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The NLRP3 inflammasome is activated by
nanoparticles through ATP, ADP and adenosine

L Baron1, A Gombault1, M Fanny1, B Villeret1, F Savigny1, N Guillou1, C Panek1, M Le Bert1, V Lagente2, F Rassendren3, N Riteau1

and I Couillin1

The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism

of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica

dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or

asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to

nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP)

and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase

in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in

response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation

or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3

inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of

adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and

by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine

activates the NLRP3 inflammasome by twoways: by interacting with adenosine receptors at nanomolar/micromolar concentrations

and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new

molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation.
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The inflammasome is a major factor of the innate immune

system acting as amultiprotein platform to activate caspase-1.

We showed recently that nanoparticles of TiO2 (nano-TiO2)

and SiO2 (nano-SiO2) are sensed by the NLRP3 inflamma-

some to induce the release of mature IL-1β,1 as observed

previously with the environmental irritants asbestos or silica.2

Despite the identification and characterisation of numerous

sterile or microbial activators, the precise mechanisms

mediating NLRP3 inflammasome activation remain to be

determined. Here, we investigated whether ATP release and

purinergic signalling through ATP, ADP and adenosine may be

involved in inflammasome activation by nanoparticles.

Intracellular ATP is released after cellular stress and/or

activation, and purinergic signalling has been shown to

modulate inflammation and immunity.3,4 In the extracellular

space, ATP is rapidly hydrolysed in a stepwise manner to

ADP, AMP (adenosine monophosphate) and adenosine by

ectoenzymes.4 Adenosine is then irreversibly hydrolysed to

inosine by adenosine deaminase (ADA). Extracellular ATP

(eATP) signals through both ATP-gated ion channels P2X and

G protein-coupled receptor (GPCR) P2Y membrane recep-

tors, whereas ADP signals through P2Y receptors and

adenosine through P1 receptors (or A receptors).5 P2Y

receptors and A receptors may be coupled to the Gq protein,

which activates phospholipase C-beta (PLC-β), to the

stimulatory G (Gs) protein, which stimulates adenylate cyclase

inducing an increase in cyclic AMP (cAMP) levels, or to the G

inhibitory (Gi) protein, which inhibits adenylate cyclase.

Extracellular adenosine level is the result of adenosine

production from extracellular ATP and ADP, its degradation

into inosine and its reuptake by cells. Both ATPand adenosine

can be transported outside of the cell via diffusion or active

transport, whereas only adenosine can enter the cells through

adenosine transporters.6 Most cells possess equilibrative and
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concentrative adenosine transporters (respectively, ENTs and

CNTs), which allow adenosine to quickly cross the plasma

membrane.7 Intracellular adenosine is converted to ATP via

phosphorylation steps mediated by adenosine kinase (AK)

and AMP kinase (AMPK). The basal physiological level of

extracellular adenosine has been estimated to be in the range

of 30–200 nM.8 ATP-derived adenosine and its subsequent

signalling through P1 receptors have beneficial roles in acute

disease states.4,9 However, during tissue injury, elevated

adenosine levels participate in the progression to chronic

diseases by promoting aberrant wound healing leading to

fibrosis in different organs including the lungs, liver, skin and

kidney. In these conditions the blockade of adenosine signalling

is beneficial.10–16 In murine models, ADA-knockout mice

present high persistent adenosine levels, which lead to

airspace enlargement and fibrosis, cardinal signs of COPD

and IPF.14,17,18

Here we investigate in more detail the critical contribution of

purinergic signalling in driving NLRP3 inflammasome activa-

tion in response to nanoparticles pointing out the effect of ATP,

ADP, as well as adenosine and its receptors. We also identify

ATP-derived adenosine as a potential activator of the

inflammasome.

Results

Nano-SiO2 or nano-TiO2 particles trigger active ATP

release and IL-1β secretion through purinergic signalling

and pannexin/connexin hemichannel activity. We

recently showed that nano-SiO2 and nano-TiO2, but not

nano-ZnO, activate the NLRP3 inflammasome in human and

murine macrophages.1 Here we studied whether active ATP

release, purinergic signalling and connexin/pannexin channel

activity are involved in inflammasome activation by nano-SiO2

and nano-TiO2. Using the ecto-ATPase inhibitor ARL67156 to

limit ATP catabolism,19 we observed that nano-SiO2

(Figure 1a) or nano-TiO2 (Figure 1b), but not nano-ZnO

(Figure 1c), causes an active release of endogenous ATP in

primed THP1 macrophages, which peaks at 3–4 h and just

precedes mature IL-1β secretion. Importantly, nano-TiO2,

nano-SiO2 or nano-ZnO did not induce necrosis or apoptosis

even after 6 h of stimulation (Figures 1d and e). We confirmed

the importance of the inflammasome in IL-1β production in

response to nanoparticles using THP1 cells stably expres-

sing short hairpin ribonucleic acid (shRNA) against compo-

nents of the inflammasome, the NLRP3 protein itself or the

adaptor protein apoptosis-associated speck-like protein con-

taining a CARD domain (ASC) (Figure 1f). By investigating

the mechanisms of nanoparticle-induced ATP release leading

to IL-1β secretion, we observed that specific inhibition of the

P2X7 receptor (P2X7R) by A740003 at 10 μM led to partial

inhibition of ATP release and IL-1β secretion by nano-SiO2

and nano-TiO2 (Figures 1g and h). Among several potential

mechanisms of nucleotide release, we focused on the

connexin and pannexin families, which are able to form

hemichannels.20,21 The connexin/pannexin channel blockers

carbenoxolone (Cbx) and flufenamic acid (FFA) significantly

reduced both ATP and IL-1β releases (Figures 1g and h).

