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Abstract 

 The rat pineal gland contains a high density of neuronal nicotinic receptors (nAChRs).  We 

characterized the pharmacology of the binding sites and function of these receptors, measured the 

nAChR subunit mRNA and used subunit-specific antibodies to establish the receptor subtype as 

defined by subunit composition.  In ligand binding studies, [
3
H]epibatidine binds with an affinity of 

~ 100 pM to nAChRs in the pineal, and the density of these sites is ~ 5-times that in rat cerebral 

cortex.  The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at 

α3β4 nAChRs heterologously expressed in HEK293 cells.  In functional studies, the potencies and 

efficacies of nicotinic drugs to activate or block whole cell currents in dissociated pinealocytes 

match closely their potencies and efficacies to activate or block 
86

Rb
+
 efflux in the cells expressing 

heterologous α3β4 nAChRs.  Measurements of mRNA indicated the presence of transcripts for α3, 

β2 and β4 nAChR subunits but not those for α2, α4, α5, α6, α7, or β3 subunits.  

Immunoprecipitation with subunit-specific antibodies showed that virtually all [
3
H]EB-labeled 

nAChRs contained α3 and β4 subunits associated in one complex.  The β2 subunit was not 

associated with this complex.  Taken together, these results indicate that virtually all of the nAChRs 

in the rat pineal gland are the α3β4 nAChR subtype, and that the pineal gland can therefore serve as 

an excellent and convenient model in which to study the pharmacology and function of these 

receptors in a native tissue.   
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Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels 

composed of α and β subunits.  Nine α (α2 - α10) and three β (β2 - β4) subunits have been 

identified in vertebrates, and different subunit combinations define specific receptor subtypes.  All 

of these subtypes pass Na
+
, K

+
 and Ca

2+
, but they exhibit distinct biophysical and pharmacological 

properties.  Studies of nAChRs in Xenopus oocytes and transfected mammalian cells have provided 

valuable information on the biophysical properties, pharmacology and possible regulation of several 

different well-defined nAChR subtypes that might play important physiological roles.  However, 

the precise subunit compositions of the subtypes of nAChRs that actually exist in most native 

tissues are not well defined.  Therefore, identifying the subunit composition of native nAChRs is a 

crucial step in establishing the physiological roles played by the different receptor subtypes that 

exist in vivo. 

Considerable progress has been made in determining the subunit composition of the 

predominant receptor subtypes in the rat forebrain, namely the α4β2 subtype (Whiting and 

Lindstrom, 1987; Flores et al., 1992), which has high affinity for most agonists, and the α7 subtype, 

which has high affinity for α-bungarotoxin (α-BTX) (Couturier et al., 1990; Schoepfer et al., 1990; 

Orr-Urtreger et al., 1997).  However, other nAChR subtypes are found in various amounts 

throughout many regions of the CNS (Marks et al., 1998; Perry et al., 2002), and some of these less 

prevalent receptors may play critical roles because of their strategic location--e.g., α6-containing 

receptors on dopamine axons (Quik et al., 2002; Champtiaux et al., 2003; Salminen et al., 2004).  

Moreover, under some conditions in vivo, such as when α4β2 and/or α7 receptors are desensitized 

or inactivated by exposure to nicotine or during certain disease states that may involve loss of 

specific nAChR subtypes, the less prevalent receptors may take on critical roles in mediating 

cholinergic signals.  In addition, α3β2 and α3β4 nAChR subtypes are the predominant nAChRs in 
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autonomic ganglia and thus are critical to the homeostatic functioning of virtually all organ systems 

in the body.     

The pineal gland is part of the photoneuroendocrine system of vertebrates and functions in 

response to signals from photoreceptor cells in the retina and endogenous oscillators within the 

suprachiasmatic nucleus (SCN) to translate light stimuli into neuroendocrine responses.  The main 

role of the pineal appears to be to produce and secrete the hormone melatonin, which influences 

circadian and seasonal biological rhythms in animals.  Melatonin production is stimulated when 

norepinephrine released by sympathetic axons from the superior cervical ganglia activate β-

adrenergic receptors in the pineal (Axelrod, 1974).  More recent studies have demonstrated a 

cholinergic innervation of the pineal from the parasympathetic nervous system (Korf et al., 1996; 

Larsen et al., 1998; Schafer et al., 1998) and possibly from the medial habenula within the brain 

(Schafer et al., 1998).  This cholinergic innervation appears to play an important role in pineal gland 

physiology by inhibiting melatonin synthesis via the activation of nAChRs (Stankov et al., 1993; 

Yamada et al., 1998b).    

The pineal expresses mRNA encoding the α3, β2, and β4 nAChR subunits (Wada et al., 

1989; Zoli et al., 1995), and nAChR binding sites have been found in mouse and rat pineal gland 

(Marks et al., 1998; Hernandez et al., 1999; Perry et al., 2002; Dávila-García et al., 2003).  Here we 

studied the pharmacology of the rat pineal nAChR binding sites and functional responses and used 

subunit-selective antibodies to determine the subunit composition of the nAChR subtype expressed 

in the rat pineal gland.  Our data indicate that the pineal gland expresses a single subtype of nAChR; 

it thus provides a simple and convenient model system in which to study a native nAChR of defined 

subtype.  
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Materials and Methods 

Materials.  [
3
H]Epibatidine ([

3
H]EB) was purchased from Perkin Elmer Life Sciences 

(Boston, MA).  [
125

I]Epibatidine ([
125

I]EB) used for autoradiography was a kind gift from Dr. John 

Musachio (NIMH, Bethesda, MD).  [
125

I]alpha-bungarotoxin ([
125

I]α-BTX) and [α−32
P]ATP were 

purchased from Amersham Pharmacia (Piscataway, NJ).  Tissue culture medium, fetal bovine 

serum, and antibiotics were purchased from Invitrogen Corp. (Carlsbad, CA).  DNase 1 was 

purchased from Boehringer Mannheim Corporation (Indianapolis, IN).  Bacterial cell walls 

containing protein-A (Pansorbin) and protein G (Omnisorb) were purchased from Calbiochem (San 

Diego, CA).  Whatman GF/C filters were obtained from Brandell (Gaithersberg, MD).  Other drugs 

and chemicals were purchased from Sigma Chemical Co (St. Louis, MO) or Fischer Scientific Co. 

