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Abstract
The no-free-lunch theorems promote a skeptical conclusion that all possible machine
learning algorithms equally lack justification. But how could this leave room for a
learning theory, that shows that some algorithms are better than others? Drawing
parallels to the philosophy of induction, we point out that the no-free-lunch results
presuppose a conception of learning algorithms as purely data-driven. On this concep-
tion, every algorithmmust have an inherent inductive bias, that wants justification.We
argue that many standard learning algorithms should rather be understood as model-
dependent: in each application they also require for input a model, representing a bias.
Generic algorithms themselves, they can be given a model-relative justification.

Keywords No-free-lunch theorems · Problem of induction · Machine learning

1 Introduction

The no-free-lunch (NFL) theorems of supervised learning (Wolpert 1992a, 1996b;
Schaffer 1994) are an influential collection of impossibility results in machine learn-
ing.Computer scientists have ranked these results “among themost important theorems
in statistical learning” (von Luxburg and Schölkopf 2011, p. 695), while some philoso-
phers have read them as “a radicalized version of Hume’s induction skepticism”
(Schurz 2017, p. 825, p. 830).
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In a nutshell, the results say—or rather, are usually interpreted as saying—that we
cannot formally justify our machine learning algorithms. That is, we cannot formally
ground our conviction that some learning algorithms are more sensible than others:
that we have reason to think some algorithms perform better in attaining the epistemic
goals that we designed them to attain. InWolperts original interpretation, “all learning
algorithms are equivalent” (Wolpert 1995a, p. 129; 2002, p. 35), so that, for instance, a
standard learning method like cross-validation has as much justification as anti-cross-
validation (Zhu and Rohwer 1996; Wolpert 1996b, p. 1359f; 2021, p. 6f).

Yet for many such standard learning algorithms we do seem to have a justification.
The field of machine learning theory is concerned with derivingmathematical learning
guarantees, that purport to show that standard procedures, like minimizing empirical
error on the training set, are better than other possible procedures, like maximizing
empirical error (Shalev-Shwartz and Ben-David 2014). This raises a puzzle. How can
there exist a learning theory at all, if the lesson of the NFL theorems is that learning
algorithms can have no formal justification?

While this tension has been noted from the start (Wolpert 1996b, p. 1347),
existing explanations of the consistency of the NFL theorems with learning theory
(e.g., Wolpert 1996b, p. 1368ff, Bousquet et al. 2004, p. 202ff, von Luxburg and
Scholköpf 2011, p. 692ff) are partial at best. In this paper, we investigate in detail the
implications of the NFL results for the justification of machine learning algorithms.
The main tool in our analysis is a distinction between two conceptions of learning
algorithms, a distinction that has a parallel in the philosophical literature promot-
ing a local view of inductive inference. This is the distinction between a conception
of learning algorithms as purely data-driven or data-only, as instantiating functions
that only take data, and a conception of learning algorithms as model-dependent, as
instantiating functions that, aside from input data, also ask for an input model.

We argue that the NFL theorems rely on the former, data-driven conception of
learning algorithms; but that many standard learning methods, including empirical
risk minimization and cross-validation, should not be viewed as such. By their speci-
fication, such algorithms take two inputs: data, and an explicitly formulated model or
hypothesis class, which constitutes a choice of bias. What we can reasonably demand
from such model-dependent algorithms is that they perform as well as possible rel-
ative to any chosen model. Consequently, learning-theoretic guarantees are relative
to the instantiated models the algorithm can take, and it is in this form that there is
justification for standard learning algorithms. It is in this sense that learning theory
allows one to say that empirical risk minimization is preferable to risk maximization,
and that cross-validation is preferable to anti-cross-validation.

This is all consistent with the valid lesson of the NFL results, namely that every
data-only learning procedure must possess some inductive bias. Our point is that this
lesson should not be taken as a stick to wield against any possible learning algorithm.
On the contrary: in model-dependent learning algorithms, this lesson is accounted for
from the start.

The plan of the paper is as follows. First, in Sect. 2, we introduce the original
Wolpert-Schaffer results. Still granting here the data-only conception of learning algo-
rithms, we dispute the results’ interpretation that all algorithms are equivalent. We
discuss how this interpretation relies on an unmotivated assumption of a uniform
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distribution over possible learning situations, that can in fact be seen as an explicit
assumption that learning is impossible.We advance the alternative statement that there
is no universal data-only learning algorithm. As instantiations of this statement, the
NFL results illustrate and support the central insight in machine learning that every
mechanical learning procedure, understood as a mapping from possible data to con-
clusions, must possess an inductive bias.

Next, in Sect. 3, we develop the model-dependent conception of learning methods,
and show how this conception makes room for a justification for standard learning
methods that is consistent with the NFL results. We start by pointing out that discus-
sions surrounding theNFL theorems share a questionable presupposition with Hume’s
original argument for inductive skepticism: the idea that the performance of our induc-
tive methods must be grounded in a general postulate of the induction-friendliness of
the world. We discuss philosophical work that denies the cogency of such a principle,
and that advances a local view of induction. This leads us to a local view of learn-
ing algorithms: the model-dependent perspective, and the accompanying possibility
of a model-relative learning-theoretic justification. We discuss this in more detail for
Bayesian machine learning, empirical risk minimization, and cross-validation, mak-
ing explicit why learning theory allows us to say, for instance, that cross-validation is
more sensible than anti-cross-validation. We conclude in Sect. 4.

Finally, we provide two appendices that complement the main argument. In
“Appendix A” we investigate the formal consistency of the original NFL results with
learning theory, and in ”Appendix B”we list some important nuances to our discussion
about model-dependent learning algorithms.

2 All learning algorithms are equivalent?

The first mentions in print of the “no-free-lunch theorems” of supervised learning
are in Wolpert (1995a; 1996b, also see 1995b),1 although an earlier version of the
results already appeared inWolpert (1992a, b). Around the same time, Schaffer (1994)
presented a version of these results, with reference to Wolpert, as a “conservation law
for generalization performance.”

We start this section with presenting some basic versions of the Wolpert-Schaffer
results,within a problem setting of prediction (Sect. 2.1), andwithin the original setting
of classification (Sect. 2.2). Next, we discussWolpert’s interpretation of his results that
“all learning algorithms are equivalent, on average.” We discuss the results’ concern
with all possible learning algorithms vis-à-vis the traditional philosophical concern
with “inductivemethod,” and note its restriction to data-only algorithms (Sect. 2.3).We
then critically analyseWolpert’s equivalence claim and the underlying assumption of a
uniform distribution over possible learning situations (Sect. 2.4). Finally, we advance
the alternative NFL statement that there is no universal data-only learning algorithm
(Sect. 2.5).

1 Wolpert (1996b, p. 1343) attributes the term “no-free-lunch theorems” to the computer scientist D.
Haussler. Wolpert and others also derived NFL theorems for mathematical optimization (Wolpert and
Macready 1997; Ho and Pepyne 2002), which we do not discuss in this paper.
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Fig. 1 NFL for prediction. For any possible learning method (say, the method that always chooses T, here
represented by the arrows), there is one learning situation (path through the tree) with error 0 (follow
the arrows), one with error 1 (never follow the arrow), and three situations each with error 1/3 and 2/3.
Assigning each learning situation the same probability 1/8, the algorithm’s expected error is 1/2

2.1 Prediction

Imagine that every day we are given a bowl of oatmeal for breakfast. Every morning
on waking up, before we have our breakfast, we seek to predict whether it will be
tasty (T) or not (N), based only on when it was the days before. A learning algorithm
in this simple learning framework makes a guess whether the oats we are served
today will be tasty, based on the data of the previous days. For a sequence of three
days (see Fig. 1), there are in this scenario 23 logically possible histories or learning
situations (of the form TTT, TNT, NTT,…), and already 27 possible learning algorithms
(functions from {∅, T,N, TT, NT, TN, NN} to {T,N}). Let an algorithm’s error be the ratio,
among all predictions, of those predictions that are incorrect (e.g., a prediction of T
and then obtaining N). Then a no-free-lunch statement in this scenario is that for
each possible level of error, every learning algorithm suffers this error in equally
many possible learning situations. Namely, one can verify that every single algorithm
predicts perfectly (has error 0) in exactly one possible learning situation, predicts
maximally badly (error 1) in exactly one other possible situation, suffers error 1/3 in
three possible learning situations, and error 2/3 in the remaining three.2

Note that in thus counting learning situations and comparing these counts, we treat
all possible learning situations on a par. Another way of doing this is to assume a
uniform probability distribution on all possible learning situations, that is, a distribu-
tion that assigns the same probability to each of the finitely many possible learning
situations. Then the above NFL result can be restated as the observation that, under
the uniform distribution on learning situations, every learning algorithm has the same
expected error of exactly 1/2. That is, every learning algorithm can be expected to do
no better (or worse) than random guessing.3

2 A similar example is given by Forster (1999, p. 551f).
3 This statement generalizes to learning algorithms that issue probabilistic predictions, and the error of
a single prediction p ∈ (0, 1) is given by p in case of outcome N, and 1 − p otherwise. Then the more
cautious a learning algorithm (the closer its predictions are to 1/2), the smaller the number of histories on
which it attains either very low or high error, but this evens out in such a way that every learning algorithm
still has an expected error of 1/2 (see Schurz 2021, p. 7ff).
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2.2 Classification

The originalWolpert-Schaffer results were derived in a problem setting more standard
in machine learning theory, the setting of classification. We first discuss the simplified
setting of non-stochastic classification (Sect. 2.2.1), before we turn to themore general
setting of stochastic classification (Sect. 2.2.2).