Although unable to induce IL-1β by themselves, the addition

of the nucleotides ATP or ADP or their stable derivatives

ATPγS or ADPβS greatly increased IL-1β production by

THP1 cells in response to nanoparticles (Figure 1i). Unlike

what we observed with THP1 human monocyte/macrophage

cell line, we were unable to measure significant ATP increase

in the supernatant of stimulated murine bone-marrow-derived

macrophages (BMDMs). This might probably be owing to the

fastest ATP degradation by these cells as proposed.22

However, the use of two different P2R antagonists, suramin

and periodate-oxidised ATP (oATP), dose-dependently led to

the reduction of IL-1β production induced by nano-SiO2 or

nano-TiO2 (Figure 2a). Cbx and FFA also induced the

reduction of IL-1β release (Figure 2b). Western blotting

analysis confirmed that nano-SiO2 or nano-TiO2 triggers the

cleavage of pro-IL-1β into the mature 17 kDa IL-1β form and

its secretion in primed BMDMs. The addition of oATP,

A740003, Cbx or FFA strongly reduced the secretion of

mature IL-1β (Figure 2c). Similarly, the cleavage of pro-

caspase-1 into the secreted mature p10 subunit was reduced

in the presence of oATP, Cbx or FFA (Figure 2d), confirming

that NLRP3 inflammasome activation depends on purinergic

signalling and connexin/pannexin channels.

Nanoparticles induce IL-1β secretion through metabo-

tropic P2Y receptor signalling. To identify more precisely

the purinergic receptors involved, we performed quantitative

mRNA expression analysis of P2 purinergic receptors. P2Y2

receptor (for ATP/UTP) mRNA level was increased after

nano-SiO2 or nano-TiO2 particle stimulation, whereas P2Y1

receptor (ADP) mRNA level was increased only after nano-

SiO2 stimulation (Figure 3a). In contrast, mRNA levels of

P2Y7 (ATP), P2Y4 (UTP), P2Y6 (UDP) or P2Y12 (ADP)

receptors were slightly reduced after nano-SiO2 stimulation

(Figure 3a) and also P2Y12 receptor after nano-TiO2

stimulation. Deficiency in the ATP ionotropic P2X7 or P2X4

did not lead to significant impairment in IL-1β production by

BMDMs upon nanoparticle stimulation (Figure 3b). Defi-

ciency in the ATP/UTP metabotropic P2Y2 receptor, notably

involved in cell chemotaxis in response to ATP leakage,23

promoted a slight decrease in IL-1β production (Figure 3c). In

addition, we found that P2Y1 receptor antagonist MRS2500

(Figure 3d) decreased nano-SiO2- but not nano-TiO2-induced

mature IL-1β secretion, whereas P2Y6 receptor (UDP)

antagonist MRS2578 (Figure 3e) and P2Y12 receptor

(ADP) antagonist MRS2395 (Figure 3f) had no effect on

nanoparticle-induced IL-1β secretion. Altogether, these

results suggest that P2Y1 (ADP) and P2Y2 (ATP/UTP)

receptors are involved in the activation of the NLRP3

inflammasome by nano-SiO2.

Nanoparticles induce mature IL-1β secretion through

adenosine and P1 receptors signalling. We stimulated

murine macrophages in the presence of the ATP-consuming

enzyme apyrase grade VII, which hydrolyses ATP and ADP

into AMP. Apyrase did not abrogate IL-1β secretion induced

by nano-TiO2 or nano-SiO2 but, on the contrary, slightly

increased it (Figure 4a). Then, in the presence of the

adenosine deaminase (ADA), IL-1β secretion by nano-SiO2

or nano-TiO2 was greatly reduced (Figure 4b). Similarly, we

stimulated THP1 cells with nano-SiO2, in the presence of

Adenosine induces inflammasome activation
L Baron et al

2

Cell Death and Disease



0 2 4 6
0

5

10

15

20

25

0

100

200

300

eATP

IL-1βIL-1β

eATP
Medium Nano-ZnO

Time (h)

e
A

T
P

 [
n

M
]

IL
-1

β
 [

p
g

/m
l]

–
ATP

ATPγS
AD

P

AD
PβS

0

200

400

600

800

1000

1200 Medium

Nano-SiO2

Nano-TiO2
***

*** ***

***

IL
-1

β
 [

p
g
/m

l]

Med. – 10 50 50 100 100 200
0

20

40

60

Nano-SiO2

Nano-TiO2

A740003 Cbx FFA

***
***

***

*** ***

***

e
A

T
P

 [
n
M

]

Med. – 10 50 50 100 100 200
0

200

400

600

Nano-SiO2

Nano-TiO2

A740003 Cbx FFA

***

***
***

***
***

***

IL
-1

β
 [

p
g
/m

l]

Med. Nano-SiO2 Nano-TiO2 Nano-ZnO
0

500

1000

1500
βββ

βββ

δδδ

δδδ
γγγ

ααα

ααα

αα αα αα

THP-1

THP-1 sh CTL

THP-1 sh ASC

THP-1 sh NLRP3

IL
-1

β
 [

p
g
/m

l]

0

5

10

15

20

25

60

80

100

AnV–PI– AnV+PI– AnV–PI+ AnV+PI+

Medium

Nano-SiO2

Nano-TiO2

Nano-ZnO

C
e
ll 

p
e
rc

e
n

ta
g

e

0 2 4 6
0

5

10

15

20

0

100

200

300

eATP

IL-1βIL-1β

eATP
Medium Nano-TiO2

Time (h)

e
A

T
P

 [
n

M
]

IL
-1

β
 [
p

g
/m

l]

0 2 4 6
0

10

20

30

40

50

0

200

400

600

800

eATP

IL-1β

eATP

IL-1β
Medium Nano-SiO2

Time (h)

e
A

T
P

 [
n

M
]

IL
-1

β
 [
p

g
/m

l]

ααα

ααα ααα
ααα

ααα

ααα

ααα
α

α

Figure 1 Nano-SiO2 or nano-TiO2 particles trigger active ATP release and IL-1β secretion through purinergic signalling and pannexin/connexin hemichannel activity. Nano-SiO2