(Fairlawn, NJ).  The α3 nAChR subunit specific polyclonal antibody was raised in rabbits and has 

been described previously (Yeh et al., 2001).  The β4 nAChR subunit specific polyclonal antibody 

was a generous gift from Dr. Scott Rogers (University of Utah, Salt Lake City, UT).  The β2 

nAChR subunit specific monoclonal antibody mAb 270 was produced from hybridoma stocks 

purchased from ATCC (Manassas, VA).  This mAb was originally developed and characterized by 

Whiting and Lindstrom (1987).  It is an excellent antibody for immunoprecipitation but it does not 

detect rat nAChR β2 subunits in western blots.  Therefore, a nAChR β2 subunit-specific polyclonal 

antibody was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) and used for 

western blot analysis.    

Tissues.  Frozen pineal glands and cerebral cortex from male Sprague-Dawley rats weighing 

225 - 250 g were purchased from Zivic-Miller Laboratories (Portersville, PA) and stored at –80°C 

until assayed.    
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Primary Cell Culture.  Male Sprague-Dawley rats purchased from Taconic (Germantown, 

NY) were group housed with food and water ad libitum in a temperature- and light-controlled room 

(24°C, lights on 7:00 am to 7:00 pm).  At 30 – 35 days old (150 – 200 g), the rats were anesthetized 

with methoxyflurane inhalation and decapitated.  Fresh pineal glands were dissected and then used 

for primary tissue culture.  The isolated pineal glands were washed two times in phosphate buffered 

saline (PBS) and cut into small pieces under a dissecting microscope.  The tissue pieces were 

transferred to a sterile tube containing 5 ml of 0.02% trypsin and 1% DNase in PBS and incubated 

with gentle shaking for 10 min at 37°C.  The tissues were triturated  with a fire polished pasture 

pipette and incubated for another 10 min at 37°C.  The tissues were then triturated a second time, 

and 0.5 ml of fetal bovine serum was added to stop the enzymatic reaction.  The dissociated cells 

were washed four times by centrifugation at 800 x g in culture media containing basal Eagles 

medium supplemented with 10% fetal bovine serum, 25 mM glutamine, and 50 µg/ml gentamycin.  

The dissociated pineal cells were resuspended in fresh culture media and plated onto poly-D-lysine  

coated cover slips in a 30 mm dish.  Cultures were maintained at 37°C with 5% CO2 in a humidified 

incubator for 1 –3 days.  HEK 293 cells stably expressing the α3β4 nAChR (KXα3β4 cells) and 

α3β2 nAChR (KXα3β2 cells) were grown and maintained as described previously (Xiao et al., 

1998).  

 Radioligand Binding Assays.  nAChR receptor binding sites in membrane homogenates 

from rat pineal gland and HEK cells expressing α3β4 and α3β2 nAChRs were measured with 

[
3
H]EB.  Tissues were homogenized with a Polytron homogenizer in 50 mM Tris-HCl (pH  7.4) and 

the homogenates were centrifuged at 35,000 x g for 10 min.  Membrane pellets were washed twice 

and then resuspended in fresh buffer.  Membrane aliquots (~ 35 µg of protein) were incubated with 

[
3
H]EB (~5 - 3000 pM) for 4 hours at 24°C in a volume of 1 ml of Tris-HCl buffer.  In competition 
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binding experiments a series of concentrations of each drug was incubated with ~500 pM [
3
H]EB.  

Bound and free radioligand were separated by vacuum filtration through Whatman GF/C filters 

pretreated with 0.5% polyethylenimine.  The radioactivity bound to the filter was measured by 

liquid scintillation counting.  Nonspecific binding was determined in the presence of 300 µM (-)-

nicotine, and specific binding was defined as the difference between total and non-specific binding.  

In saturation binding experiments, Bmax and Kd values were determined by non-linear regression 

analysis (GraphPad Prism software, San Diego, CA).  In competition binding experiments, 

inhibition curves and the IC50 values were determined by non-linear regression analysis (GraphPad 

Prism).  The affinities of drugs (Ki values) at nAChRs were calculated from the IC50 values using 

the Cheng-Prusoff equation (Cheng and Prusoff, 1973).   

 Autoradiography.  Autoradiography of [
125

I]EB and [
125

I]-α-BTX binding sites was carried 

out in 20 µm cryostat-cut sections of the rat brain through the superior colliculus with the pineal 

gland in place, as described by Perry et al. (2002).  Adjacent brain sections were mounted onto 

slides and incubated with ~ 500 pM [
125

I]EB or ~ 5 nM [
125

I]α-BTX and then rinsed, air dried, and 

apposed to autoradiographic film for 1 to 6 days.  Nonspecific labeling was determined in the 

presence of 300 µM nicotine. 