2.2.1 Non-stochastic classification

Imaginewewant to learn to successfully classifywhether a bowl of oats will be tasty or
not, based on three different features we can determine before trying it: its temperature,
its color, and its smell. Formally, supposing that these attributes are binary (either hot
or cold, either bright or dull, either reeking or not), every instance of a bowl of oats can
be represented by a length-three attribute vector of binary (write 0 or 1) components.
This gives a total of eight (23) different possible instances, collected in the domain
set X = {0, 1}3. A classifier is a function f : X → Y from the possible instances to
their labels (tasty or not), collected in the label set Y = {T,N}. Supposing that the true
labels are indeed fully determined by the attributes, the possible learning situations—
possible true labelings of all instances of oats—are given by the possible classifiers.
A learning algorithm A maps a sample S = (x1, y1), . . . , (xn, yn) of training data,
pairs of instances and true labels, to a particular classifier f .

We are now interested in a learning algorithm’s generalization error LS(A(S)):
given some training sample S, how accurate is the classifier f = A(S) selected by
A on the instances that lie outside of S? Suppose the training data includes six of
the total number of eight different possible instances of oats, determining the true
tastiness labels for these six instances (see Table 2). There are four possible ways of
classifying the two unseen instances, or four remaining possible learning situations
f ∗. Each possible learning algorithm selects a particular classifier in response to the
training data, which classifies the two unseen instances in one of the four possible
ways. That means that each possible learning algorithm (selected classifier f ) has
the same generalization error (ratio of incorrectly classified unseen instances over all
unseen instances: either 0, 0.5, or 1) in the same number (one, two, one) of still possible
learning situations f ∗.4

Alternatively, we can put things again in terms of a uniform distribution U over all
possible learning situations. So for this specific sample S of instances and labels, we
have that uniformly averaged over the four remaining possible learning situations, the
error of each learning algorithm is equal to 1/2. More generally, we can consider the
same sample SX stripped of its labels, and move the averaging to the front, so to speak,
to cover how the possible f ∗ (now all possible f ∗) assign labels to SX , and how the
algorithm fares for the resulting S = SX × f ∗(SX ) of instances and labels. But since
for any four learning situations that label SX in an identical way, an algorithm’s average
generalization error is 1/2, it remains 1/2 when averaged this way over all learning
situations; and this reasoning goes through for any non-exhaustive SX � X . Thus we

4 Implicit here (and elsewhere in our presentation) is the use of a particular function to measure error or
loss, the (standard) 0/1 loss function. The NFL theorems as stated do not necessarily go through for other
loss functions (Wolpert 1996c).
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Fig. 2 NFL for nonstochastic classification. For any learning algorithm A, any non-exhaustive training
sample S (here of size six) and any possible labeling of S (say, all N, leading A to output classifier f̂ ),
there is the same number (here, four) of remaining possible learning situations (here, the classifiers f ∗

1 to
f ∗
4 ) that each label the (here, two) remaining instances differently. (Table adapted from Giraud-Carrier and

Provost 2005.)

arrive at the statement that for anynon-exhaustive training sample SX of instances every
learning algorithm A has expected generalization error E f ∗∼U

[
LS(A(S))

] = 1/2.5

2.2.2 Stochastic classification

An additional refinement in the standard framework for classification (see Shalev-
Shwartz and Ben-David 2014) is that the true connection between instances and labels
can itself be stochastic. Moreover, we assume some unknown probability distribution
for the drawing of instances. Thus a learning situation is given by a distribution D
over pairs of instances and labels.6

We now also measure generalization error in expectation over drawing an instance
fromD: we shall call this the risk. Butwe have a choice here: dowe take the expectation
over all over X , so including instances that were already in the training set, or do we
discard the latter?Wolpert’s “off-training-set” (ots) risk,write LD\S(A(S)), explicitly
discounts already seen instances. He actually departs here from most of learning
theory, where the error is standardly evaluated over all instances. We shall follow
Wolpert in calling the latter quantity “i.i.d.” (iid) risk, write LD(A(S)). Formally, for
given sample S = (x1, y1), . . . , (xn, yn), LD(A(S)) is the probability, under D, that
an independently sampled example (X ,Y ) has f (X) �= Y , where f = A(S) is the
classifier output by algorithm A on input S. This can also be written as

LD(A(S)) = E(X ,Y )∼D[|Y − A(S)(X)|], (1)

5 Similar illustrations of the NFL theorems are given by Duda et al. (2001, p. 454ff); Carrier and Provost
(2005, p. 9f); Barnard (2011, p. 1900f); Ortner and Leitgeb (2011, p. 720ff); Lattimore and Hutter (2013, p.
224ff). A precursor to this variant is the “theorem of the ugly duckling” due to Watanabe (1969, p. 376ff).
6 The problem setting presupposed by Wolpert (his “extended Bayesian formalism,” also see footnote 18)
is more general still, in that both the classifier and the learning algorithm are stochastic: a classifier, like
the true connection between instances and labels, is a Y-conditional distribution over X , and a learning
algorithm is a distribution over classifiers. This additional generality does not affect the NFL statement in
this section (cf. Rao et al. 1995, p. 473; 478f).
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that is, the expected 0/1-error. In contrast, LD\S(A(S)) is the probability that f (X) �=
Y , with f = A(S), conditional on (X ,Y ) /∈ {(x1, y1), . . . , (xn, yn)}. This can also be
written as

LD\S(A(S)) = E(X ,Y )∼D [|Y − A(S)(X)| | X ,Y /∈ {(x1, y1), . . . , (xn, yn)}] . (2)

A central claim in Wolpert’s works is that ots risk is a more natural measure of
generalization performance than iid risk (1996b, p. 1345ff; 2002, p. 25ff). Note that it
is certainly more similar to the generalization error in the previous nonstochastic case
(where the labels of already seen instances are conclusively learned). But this does not
make it clearly better in the stochastic case, where there is still an estimation problem
even for already seen instances. We discuss the relation between the two notions (and
the relevance of their difference in the context of the consistency of the NFL results
with positive results in learning theory) in more detail in “Appendix A.1”, and in the
following always make clear what risk we mean.

Abstracting away from the oatmeal classification example, suppose instances are
given by some finite-length set of features that can take a finite number of values, so
that there is a (possibly huge yet) finite number m of possible instances. Given some
training set S of n labeled instances, consider again any single unseen instance x . For
each learning algorithm (selected classifier, assigning label y to x), there is a possible
learning situation D in which the classifier’s risk on this particular x is 0 (namely, a
D that assigns probability 1 to label y, conditional on instance x). Likewise, there is
a possible learning situation D in which the classifier’s risk on this particular x is 1.
Indeed, for each value in the unit interval there is a possible learning situation in which
the classifier has that risk on x , as well as a counterpoint situation where the classifier
has one minus that risk on x . The intuition that these risks all even out finds again
a precise expression under the assumption of an (in this case, continuous) uniform
distribution U over all learning situations—in this case, a uniform distribution7 over
distributions. Thus for any given set of training data, for any learning algorithm, the
selected classifier’sU-expected risk on any single unseen instance is 0.5. This concerns
a specific unseen instance, given some specific set of training data. But, crucially,
we can again move the expectations to the front, to range over the whole process
of drawing training data and measuring risk.8 In this way we reach the statement
of the NFL theorem, or the conservation law of generalization performance: every
learning algorithm A, for any sample size n < m, has the same expected ots risk
ED∼U ,S∼Dn

[
LD\S(A(S))

] = 1/2.9

7 In general, “uniform distributions” over general spaces are ill-defined or (if the spaces are noncompact)
do not even exist: in “Appendix A.2” we show how in the current setting, an unambiguous definition is
possible.
8 See the exhaustive reconstruction by Rao et al. (1995) for details. An illustration similar to ours is given
by Luxburg and Schölkopf (2011, p. 693f).
9 The original statement by Wolpert and also Schaffer is still slightly different from the statement we give
here. They actually take apart themarginal distributionD(X) that generates the instances and the conditional
distributionD(Y | X) that labels the instances, allow the former to be any distribution, and let the uniform
distribution U only range over the latter. We state this precisely in “Appendix A.2”.
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2.3 All learning algorithms…

We presented some versions of the Wolpert-Schaffer results, leading up to what is
essentially the original form. But already the first example in the framework of pre-
diction brings out an important characteristic of the NFL theorems: their concern,
for the given learning problem, with all possible learning algorithms, understood as
mappings from data to conclusions.10

There is, to begin with, no special regard for particular subclasses of learning
algorithms, say those that we would intuitively call “inductive” (or indeed learn-
ing algorithms). In the prediction setting, for example, an “inductive” function that
extrapolates the past data NN to the prediction N is no less a learning algorithm than
an “anti-inductive” function that extrapolates data NN to prediction T, or indeed than
the “learning-resistant” constant function that outputs T no matter what. As such, the
NFL theorems can be seen to simply bypass the main companion problem to that of
justifying induction: the problem of specifying or describing what actually constitutes
inductive method or methods (see Lipton 2004, p. 7ff).11

That said,when it comes to the assessment of the results’ implications, it seems there
is only a small subset of all logically possible algorithms thatwe are really interested in.
These are the algorithms that are actually used. There is a limited number of standard
algorithms developed and analyzed in machine learning, generic algorithms that are
employed in a wide variety of different domains. Naturally enough, the motivating
discussions in Wolpert’s writings focus on the ramifications of his results for the
justification for these algorithms. We will discuss the justificatory implications of the
NFL in detail in Sect. 3 below.