(a) or nano-TiO2 (b) triggered active release of ATP in the supernatant by PMA-primed THP1 that peaks between 3 and 4 h. This ATP release was correlated with a secretion of IL-1β
(a,b). Nano-ZnO did not induce ATP release or IL-1β secretion (c). Apoptotic (PI− anV+) and necrotic (PI+ anV− ) cell death of primed THP1 was monitored using the AnnexinV/PI
staining (d,e). ARL67156 (50 μM) was added to the supernatant during stimulation to limit ATP catabolism (a–c). IL-1β secretion by nano-SiO2 or nano-TiO2 was attenuated in
THP1 cells stably expressing shRNA directed against ASC (sh ASC) or NLRP3 (sh NLRP3) in comparison with THP1 transfected with lamin-specific shRNA (sh CTL) (f). Nano-ZnO
did not induce IL-1β secretion after 4 h of stimulation (f). Specific inhibition of P2X7R by A740003 partially decreased ATP release and IL-1β secretion by PMA-primed THP1 after 4 h
nanoparticle stimulation (g,h). Connexin/pannexin channel blocker carbenoxolone (Cbx) and connexin channel blocker flufenamic acid (FFA) reduced both ATP release and IL-1β
secretion upon nano-SiO2 or nano-TiO2 (g,h). PMA-primed THP1 stimulated for 4 h with 200 μM ATP, ADP or their stable derivatives ATPγS or ADPβS greatly increased IL-1β
production in response to nanoparticles, whereas these nucleotides had no effect alone (i). Nanoparticles are at the concentration of 250 μg/ml (a–h) or 125 μg/ml (i). Data are
representative of 2–4 independent experiments. Data are mean±S.D. of triplicates, compared between untreated and nanoparticle-stimulated THP1; ααα, P≤ 0.001 for THP1, βββ,
P≤ 0.001 for THP1 sh CTL, γγγ, P≤ 0.001 for THP1 sh ASC, δδδ: P≤ 0.001 for THP1 sh NLRP3 (f). Data are mean± S.D. of triplicates, compared between nanoparticle-
stimulated THP1 and nanoparticles plus inhibitor or agonist; *** and ααα, P≤ 0.001 for nano-SiO2 and nano-TiO2 stimulated THP1, respectively (g–i)
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Figure 2 Nano-SiO2- or nano-TiO2-induced IL-1β in mouse macrophages is dependent on purinergic signalling. IL-1β production by LPS-primed BMDMs stimulated for 6 h
with nano-SiO2 or nano-TiO2 was dose dependently decreased by P2R antagonists suramin (200, 400 or 600 μM) and oATP (100, 200 or 400 μM) (a). Cbx (50 or 100 μM) and
FFA (25, 100 or 250 μM) significantly reduced IL-1β release by murine macrophages (b). Western blotting analysis of LPS-primed BMDM supernatants (SN) confirmed that FFA
(100 μM), Cbx (50 μM) oATP (200 μM) or A740003 (100 μM) strongly reduced the secretion of the mature 17kD IL-1β form mIL-1β in response to nano-SiO2 or nano-TiO2 (c).
Similarly FFA, Cbx or oATP significantly reduced autoproteolytic cleavage of the pro-caspase-1 into the secreted p10 subunit (d). Stimulation of BMDMs with ATP (5 mM, 45 min)
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with 250 μg/ml nanoparticles during 6 h. Data are representative of three independent experiments. Data are mean± S.D. of triplicates, compared between nanoparticle-
stimulated THP1 and nanoparticles plus inhibitor; *** and ααα, P≤ 0.001 for nano-SiO2 and nano-TiO2 stimulated THP1, respectively (a,b)
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apyrase or ADA. Measurement of eATP levels showed that,

even when ATP was degraded by apyrase, IL-1β secretion

was still observed and even slightly increased (Figure 4c).

When ADA was added to the nanoparticles, we noted a

potent decrease in IL-1β and ATP levels probably owing to a

shift in the balance of the ATP/ADP towards adenosine

(Figure 4d). Next, the addition of the non-degradable pan-

adenosine receptor agonist 5'-N-Ethylcarboxamidoadenosine

(NECA; 0.3–30 μM) significantly increased nano-SiO2-

but not nano-TiO2-induced IL-1β secretion (Figure 4e).

In contrast, adenosine had no effect at these concentrations,

but only increase IL-1β at higher concentrations

M
ed

iu
m

N
an

o-S
iO 2

N
an

o-T
iO 2

0

500

1000

1500

2000

2500
B6

P2X4 -/-

P2X7 -/-

ns

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

P2Y2 P2Y4 P2Y6

0

1

2

3

4

5

6

***
***

*** ***

E
x
p

re
s
s
io

n
 r

a
ti

o
 G

O
I/
R

N
A

 1
8
S

(A
b

s
o

lu
te

 V
a
lu

e
)

P2Y1 P2Y12 P2Y13 P2X7

0

1

2

3

4

5

6

***
***

***

***

Medium

Nano-SiO
2

Nano-TiO
2

M
ed

iu
m

N
an

o-S
iO

2

N
an

o-T
iO

2

N
an

o-Z
nO

0

500

1000

1500

2000

2500

P2Y2 +/+

P2Y2 -/-

**

ns

0 0.03 0.1 0.3 1

0

200

400

600

800

1000 Medium

Nano-SiO
2

Nano-TiO
2

*

MRS 2500 [�M]

- 0.3 1 3 10

0

1000

2000

3000

MRS 2395 [�M]

ns

ns

- 0.3 1 3 10

0

500

1000

1500

2000

2500

MRS 2578 [�M]

ns

ns

P2Y1 P2Y6 P2Y12
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(100–300mM) probably because adenosine is rapidly

degraded into inosine by ADA (not shown). In addition,

IL-1β induced by nano-SiO2 but not by nano-TiO2 was slightly

decreased in the presence of the CD73 inhibitor AMP-CP,

suggesting that adenosine is more important for nano-SiO2-

induced IL-1β (Figure 4f). These results indicate that

BMDMBMDM

BMDM

THP1 THP1

0 0.3 1 3 10
0

1000

2000

3000

4000

Apyrase VII (U/ml)