 Immunoprecipitation.  Rat pineal glands were prepared as for a radioligand binding assay, 

and the membrane pellet was resuspended in fresh buffer and incubated with ~ 3 nM [
3
H]EB for 2 

hr at room temperature.  The tissue was then solubilized by the addition of Triton X-100 at a final 

concentration of 2% with gentle mixing for 2 h at room temperature.  Following solubilization, the 

mixture was centrifuged at 35,000 x g for 30 min.  Aliquots of clear supernatant equivalent to 4 mg 

of original tissue weight were added to tubes containing either crude antiserum directed at the β4 

subunit, or affinity purified antibody directed at the α3 subunit or a monoclonal antibody (mAb) 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 9, 2004 as DOI: 10.1124/mol.104.002345

 at A
S

P
E

T
 Jo

u
rn

als o
n
 M

ay
 2

9
, 2

0
2
2

m
o
lp

h
arm

.asp
etjo

u
rn

als.o
rg

D
o
w

n
lo

ad
ed

 fro
m

 

http://molpharm.aspetjournals.org/


MOL 2345 

 9

directed at the β2 subunit.  The β4 antiserum was tested at dilutions from 1:50 to 1:6 to determine 

the optimal concentration.  The stock α3 and β2 antibodies each contained 1 µg/µl and were tested 

at dilutions from 2:100 to 15:100 to determine the optimal concentration. Tubes containing normal 

rabbit serum (NRS) or an irrelevant monoclonal antibody served as controls.  The mixtures were 

incubated for 4 h to 16 h at 4°C with gentle rotation.  After this incubation period, 50 µl aliquots of 

stripped Protein A (Pansorbin) or Protein G (Omnisorb) (Wall et al., 1991) were added to each 

assay tube, and incubated for an additional hour at 4°C with gentle rotation.  The [
3
H]EB-labeled 

receptor-antibody complex was precipitated by centrifugation at 14,000 x g for 30 sec.  The pellets 

were washed two times with 1 ml of Tris-EDTA buffer, dissolved in 400 µl of 0.1 NaOH, 3% 

deoxycholate and counted by liquid scintillation spectroscopy.  For the sequential 

immunoprecipitation assays, the individual clear supernatant from the first immunoprecipitation 

was collected and immediately added to tubes containing antisera or antibody directed at another 

nAChR subunit and allowed to incubate for an additional 4 hr.  The immunoprecipitation procedure 

with the second antibody was carried out as described above.  

 Western Blots.  Western blot analyses to measure subunit proteins were carried out as 

previously described (Yeh et al., 2001), using the polyclonal antibodies directed at each of the 

subunits.     

RNA isolation and RNase protection assay.  Expressions of mRNAs encoding nAChR 

subunits were determined as described previously (Xiao et al., 1998) with modifications.  Briefly, 

total cellular RNA was isolated using RNA-STAT-60 (Tel Test B, Friendswood, TX).  Antisense 

riboprobes for the α2, α3, α4, α5, α6, α7, β2, β3 and β4 nAChR subunits were generated from 

DNA templates using T7 RNA polymerase and [α-
32

P]CTP.  The RNase protection assays were 

carried out using the RPA II kit (Ambion, Austin, TX).  Total RNA (20 µg) from the tissue samples 
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was hybridized overnight at 42ºC with the subunit riboprobes and a riboprobe for rat GAPDH, 

which was used as an internal and loading control.  Specific activities of  [α-
32

P]CTP used for 

synthesizing the probes of rat nAChR subunit genes and the probe of GAPDH were 800 and 40 

Ci/mmol, respectively.  Following hybridization, non-protected fragments were digested with a 

combination of RNase A and RNase T1 for 30 min at 37ºC.  The numbers of bases of the full length 

probes and the protected fragments of the probes were as follows: α2, 416 and 332; α3, 306 and 

230; α4, 496 and 408; α5, 411 and 380; α6, 462 and 396; α7, 450 and 376; β2, 322 and 263; β3, 

430 and 394; β4, 252 and 170 and GAPDH, 204 and 135. To avoid overlap of signal bands, three 

reactions were carried out for each RNA sample separately using three groups of probes: (group 1 

contained α2, α3, α4 and GAPDH; group 2 contained α5, α6, β4 and GAPDH; and group 3 

contained α7, β2, β3 and GAPDH).  The protected probe fragments were separated by 

electrophoresis on a 6% denaturing polyacrylamide gel, and the fragments were visualized using X-

ray film or by phosphor-imaging. 

 Electrophysiology.  Functional responses of nAChRs in rat pineal primary cell culture were 

measured using the whole-cell configuration of the voltage patch clamp technique.  Dissociated rat 

pinealocytes were plated onto glass cover slips and positioned into a recording chamber (1 ml 

volume) mounted on the stage of an upright microscope (Axioskop; Carl Zeiss, Jena, Germany) 

used to visually identify the cells under study.  The cells were bathed with an extracellular solution 

containing 145 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM glucose, 5 mM HEPES, 

and adjusted to 325 mOsM with sucrose  (pH adjusted to 7.4 with NaOH).  The recording chamber 

was continuously perfused with the extracellular solution at a rate of 1ml/min.  Ionic currents were 

monitored with an Axopatch 1-D patch amplifier (Axon Instruments, Foster City, CA).  Recording 

patch electrodes were pulled from borosilicate glass capillaries to a resistance of 5 to 7 MΩ when 
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filled with internal electrode solution containing 145 mM potassium-gluconate, 5 mM EGTA, 5 

mM MgCl2, 10 mM HEPES, 5 mM ATP 0.5 mM GTP and 10 mM BAPTA (pH adjusted to 7.42 

with CsOH).  Pinealocytes were distinguished from glial cells visually and selected for whole cell 

recording.  The size and capacitance were very similar between pinealocytes, and recordings were 

made from single isolated cells.  No differences in responses between cells kept in culture for 1 day 

or 3 days were noted.  Drugs were applied using a gravity-fed Y-shaped tubing system positioned 

within 500 µm of the cell under investigation.  Drugs were applied and exchanged rapidly with an 

onset of <100 ms.  For experiments requiring α-BTX incubation, the extracellular solution was 

exchanged with the same solution with the addition of toxin and allowed to incubate for 2.5 min.  