While the “all possible” in theNFL results’ characteristic concern with all possible
learning algorithms can be seen as a useful generality in the results’ scope, there is also
an important sense in which this scope is limited. This has to do with the restriction to
“learning algorithms,” understood as well-defined mappings from data to conclusions.
The NFL results apply to formal learning rules that fully specify what conclusion fol-
lows which observed data. They clearly do not apply to a non-algorithmic conception
of inductive method(s) that involves irreducibly informal factors (like, perhaps, every-
day human and even scientific reasoning). But they do not even apply to a conception
of learning methods as taking for input other (context-dependent) elements: the NFL

10 We speak of “algorithms,” following the custom in discussions surrounding the NFL results, even if it
is perhaps better to speak of (for instance) learning functions. In reality, the same “algorithm” (map from
data to conclusions) can be implemented—or indeed approximated—by many different (say, more or less
computationally efficient) algorithms.
11 In particular,we can understand the infamous riddle of induction due toGoodman (1954) as an expression
of this problem of description. Suppose, on a minimal understanding of induction as “extrapolating the
pattern from the past into the future,” that we somehow were assured that inductive inference is justified:
then, Goodman writes, we still would not know how to actually do induction. There are always multiple
patterns we can find in the past, hence always multiple (and inconsistent) ways we can extrapolate these.
Rather than following the route of attempting to specifywhichof themanypossible extrapolations constitutes
a proper inductive inference (the route Goodman himself took with his notion of projectability), we can
remain agnostic and refrain from excluding any formal extrapolation rule: and indeed the NFL theorems
apply to all of them.
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results apply to a conception of learning algorithms as purely data-driven or data-only.
We will also return to and expand on this point in Sect. 3 below.

2.4 … are equivalent?

The interpretation that Wolpert attached to his formal results, and that we went along
with in our presentation, is that “for any two learning algorithms A and B … there
are just as many situations (appropriately weighted) in which algorithm A is superior
to algorithm B as vice versa” (Wolpert 1996b, p. 1360), or that “all algorithms are
equivalent, on average” (Wolpert 1995a, p. 129; 2002, p. 35). The obvious worry
about the significance of the NFL theorems concerns the qualifiers “appropriately
weighted” and “on average” in these statements: that is, the presupposition of a uniform
distribution on learning situations. This is indeed what the immediate responses in the
literature focused on.

Perhaps the main criticism is that a uniform distribution is really a worst-case
assumption for the purpose of learning. The “rational reconstruction” by Rao et al.
(1995) shows that Schaffer’s conservation law of generalization performance is equiv-
alent to the (trivial) statement that for any unseen example, both possible classifications
result in a generalization error of 0.5, if we measure the latter by uniformly averag-
ing over both possible true classes. On a more conceptual level, this procedure of
uniformly averaging corresponds to assuming that however many examples we have
seen, we cannot have learned anything: the best guess for the label of any new example
will always still be fifty-fifty. Thus these authors conclude that “the uniform concept
distribution … in which every possible classification of unseen cases is equally likely
… is the definition of a uniformly random universe, in which learning is impossible”
(ibid, 475).12 Obviously the NFL theorems cannot be said to hold much significance
if we understand them as the observation that every learning algorithm is equivalent
in a universe where learning is impossible.13

It has been suggested that this particular criticism can be countered by the obser-
vation that a uniform distribution is not a necessary condition for NFL theorems to go
through (e.g., Giraud-Carrier and Provost 2005, p. 10). Rao et al. (1995, p. 475ff) show
that generalization performance is conserved under a wider class of distributions; and
indeed Wolpert (1996b, p. 1361f) also already gives “extensions for nonuniform aver-

12 In “Appendix A”, where we discuss the formal consistency of the original Wolpert-Schaffer results with
learning theory, we bring out the same point in yet another way.
13 Also see the discussion by Schurz (2017) of the NFL theorems in the setting of prediction, with the cor-
responding “state-uniform” prior that assigns equal probability to every same-length sequence of outcomes.
Schurz connects this to Carnap’s discussion of the corresponding confirmation function c†, “tantamount
to the principle never to let our past experiences influence our expectations of the future … in striking
contradiction to the basic principle of all inductive reasoning” (Carnap 1950, p. 565), and also points out
that the corresponding uniform measure on the space of all infinite sequences assigns probability 1 to infi-
nite sequences (1) having a limiting relative frequency 1/2 and (2) being incomputable. Schurz concludes
that “proponents of a state-uniform prior distribution are strongly biased: they are a priori certain that the
world is irregular so that induction cannot have any chance” (2017, p. 834). The point that certain uniform
distributions lead to “unlearnability” goes back at least to Boole (1854): if we assume that each ball in a
bag has an equal probability of being black or white, he writes, then “past experience [of drawing with
replacement] does not in this case affect future experience” (ibid., p. 372).
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aging.” But as long as the results do not extend to all distributions (and they do not:
there is a certain symmetry that must be retained, Rao et al. 1995, p. 477), the worry
remains that the NFL results are simply an expression of the induction-hostileness of
the presupposed weighing distribution.

Wolpert was aware of this perspective on his results.14 In (1992a), he himself refers
to the assumption of a “maximum-entropy universe”; the way he puts his point there is
that “[s]ince such a universe cannot be ruled out on an a priori basis, it is theoretically
impossible to come to any conclusions about how to generalize using only a priori
reasoning.” But the statement that it is a priori possible that there are (in expectation)
no distinctions between learning algorithms is weaker than the categorical statement
that there are (in expectation) no a priori distinctions between learning algorithms, the
claim of the later paper (1996b).

In this paper (ibid., 1362ff), Wolpert actually argues that the uniform distribution
does have a preferred status. He starts by allowing that if we change the weighing
of learning situations, then there could arise “a priori distinctions” between learning
algorithms. However, he continues, “a priori” such a change of weighing could just
as well favor algorithm A as B: “[a]ccordingly, claims that ‘in the real world [the
distribution over learning situations] is not uniform, so the NFL results do not apply
to my favorite learning algorithm’ are misguided at best” (ibid., 1363). Indeed, he
points at results in the same paper regarding averages over prior distributions over
learning situations, with the interpretation that there are as many priors for which A is
superior to B as the other way around. From this perspective, “uniform distributions
over targets are not an atypical, pathological case … [r]ather they and their associated
results are the average case (!)” (ibid.).

This jump to a higher level is clearly inconclusive: we can restate the same worry
at that level.15 Most remarkable, however, is Wolpert’s dialectical move of turning the
table on the critic: “the burden is on the user of a particular learning algorithm. Unless
they can somehow show that [the true prior] is one of the ones forwhich their algorithm
does better than random… they cannot claim to have any formal justification for their
learning algorithm” (ibid.).

Curiously, responses in the computer science literature critical of the significance of
Wolpert’s results have essentially followed him here. Rao et al., after discussing how
NFL theorems must depend on a symmetrical prior, conjecture that “our world has
strong regularities, rather than being nearly random. However, only time and further
testing of physical theories can refine our understanding of the nature of our universe
[and]might lead to a reasonable estimate of [the true prior] in ourworld” (1995, p. 477).
Giraud-Carrier and Provost emphatically set forth as an implicit yet generally accepted
“weak assumption ofmachine learning” that “the process that presents uswith learning

14 His discussion of the intuition behind his results in (1996a, p. 133f; 2002, p. 38ff) is in fact very similar
to the analysis of Rao et al. in tracing the results back to the assumption of fully random labels of unseen
instances.
15 Elsewhere (1995a, footnote 3; 2002, footnote 4), Wolpert presents the situation rather in terms of the
critic of the uniform distribution attempting to “jump a level” in questioning the uniform distribution on
priors, “arguing that some [prior distributions over learning situations] are ‘more likely’ than others”—but
to no avail, “the math responds the same way as it did to the [lower-level] objection.” This is a reiteration
of the dialectical move we criticize next.
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problems… induces a non-uniform probability distribution [over learning situations]”
(2005, p. 11).16 But this Wolpert would not disagree with: he writes himself that a
nonuniform distribution “is why some algorithms tend to perform better than others
in the real world” (Wolpert 1996b, p. 1361, emphasis ours).17 The point is to give
a “formal justification” for believing in any such distribution. Indeed, if we seek to
criticize the assumption of a uniform distribution inWolpert’s claim that all algorithms
are a priori equivalent by postulating a different, nonuniform, distribution, then we
better provide a justification for postulating that distribution. The result is that we find
ourselves in a corner, because it is not clear where to look for such a justification.
What we should have done, of course, is to insist that Wolpert justify his assumption.

