Γ2

00 + Γ2
21Γ1

00 + Γ2
22Γ2

00 − Γ2
00Γ0

02 − Γ2
03Γ3

02

= O
(

1

r5

)
+O

(
1

r3

)
+O

(
1

r7

)
+O

(
1

r8

)
+O

(
1

r6

)
= O

(
1

r3

)
R3

030 = −R3
003 = Γ3

31Γ1
00 + Γ3

32Γ2
00 − Γ3

01Γ1
03 − Γ3

02Γ2
03

= O
(

1

r3

)
+O

(
1

r5

)
+O

(
1

r6

)
+O

(
1

r6

)
= O

(
1

r3

)
R1

020 = −R1
002 = ∂2Γ1

00 + Γ1
21Γ1

00 + Γ1
22Γ2

00 − Γ1
00Γ0

02 − Γ1
03Γ3

02

= O
(

1

r4

)
+O

(
1

r4

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r5

)
= O

(
1

r4

)
R2

010 = −R2
001 = ∂1Γ2

00 + Γ2
11Γ1

00 + Γ2
12Γ2

00 − Γ2
00Γ0

01 − Γ2
03Γ3

01

= O
(

1

r6

)
+O

(
1

r6

)
+O

(
1

r6

)
+O

(
1

r7

)
+O

(
1

r7

)
= O

(
1

r6

)
R0

113 = −R0
131 = ∂1Γ0

31 + Γ0
10Γ0

31 + Γ0
13Γ3

31 − Γ0
31Γ1

11 − Γ0
32Γ2

11

= O
(

1

r3

)
+O

(
1

r4

)
+O

(
1

r3

)
+O

(
1

r4

)
+O

(
1

r7

)
= O

(
1

r3

)
R3

110 = −R3
101 = ∂1Γ3

01 + Γ3
10Γ0

01 + Γ3
13Γ3

01 − Γ3
01Γ1

11 − Γ3
02Γ2

11

= O
(

1

r5

)
+O

(
1

r6

)
+O

(
1

r5

)
+O

(
1

r6

)
+O

(
1

r7

)
= O

(
1

r5

)
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R1
310 = −R1

301 = ∂1Γ1
03 + Γ1

11Γ1
03 + Γ1

12Γ2
03 − Γ1

00Γ0
31 − Γ1

03Γ3
31

= O
(

1

r3

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
+O

(
1

r3

)
= O

(
1

r3

)
R1

130 = −R1
103 = Γ1

30Γ0
01 + Γ1

33Γ3
01 − Γ1

00Γ0
13 − Γ1

03Γ3
13

= O
(

1

r4

)
+O

(
1

r3

)
+O

(
1

r4

)
+O

(
1

r3

)
= O

(
1

r3

)
R1

013 = −R1
031 = ∂1Γ1

30 + Γ1
11Γ1

30 + Γ1
12Γ2

30 − Γ1
30Γ0

01 − Γ1
33Γ3

01

= O
(

1

r3

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
+O

(
1

r3

)
= O

(
1

r3

)
R0

223 = −R0
232 = ∂2Γ0

32 + Γ0
20Γ0

32 + Γ0
23Γ3

32 − Γ0
31Γ1

22 − Γ0
32Γ2

22

= O
(

1

r3

)
+O

(
1

r6

)
+O

(
1

r3

)
+O

(
1

r

)
+O

(
1

r5

)
= O

(
1

r

)
R3

220 = −R3
202 = ∂2Γ3

02 + Γ3
20Γ0

02 + Γ3
23Γ3

02 − Γ3
01Γ1

22 − Γ3
02Γ2

22

= O
(

1

r3

)
+O

(
1

r6

)
+O

(
1

r3

)
+O

(
1

r3

)
+O

(
1

r5

)
= O

(
1

r3

)
R2

320 = −R2
302 = ∂2Γ2

03 + Γ2
21Γ1

03 + Γ2
22Γ2

03 − Γ2
00Γ0

32 − Γ2
03Γ3

32

= O
(

1

r3

)
+O

(
1

r3

)
+O

(
1

r5

)
+O

(
1

r8

)
+O

(
1

r3

)
= O

(
1

r3

)
R2

230 = −R2
203 = Γ2

30Γ0
02 + Γ2

33Γ3
02 − Γ2

00Γ0
23 − Γ2

03Γ3
23

= O
(

1

r6

)
+O

(
1

r3

)
+O

(
1

r8

)
+O

(
1

r3

)
= O

(
1

r3