Medium

Nano-SiO
2

Nano-TiO
2

*

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

IL
-1

�
 [

p
g

/m
l]

0 0.3 1 3 10
0

2000

4000

6000

8000

ADA (U/ml)

**

***

0 0.3 1 3 10
0

500

1000

1500

2000

2500

ADA (U/ml)

**

***

- 0.3 1 3 10 30 100
0

1000

2000

3000
Medium

Nano-SiO
2

Nano-TiO
2

***
***

***

NECA (�M)

BMDM

- 0.3 1 3 10
0

500

1000

1500

2000

2500
Medium

Nano-TiO
2

Nano-SiO
2

* *
***

ns

ns

ns

AMP-CP (�M)
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IL-1β secretion induced by nanoparticles was increased in the presence of NECA (e) and remained stable in the presence of AMP-CP (f). Data are representative of three
independent experiments (*P≤ 0.05, **P≤ 0.01, ***P≤ 0.001, ns: not statistically different)
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adenosine generated after nanoparticle-induced ATP release

participates with ATP and ADP in promoting inflammation and

NLRP3 inflammasome activation.

A2A, A2B and A3 receptors are involved in NLRP3

inflammasome activation. P1 purinergic receptors mRNA

expression showed that both A2A and A2B mRNAs are

increased in the presence of nano-SiO2 or nano- TiO2,

whereas A3 and A1 mRNA expression levels did not

significantly change (Figure 5a). Moreover, we showed

that the specific A2A (SCH58261), A2B (MRS1754) or the

specific A3 (MRS1523) inhibitors decreased IL-1β secretion

after nano-SiO2 or nano-TiO2 stimulation (Figures 5b–d).

In contrast, the specific antagonist of A1 receptor (DPCPX)

had no effect on IL-1β secretion (Figure 5e). These results

identified adenosine as a crucial mediator of IL-1β secretion

through the high-affinity A2A receptor and the low-affinity A2B
and A3 receptors in response to nanoparticle activation in

murine macrophages.

Nanoparticles trigger NLRP3 inflammasome through the

activation of PLC-InsP3 and inhibition of ADCY-cAMP

pathways. We investigated pathways leading to inflamma-

some activation downstream of purinergic receptors. Both

P2Y and P1 receptors belong to the GPCR family acting

through numerous signalling cascades and have been linked

to inflammation.24 P2Y1, P2Y2, A3 and A2B receptors

involved in nanoparticle-mediated inflammasome activation

can be coupled to the heterotrimeric G proteins of the Gq

family that activate phospholipase C-β (PLC-β). We show that

the inhibitor of PLC-β, U73122, blocked nanoparticle-induced

IL-1β secretion (Figure 6a). PLC-β is able to hydrolyse

phosphatidylinositol-4, 5-bisphosphate into diacylglycerol

(DAG), activating the protein kinase C and the production of

the inositol trisphosphate (InsP3), which in turn causes an

increase in cytosolic Ca2+ by binding to InsP3 receptors

located in the endoplasmic reticulum. As intracellular Ca2+

(iCa2) increase was shown to directly activate the NLRP3

inflammasome,25 we analysed the effect of 2-APB, a

molecule chelating and hence blocking the increase of iCa2+.

We observed that 2-APB strongly reduced nanoparticle-

induced IL-1β secretion (Figure 6b). Moreover, adenosine

receptors can also be coupled to the Gs family activating

ADCY or the Gi/o family inhibiting ADCY with subsequent

augmentation or reduction of cyclic AMP (cAMP). As cAMP

was shown to bind and suppress NLRP3 inflammasome

activation directly,25 we examined the involvement of ADCY in

nanoparticle-induced IL-1β secretion. The addition of the

ADCY activator forskolin dose dependently inhibited

nanoparticle-induced IL-1β secretion (Figure 6c), whereas

the addition of the ADCY inhibitor SQ22536 had no effect

(Figure 6d). Collectively, these results indicate that

nanoparticles trigger the NLRP3 inflammasome pleonasm

through both activation of PLC-InsP3 and inhibition of ADCY-

cAMP pathways.

Adenosine induces IL-1β secretion and ATP release in

THP1 human macrophages. We observed that high con-

centrations of adenosine (100 μM), which does not corre-

spond to adenosine receptor affinities, enhanced ATP

release and IL-1β secretion on nanoparticles in THP1

macrophages (Figure 7a). Moreover, adenosine at 5 mM

was alone able to trigger ATP release and IL-1β secretion,

whereas 100 μM adenosine had no effect (Figure 7a). IL-1β

secretion induced by nanoparticles plus adenosine (5 mM) or

adenosine alone in the presence of the specific caspase-1

inhibitor Z-YVAD-fmk was greatly reduced (Figure 7c). More-

over, IL-1β secretion in response to a high dose of adenosine

was not induced in THP1-expressing shNLRP3 or shASC

(Figure 7d). Intracellular and extracellular adenosine levels

are regulated by equilibrative nucleoside transporters (ENTs)