In fact, a more fundamental reply is to demand a reason for postulating any prior
distribution over learning situations. Doing so is a formal requirement in Wolpert’s
“extended Bayesian formalism” (unlike in the conventional classification framework);
but that merely shows that the framework is constraining in a way that we may find
inpalatable.18,19 Indeed, it is not at all clear what it is supposed tomean to assign prob-
abilities to possible learning situations. An epistemic interpretation, as some (ideally
rational) agent’s degrees of belief, is perhaps the easiest to make sense of, but imme-
diately throws us back to the justification for any specific choice of prior distribution:
in particular, the idea of a uniform distribution as an objective-logical “indifference
prior” has long been abandoned by philosophers and statisticians alike as a viable
option (see, e.g., van Fraassen 1989, p. 293ff; Zabell 2016). This is, in any case, not
what Wolpert appears to have in mind: the suggestion is rather that we should think of
these probabilities as objective-physical, as chances.20 But in the absence of a fuller

16 The accompanying strong assumption of machine learning is that this distribution is actually “explicitly
or implicitly known, at least to a useful approximation” (Giraud-Carrier and Provost 2005, p. 11).
17 In the introduction of his paper, Wolpert writes that “[i]t cannot be emphasized enough that no claim is
being made … that all algorithms are equivalent in practice, in the real world … The sole concern of this
paper is what can(not) be formally verified about the utility of various learning algorithms if one makes no
assumptions concerning targets” (1996b, p. 1344). Also see Wolpert (1992a, p. 61).
18 InWolpert’sEBF, one defines a probability distribution P that ranges over “target functions” f as well as
“hypotheses” h, where the latter stand for the learning algorithm’s possible guesses for the true target f . So
P( f ) and P( f | d) represent the “true” or “objective” priors and posteriors over targets, and P(h | d) the
learning algorithm. The need to thus specify a prior over targets f deviates strongly from the conventional
learning theory framework, where it is only assumed that there is some unknown distribution governing
instances and labels.
19 The name of Wolpert’s framework derives from its aim to generalize the conventional Bayesian frame-
work where “there is no direct analogue to P(h|d) … Viewed another way, [it] has P(h|d) pre-fixed,
to be the ‘Bayes-optimal’ P( f |d)” (Wolpert 1995a, p. 122). Thus, under the Bayesian interpretation of
probability as degree of belief, “you automatically know P( f ) exactly.” But “a ‘truth’ f and a guess h are
different objects … a formal statement connecting P( f |d) and P(h|d) corresponds to an extra assumption
not demanded by the mathematics.” (1996a, p. 83f, notation aligned with the previous). This is, to put it
mildly, an idiosyncratic rendering of the Bayesian approach. Rather than conflating, absurdly, an epistemic
and an ontic interpretation of the prior P( f ), a Bayesian would stay clear of the latter—that is neither
demanded by mathematics, but presupposed by Wolpert.
20 See especially Wolpert (1996a, p. 84): “if we had sufficient knowledge of the laws of physics (in partic-
ular, the boundary conditions of the universe) and of the (resultant) laws of human psychology, and if we
were sufficiently competent to perform the appropriate quantum mechanical calculatations, then we might
say that we could calculate [the distribution of learning situations] exactly.” Again, the objective interpre-
tation of distributions over learning situations, complementary to the learning algorithm’s distribution over
“hypotheses,” is central to Wolpert’s framework.
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account of the nature of these chances we do not see much reason for going along
with the idea that the universe is governed by some objective distribution generating
learning situations—let alone that this distribution should be uniform.

In sum, it would be granting Wolpert too much to accept that it is on us to show,
contra his equivalence claim, that some algorithms are generally better than others. (We
do not even need to think that “generally” is a qualifier that can be made meaningful
here.) The burden is rather on Wolpert to justify the presuppositions that back his
claim, in particular the assumption of a uniform distribution on learning situations,
and this he has not done.

2.5 There is no universal data-only learning algorithm

We can, however, formulate a weaker variation of the NFL results, a statement that is
implied by the original but that does away with the uniformity assumption. In stating
it, we also make explicit the observation from Sect. 2.3 that we are still talking of
data-only algorithms, functions from data to conclusions:

For any data-only learning algorithm, there exists a learning situation in (∗)
which this algorithm does not perform well, while in this same situation

another data-only learning algorithm does perform well.

In other words, there is no single data-only learning algorithm that performs well
whenever some data-only algorithm performs well: there is no universal data-only
learning algorithm.

Note right away that the truth of any instantiation of this statement depends on the
learning problem in question, including the possible methods and the adopted notion
of good performance. It is not too hard to come up with (artificial) learning problems
for which the statement is false (e.g., a problem that is formulated such that the
possible learning situations explicitly accommodate a particular learning method).21

The statement is relevant insofar it holds for problems within most standard learning
frameworks and natural measures of good performance.

For instance, we retrieve this statement from the original Wolpert-Schaffer result
if we drop the uniformity assumption and make “good performance” precise as (say)
“having expected risk strictly smaller than 1/2.” Namely, for every learning algorithm
A1, for any sample size n, there exists a learning situation D such that the algorithm
has expected ots riskES∼Dn

[
LD\S(A1(S))

]
at least 1/2, while another algorithm A2

has expected ots risk below 1/2 (indeed zero, for choice of D that labels instances
deterministically via some f ∗, and A2 that always outputs this f ∗).

A variant for iid risk is theNFL theorem in the standard textbook byShalev-Shwartz
andBen-David (2014, p. 61ff). Here the notion of performance is that inD-expectation

21 In fact, Wolpert’s own framework provides another example, if we see the uniformity assumption as
part of the formulated learning problem. This renders the problem trivial because there is only one possible
“truth” or learning situation (the “no-learning” truth where the correct classifications are uniformly random)
so that the statement must be false (in this case, because all algorithms are equally good, in terms of expected
risk, in this one situation, hence “universal”).
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over samples of size n no more than half the total number of possible instances, the
algorithm’s iid risk is smaller than 1/4. Correspondingly, theirNFL theorem states that
for every learning algorithm A1 there is a learning situation D such that its expected
iid risk ES∼Dn [LD(A1(S))] is higher than 1/4, while that of another algorithm A2
is lower than 1/4 (indeed again zero). The authors write that the “theorem states that
for every learner, there exists a task on which it fails, even though that task can be
successfully learned by another learner” (ibid., 61).

Another example is given by theNFL theorems collected by Belot (2021) for prob-
lems of prediction. (He calls these results “of the absolute variety,” as opposed to
“measure-relative,” which would include the original Wolpert-Schaffer results.) The
learning situations in these problems are (probabilitymeasures over) infinite sequences
of binary outcomes, and he considers different types of effectively computable learning
functions (namely, “extrapolators” that are, as in our example in Sect. 2.1, functions
from past outcome sequences to next outcomes, and “forecasters” that output probabil-
ities of next outcomes) and for both of these types various notions of good performance.
In each case he derives two types of results, that are both instantiations of the general
NFL statement that there is no universal algorithm: that for each learning algorithm
A1 there is a second algorithm A2 that performs well in those situations in which A1
does, and in other situations still (“better-but-no-best”),22 and that for each A1 there
is an A2 such that the situations in which they perform well are disjoint (“evil-twin”).

These examples also illustrate that statement (*) retains much of the spirit of the
original Wolpert-Schaffer statement. In particular, it is a clear expression of the cen-
tral insight in machine learning (Mitchell 1980, 1997; Dietterich 1989; Russell 1991;
Shalev-Shwartz and Ben-David 2014) that no purely data-driven learning algorithm—
no formal inductive function from data to conclusions—can be successful in all
circumstances. That is, every such data-only algorithm must possess some induc-
tive bias that determines in which restricted class of situations it performs well, and
hence in which situations it does not. What statement (*) still adds to this is that such
a learning algorithm’s inevitable inductive bias excludes it from learning successfully
in some situations that are not unlearnable: situations in which some other algorithm
would performwell. But it does not go as far as the originalWolpert-Schaffer statement
that all (data-driven) algorithms are equivalent in their performance, depending as this
does on the additional and unmotivated assumption of a uniform prior distribution.

3 Generic algorithms and local models

In this section, we investigate the significance of the NFL-statement (*) for the justi-
fication for machine learning algorithms. The route we take is to first relate the NFL
results to Hume’s skeptical argument about induction (Sect. 3.1). We note that both
Hume’s original argument and discussions of the original Wolpert-Schaffer results
presuppose that justifying inductive methods requires justifying a general postulate of
the induction-friendliness of the world. Subsequently, we discuss philosophical work

22 Note that such results, while instances of NFL statement (*), go against the Wolpert-Schaffer statement
that all algorithms are equivalent. There are in this learning framework strictly better and better performing
algorithms—just no best.
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that denies this presupposition, and that promotes a local perspective on induction
(Sect. 3.2). We argue that a local conception of induction, applied to machine learn-
ing, points at a more natural conception of learning algorithms: rather than one-place
functions on data only, many standard learning algorithms are better conceived of
as two-place functions that for their operation also require some model (Sect. 3.3).
Learning-theoretic guarantees do justify the use of such algorithms, in a local, model-
relative manner (Sect. 3.4).