Generation of voltage-clamp protocols and acquisition of data  were carried out using the pCLAMP 

software.  All experiments were performed at room temperature. 
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Results 

Expressions of nAChR subunit mRNAs in rat pineal glands.  Expressions of mRNAs 

encoding nine nAChR subunits (α2, α3, α4, α5, α6, α7, β2, β3 and β4) in rat pineal glands were 

examined with a multiplex RNAse protection assay. The mRNA expression pattern detected in the 

rat pineal gland is shown in figure 1.  The pineal gland expressed nAChR mRNAs encoding the α3,  

(lane 1), β4 (lane 2), and β2 (lane 3) subunits only, and the intensity of the bands indicated that the 

expression levels of the α3 and β4 subunit mRNAs were somewhat higher than that of the β2 

subunit mRNA.  Although no signals for the mRNA encoding any other nAChR subunits were 

detected in the pineal gland, strong signals for these other subunits were detected in tissues used as 

positive controls for the assay (data not shown). 

 

 nAChR binding sites in the rat pineal.  Autoradiographic studies of nAChR binding sites 

in coronal brain sections at the level of the superior colliculus revealed dense [
125

I]EB binding sites 

in the pineal gland (Fig. 2A); while in contrast, autoradiography of [
125

I]α-BTX binding in the 

pineal did not exceed the background level (Fig. 2B).  These autoradiographic results combined 

with the mRNA analysis indicate that the pineal gland expresses one or more heteromeric nAChRs 

but not α7 receptors or other subtypes that bind [
125

I]α-BTX.  As shown in figure 3, saturation 

binding measurements of [
3
H]EB binding sites in membrane homogenates demonstrate that the 

pineal expresses a high density of nAChRs (~300 fmol/mg protein), which is ~ 5 times the density 

found in the rat forebrain (~ 60 fmol/mg protein).  The [
3
H]EB binding curves in the pineal fit a 

model for a single site with a Kd of  ~ 100 pM.    

 Based on the nAChR subunit mRNA it expresses, the pineal could contain either an α3β2 or 

an α3β4 subtype, both subtypes, or a receptor comprised of α3 subunits in association with both β2 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 9, 2004 as DOI: 10.1124/mol.104.002345

 at A
S

P
E

T
 Jo

u
rn

als o
n
 M

ay
 2

9
, 2

0
2
2

m
o
lp

h
arm

.asp
etjo

u
rn

als.o
rg

D
o
w

n
lo

ad
ed

 fro
m

 

http://molpharm.aspetjournals.org/


MOL 2345 

 13

and β4 subunits (i.e., an α3β2β4 subtype).  To begin to determine the characteristics of the nAChR 

subtype(s) in the pineal, the affinities of drugs for the [
3
H]EB-labeled sites were assessed in binding  

competition assays and compared to the affinities at defined α3β4 and α3β2 receptors heterologously 

expressed in HEK293 cells.  The agonists A-85380, cytisine and nicotine all competed for [
3
H]EB 

binding sites in the pineal gland with affinities between ~ 24 nM and 200 nM, while the antagonist 

dihydro-β-erythroidine (DHβE) displayed an affinity of ~ 65 µM (Fig. 4A and Table 1).  These 

affinities are much closer to those found at the defined α3β4 receptor than at the α3β2 receptor, 

especially for A85380 and DHβE, two drugs that are good discriminators between these subtypes 

(Fig. 4B, 4C and Table 1).  In fact, the correlation line between the Ki values for the pineal and the 

α3β4 subtype was very close to the line of identity (Fig. 4D), suggesting that, as is seen in Table 1, 

the pharmacology of the pineal nAChR binding sites is very similar to, and probably 

indistinguishable from, that of the α3β4 subtype.      

 

 Functional responses of nAChRs in the pineal gland.  The functional responses of the 

nAChRs in the pineal were examined in whole-cell patch clamp studies of dissociated pineal cells 

maintained in culture for ~ 3 days.  All nicotinic agonists examined activated inward currents in a 

concentration-dependent manner, with epibatidine being at least 100-times more potent than any 

other agonist tested and ~ 1,000-times more potent than acetylcholine (Fig. 5A, B and Table 2).  

Most of the agonists examined here, including cytisine, functioned as full agonists compared to 

acetylcholine, eliciting peak currents of 250 - 300 pA; the exception was DMPP, which appeared to 

be a partial agonist with about half the efficacy of acetylcholine (Fig. 5C).  The receptors appeared 

to desensitize in a manner that was also concentration-dependent, but they recovered their 

sensitivity within about 2 min after removal of agonists (data not shown).  At agonist concentrations 

≥ 500 µM, there was usually an obvious loss of receptor function, which probably reflects channel 
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blockade by most of the agonists (data not shown).  That could account for the apparently slightly 

higher efficacy seen with epibatidine, which because of its high potency can fully activate the 

receptors at concentrations that do not significantly block the channel.         

 As shown in Table 2, the EC50 values for these six agonists to activate whole cell currents 

via nAChRs in the pineal gland are very similar to their EC50 values to stimulate 
86

Rb
+
 efflux via 

defined α3β4 receptors heterologously expressed in HEK293 cells.  In fact, as shown in figure 6, 

comparison of the EC50 values for these two very different functional assays carried out in different 

cell types, one expressing its native receptor and the other expressing a heterologous receptor,  

reveals that the values are highly correlated (r = 0.99); and, more important, the best fit line for the 

correlation is again close to the line of identity, indicating that the absolute EC50 values are very 

similar, as would be expected if both assays were measuring the same receptor.    

 The potencies of antagonists to block nicotine-activated currents were evaluated by first 

measuring activation by 30 µM nicotine alone followed at 2 min intervals by measurements after 

simultaneous application of 30 µM nicotine and decreasing concentrations of mecamylamine, 

curare or DHβE in the same cell.  Each of these antagonists blocked nicotine-activated currents 

(Fig. 7A), and the block was concentration-dependent (Fig. 7B).  In contrast, α-BTX, which is a 

highly selective α7 nAChR antagonist, failed to block the nicotine-induced currents in the pineal 

cells even when the cells were perfused with the toxin during and for 2.5 minutes before application 

of nicotine (Fig. 7A).   