present at the cell membrane.7 Cellular adenosine uptake

may lead to intracellular metabolism of adenosine in ATP by

adenosine kinase and subsequent release of ATP and IL-1β

secretion.6 To test these possibilities, we stimulated THP1

macrophages with increasing doses of adenosine, NECA, the

non-degradable analogue of adenosine or inosine, the

metabolite of adenosine degradation by ADA. We observed

that even if high doses of adenosine triggered ATP release

and IL-1β secretion, the same doses of NECA had no effect,

demonstrating that metabolism of adenosine is necessary for

these responses (Figure 7e). One possibility for adenosine to

be metabolised is its hydrolysis in inosine by ADA. Never-

theless, high doses of inosine were unable to promote eATP

and IL-1β release (Figure 7e). Millimolar doses of adenosine,

NECA or inosine did not induce cell death (Figure 7e). The

other possibility is an adenosine reuptake through ENTs and

intracellular metabolism of adenosine in ATP by adenosine

kinase. To test this hypothesis, we measured eATP and IL-1β

induced by millimolar concentrations of adenosine in the

presence of 5-iodotubercidin, a pharmacological inhibitor of

both adenosine kinase and ENTs, and showed that eATP and

IL-1β release was reduced (Figure 7f). We used NBMPR, a

pharmacological inhibitor of ENTs that is specific for ENT1

(Ki=0.4 nM) and ENT2 (ki=2.8 μM) at nM and μM concen-

trations, respectively. We observed that NBMPR inhibited

eATP and IL-1β only at μM doses (Figure 7g). The mRNA

expression of ENT2 was significantly increased by millimolar

concentrations of adenosine (Figure 7h). Millimolar concen-

trations of adenosine significantly increased NLRP3 mRNA

expression, supporting the role of adenosine in NLRP3

inflammasome activation (Figure 7i). In addition, intracellular

ATP contents were increased after addition of extracellular

adenosine at high doses (Figure 7j). Altogether, these results

indicate that extracellular adenosine when present at a high

concentration is recaptured by macrophages through ENT2

transporters and metabolised in ATP by adenosine kinase

leading to ATP release and NLRP3 inflammasome activation.

Early nanoparticle-induced pulmonary inflammation

depends on adenosine. Airway exposure to ultrafine

particles is associated with strong infiltration of neutrophils

in the airways in humans and mice.1,26 We instilled mice with

nano-TiO2 or nano-SiO2 and visualised the presence of

nanoparticle aggregates in lung parenchyma at 24 h

(Figure 8a). Similarly to nano-TiO2,
1 nano-SiO2 elicited a

considerable neutrophil influx in the BALF at 6 h (Figure 8b),

which correlated with the production of the neutrophil

chemoattractant KC (Figure 8c) and the metalloproteinase-9

(MMP-9) present in neutrophil β2 gelatinase granules
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(Figure 8d). Moreover, myeloperoxidase (MPO) present in

neutrophils α azurophilic granules (Figure 8e) and IL-1β

levels (Figure 8f) were also increased in lung homogenates.

As we observed that nano-SiO2 instillation induced a

transient increase of ATP content locally and that ATP is

rapidly degraded, adenosine can act as a danger signal

involved in lung inflammation. We performed local adenosine

depletion experiments in mice by using ADA, which catalyses
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Figure 5 A2A, A2B and A3 receptors were involved in NLRP3 inflammasome activation. Quantitative PCR analysis of P1 receptor expression in LPS-primed BMDMs
stimulated for 4 h with nano-SiO2 or nano-TiO2. A2A and A2BmRNA levels were greatly increased by nanoparticles, whereas A3 mRNAwas slightly increased only by nano-TiO2,
and A1 expression remained unchanged (a). The specific A2A (SCH58261), A2B (MRS1754) and A3 (MRS1523) inhibitors dose dependently decreased IL-1β production by LPS-
primed BMDMs, whereas specific A1 inhibitor (DPCPX) had no inhibitory effect on IL-1β secretion (b-e). Inhibitor concentrations were 0.1, 0.3, 1, 3 and 10 μM for DPCPX and
SCH58261, and 0.3, 1, 3, 10 and 30 μM for MRS1754 and MRS1523; inhibitors alone did not induce IL-1β production after 6 h (b–e). Nanoparticles were used at 200–250 and
300 μg/ml for nano-SiO2 and nano-TiO2, respectively. Data are representatives of 2–4 independent experiments (*P≤ 0.05, **P≤ 0.01, ***P≤ 0.001, ns: not statistically different)
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the conversion of adenosine into inosine. We observed that

local treatment with ADA reduced nano-SiO2-induced acute

inflammation, resulting in markedly reduced neutrophils

(Figure 8b), KC (Figure 8c), MMP-9 (Figure 8d) contents in

BALF and attenuated MPO (Figure 8e) and IL-1β levels

(Figure 8f) in the lung. These data indicate that adenosine

generated in vivo after nanoparticle-induced lung injury has

an early pro-inflammatory role, as observed in vitro for

macrophages.

Discussion

Despite extensive studies, the mechanisms of NLRP3

inflammasome activation are not well understood. Here we

demonstrate that SiO2 and TiO2 nanoparticles promote the

secretion of mature IL-1β by macrophages through the active

release of ATP in the extracellular space. Interestingly,

ATP but also its degrading products ADP and adenosine

are important signalling molecules that allow NLRP3

inflammasome activation and mature IL-1β secretion in

macrophages.

We showed that nano-SiO2 and nano-TiO2, but not nano-

ZnO, induced the active release of ATP through connexin

and/or pannexin hemichannels leading to IL-1β secretion by

macrophages. ATP release and IL-1β secretion depend on

purinergic signalling and in particular on the P2X7R for ATP,

contrarily to IL-1β secretion. The addition of nucleotides such

as ATP or ADP, or their stable derivatives ATPγS or ADPβS,

greatly increased IL-1β production by macrophages, indicat-

ing that ATP and ADP are involved in nanoparticle-mediated

NLRP3 inflammasome activation. Importantly, nano-SiO2 and/

or nano-TiO2 increased the mRNA expression of P2Y1 and/or

P2Y2, whereas P2Y4, P2Y6, P2Y12 and/or P2X7 receptor

mRNAs were downregulated in primed murine macrophages.