3.1 The road to skepticism

TheNFL theorems, both the originalWolpert-Schaffer results and instantiations of the
statement (*) of Sect. 2.5, are mathematical theorems. They say something about the
impossibility ofmathematicallyproving that some learning algorithms, conceived of as
purely data-driven, perform better than others. As such, they can be seen as versions of
the first, deductive, horn of the fork that constitutes Hume’s orginal argument against
a justification for induction. This first horn concerns the impossibility of inferring
good performance of inductive inference using only deductive, a priori reasoning:
since it implies no logical contradiction that induction does not perform well, we can
never deductively derive, from a priori premises only, that it does.23 Similarly, the
NFL results show for any learning algorithm that it implies no contradiction that this
algorithm does not performwell (does not perform at least as well as other algorithms),
by showing that there are a priori possible situations in which it does not.24

This does not yet constitute a skeptical argument that we can offer no rational
grounds for thinking that one algorithm performs better than another. Likewise, the
first horn of Hume’s fork did not yet establish a skeptical conclusion about the grounds
for inductive inference. Arguably, the novelty and force of Hume’s argument lay in the
second horn of his fork: the assertion that neither can we offer, on pain of circularity,
good nondeductive or empirical grounds for thinking that inductive inference must
perform well. Only the two horns taken together lead to the skeptical conclusion that
we can offer no rational, epistemic ground for using inductive inference: thatwe cannot
justify induction.

23 Recall that “performswell” inNFL statements couldmean, for instance, “has in expectation a sufficiently
high probability of a correct conclusion.” In the analogous reconstruction of Hume’s argument the deductive
horn would thus amount to more than the “boring” observation that induction is fallible (Okasha 2001, p.
309): it is not just that inductive inference is not itself deductively valid and could lead to false conclusions,
it does not even imply a contradiction that it is not likely to give correct conclusions (see, e.g., Skyrms 2000,
p. 30ff). The purpose of our very compressed presentation of Hume’s argument here is mainly to draw
analogies to the NFL results and their implications; and we pass over some issues regarding the proper
reconstruction of Hume’s original argument that are not uncontentious (including whether the argument
was intended to extend to probabilistic induction, and indeed the possible differences in conceiving of the
two horns as “deductive” v. “inductive” or as “a priori” v. “empirical”). See Lange (2011); Henderson
(2020) for entries to the literature on Hume’s (historical) argument.
24 This is clearly what theNFL results of type (*) do. The originalWolpert-Schaffer results fit this statement
less well, at least in the usual interpretation, because of the (non-tautological) assumption of a uniform
distribution. But it fits an earlier interpretation by Wolpert, mentioned in Sect. 2.4: it is logically possible
that learning situations are generated by a uniform distribution, hence that no algorithm performs better
than any other.
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Perhaps the Wolpert-Schaffer results were not intended to support a skeptical con-
clusion, and we should read conclusions of the sort that “methods for induction to
unseen cases cannot be justified rigorously” (Schaffer 1994, p. 264) or that “one can
not formally justify [standard learning algorithms]” (Wolpert 2002, p. 38) as merely
indicating the limits of mathematically founding the performance of learning algo-
rithms. However, something more than that is suggested in the original discussion
surrounding these results, by the nods to Hume (Wolpert 1996b, p. 1341; Schaf-
fer 1994, p. 264), but also by the outlines of a move very reminiscient of Hume’s.
This is the idea, discussed before in Sect. 2.4, that the only way remaining to found
the good performance of our learning algorithms is to postulate that “the world” (or
“nature,” or the “universe”) has a certain structure that guarantees this. Hume’s orig-
inal argument in fact starts with the premise that inductive reasoning proceeds upon
the principle that “nature is uniform.” It is this principle that is subjected to the two
horns; in particular, that we cannot justify it inductively or empirically. Namely, any
attempt to derive the uniformity of nature from past such observed uniformity would
require the very principle at stake and thus be viciously circular.

Hume’s argument and most of its later reconstructions simply concerned “induc-
tive inference” or “inductive method,” exemplified by something like enumerative
induction but beyond that largely left unspecified (prompting a distinct problem of
description, recall Sect. 2.3). The NFL theorems concern all possible purely data-
driven learning algorithms. Still, the skeptical threat of the NFL results lies in their
application to “our standard algorithms,” the generic learning algorithms that we actu-
ally use (recall again Sect. 2.3). So both Hume’s argument and discussion surrounding
theNFL results envisage some restricted collection of generic inductive methods. And
in both cases we see that the performance of these inductive methods is paired to a
particular structure theworldmay ormay not have. If theworld has thematching struc-
ture, then our inductive methods perform well; if not, they do not.25 Consequently, the
dialectics turns on the justification for such an assumption on the world: in Hume’s
argument from the start, in the case of the Wolpert-Schaffer results in the ensuing
discussion. The NFL statement (*) is similarly susceptible to this move: if we do want
to uphold the existence of well-performing generic (universal) learning algorithms,
then it seems we must postulate that the world has a structure that facilitates such
algorithms’ performance. But in all cases, it appears impossible to justify, without
question-begging, such an assumption on the world, whence we are driven towards a
skeptical conclusion.

3.2 Localizing induction

An idea that has been advanced in the philosophical literature is that we may avoid
being driven there by denying that inductive inference relies on universal uniformity
principles (Okasha 2005b). This idea builds on arguments that it is hopeless to try

25 In Hume’s argument, this structure is given by the principle of the uniformity of nature; in the case of
the NFL results, by a non-uniform distribution. Note the opposed denotations of the term “uniform” here:
a uniform distribution intuitively signifies complete randomness and thus lack of structure and regularities,
so that it corresponds to an assumption of non-uniformity of nature in the sense of Hume.
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and give a precise account of a principle of the “uniformity of nature” (Salmon 1953;
Sober 1988, p. 55ff).26

Sober (1988, p. 58ff; also see Okasha 2005b, p. 245ff) argues that in presuppos-
ing that induction relies on a single principle of uniformity, Hume actually commits
a quantifier-shift fallacy. It is not the case, as Hume has it, that there is a certain
assumption (the uniformity of nature) that every inductive inference requires; it is
rather the case that every inductive inference requires a certain assumption. That is,
rather than all relying on a single universal uniformity principle, every induction relies
on a specific and local empirical assumption.

Arguments against universal uniformity principles usually run together with argu-
ments that it is hopeless to try andgive aprecise account of “inductivemethod” (Putnam
1981, 1987;Rosenkrantz 1982; vanFraassen1989, 2000;Norton2003, 2010).Okasha
(2001) indeed develops an argument analogous to Sober’s where he diagnoses the fault
in Hume’s reasoning to be the presupposition that inductive inference is given by uni-
versally applicable rules. He, like Norton (Norton 2003, p. 666; 2014), argues that the
denial of this presupposition actually blocks the skeptical argument.

These ideas offer a local perspective on inductive inference.27 In order to assess
the value of this perspective for machine learning algorithms and their justification,
we make two observations.

First, even if we grant that Hume’s original argument no longer goes through when
we deny the existence of universal uniformity principles or inductive rules, it does not
follow that we are safe from a skeptical argument. As Sober (1988, p. 66ff) himself
emphasises, there are still always assumptions involved in an inductive inference, that
themselves stand in need of justification. Even if we are safe from Hume’s argument
that anynondeductive justification of inductionmust be circular, it appearswewill now
be facing an endless regress, where each empirical assumption can only be justified
by another induction with its own empirical assumptions.

Yet Okasha (2005b) is more optimistic: “The form which the inductive sceptic’s
argument takes on the ∀∃ picture—pushing the demand for justification further and
further back—seems somehow less problematic than in the ∃∀ case,” where “thewhole
practice of reasoning inductively seems to be premised on an enormous, untestable
assumption about the way the world is” (ibid., pp. 252, 251). We do not think that this
settles thematter, but it does clearly bring out a crucial advantage of a local perspective
on induction. Namely, this perspective is much closer to what the problem of justifi-

26 Arguably it is already the lesson of Goodman’s new riddle that Hume’s uniformity of nature principle is
empty (Okasha 2001, p. 309; Lange 2011, p. 58f; also recall footnote 11), even if this is obscured by Good-
man seeking to patch Hume’s supposition by a restriction to “projectable” predicates (Rosenkrantz 1982;
Okasha 2001, p. 320).
27 The general idea of urging a local perspective on induction can be discerned in various philosophical
currents, including the pragmatist tradition (see Levi 1967; Bogdan 1976). Nor is the questioning of a
principle of the uniformity of nature (Peirce 1878, 1902) or formal schemes of induction (see McCaskey
2021) remotely new. We focus here on the relatively recent writings by Okasha, because they specifically
address the Humean problem of (global) justification, and because they bring out nicely the points that are
important to our argument.
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cation looks like in actual enquiry.28 Plausibly, in an actual enquiry, each inference
takes place within a constellation of context-specific or local empirical assumptions.29

The motivation for such an inference will focus on one or more of these assumptions,
and not on a universal uniformity principle. Furthermore, the question of justification
does not only target these assumptions: even given these assumptions, there can still
be room for different inferences, in which case there is still the question of the justifi-
cation for the inference of choice, or the method used for the inference. We will argue
below that both aspects are important to the question of the justification for machine
learning algorithms.

Second, it might seem that a local conception of induction, inasmuch as it is coupled
to the position that inductive inference cannot be encoded into general rules, actually
does not sit very well with the enterprise of machine learning. After all, and arguably
in contrast to day-to-day human or even scientific reasoning, machine learning is
characterized by the design and use of learning algorithms: fully mechanical, generic
procedures for inductive inference.