           As shown in Table 3, the IC50 values for the 3 antagonists to block nicotine-activated whole 

cell currents in the pineal are similar to their IC50 values to block 
86

Rb
+
efflux via defined α3β4 

receptors heterologously expressed in HEK293 cells.  Moreover, for DHβE, the only effective 

competitive antagonist examined here, its Ki value calculated from its IC50 to inhibit whole cell 
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currents in pineal cells was indistinguishable from its Ki value calculated from its IC50 to inhibit 

86
Rb

+
efflux in the heterologously expressed cells (20 µM vs 22 µM).   

  Subunit composition of nAChRs in pineal gland.  The pharmacological characteristics of 

the nAChRs in the pineal are consistent with an α3β4 receptor subtype; but pharmacology can not 

prove subtype, which is defined by subunit composition.  Therefore, we carried out 

immunoprecipitation assays to determine the subunits that comprise the pineal nAChRs.  To do this, 

we used a polyclonal antibody selective for the α3 subunit (Yeh et al., 2001) and another directed at 

the β4 subunit (Flores et al., 1996), and the monoclonal antibody mAb 270, which is selective for 

the β2 subunit (Whiting and Lindstrom, 1987).  As shown in figure 8, the polyclonal antibodies 

directed at the α3 and β4 subunits each immunoprecipitated [
3
H]EB-labeled nAChRs from  

detergent-solubilized extracts of pineal tissue in a concentration-dependent manner.  In contrast, the 

β2 subunit-selective mAb270 did not immunoprecipitate any [
3
H]EB-labeled receptors from the 

pineal extracts (Fig. 8).  To confirm that mAb270 was, in fact, capable of immunoprecipitating 

nAChRs that contained β2 subunits, it was tested in similarly prepared extracts from rat cerebral 

cortex, where it effectively immunoprecipitated the α4β2 receptor (Fig. 8, inset), which 

predominates in that tissue (Whiting and Lindstrom, 1987; Flores et al., 1992).     

 The immunoprecipitation of nAChRs in the pineal extracts only with antibodies directed at 

α3 and β4 subunits indicates that these two subunits probably comprise the nAChR in the pineal 

gland.  But to further test this, sequential immunoprecipitation assays were carried out to determine 

if the α3 and β4 subunits are physically associated with each other in the pineal gland.   In these 

studies, [
3
H]EB-labeled nAChRs in pineal membranes were solubilized and immunoprecipitated 

with one subunit-specific antibody and then, after centrifugation to collect the immunoprecipitated 

receptors in the pellet, the remaining (“cleared”) supernatant was subjected to a second 
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immunoprecipitation with a second subunit-specific antibody.  The degree to which the first 

antibody decreases immunoprecipitation by the second antibody indicates the degree of association 

between the subunits (Flores et al., 1992). 

    The results from these sequential immunoprecipitation studies are shown in Figure 9.  

When the pineal extracts were first immunoprecipitated with the α3 subunit-specific antibody, 

subsequent immunoprecipitations of the supernatant with the antibodies directed at the α3, β4, or 

β2 subunits yielded essentially no additional immunoprecipitation (Fig. 9A).  Nearly identical 

results were found when the extracts were first immunoprecipitated with the β4 subunit-specific 

antisera (Fig. 9B).  In contrast, the β2 subunit-specific mAb 270 antibody did not 

immunoprecipitate significant amounts of [
3
H]EB labeled receptors from the pineal extracts; thus, 

after a first exposure to mAb 270, subsequent exposure to the antibodies directed at either the α3 or 

β4 antisera subunits immunoprecipitated virtually all of the receptors available in the supernatant 

(Fig. 9C).  Western blot analyses of pineal extracts clearly demonstrated the presence of the α3 and 

β4 subunits, but no signal was detected for the β2 subunit (data not shown). 
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Discussion  

 nAChRs mediate the actions of acetylcholine, nicotine and other nicotinic agonists 

throughout the central and peripheral nervous systems.  Multiple subtypes of these receptors may 

form from the 8 α and 3 β subunits known to be expressed in mammalian tissues, but since the rules 

of assembly are not known the number of theoretically possible heteromeric nAChR subtypes is not 

yet established.  More important, there are very few tissues where the subunit composition of native 

nAChRs is known with some certainty.  The α7 subtype is identifiable in brain by its rapid kinetics 

and especially by its sensitivity to α-BTX.  In contrast the many different potential subtypes of 

heteromeric receptors are not so readily distinguished.  The predominant heteromeric nAChR in 

mammalian brain is the α4β2 subtype ( Whiting and Lindstrom, 1987; Flores et al., 1992); however, 

other subtypes also are found in many areas of brain and spinal cord (Marks et al., 1998; Perry et 

al., 2002), usually making it difficult to know whether a nicotinic response is mediated by a single 

nAChR subtype or is a composite response reflecting more than one receptor.  Peripheral ganglia 

appear to contain both α3β2 and α3β4 receptors, possibly incorporating an α5 subunit in some cases 

(Conroy and Berg, 1995; Flores et al., 1996; Xu et al., 1999); so again, even with their more limited 

number of nAChR subunits, it is usually not readily apparent which subtype mediates a particular 

response.   

 The main finding of this study is that the rat pineal gland expresses the α3β4 subtype of 

nAChR apparently exclusively.  The evidence for this is based on the pharmacology of the receptor 

and on direct studies of its subunit composition.  The pharmacology of both the receptor’s binding 

site and its function correspond quantitatively (Ki and EC50 values) to the defined α3β4 receptor 

heterologously expressed in HEK293 cells.  Moreover, definitive evidence for the subunit 

composition of the receptor was derived from the immunoprecipitation studies with subunit-specific 
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antibodies, which indicate clearly that the α3 and β4 subunits in the pineal are associated 

exclusively with each other in the same [
3
H]EB binding complex.  This conclusion is consistent 

with data from autoradiography studies using [
125

I]EB in conjunction with drugs that mask certain 

receptor subtypes (Perry et al., 2002) .  The pineal thus serves as one of the few tissues available for 

studies of a defined subtype of native heteromeric nAChR.   