When CD39, which degrades extracellular ATP into ADP and

AMP, was inhibited in THP1 cells using ARL67156, eATP and

IL-1β levels were increased. One can hypothesise that it

favours IL-1β secretion through the ATP-specific P2Y2

receptor. On the contrary, in the presence of adenosine

deaminase (ADA), IL-1β was greatly but not totally reduced,

pointing out an additional important role for adenosine as a

major ATP-derived signalling nucleoside promoting IL-1β

secretion after nano-SiO2 or nano-SiO2 macrophage activa-

tion. Importantly, nano-SiO2 and/or nano-TiO2 increased

mRNA expression levels of A2A, A2B and slightly of A3

receptors, but not of A1 receptors. In addition, specific A2A and

A2B inhibitors decreased IL-1β secretion, confirming that

adenosine is a crucial mediator of IL-1β secretion essentially

through the high-affinity A2A and the low-affinity A2B adeno-

sine receptors in response to nanoparticle activation in

macrophages. In THP1 cells, adenosine degradation by

ADA leads to a decrease of eATP, potentially due to the deficit

of conversion of ADP/ATP from adenosine because of the

increased degradation of adenosine to inosine. This reduction
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Figure 6 Nanoparticles trigger NLRP3 inflammasome through activation of PLC-InsP3 and inhibition of ADCY-cAMP pathways. LPS-primed murine BMDMs were stimulated
for 6 h with nano-SiO2 or nano-TiO2 in the presence of the PLC-β inhibitor U73122 (a), the chelating molecule 2-APB, which blocks iCa
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in ATP, ADP and adenosine allowed greatly reducing IL-1β

secretion probably through signalling by P2Y2, P2Y1, A2A,

A2B and A3 receptors. Downstream of purinergic receptors,

which are coupled to G proteins (GPCR), we propose that

nanoparticles trigger maturation of IL-1β through activation of

PLC-β/InsP3 and inhibition of ADCY-cAMP pathways. This

suggests that intracellular Ca2+ increase and cAMP

decrease are second signals required for NLRP3 inflamma-

some by the nano-SiO2 and nano-TiO2. It was shown recently

that activation of another GPCR, the calcium-sensing

receptor, by CaCl2 signals through similar pathways.25

In addition, we report that NECA, the non-degradable

pan-adenosine receptor agonist, potentiated nanoparticle-

induced IL-1β secretion, strengthening the role of adenosine

as an essential danger signal in NLRP3 inflammasome

triggering. Our work demonstrates that adenosine, as well

as ATP or ADP, participates in inflammasome activation via

multiple receptor signalling pathways.
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Figure 7 Adenosine induces IL-1β secretion and ATP release in THP1 human macrophages. PMA-primed THP1 cells were stimulated during 6 h with 250 μg/ml nano-SiO2,
500 μg/ml nano-TiO2 and/or high concentrations of adenosine (Ado), and eATP and IL-1β releases were measured. Adenosine potentiated eATP release and IL-1β secretion
upon nanoparticle stimulation without inducing change in cell viability (a). High doses of adenosine alone induced IL-1β secretion by PMA-primed THP1 in a dose-dependent
manner (b). The caspase-1-specific inhibitor Z-YVAD-fmk (5 μM) remarkably reduced adenosine- and/or nanoparticle-induced IL-1β secretion; Z-YVAD-fmk alone had no effect
(c). Adenosine-dependent induction of IL-1β secretion was reduced in THP1 sh NLRP3 or THP1 sh ASC but not in unmodified THP1 or THP1 sh CTL (d). PMA-primed THP1
cells were stimulated with increasing doses of adenosine, the non-metabolisable analogue of adenosine NECA or inosine (Ino), the product of adenosine hydrolysis by ADA, and
cell supernatants were analyzed to measure eATP, IL-1β and cell death (e). PMA-primed THP1 cells were stimulated with mM doses of adenosine in the presence of 5-
iodotubercidin (5-Iodo), an inhibitor of both adenosine kinase and ENTs, or in the presence of NBMPR, an inhibitor of ENT1 at nM doses and ENT2 at μM concentrations, and
eATP and IL-1β releases were measured at 6 h (f,g). Quantitative PCR analysis of ENT1, ENT2 and NLRP3 expression in PMA-primed THP1 stimulated for 6 h with increasing
concentrations of Ado was performed (h,i). Intracellular ATP contents were measured 6 h after stimulation with high concentrations of adenosine (j). Data are representative of 2–
3 independent experiments (*P≤ 0.05, **P≤ 0.01, ***P≤ 0.001, ns: not statistically different)
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As extracellular ATP is degraded in adenosine within

minutes, it is more likely that adenosine participates in early

steps of NLRP3 inflammation activation rather than in

sustained inflammasome activation, as suggested recently.27

Extracellular adenosine is finely regulated by adenosine

degradation and cellular uptake.28 Nevertheless, adenosine

accumulation can lead to chronic inflammation and

diseases.10 Surprisingly, using millimolar concentrations

(1–5mM), we observed that exogenous adenosine alone

was able to induce NLRP3 inflammasome activation.
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Adenosine receptors which affinities to adenosine range

between 1 nM to 20 μM are probably desensitized and

not involved in response to adenosine 1–5mM. Indeed, this

adenosine receptor-independent effect was not mediated by

millimolar doses of the non-degradable adenosine analogue,

NECA, indicating that the inflammasome activation depends

on adenosine metabolism and/or transport. Here, we show for

the first time that exogenous adenosine at millimolar concen-

trations promoted NLRP3 expression and inflammasome

activation and mature IL-1β secretion through cellular uptake

and transformation into ATP by macrophages, leading to the

increase of intracellular ATP content, subsequent ATP release

and IL-1β secretion. Moreover, the functional activity of the

nucleotide transporter ENT2 present at the cell membrane

and of the intracellular adenosine kinase, which transforms

intracellular adenosine into ATP, was required. Indeed,

millimolar concentrations of adenosine were shown to

efficiently increase intracellular ATP contents in primary

lymphocytes and multiple cancer cell lines.28 In an attempt

to summarise our data, we propose a model presented in

Figure 9. As we showed very recently that the NLRP3

inflammasome is released as a particulate danger signal

and phagocytosed by surrounding macrophages, one can

imagine that adenosine uptake by these neighbouring cells

may amplify the inflammatory response.29 Our in vitro results

provide a new mechanism by which adenosine accumulation

in vivo may sustain inflammasome activation, leading to

chronic inflammatory diseases.30 Adenosine degradation in

inosine by ADA could be a good strategy to attenuate

adenosine-mediated inflammation via specific receptor signal-

ling and to avoid adenosine accumulation and cellular uptake.