The rejection of general inductive rules in a local perspective must be qualified,
though. For instance, Okasha (2001; also see 2005a), in the course of arguing against
the idea of general rules for inductive inference, does endorse Bayesian condition-
alization as the rational procedure for learning from experience.30 There appears to
be a tension there (cf. Henderson 2020): is updating by conditionalization not a rule?
Okasha, however, makes a distinction: “a rule of inductive inference is supposed to tell
you what beliefs you should have, given your data, and the rule of conditionalization
does not do that … the state of opinion you end up in depends on the state you were
in previously; whereas if you apply an inductive rule to your data, the state of opinion
you end up in depends on the instructions contained in the rule” (2001, p. 316). The
output of Bayesian conditionalization does not depend on the input data only: it also
depends on “the state you were in previously,” ultimately, a prior probability assign-
ment. The rejection of general rules for inductive inference here thus concerns purely
data-driven rules.

This idea is, of course, very much supported by the statement of the NFL theorems
we advocated: there is no universal purely data-driven learning algorithm.31 Moreover,
this is perfectly consistentwith allowing for general rules for induction that also require
other inputs, plausibly inputs that encode local assumptions, like (in the case of the

28 This is also a main selling point of Norton’s “material theory of induction.” But it is likewise far from
clear that Norton can uphold his promise of escaping inductive skepticism, in particular, of escaping the
endless justificatory regress (Kelly 2010).
29 For a dissenting view, based on examples from the history of science of inductions within “theoretically
impoverished contexts,” see Lange (2002, 2004).
30 So doRosenkrantz (1982) and van Fraassen (1989). Norton (2010, 2014) does categorically argue against
any formal scheme for induction (including the Bayesian scheme), which places his theory at odds with the
perspective we develop here.
31 Van Fraassen’s (1989, p. 132ff; 2000, p. 256ff) rejection of “the ideal of induction” (“a rule” that is
“rationally compelling,” “objective,” and “ampliative”) relies for an important part on results that go back
to a proof of Putnam’s (1963) that is in effect an instantiation of NFL statement (*). Putnam shows by a
diagonalization argument that for each prediction algorithm, there exist infinite data sequences on which
this algorithm does not perform well, sequences that are in fact themselves effectively computable so that
another algorithm predicts them perfectly (also see Sterkenburg 2019).
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Bayesian method) a prior probability distribution. In sum, the lesson we take from a
local conception of induction is not to reject rules for induction: the lesson is to fine-
grain the notion of inductive rule, to conceive of it as a procedure that can also take for
input local assumptions. Applying this perspective tomachine learning algorithms, we
will also be able to qualify the sweeping skeptical conclusion that the NFL theorems
seemed to lead us to.

3.3 Model-dependent learning algorithms

We think it highly implausible that the use of machine learning algorithms relies,
explicitly or implicitly, on a general “assumption of machine learning” about the
learning-friendliness of theworld, let alone a belief in some all-governing non-uniform
prior distribution on possible learning situations. The assumptions that accompany
the use of a learning algorithm in any particular context are normally themselves of a
context-dependent, local nature. But how to square the role of local assumptions with
the use of generic mechanical learning procedures?

The observations of the previous section point us at an answer. Many standard
learning algorithms are not purely data-driven, but must also take for input a model.
Suchmodel-dependent algorithms instantiate, not a one-place function that maps data
to conclusions, but a two-place function that maps data and a model to conclusions.
Crucially, such algorithms can be given a model-relative justification.

In the following, we illustrate model-dependent learning algorithms using three
standard machine learning examples: Bayesian machine learning (Sect. 3.3.1), empir-
ical risk minimization (Sect. 3.3.2) and cross-validation (Sect. 3.3.3). These methods
all have in common (as do most if not all standard model-dependent learning algo-
rithms that we know of) that they select a hypothesis or combination of hypotheses
with good predictive performance, measured in terms of the loss function of interest
(empirical risk minimization, cross-validation) or a related measure such as the like-
lihood (Bayes). We discuss how these methods receive a model-relative justification
in the form of learning-theoretic guarantees, and thereby bring out why such claims
as “the NFL theorems indicate that cross-validation has no more inherent justifica-
tion than anti-cross-validation” are misleading.32 We conclude our examples with a
discussion of the consistency of theNFL results with learning guarantees (Sect. 3.3.4).

Finally, we have delegated to “Appendix B” some nuances that distract from the
argument’s main thrust.

3.3.1 Bayesian learning

The Bayesian scheme, central to many philosophical accounts of rational learning,
also constitutes an important approach in machine learning (Duda et al. 2001; Bishop
2006). What characterizes Bayesian learning is that an algorithm must be provided
with a prior distribution over some domain of probability distributions, and this choice

32 We here say very little about potentially useful distinctions between different types of justification and the
exact nature of the accompanying inductive assumptions, but this is a natural avenue for further investigation
(Corfield 2010).
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of prior constitutes a choice of model. The role of the prior as a variable input factor
lends such an algorithm a considerable genericity: the algorithm itself does not come
with a particular model, but is flexibly supplied with a specific model in each specific
application. This is also what provides room for a model-relative learning-theoretic
justification: a demonstration that relative to the choice of prior distribution, aBayesian
algorithm performs well.

We now discuss this in some detail for Bayesian machine learning in the frame-
work of classification, the realm of the original Wolpert-Schaffer results. Here, the
prior � is usually taken over a set of conditional probability distributions of the form
P(Y | X) with Y ∈ Y , X ∈ X the possible labels and instances, respectively.
(Recall the oatmeal example of Sect. 2.2, where Y = {T,N} and X = {0, 1}3.)
The distributions are extended to n outcomes by assuming that the data pairs
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) in the training set are sampled independently. The
set of probability distributions in the prior support (that is, those with prior density or
mass greater than 0) demarcate a model M, a set of (conditional) probability distri-
butions. A prototypical example is the logistic regression model (Hastie et al. 2009,
p. 119ff), in which the Xi = (Xi,(1), . . . , Xi,(k)) are vector-valued as in our example,
and the P(Y | X) are given by linear functions

∑k
j=1 β( j)X( j), rescaled by a fixed

nonlinear function so as to become probabilities that sum to one.
There exist several variations of the Bayesian stance, which differ in how the prior is

interpreted. For the purpose of our discussion, most relevant is the distinction between
a subjective and a pragmatic stance. Under the former, the prior quite literally encodes
one’s beliefs (which can be elicited by, for example, testingwillingness to bet on certain
outcomes). That is, the relevant inductive assumption can be equatedwith one’s beliefs.
Alternatively, under a pragmatic interpretation, to which most practitioners subscribe,
one still assumes the model (set of all distributions in the support of the prior) to be
correct, but one can choose the prior� for other, more pragmatic reasons. These could
be considerations of (computational) convenience, of optimizingworst-case behaviour
(this leads to “noninformative” or “flat” priors), or amixof prior knowledgewithworst-
case and computational considerations. For example, a standard pragmatic approach
for the logistic regression model is to take a Gaussian prior centered at 0 on the β( j)’s.

Regardless of the prior’s origin, it serves as an input to the Bayesian algorithm.
Together with the data, i.e., the training sample, one uses Bayes’s rule to update
the prior to a posterior. The posterior over the distributions is then used to output a
classifier f̂ Bayes , defined as the function from X to Y that has the largest probability
of being correct according to the Bayesian posterior predictive distribution (Bishop
2006). In contrast to the notion of learning algorithm in Sect. 2, where an algorithm
only takes data, the Bayesian algorithm requires additional input: the user’s inductive
assumptions, codified explicitly as prior and induced model. One cannot avoid stating
these explicitly—without specifying a prior and hence a model, the outcome of the
Bayesian algorithm is simply undefined.

When it comes to the question of justification, the distinction between the two
Bayesian stances is also relevant. Under the subjective stance, the Bayesian algorithm
is simply optimal: among all algorithms, it leads to the best possible classifier (with
smallest risk) under one’s own inductive assumptions as encoded by the prior. In other
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words, if the prior truly reflects one’s beliefs, then one must also believe that the
Bayesian procedure, with this prior, is justified. If one is willing to take the subjective
stance, then any arguing that the Bayesian algorithm has nomore inherent justification
than any other algorithm, let alone “anti-Bayesian learning” (where one selects the
classifier with the highest risk under the posterior), is futile.33

Under a pragmatic view of Bayesian inference, the prior weights cannot be directly
related to one’s beliefs, and the Bayesian algorithm cannot be said to be optimal in
the previous sense. Nevertheless, under the pragmatic view one can still show that
the Bayesian procedure has a certain model-relative optimality, even if the specific
choice of prior over the same model now becomes important. We already mentioned
how choices of noninformative priors can optimize worst-case behavior, by which we
meant that f̂Bayes has the smallest possible generalization error in the worst case under
all P∗ ∈ M.

Furthermore, there exists a plethora of results (e.g., Ghosal et al. 2000, 2008)
showing that, under very weak conditions on the model M, one can select priors
such that for all P∗ ∈ M, the posterior concentrates around P∗ at a certain rate. In
our context, this implies that the expected generalization error of f̂Bayes converges
to the generalization error one could obtain if one knew the “true” (leading to the
best possible predictions) P∗. Moreover, one can give nonasymptotic bounds on the
difference in generalization errors (Grünwald and Mehta 2020). These results provide
a clear model-relative justification for the pragmatic Bayesian procedure: if one has
reason to believe that the model is correct, then (with the right choice of prior over
this model) one also has reason to believe that the algorithm performs well.