)
R2

023 = −R2
032 = ∂2Γ2

30 + Γ2
21Γ1

30 + Γ2
22Γ2

30 − Γ2
30Γ0

02 − Γ2
33Γ3

02

= O
(

1

r3

)
+O

(
1

r3

)
+O

(
1

r5

)
+O

(
1

r6

)
+O

(
1

r3

)
= O

(
1

r3

)
R0

123 = −R0
132 = ∂2Γ0

31 + Γ0
20Γ0

31 + Γ0
23Γ3

31 − Γ0
31Γ1

12 − Γ0
32Γ2

12

= O
(

1

r2

)
+O

(
1

r5

)
+O

(
1

r4

)
+O

(
1

r4

)
+O

(
1

r4

)
= O

(
1

r2

)
R0

213 = −R0
231 = ∂1Γ0

32 + Γ0
10Γ0

32 + Γ0
13Γ3

32 − Γ0
31Γ1

22 − Γ0
32Γ2

21

= O
(

1

r4

)
+O

(
1

r5

)
+O

(
1

r2

)
+O

(
1

r

)
+O

(
1

r4

)
= O

(
1

r

)
R0

312 = −R0
321 = ∂1Γ0

23 − ∂2Γ0
13 + Γ0

10Γ0
23 + Γ0

13Γ3
23 − Γ0

20Γ0
31 − Γ0

23Γ3
31

= O
(

1

r4

)
+O

(
1

r2

)
+O

(
1

r5

)
+O

(
1

r2

)
+O

(
1

r5

)
+O

(
1

r4

)
= O

(
1

r2

)
R3

012 = −R3
021 = ∂1Γ3

20 − ∂2Γ3
10 + Γ3

10Γ0
20 + Γ3

13Γ3
20 − Γ3

20Γ0
01 − Γ3

23Γ3
01

= O
(

1

r4

)
+O

(
1

r6

)
+O

(
1

r7

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
= O

(
1

r4

)
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R3
102 = −R3

120 = −∂2Γ3
01 + Γ3

01Γ1
21 + Γ3

02Γ2
21 − Γ3

20Γ0
10 − Γ3

23Γ3
10

= O
(

1

r6

)
+O

(
1

r6

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
= O

(
1

r4

)
R3

201 = −R3
210 = −∂1Γ3

02 + Γ3
01Γ1

12 + Γ3
02Γ2

12 − Γ3
10Γ0

20 − Γ3
13Γ3

20

= O
(

1

r4

)
+O

(
1

r6

)
+O

(
1

r4

)
+O

(
1

r7

)
+O

(
1

r4

)
= O

(
1

r4

)
R1

023 = −R1
032 = ∂2Γ1

30 + Γ1
21Γ1

30 + Γ1
22Γ2

30 − Γ1
30Γ0

02 − Γ1
33Γ3

02

= O
(

1

r2

)
+O

(
1

r4

)
+O

(
1

r2

)
+O

(
1

r5

)
+O

(
1

r2

)
= O

(
1

r2

)
R1

203 = −R1
230 = Γ1

00Γ0
32 + Γ1

03Γ3
32 − Γ1

30Γ0
20 − Γ1

33Γ3
20

= O
(

1

r5

)
+O

(
1

r2

)
+O

(
1

r5

)
+O

(
1

r2

)
= O

(
1

r2

)
R1

302 = −R1
320 = −∂2Γ1

03 + Γ1
00Γ0

23 + Γ1
03Γ3

23 − Γ1
21Γ1

30 − Γ1
22Γ2

30

= O
(

1

r2

)
+O

(
1

r5

)
+O

(
1

r2

)
+O

(
1

r4

)
+O

(
1

r2

)
= O

(
1

r2

)
R2

013 = −R2
031 = ∂1Γ2

30 + Γ2
11Γ1

30 + Γ2
12Γ2

30 − Γ2
30Γ0

01 − Γ2
33Γ3

01

= O
(

1

r4

)
+O

(
1

r6

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
= O

(
1

r4

)
R2

103 = −R2
130 = Γ2

00Γ0
31 + Γ2

03Γ3
31 − Γ2

30Γ0
10 − Γ2

33Γ3
10

= O
(

1

r7

)
+O

(
1

r4

)
+O

(
1

r5

)
+O

(
1

r4

)
= O

(
1

r4

)
R2

310 = −R2
301 = ∂1Γ2

03 + Γ2
11Γ1

03 + Γ2
12Γ2

03 − Γ2
00Γ0

31 − Γ2