To evaluate the role of adenosine in pulmonary inflammation

and the potential anti-inflammatory effect of degradation of

adenosine by ADA, we exposed mice to nano-SiO2 in the

presence of ADA. Our results indicate that adenosine

produced locally after nanoparticle exposure presents pro-

inflammatory effects and that irreversible degradation of

adenosine to inosine by ADA treatment reduced early
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(*P≤0.05, **P≤0.01, ***P≤0.001)
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pulmonary inflammation. Several studies indicated that extra-

cellular adenosine can rise from baseline to high local

concentrations in chronic diseases, adenosine being pro-

inflammatory.8,10–16 Our study supports the idea that adeno-

sine can act as a pro-inflammatory mediator in certain

circumstances. Moreover, we demonstrate that depending

on its microenvironment concentration adenosine acts

through different mechanisms, in particular adenosine-

receptor signalling or adenosine cellular reuptake. Altogether,

this indicates that signalling through adenosine is finely tuned

and may be involved in both pro-inflammatory and anti-

inflammatory processes. Nanoparticles are known to exacer-

bate respiratory diseases such as asthma and COPD.31

Their toxicity or inflammatory effects depend on nanoparticle

shape and size and the amount of metal ion released.32

Cobalt-chromium nanoparticles were shown to induce human

fibroblast damages without crossing the plasma membrane,

through transmission of ATP via hemichannels and pannexin

channels and intercellular signalling.33 Nevertheless, the role

of adenosine was never described in nanoparticle-mediated

damage or inflammation.

In conclusion, after tissue injury, adenosinemay activate the

inflammasome throughmembrane receptor signalling. In case

of chronic inflammation, adenosine may accumulate and act

via its cellular uptake and conversion into intracellular ATP,

allowing amplifying and/or prolonging inflammasome activa-

tion. This may explain why sustained high adenosine levels

are pro-inflammatory. Our findings may provide new thera-

peutic approaches to control chronic inflammation by inhibiting

nucleotide receptors, nucleoside transporters and/or adeno-

sine kinase activation.

Methods
Reagents. Nano-SiO2 and nano-TiO2 were purchased from IoLiTec (Heilbronn,
Germany), and nano-ZnO is a gift from Dr. Amir Yazdi (Lausanne, Switzerland).
Nanoparticles were sonicated for 30 min and used at a concentration of 125–
500 μg/ml in vitro or at a concentration of 5 mg/kg in vivo, as mentioned. A740003 is
a gift from Dr. F. Rassendren (Montpellier, France). Adenosine deaminase (ADA)
(A5168), ADP, ADPβS, adenosine (Ado), apyrase grade VII (A6535), ARL67156,
ATPγS, ATP, carbenoxolone (Cbx), DPCPX, flufanemic acid (FFA), inosine (Ino),
MRS1523, MRS1754, MRS2395, MRS2578, periodate-oxidised ATP (oATP),
phorbol 12-myristate 13-acetate (PMA), SCH58261 and U73122 were from Sigma
(St. Quentin Fallavier, France); suramin was from VWR (Fontenay-sous-bois,
France); LPS (lipopolysaccharide from Escherichia coli, serotype 055:B5) was from
Invivogen (Toulouse, France); 2-APB, 5-Iodotubercidin, Forskolin, MRS2500,
NBMPR and Z-YVAD-fmk were from Tocris (Bristol, UK) and NECA and
SQ22536 were from Merck Millipore (Nottingham, UK).

Mice. C57BL/6 wild-type mice were bred in our animal facility (CNRS, Orleans).
The animals used were eight to ten weeks old, and they were kept in isolated and
ventilated cages. All animal experiments complied with the French Government’s
ethical and animal experiment regulations.

Lung inflammation model. Nano-SiO2 or nano-TiO2 in saline (5 mg/kg) or
vehicle alone was administered by intranasal instillation under light ketamine
(Imalgène 1000, 1.25 mg/ml) and xylazine (Rompun 0.1%) anaesthesia.
Bronchoalveolar lavage (BAL) and lung tissue were assayed after 6 h. The lungs
were homogenised in a solution containing 10 mM potassium phosphate and
0.1 mM EDTA (Sigma), centrifuged at 10 000 r.p.m. for 10 min and the supernatants
were stored at − 20 °C for further analysis. BAL was performed as previously
described.34 Differential cell counts were performed by counting an average of 250
cells on cytospin preparations (Shandon CytoSpin 3, Thermo Scientific, Illkirch,

Figure 9 Schematic diagram illustrating the specific cascade and signalling pathway in LPS-primed macrophages stimulated with nanoparticles. LPS priming induces
transcription of pro-IL-1β gene upon activation of the transcription factor NF-κB (1). Nanoparticle uptake (2) leads to the active release of intracellular ATP (3) through pannexin/
connexin hemichannels (4). This extracellular ATP (eATP) may activate ATP-gated P2X7 receptor (P2X7) to amplify ATP release in a P2X7-dependent way (5). ATP or its derived
catabolism products act through on other P1 or P2 (P2X and P2Y) purinergic receptors. In particular, ATP via P2Y2 and ADP through P2Y1 activate PLC-β, which promotes
NLRP3 inflammasome via modulation of cellular Ca2+ and K+ flux (6). Adenosine (Ado), another hydrolysed product of ATP, activates P1 receptors (A2A, A2B and A3) leading to
NLRP3 inflammasome activation (7). After NLRP3 receptor activation via signalling through multiple purinergic receptors, NLRP3 inflammasome builds up and matures pro-IL-1β
(9) into IL-1β, which is secreted by macrophages (10). In case of extracellular Ado accumulation, equilibrative nucleotide transporters (ENTs) regulate adenosine through its
cellular reuptake, which may be inhibited by the ENT inhibitors MBMPR and/or 5-Iodotubercidin (a). Metabolisation of intracellular Ado into ATP by adenosine kinase (AK) renews
ATP stock (b) and may be inhibited by the AK inhibitor 5-Iodotubercidin. Increased intracellular ATP contents may lead to ATP release (4), NLRP3 inflammasome activation (9) and
IL-1β secretion (10)
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France) after May-Grünwald-Giemsa staining (Diff Quick, Medion Diagnostics,
Düdingen, Switzerland) according to the manufacturer’s instructions. After BAL and
lung perfusion, the large lobe was fixed and 3-μm sections were stained as
described previously.35

ELISA. IL-1β, KC, MMP-9 and MPO levels were determined using ELISA assay
kits (Mouse or human DuoSet, R&D system, Minneapolis, MN, USA) according to
the manufacturer’s instructions.