For the sake of brevity we do not go in more detail into the justification of Bayesian
methods. Instead,weproceedwith amore in-depth discussion of twomethods that have
received more attention in the context of the NFL results: empirical risk minimization
and cross-validation.

3.3.2 Empirical risk minimization

This is probably the most standard machine learning method. Like Bayesian learn-
ing, empirical risk minimization (ERM) is a model-dependent method. The crucial
difference with Bayesian learning is that the “model” is now not a set of probability
distributions, but rather a user-specified set of classifiersF , usually called a hypothesis
class. In practice, it could be the set of all neural networks with a given number of
nodes and connectivity matrix, represented by their weights; or the set of all decision
trees of a given size. The generalization performance of ERM can be analyzed via
the standard machinery of learning theory (Shalev-Shwartz and Ben-David 2014).
Here, as in Sect. 2.2, one assumes that the data S = (X1,Y1), (X2,Y2), . . . , (Xn,Yn)

33 As a referee remarked, for a “hard-core” (to use the referee’s terminology) subjective Bayesian there is a
much more fundamental justification than optimality: that only Bayesian learning is rational (made precise
in terms of coherence, or quantifying uncertainty in terms of degrees of belief that satisfy the probability
axioms). For instance, Bishop (2006, p. 21) writes, “The use of probability to represent uncertainty … is
inevitable if we are to respect common sense while making rational coherent inferences.” From this point
of view, performing well is strictly speaking not even an issue: once a prior is formulated, the only coherent
and therefore reasonable way to combine it with the data to arrive at a prediction or classification is to
follow the Bayesian algorithm.
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are sampled independently from an unknown distribution D. No further assumptions
about D are made: instead all inductive assumptions go into F . In Bayesian learn-
ing, the choice of model M can be seen as the inductive assumption that “there is
a P ∈ M such that acting as if the data is a random sample from P leads to the
best possible predictions.” In learning theory, adopting a class F can be seen as the
inductive assumption that “there is an f ∈ F that has classification risk 
 1/2, small
enough to be useful.” Here the classification risk is iid risk, or the probability that
f (X) �= Y under D.
The ERM method Aerm takes as input both a training sample S and a hypothesis

class F as above. It proceeds by picking the classifier f̂erm = Aerm(S,F) in F that
made, among all elements in F , the minimum number of errors on S, with some
arbitrary rule for breaking ties. Assume for simplicity that F is finite, so that there
exists an f ∗ in F that minimizes the risk. A variation of a standard result in learning
theory says that ERM works well, in the following sense: the difference between the
expected risk of f̂erm and the best obtainable risk within the model, namely that of
f ∗, is bounded by

√| logF |/(2n). (See ”Appendix A.3” for a derivation.) This result
holds no matter what D is. Since the dependence on the size of F is logarithmic,
the guarantee remains non-void even for exponentially large, and in this sense fairly
complexF . In fact, it canbe extended tomany infiniteF aswell: the log |F | term is then
replaced in the bound by an abstract (but computable) complexity notion such as the
Rademacher, Vapnik-Chervonenkis or “PAC-Bayesian” complexity of F (Grünwald
and Mehta 2020). Interestingly, as the latter paper explains in detail, such results are
proven using essentially the same techniques as those used for proving non-asymptotic
convergence of pragmatic Bayesian learning.

What about anti-ERM (or empirical riskmaximization), that picks the f̂a- ERM ∈ F
with largest error on the training set? We can precisely reverse the math behind the
convergence of ERM to show that anti-ERMwill converge to the worst element ofF ,
the element that maximizes risk. The difference between the expected risk of f̂a- ERM
and the worst obtainable risk is again at most

√| logF |/(2n) if F is finite, and an
analogous result holds again with log |F | replaced by Rademacher or VC dimension
for infinite F . Saying “ERM has no inherently better justification than anti-ERM”
would thus amount to saying: “A method which (given a not too small sample) leads
to the best possible predictions that can be obtained based on my hypothesis class,
has no more inherent justification than a method which (given a not too small sample)
leads to the worst possible predictions that can be obtained based on my hypothesis
class.” To us, this seems an aberration. 34

Our point is certainly not that ERM is perfect: if F becomes “too complex” then
ERMmay suffer from severe overfitting and will not work in practice.35 But if anyone
advises us to use such a class in combination with ERM, we can simply reply that
handling it goes beyond the power of ERM—other methods more suitable for that
case exist, such as structural risk minimization (Vapnik 1998; Shalev-Shwartz and

34 A complication is that the original NFL claim “ERM is no more justified than anti-ERM” is based on
measuring classification quality in terms of ots error, whereas the learning-theoretic claims that ERM is
better are based on iid error. In “Appendix A.1” we lift this complication by explaining that in practice,
both error measures often essentially coincide.
35 See “Appendix B.1” for more details about shortcomings of ERM as well as cross-validation.
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Ben-David 2014), or forms of minimum description length learning (Grünwald and
Roos 2020), or ERM combined with cross-validation as below.

We thus have a well-defined condition (small enough complexity of our F) under
which ERM is provably preferable to anti-ERM. No such conditions have ever been
formulated under which anti-ERM performs better than ERM (with the same model!),
and it is highly implausible that something of the sort could be done.

3.3.3 Cross-validation

This method can be viewed as a meta-algorithm to select between different learning
algorithms.36 For ease of presentation, we concentrate on a simplification of cross-
validation: two-fold forward-validation. This takes as input a data set of a given size
n > 1, and a finite set of learning algorithms A1, A2, . . . , Am . Forward-validation
runs all these algorithms on the first half S1 of the original training set.37 Letting
f̂k = Ak(S1) denote the classifier learned by algorithm Ak , it then selects as final
classifier the classifier f̂k̂fv where k̂fv is the k such that f̂k has the smallest error on the
second half S2 of the training set, which is thereby used as a validation set. Thus, the
final classifier always coincides with one of the m initial classifiers. For full two-fold
cross-validation, one repeats the procedure with the two data sets interchanged, and
for M-fold cross-validation we split the data in M parts with a validation set of size
n/M . Everything we say below for two-fold forward-validation also holds mutatis
mutandis for full M-fold cross-validation, but the phrasing of results becomes more
cumbersome, so we stick to the two-fold forward case for simplicity.

Now, let E (n)
k be the expected iid risk of algorithm k after having run on the first half

of the data: E (n)
k = ES∼Dn

[
LD

(
f̂k

)]
. Let E (n)

fv be the expected iid risk of two-fold

forward-validation as defined above: E (n)
fv = ES∼Dn

[
LD

(
f̂k̂fv

)]
. One can now show

(see “Appendix A.3”) that the expected iid risk of forward-validation satisfies

E (n)
fv ≤ min

k∈{1,...,m} E
(n)
k +

√
logm

n
. (3)

Thus, the expected iid risk of forward-validation converges, as n grows, to the
expected risk of the learning algorithm that, among all algorithms under consideration,
is best in the sense that it outputs the lowest-risk classifier in expectation over the
training set S1. This holds for all m and n, so if n is large, we can also take m very
large; in particular, due to the logarithmic dependence on m, at sample size n we can
choose between a number of learning algorithmsm that is orders of magnitudes larger
than n and still have a meaningful bound.38

36 Cross-validation is often seen as a highly non-Bayesian method, but there are in fact close connections,
as first pointed out by Dawid (1984); also see Fong and Holmes (2020).
37 If n is odd, we take S1 to contain the first (n − 1)/2 data points and S2 the remaining ones.
38 For M-fold cross-validation, the constant in front of the square root changes from 1 to another positive
value, but remains easily computable as long as M does not depend on n. For leave-one-out cross validation,
M = n − 1 and the mathematical analysis is tricky and a subject of ongoing research, so we will stick here
to the fixed M case.
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Forward- and cross-validation can be fruitfully applied both to model-dependent
algorithms and to algorithms that may be better viewed as data-only. A prototypical
example of the latter is nearest-neighbor classification. Here X is a space equipped
with ametric (e.g., Euclidean spacewith theEuclideanmetric). The k-nearest-neighbor
method based on a training set with n′ instances plus labels (x1, y1), . . . , (xn′ , yn′) out-
puts the classifier which, for any value of x , picks the k data points {i1, i2, . . . , ik} ⊂
{1, . . . , n′} for which xi is closest to x , and outputs the majority vote for the cor-
responding yi1 , . . . , yik . Nearest-neighbor with k = 1 always has zero error on the
training set, so typically overfits dramatically. However, one can use cross- or forward-
validation to choose a value of k. The number mn of k’s that make sense at sample
size n is at most n, so the generalization bounds above are meaningful, and we have
the guarantee that the expected risk based on using k̂fv-nearest-neighbour is close to
the error achieved with the unknown optimal k ∈ mn that achieves the best expected

risk ES∼Dn

[
LD( f̂k)

]
.