 We measured strong signals for α3 and β4 subunit mRNA, as well as a somewhat weaker 

mRNA signal for the β2 subunit in the rat pineal.  These results are consistent with previous mRNA 

analyses of nicotinic receptor subunits in the rat pineal gland (Wada et al., 1989; Zoli et al., 1995).  

However, we found no evidence that rat pineal gland nAChRs incorporate β2 subunits; and in fact, 

we found no evidence for the presence of the β2 protein via western blots.  Based on the sensitivity 

of our binding and immunoprecipitation assays, we estimate we would have detected β2-containing 

receptors if they constituted ~ 5 % or more of the pineal receptors.  The presence of the β2 mRNA 

might reflect a transient nAChR present during an earlier developmental stage or even a role in 

another protein expressed at low levels.      

 The main function of the pineal gland is the coupling of central circadian timing systems to 

effectors by the rhythmic production and release of melatonin.  Accordingly, pineal function and 

melatonin have been implicated in reproductive cycles, gonad size (in some species) and sleep-

wake cycles (including jet lag).  The pineal appears to be innervated by both limbs of the autonomic 

nervous system.  Sympathetic axons from the superior cervical ganglia synapse on pinealocytes 

where they release norepinephrine at β-adrenergic receptors, which leads to an increase in cyclic 

AMP and activation of melatonin synthesis (Axelrod, 1974).  Parasympathetic cholinergic axons to 

the pineal probably originate in the sphenopalantine ganglia (Korf et al., 1996; Larsen et al., 1998).  

In addition, there is a central cholinergic innervation of the pineal from the medial habenula in some 
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species (Schafer et al., 1998).  Previous studies have found [
3
H]EB binding sites in the pineal, 

indicating the presence of nAChRs ( Marks et al., 1998; Hernandez et al., 1999; Perry et al., 2002; 

Dávila-García et al., 2003).  Moreover, application of acetylcholine to isolated pinealocytes 

stimulates membrane depolarization that is coupled to activation of L-type calcium channels, and 

this action is mimicked by nicotine and blocked by d-tubocurarine (Letz et al., 1997). 

 Previous studies have found that nAChRs mediate inhibition of melatonin synthesis in rat 

pineal explants (Stankov et al., 1993; Yamada et al., 1998b).  In an elegant series of studies, 

Yamada et al. (Yamada et al., 1996a; Yamada et al., 1996b; Yamada et al., 1998a; Yamada et al., 

1998b) established a link between pineal nAChRs, L-type calcium channels, glutamate release, 

metabotropic glutamate receptors and inhibition of cyclic AMP in a signaling pathway leading to 

inhibition of melatonin synthesis.  The signaling pathway begins with activation of the nAChRs, 

which by depolarizing the pinealocyte membrane activate L-type calcium channels.  The increased 

intracellular Ca
2+

 levels trigger exocytotic release of glutamate, which activates mGluR3 

metabotropic glutamate receptors and leads to decreased cyclic AMP.  This results in decreased 

transcriptional activation of serotonin N-acetyltransferase, the rate-limiting enzyme in melatonin 

synthesis.  Our studies identify the nAChR in pinealocytes that begins this signaling cascade as an 

α3β4 subtype.  This conclusion is consistent with observations from previous reports.  For example, 

our EC50 values for activation of whole cell currents by nicotine and ACh in dissociated 

pinealocytes are similar to the values reported for release of glutamate and inhibition of melatonin 

synthesis (Yamada et al., 1998b).  Moreover, both nicotine-activated whole cell currents (present 

data) and acetylcholine-induced release of glutamate (Yamada et al., 1998b) in pinealocytes are 

blocked by d-tubocurarine but not by α-BTX.    
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A second major finding in this paper is the remarkably close correspondence between the 

function of α3β4 nAChRs measured by whole cell patch clamp analysis in pinealocytes and 
86

Rb
+
 

efflux in transfected HEK293 cells that heterologously express these receptors.  Thus, the EC50 

values for the activation of whole cell currents in pinealocytes by six nicotinic agonists were nearly 

indistinguishable from their EC50 values for the activation of 
86

Rb
+
efflux measured in HEK293 cells 

expressing the α3β4 nAChR subtype.  Moreover, cytisine, which is a full agonist at β4-containing 

receptors but a weak partial agonist at β2-containing receptors (Luetje and Patrick, 1991; Papke and 

Heinemann, 1994) is a full agonist at the pineal receptor as well as at the heterologously expressed 

α3β4 receptor (Meyer et al., 2001).  Similarly, DMPP appears to be a partial agonist at the pineal 

receptors, as it is at the heterologously expressed α3β4 receptors (Meyer et al., 2001).  In addition to 

the evidence from the activation of the receptors by agonists, the Ki values for the competitive 

antagonist DHβE derived from functional studies in pineal cells and the heterologously expressed 

α3β4 receptors are nearly identical.  

 Nevertheless, although the pharmacological evidence that the pineal nAChR is an α3β4 

subtype is very strong, there are at present no drugs that can conclusively establish the identity of a 

heteromeric nAChR subtype.  Furthermore, very little is known about the pharmacological 

properties of a possible α3β2β4 receptor (Colquhoun and Patrick, 1997). Therefore, the 

immunoprecipitation studies with subunit specific antibodies provide the most definitive evidence 

for the identity of the pineal receptor subtype.  Only the antibodies that recognize the α3 and β4 

subunits were effective in immunoprecipitating the nAChR in the pineal gland; moreover, 

immunoprecipitation with either antibody removed virtually all of the receptors from the remaining 

supernatant, indicating that the α3 and β4 subunits are physically associated.  In contrast, the β2-

directed antibody did not immunoprecipitate nAChRs from the pineal extracts, although it 
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efficiently immunoprecipitated receptors from the cerebral cortex, which is known to contain 

nAChRs with the β2 subunit, namely the α4β2 subtype (Whiting and Lindstrom, 1987; Flores et al., 

1992).     