THP1 culture and stimulation. Monocyte/macrophage THP1 cells are a gift
from Dr. Amir Yazdi (Lausanne, Switzerland) and cultured in RMPI Medium 1640
(Gibco, Illkirch, France) with 10% fetal calf serum (Hyclone, Cramlington, UK) and
penicillin/streptomycin (100 U/ml, Invitrogen). For experiments, THP1 were
differentiated for 3 h with 0.5 μM PMA, washed and plated overnight (2 × 105

cells/well). Cells were stimulated for indicated times, the supernatant was collected
for immediate ATP measurement and/or stored for further IL-1β quantification.
Cell death was monitored by MTT using a standard protocol. Thiazollyl blue

tetrazolium bromide (Sigma) solution was added onto the cells after supernatant
collection and incubated for 2 h at 37 °C, and a 10% SDS acetic acid solution is then
added. MTT reduction to formazan was quantified by an absorbance microplate
reader (EL800, BioTek, Colmar, France) at 610nm (KC4 software). Apoptotic and
necrotic cell death of primed THP1 cells was also monitored using AnnexinV/PI
staining (eBioscience, San Diego, CA, USA). Cells were gently detached using
repeated aspiration and expulsion of cold PBS. After centrifugation, cells were
resuspended in annexin V binding buffer and stained for 20 min with Annexin V and
propidium iodide. Data were collected on a BD FACSCanto and analysed using
Flowjo software (Tree Star, OR, USA).

Sh RNA THP1. THP1 stably expressing short hairpin RNA (shRNA) against
lamin (‘sh CTL’), ASC or NLRP3 are kind gifts from Dr. Fabio Martinon (Lausanne,
Switzerland) and were obtained as previously described (Pétrilli et al., 2007).
shRNA THP1 cells were cultured in RPMI Medium 1640 (Gibco) with 10% fetal calf
serum (Hyclone) and 4 μg/ml puromycin (Gibco). Cell priming and stimulation are
the same as previously described for untransfected THP1 cells.

ATP measurement. Extracellular ATP in cell-free medium supernatant was
quantified using ATP Lite one step kit (Perkin Elmer, Courtaboeuf, France)
according to the manufacturer’s instructions, and the luminescence produced was
measured (Mithras, Mikrowin 2000 software, Berthold Technologies, Thoiry, France).

BMDM culture and stimulation. Primary BMDMs were obtained from
femoral bone marrow as described.36 In brief, cells from femurs of C57BL/6 mice
were isolated and cultured at 106 cells/ml for 7 days in Dulbecco’s minimal essential
medium (DMEM, Sigma) supplemented with 20% horse serum and 30% L929 cell-
conditioned medium as a source of M-CSF. Three days after washing and culturing
in fresh medium, the cell preparation contained a homogeneous population of
495% macrophages (Müller et al.36). The BMDMs were plated in 96-well
microculture plates (2.105cells/well) and stimulated with 100 ng/ml LPS during 3 h to
induce pro-IL-1β production. Particles were applied for 6 h and cell supernatants
were collected after 6 h and stored for further analysis. The absence of cytotoxicity
of the different stimuli used was verified by MTT assay using the standard protocol.

Quantitative RT-PCR. BMDM or THP1 cells were plated in six-well
microculture plates (at 5 × 106 cells/well), stimulated during 3 h with LPS or PMA,
respectively, and were washed and stimulated with particles for 4 or 6 h. RNA was
extracted using the RNeasy Mini Kit (Qiagen, Courtaboeuf, France) and particles
were removed by centrifugation (10 000 g, 10 min, 4 °C). All primers were
synthesised (Qiagen). The expression levels of A1, A2A, A2B, A3, P2X7, P2Y1,
P2Y2, P2Y4, P2Y6, P2Y12 and P2Y13 receptor mRNAs, relative to housekeeping
18S mRNA, and expression of ENT1 and ENT2 transporter mRNAs, relative to
housekeeping β2m mRNA, were analysed using Quantitect gene expression assays
(Qiagen). Reverse transcription was performed by SuperScript III Reverse
Transcriptase (Fisher Invitrogen) according to the manufacturer’s instructions for
amplification. RT-PCR was performed starting from 500 ng of total RNA using a
Stratagene Mx3005P real-time PCR system (Agilent Technologies, Massy, France).
For all experiments, biological quadruplicates and technical triplicates were
performed.

Immunoblotting. BMDM cells were plated in 12-well microculture plates (at
3 × 106 cells/well), stimulated with LPS during 3 h and were washed and stimulated
with particles during 6 h. Supernatants were collected and stored at − 20 °C for
further analysis. BMDMs were washed with cold PBS and scraped in lysis buffer
solution (150 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA, 0.2% SDS and 1% Nonidet
P-40) supplemented with a protease inhibitor cocktail (1%) and pefabloc (0.1 mg/ml)
(Roche Applied Science, Meylan, France). Lysis extracts and supernatants were
collected and protein content was measured (DC protein assay, Bio-Rad, Munich,
Germany). Proteins were denatured by boiling (95 °C, 5 min), separated by SDS–
PAGE and transferred to nitrocellulose membranes. The membranes were
immunoblotted with a primary goat anti-IL-1β antibody (Sigma Aldrich) or rabbit
anti-caspase-1 p10 (Santa Cruz Biotechnology) and proteins were detected with
appropriate secondary antibody followed by enhanced chemiluminescence (ECL,
Fisher, Illkirch, France).

Statistical analysis. Statistical evaluation of differences between the
experimental groups was determined by ANOVA followed by Bonferroni's test
using the Prism 5.0 software (GraphPad). P-values o0.05 were considered
statistically significant.
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