03Γ3

31

= O
(

1

r4

)
+O

(
1

r6

)
+O

(
1

r4

)
+O

(
1

r7

)
+O

(
1

r4

)
= O

(
1

r4

)
R3

330 = −R3
303 = Γ3

31Γ1
03 + Γ3

32Γ2
03 − Γ3

01Γ1
33 − Γ3

02Γ2
33

= O
(

1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
= O

(
1

r3

)
R1

112 = −R1
121 = ∂1Γ1

21 − ∂2Γ1
11 + Γ1

12Γ2
21 − Γ1

22Γ2
11

= O
(

1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
= O

(
1

r3

)
R2

221 = −R2
212 = ∂2Γ2

12 − ∂1Γ2
22 + Γ2

21Γ1
12 − Γ2

11Γ1
22

= O
(

1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
+O

(
1

r3

)
= O

(
1

r3

)
R1

212 = −R1
221 = ∂1Γ1

22 − ∂2Γ1
12 + Γ1

11Γ1
22 + Γ1

12Γ2
22 − Γ1

21Γ1
21 − Γ1

22Γ2
21

= const. +O
(

1

r2

)
+O

(
1

r

)
+O

(
1

r4

)
+O

(
1

r4

)
+ const.

= const.
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R2
121 = −R2

112 = ∂2Γ2
11 − ∂1Γ2

21 + Γ2
21Γ1

11 + Γ2
22Γ2

11 − Γ2
11Γ1

12 − Γ2
12Γ2

12

= O
(

1

r4

)
+O

(
1

r2

)
+O

(
1

r3

)
+O

(
1

r6

)
+O

(
1

r6

)
+O

(
1

r2

)
= O

(
1

r2

)
R1

313 = −R1
331 = ∂1Γ1

33 + Γ1
11Γ1

33 + Γ1
12Γ2

33 − Γ1
30Γ0

31 − Γ1
33Γ3

31

= const. +O
(

1

r

)
+O

(
1

r2

)
+O

(
1

r4

)
+ const. = const.

R3
131 = −R3

113 = −∂1Γ3
31 + Γ3

31Γ1
11 + Γ3

32Γ2
11 − Γ3

10Γ0
13 − Γ3

13Γ3
13

= O
(

1

r2

)
+O

(
1

r3

)
+O

(
1

r4

)
+O

(
1

r6

)
+O

(
1

r2

)
= O

(
1

r2

)
R2

323 = −R2
332 = ∂2Γ2

33 + Γ2
21Γ1

33 + Γ2
22Γ2

33 − Γ2
30Γ0

32 − Γ2
33Γ3

32

= const. + const. +O
(

1

r2

)
+O

(
1

r6

)
+ const. = const.

R3
232 = −R3

223 = −∂2Γ3
32 + Γ3

31Γ1
22 + Γ3

32Γ2
22 − Γ3

20Γ0
23 − Γ3

23Γ3
23

= const. + const. +O
(

1

r2

)
+O

(
1

r6

)
+ const. = const.

R3
312 = −R3

321 = ∂1Γ3
23 − ∂2Γ3

13 + Γ3
10Γ0

23 − Γ3
20Γ0

31

= O
(

1

r4

)
+O

(
1

r4

)
+O

(
1

r7

)
+O

(
1

r5

)
= O

(
1

r4

)
R3

132 = −R3
123 = −∂2Γ3

31 + Γ3
31Γ1

21 + Γ3
32Γ2

21 − Γ3
20Γ0

13 − Γ3
23Γ3

13

= O
(

1

r4

)
+O

(
1

r3

)
+O

(
1

r

)
+O

(
1

r5

)
+O

(
1

r

)
= O

(
1

r

)
R3

231 = −R3
213 = −∂1Γ3

32 + Γ3
31Γ1

12 + Γ3
32Γ2

12 − Γ3
10Γ0

23 − Γ3
13Γ3

23

= O
(

1

r4

)
+O

(
1

r3

)
+O

(
1

r

)
+O

(
1

r7

)
+O

(
1

r

)
= O

(
1

r

)
R1

332 = −R1
323 = −∂2Γ1

33 + Γ1
30Γ0

23 + Γ1
33Γ3

23 − Γ1
21Γ1

33 − Γ1
22Γ2

33

= O (r) +O
(

1

r5

)
+O (r) +O

(
1

r

)
+O (r) = O (r)