 In summary, these studies have shown that the rat pineal gland expresses a high density of  

nAChRs and that this receptor is virtually exclusively an α3β4 subtype.  The characteristics of this   

receptor are consistent with the one that mediates the cholinergic signals that lead to decreased 

melatonin production and thereby plays an important role in pineal physiology.  Thus, the rat pineal 

gland provides a readily obtainable native tissue with a high concentration of an identified subtype 

of nAChR.  This should allow detailed studies of, for example, the channel properties, regulation 

and turnover rate of this receptor in its native cell, as opposed to receptors expressed by transfection 

into heterologous cell systems.   In addition, studies to determine proteins associated with the α3β4 

nAChR require a native tissue that expresses a high level of receptor.  The pineal is such a tissue 

and should be useful for this purpose.   
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 FIGURE LEGENDS 

 

Figure 1. Expression of nAChR subunit mRNA in the rat pineal gland.  RNAse protection 

assays were carried out as described in Materials and Methods.  Total RNA from rat pineal gland 

was hybridized with a combination of [
32

P] labeled anti-sense probes corresponding to the nine rat 

nAChR subunit genes α2, α3, α4 (lane 1); α5, α6, β4 (lane 2); and α7, β2 and β3 (lane 3).  The 

probe corresponding to GAPDH gene was used as an internal and loading control.  The gel shown is 

representative of  3 to 6 independent experiments for the different subunits. 

 

Figure 2.  Autoradiographic images of [
125

I]EB and [
125

I]α-BTX binding to rat pineal gland. 

Autoradiography was carried out as described in Materials and Methods.  Coronal sections (20 µm) 

of brain at the level of the superior colliculus with the pineal gland intact were mounted onto slides 

and incubated with (A) 500 pM [
125

I]EB or (B) 5 nM [
125

I]α-BTX to measure total binding (TB) to 

the sections.  Non-specific binding (NSB) was measured in parallel by incubating adjacent brain 

sections with the radioligands in the presence of 300 µΜ nicotine.  Slides were washed, dried and 

apposed to autoradiographic X-ray film in cassettes for 2-6 days.  Abbreviations for the brain 

regions indicated are as follows: CTX, cerebral cortex;  SC, superior colliculus; and Pin, pineal. 
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Figure 3.  Saturation Binding of [
3
H]EB to membrane homogenates from rat pineal gland.  

Binding curves represent specific binding (�) and nonspecific binding (�) of [
3
H]EB to membrane 

homogenates form rat pineal gland.  The inset graph is a comparison of the Bmax value for [
3
H]EB 

specific binding to membrane homogenates form rat pineal gland vs. the rat cerebral cortex to 

demonstrate the relative densities of nAChRs expressed in the two tissues.  Saturation data were 

analyzed by a nonlinear regression program (Graph Pad).  Data shown are representative of six 

pineal gland and three cortex independent saturation experiments.  The Kd and Bmax values for the 

pineal gland were 103 ± 15 pM and 321 ± 37 fmol/mg protein, respectively.  

 

Figure 4.  Comparison between ligand binding competition profiles of nAChRs in membrane 

homogenates from rat pineal gland and HEK293 cells expressing α3β4 or α3β2 nAChRs. 

Competition of nicotinic drugs for [
3
H]EB binding sites in (A) rat pineal gland, (B) α3β4 cells and 

(C) α3β2 cells.  The membrane homogenates were incubated with 500 pM [
3
H]EB,  and the 

competing ligands were added at the concentrations indicated.  All curves fit a one-site binding 

model, and the Ki values are provided in Table 1. Data shown are representative of 3 to 6 

independent experiments.  (D) Correlation between Ki values for nAChRs in the pineal and the 

α3β4 and α3β2 nAChRs in transfected cells.  The logs of the Ki values in Table 1 were fit to a 

linear regression equation, and the Pearson correlation coefficient, r, was determined for each 

regression line. The dashed line represents the line of identity for the data and indicates that the 

pineal gland Ki values corresponded most closely to the α3β4 transfected cells.  Data shown are the 

mean values of 3 to 6 independent experiments. 
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Figure 5.  Concentration response of different nicotinic agonists at nAChRs in dissociated rat 

pinealocytes. (A) Sample traces of currents activated by EB, A85380, nicotine (Nic), cytisine (Cyt) 

acetylcholine (ACh) and DMPP.  Currents were recorded at a constant holding potential of –60 mV.  

Traces shown are representative of independent recordings from six different pinealocytes at the 

indicated drug concentration.  (B) Concentration response curves for currents activated by 

increasing concentrations of EB (Ο), A85380 (�), NIC (♦), Cyt (▲), ACh (◊) and DMPP (*).  

Increasing concentrations of each agonist were applied at two minute intervals, with washout 

between each application. Currents were normalized to the maximal response induced by each 

individual agonist and data were fit to a sigmoidal concentration-response relationship using 

GraphPad.  (C) The peak currents activated by each drug.  Data are expressed in pA units and are 

the mean ± SEM for five to seven independent experiments.  

 

Figure 6.  Correlation between EC50 values for agonist-stimulated whole-cell currents in 

pineal cells and agonist stimulated 
86

Rb
+
 efflux in transfected cells expressing α3β4 receptors.   

The logs of the Ki values in Table 2 were fit to a linear regression equation, and the Pearson 

correlation coefficient, r, was determined. The dashed line represents the line of identity and 

indicates a close correspondence between the EC50 values derived from the two different types of 

assays.    