R2
331 = −R2

313 = −∂1Γ2
33 + Γ2

30Γ0
13 + Γ2

33Γ3
13 − Γ2

11Γ1
33 − Γ2

12Γ2
33

= O
(

1

r2

)
+O

(
1

r5

)
+O

(
1

r

)
+O

(
1

r3

)
+O

(
1

r

)
= O

(
1

r

)
As it is our aim to show that the vanishing behaviour of the components of the
curvature tensor is of order O

(
1
r3

)
, we have to calculate some of the components

more precisely. We then get:

R1
212 : ∂1Γ1

22 − Γ1
22Γ2

21 = −r
4

ρ2
+O

(
1

r

)
+

∆̃r

ρ
· r
ρ

= −r
4

ρ2
+
r4

ρ2
+O

(
1

r

)
= O

(
1

r

)
⇒ R1

212 = O
(

1

r

)
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R2
121 :− ∂1Γ2

21 − Γ2
12Γ2

12 =
1

ρ2
(r2 − a2 cos2 ϑ)− r2

ρ2
= −a

2 cos2 ϑ

ρ2

= O
(

1

r4

)
⇒ R2

121 = O
(

1

r3

)
R1

313 : ∂1Γ1
33 − Γ1

33Γ3
31

= − sin2 ϑ · r
4

ρ2
+O

(
1

r

)
+

(
sin2 ϑ · ∆̃r

ρ
+O

(
1

r2

))
·
(
r

∆̃
+O

(
1

r2

))
= − sin2 ϑ · r

4

ρ2
+ sin2 ϑ · r

4

ρ2
+O

(
1

r

)
= O

(
1

r

)
⇒ R1

313 = O
(

1

r

)
R3

131 :− ∂1Γ3
31 − Γ3

13Γ3
13 = −−r

2 + a2

∆̃2
+O

(
1

r3

)
− r2

∆̃2
+O

(
1

r3

)
= O

(
1

r3

)
⇒ R3

131 = O
(

1

r3

)
R2

323 : ∂2Γ2
33 + Γ1

21Γ1
33 − Γ2

33Γ3
32

= −r
2(cos2 ϑ− sin2 ϑ)

ρ
+O

(
1

r

)
+
r

ρ

(
− sin2 ϑ+ const.

)
−
(
− sinϑ cosϑ · r

2

ρ
+O

(
1

r

))
·
(

cosϑ

sinϑ
+O

(
1

r3

))
=
r2

ρ

(
− cos2 ϑ+ sin2 ϑ− sin2 ϑ+ sinϑ cosϑ · cosϑ

sinϑ

)
+O

(
1

r

)
= O

(
1

r

)
⇒ R2

323 = O
(

1

r

)
R3

232 :− ∂2Γ3
32 + Γ3

31Γ1
22 − Γ3

23Γ3
23

=
1

sin2 ϑ
+O

(
1

r3

)
+

(
r

∆̃
+O

(
1

r2

))
·

(
−∆̃r

ρ

)
+

cos2 ϑ

sin2 ϑ
+O

(
1

r3

)
= 1− 1 +

a2 cos2 ϑ

ρ2
+O

(
1

r

)
= O

(
1

r

)
⇒ R3

232 = O
(

1

r

)
R3

132/R
3
231 : Γ3

32Γ2
21 − Γ3

23Γ3
13 =

(
cosϑ

sinϑ
+O

(
1

r3

))
·
(
r

ρ
− r

∆̃
+O

(
1

r2

))
=

(
cosϑ

sinϑ
+O

(
1

r3

))
·
(
r3 − r3

∆̃ρ
+O

(
1

r2

))
= O

(
1

r2

)
⇒ R3

132/R
3
231 = O

(
1

r2

)
R1

332 :− ∂2Γ1
33 + Γ1

33Γ3
23 − Γ1

22Γ2
33

=
2∆̃r sinϑ cosϑ

ρ
+O

(
1

r

)
+

(
−∆̃r sin2 ϑ

ρ
+O

(
1

r2

))
·
((

cosϑ

sinϑ

)
+O

(
1

r3

))