 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 9, 2004 as DOI: 10.1124/mol.104.002345

 at A
S

P
E

T
 Jo

u
rn

als o
n
 M

ay
 2

9
, 2

0
2
2

m
o
lp

h
arm

.asp
etjo

u
rn

als.o
rg

D
o
w

n
lo

ad
ed

 fro
m

 

http://molpharm.aspetjournals.org/


MOL 2345 

 32

Figure 7.  Concentration-dependent inhibition of nicotine-activated whole-cell currents by 

nicotinic antagonists in dissociated rat pinealocytes. (A) Sample traces of currents activated by 

30 µM nicotine in rat pinealocytes in the absence and presence of mecamylamine (Mec), curare, 

DHβE and α-BTX.  The cells first received an initial control application of 30 µM nicotine, 

followed by simultaneous application of 30 µM nicotine plus the indicated concentration of 

antagonist, except for α-BTX, which was added 2.5 min prior to and during the second nicotine 

application.  (B) Concentration-response inhibition curves for Mec (�), curare (�) and DHβE (▼).  

Before curve fitting, the peak currents were normalized to the maximal current induced by 30 µM 

nicotine and expressed as percent of control. Data were fit to a sigmoidal concentration-response 

relationship using GraphPad.  Data shown are mean ± SEM of three to five independent 

experiments. 

 

Figure 8.  Concentration dependence of antibodies for immunoprecipitation of solubilized 

nAChRs from the rat pineal gland.  Pineal gland membrane homogenates were solubilized and 

[
3
H]EB-labeled nAChRs equivalent to 4 mg of rat pineal gland tissue were incubated with the 

indicated dilutions of anti-β4 (■) antiserum, anti-α3 (▲) antibody or anti-β2 (○) monoclonal 

antibody (mAb 270), and specific immunoprecipitation was measured as described in Materials and 

Methods.  As shown, only the anti-α3 antibody and anti-β4 antiserum immunoprecipitated [
3
H]EB-

labeled  nAChRs from the pineal.  Inset: In rat cerebral cortex, in contrast to the pineal, the anti-β2 

monoclonal antibody  immunoprecipitated [
3
H]EB-labeled nAChRs.  Data shown are mean ± SEM 

of  three independent experiments. 
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Figure 9.  Association of α3 and β4 subunits in the rat pineal gland nAChR.  Sequential 

immunoprecipitations were performed as described in Materials and Methods.  Aliquots of 

solubilized, [
3
H]EB-labeled nAChRs from rat pineal gland were incubated sequentially with anti-α3 

antibody, anti-β4 antiserum or anti-β2 monoclonal antibody (mAb 270).  Initial 

immunoprecipitation with α3 antibody (A), β4 antiserum (B), or β2 monoclonal antibody (C) was 

followed in each case by a second immunoprecipitation with α3 antibody, β4 antiserum or the β2 

monoclonal antibody.  Results are expressed as % of specific immunoprecipitation of total 

solubilized receptors.  Data are the mean ± SEM from three independent experiments. 
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TABLE 1.  

Comparison of Ki values of nAChR ligand binding in membrane homogenates from rat pineal 

gland, α3β4 cells and α3β2 cells.  Competition binding assays were carried out as described in 

Materials and Methods using ~ 500pM [
3
H]EB.  The Ki values were calculated using the Cheng-

Prusoff equation.  Values shown are the mean ± SEM of three to six independent experiments. 

 Ki ± SEM (nM) 

Drug Rat Pineal Gland α3β4 α3β2
a
 

A85380 24 ±2.8 54 ±4.8 0.21 ±0.04 

Cytisine 63 ±11 128 ±15 37 ±9.0 

Nicotine 202 ±26 318 ±42 47 ±11 

DHβE 64,833  ±22,190 98,700  ±22,124 3800 ±1300 

a
Data for transfected cells expressing α3β2 receptors were taken from Xiao and Kellar (2004). 
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TABLE 2. 

Comparison of EC50 values of nicotinic agonists for activation of currents through nAChRs in 

rat pineal cells and stimulation of 
86

Rb
+
 efflux from α3β4 transfected cells.  Dissociated pineal 

cells were prepared from ~30-day-old male Sprague Dawley rats as described in Materials and 

Methods.  See Figure 5 for description of data analyses and curve fittings of pineal whole cell 

recordings.  Values shown are the mean ± SEM from five to seven different cell recordings and at 

least three 
86

Rb
+
 efflux assays.   

      EC50 (µM) ± SEM 

Agonist Rat Pineal Gland 

(whole cell patch clamp) 
α3β4 HEK Cells

a
 

(86Rb+ Efflux) 

Epibatidine 0.03 ± 0.02 0.06 ± 0.01 

A85380 6.0 ± 1.4 5.7 ± 0.3 

DMPP 14 ± 12 28 ± 3.9 

Nicotine 21 ± 16 31 ± 1.5 

Cytisine 28 ± 16 24 ± 7.4 

ACh 60 ± 16 110 ± 11 

aData for transfected cells expressing α3β4 receptors were taken form Meyer et al. (2001) 
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TABLE 3. 

 

Comparison of IC50 values of nicotinic antagonists for inhibition of nicotine (30 µM) activated 

currents through nAChRs in rat pineal cells and inhibition of nicotine (100 µM) stimulated 

86
Rb

+
 efflux from α3β4 cells. Dissociated pineal cells were prepared from ~30-day-old male 

Sprague Dawley rats as described in Materials and Methods.  See Figure 5 for description of data 

analyses and curve fittings of pineal whole cell recordings.  Values shown are the mean ± SEM 

from four to five whole-cell recordings and at least three 
86

Rb
+
 efflux assays. 

 IC50 (µM) ± SEM 

Antagonist Rat Pineal Gland 

(whole cell patch clamp) 
α3β4 HEK Cells

a
 

(86Rb+ Efflux) 

Mecamylamine 0.9 ± 0.2 1.2 ± 0.4 

Curare 16 ± 14 9.6 ± 1.4 

DHβE 50 ± 10 
(Ki = 20 µM ± 4.0) 

100 ± 6 
(Ki = 22 µM ± 1.3) 

 
aData for transfected cells expressing α3β4 receptors were taken form Xiao et al. (1998). 
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