−

(
−∆̃r

ρ

)
·

(
−∆̃ sinϑ cosϑ

ρ
+O

(
1

r

))
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=
2r5 sinϑ cosϑ

ρ2
− r5 sinϑ cosϑ

ρ2
− r5 sinϑ cosϑ

ρ2
+ const. = const.

⇒ R1
332 = const.

R2
331 : Γ2

33Γ3
13 − Γ2

12Γ2
33 =

(
cosϑ

sinϑ
+O

(
1

r3

))
·
(
r

∆̃
− r

ρ

)
=

(
cosϑ

sinϑ
+O

(
1

r3

))
·
(
r3 − r3

∆̃ρ
+O

(
1

r2

))
= O

(
1

r2

)
⇒ R2

331 = O
(

1

r2

)
.
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Bilinear form
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positive definite, 12, 14
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non-degenerate, 13
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Transformation behaviour, 94
Classical Newtonian system, 62

Imbedding, 62
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Curvature tensor, 8

anti-symmetry, 9
First Bianchi-identity, 9
Second Bianchi-identity, 10

Curve
spacelike, 51

Cylinder around zero, 105

Degenerate cone, 75
Distribution, 33

integrable, 33
involutive, 34

Divergence, 11

Ehlers spacetime, 62
Einstein curvature tensor, 12
Einstein spacetime, 5

Einstein vacuum equation, 17
Einstein’s field equations, 17
Einstein’s law of motion, 16
Energy momentum tensor, 16
Euler equations, 16, 60
Extension of spacetime, 65

Family of Ehlers spacetimes, 62
asymptotically flat at spacelike in-

finity, 106
Force, 15
Formula of Cartan, 37
free falling particle, 16

Galiläi transformation, 100
Gravitation field, 16
Gravity constant, 22
Gravity field, 18

Hypersurface
spacelike, 105

Index of bilinear form, 13
Integral manifold, 34

Kerr metric, 70, 74
extended, 70, 74

Kerr Spacetime, 113, 126
Kerr spacetime, 70
Killing vector field, 82

Lie derivation, 81
Lorentzian manifold, 14

time-oriented, 15
Lorentzian metric, 14
Lorenzian metric, 105

parametrized, 106

Manifold
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Quasi-Newtonian equations, 61
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Ricci tensor, 10
Riemannian curvature tensor, 9

First Bianchi-identity, 9

Scalar curvature, 10
Schwarzschild metric, 67, 73
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Spaceleaf, 105
Spacetime, 15
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spherically symmetric, 84
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Submersion, 37

Tangent vector
timelike, 19

Theorem of Frobenius, 34
Theorem of Sylvester, 13
Time metric, 18
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null, 15
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Vector field
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future-oriented, 15
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Relativitätstheorie, Wiesbaden, 3 ed., 2004.

[35] B. O’Neill, Semi-Riemannian geometry. With application to relativity, San
Diego, 1993.

[36] B. O’Neill, The Geometry of Kerr Black Holes, Wellesley, 1996.

[37] P. Petersen, Riemannian Geometry, New York, 1998.

[38] A. D. Rendall, The Newtonian Limit for Asymptotically Flat Solutions of
the Vlasov-Einstein System, Communications in Mathematical Physics, 163
(1994), pp. 89–112.

[39] R. Schulmann, J. Kox, M. Janssen, and J. Illy, eds., The collected pa-
pers of Albert Einstein, Volume 8: The Berlin Years: Correspondence, 1914-
1918, Part A:1914-1917, Princeton, 1998.

[40] E. H. Spanier, Algebraic Topology, New York, 1966.

155



Bibliography

[41] N. Straumann, General Relativity. With Applications to Astrophyics,
Berlin, 2004.

[42] A. Trautman, Comparison of Newtonian and Relativistic Theories of Space-
Time, in Perspectives in Geometry and Relativity. Essays in Honor of Václav
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