When applying forward- and cross-validation to model-dependent learning algo-
rithms, one typically takes the same learning algorithm (say ERM) for A1, . . . , Am ,
turned into one-place algorithms by combining each Ak with a different hypothesis
class Fk . For example, Ak could represent ERM applied to Fk , the set of decision
trees of depth k. The class of all decision trees of arbitrary depth is too large for ERM
to work well (yield nontrivial generalization guarantees), but in combination with
forward- or cross-validation one can use the above result to get meaningful general-
ization guarantees again.

How about anti-cross-validation? We can invoke precisely the same analysis as for
ERM. Our inductive bias is now explicitly specified at a meta-level, by specifying the
algorithms Ak . If m, the number of algorithms taken into account, is fixed or grows
subexponentially with n, cross-validation can be expected to converge to the best of
them based on a finite and quantifiable sample size. In contrast, under the same con-
ditions, anti-cross-validation will converge to the worst of them. Analogously to the
ERM case, there is a clear condition (m subexponential as function of n) under which
cross-validation is (much) better than anti-cross-validation relative to the given algo-
rithms that encode our inductive bias. And again, we cannot imagine a condition that
would allow one to prove an interesting guarantee in support of anti-cross-validation.

3.3.4 The consistency with no-free-lunch

To conclude our examples, we note that themodel-dependent perspective still encapsu-
lates the valid lesson fromNFL results: the lesson that every algorithm,when operating
on data only, must incorporate an inductive bias. A Bayesian algorithm, when pro-
vided with a model and a prior distribution on this model, will possess a certain bias;
similarly, ERM, when provided with a hypothesis class, and cross-validation, when
provided with a set of hypothesis classes, possess a certain bias. The models here
represent an inductive bias, and NFL results show that any such model must indeed be
biased in the sense that it must be restrictive. Any algorithm plus instantiated model
performs well in some situations: those situations which the inductive bias, in some
sense, is well-aligned with. But the algorithm plus this model does not perform well
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in other situations, situations even in which the very same algorithm, with a different
instantiated model, would perform well.

To further illustrate the consistency of negative NFL results and positive learning-
theoretic results, recall the NFL version of Shalev-Shwartz and Ben-David (2014)
that we described in Sect. 2.5. It states that every data-only algorithm (like ERM with
any instantiated F) does not perform well in situations D in which another data-only
algorithm does perform well. They prove this by exhibiting a second algorithm that
has anD-expected risk at least 1/4 less than the first algorithm; specifically, the second
algorithm is ERM with a class F ′ that is well (indeed perfectly) aligned withD. Note
that if the first algorithm is ERMwith someF , then this secondF ′ must be a different
class, for any significant difference in expected risk (depending on the sample size).
This follows from the learning-theoretic guarantee that the expected risk of ERM
cannot be much worse than that of the best hypothesis in F , and therefore than that
of any algorithm that uses (must select a classifier from) model F . Again, ERM with
a particular F may be much worse than a different data-only algorithm if F is not a
good model. But ERM cannot perform much worse than any algorithm with the same
model; and if we have reason to believe that our model is good, then we have reason
to believe that ERM with this model performs well, too.39

3.4 The justification for learning algorithms

Learning theory thus provides us with model-relative justification for many standard
methods. For a generic model-dependent method, such amodel-relative justification is
allwe can ask for. For such a genericmethod, it simply does notmake sense to speculate
about empirical assumptions that would render the method in itself successful and in
that sense justify it. This observation stands in sharp contrast to the reduction of the
justification for standard learning methods to some postulate about the right structure
of the world. We think that this observation within the domain of machine learning
also lends further plausibility to local accounts of induction in philosophy.

One could object, however, that no method is perfectly generic, and some assump-
tions or biases are always inherent to it. To put this point differently, we have used
the word “inductive bias” in a relatively narrow way, as only pertaining to the choice
of hypothesis class. But one could object that, for instance, the method of ERM
(anti-ERM), irrespective of the hypothesis class, embodies a substantive assumption
that the evidence so far is not (is) misleading.40 We agree these can also be called
biases, or perhaps rather meta-biases (as they concern extrapolating classifiers’ suc-
cess rather than the data directly); but they are fundamentally linked to assumptions
that are already introduced in the formulation of the relevant learning problem, in this

39 Our discussion here does not yet fully resolve the consistency of the original NFL results with learning
theory. Namely, according to these results, under a uniform prior over learning situations, any two data-only
algorithms (including ERM and anti-ERM with the same hypothesis class) are equally good. In fact, the
results also imply a variant of (*) where we drop the problematic uniformity assumption, namely that for
any two algorithms (again, including ERM and anti-ERM with the same F ) there exists a D where the
second does better than the first. In “Appendix A” we explain how these results can be consistent with the
positive guarantees from learning theory.
40 We thank one of the reviewers for pressing us on this point.
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case the general problem of stochastic classification.41 In particular, the use of ERM
relies (and learning-theoretic guarantees for ERM rely) on the problem assumption of
stochastic classification that data is sampled i.i.d. (this can be extended to a stationarity
assumption but not much beyond). For this learning problem, and in particular due
to the i.i.d. assumption, the “uniformity meta-bias” of ERM is provably good, and
the “anti-uniformity meta-bias” of anti-ERM is provably not. In general, in the same
way that any NFL statement concerns a certain learning problem (recall Sect. 2.5),
any learning guarantee concerns a certain learning problem. Thus our claim is more
precisely that many standard learning methods, also relative to the learning problem
they were designed for, have a model-relative justification.

Finally, recall from our discussion in Sect. 3.2 that it is far from clear that a local
conception of induction brings us closer to an absolute, global justification of induc-
tive inferences. Similarly, a model-relative justification still leaves the justification for
the model in any particular application of a learning algorithm, and indeed the further
assumptions encoded in the very formulation of the learning problem. A global jus-
tification for the conclusions of a machine learning algorithm must also include the
justification for all these assumptions. The obvious threat is an endless justificatory
regress, where the motivation for these local assumptions leads us to an earlier infer-
ence that itself relies on inductive assumptions that want justification. Note, though,
that this regress will soon, if not immediately, lead us to assumptions that we have not
actually arrived at by machine learning methods. We will soon have left the domain
of machine learning, and face the problem of induction in its full generality. Rather,
therefore, than understanding theNFL theorems as somehowdeepeningHumean skep-
ticism, the more sober conclusion is that the question of the global justification for
the conclusions of machine learning algorithms reduces to the original problem of
induction.

4 Conclusion

The NFL theorems are commonly understood to show that every learning algorithm
must possess a certain bias, and must ultimately lack justification because any such
bias must. We have argued that for many standard learning algorithms, this is turning
things on their head. NFL results do show that any data-only algorithm must have
an inherent bias. Presented such an algorithm, we could expose its bias, and question
the justification for this bias and thereby for the algorithm. However, many standard
learning algorithms are better conceived of asmodel-dependent. The need for a choice
of bias is accommodated by such an algorithm from the start: on each application, one
must equip it with a particular model, that represents the bias. The algorithm itself is
generic in that it does not itself comewith a bias: on each application, onemust provide
it with one. What is more, such algorithms can have a model-relative justification:
relative to any given model, such an algorithm performs well. Learning-theoretic

41 Casting a particular real-world problem as a particular formal learning problem (which includes, e.g.,
choice of possible instances and labels) is, of course, itself a modeling step, that can be said to introduce
certain biases. See von Luxburg and Schölkopf (2011, p. 683ff) for a short discussion of the different places
bias can enter.
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guarantees show that in that sense some standard learning algorithms are sensible, are
justified—and other possible algorithms are not. This is perfectly consistent with the
valid lesson of NFL results that any data-only learning method, including a model-
dependent algorithm plus a particular choice of model, must possess a bias.

In the course of our argument, we drew some parallels to the broader philosophy
of induction. Most importantly, we discussed the role of a general postulate on the
induction-friendliness of the world, and the local view of induction that challenges the
cogency of such a postulate. We think of our emphasis on the model-dependence of
many standard learning algorithms as an instance of the local view of induction. It is
important to note, however, that the local view does not yet suffice to escape Hume’s
skeptical argument, and neither does the model-relative conception in the context of
machine learning algorithms. Namely, an absolute justification for the conclusions
of inductive inferences still requires a justification for the preceding choice of local
assumptions or model.

For that reason, the local view of induction also does not suffice to fully explain the
success of our inductive inferences. Analogously, Wolpert (1996b, p. 1364) points at
“a rather profound (if somewhat philosophical) paradox,” that is not yet resolved by
the model-dependent perspective on learning algorithms: “How is it that we perform
inference sowell in practice, given theNFL theorems and the limited scope of our prior
knowledge?”That this is notmerely a “somewhat philosophical” issue is demonstrated,
for instance, by the recent debate surrounding the “paradox of deep learning” (Zhang
et al. 2017; Neyshabur et al. 2017; Arpit et al. 2017; Kawaguchi et al. 2019), which
revolves around the perceived lack of a good explanation for the empirical success of
deep neural networks. The case of deep learning is particularly interesting, as a clean
separation of method and model is here much more contentious, and the remaining
question of justification does not clearly center on the motivation for a well-articulated
choice of model.
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Appendix A. The original NFL results and learning theory

The central question in this paper concerned the consistencyof the negativeNFL results
with positive results from learning theory. In Sect. 3.3.4, we explained in formal detail
how in the specific case of ERM, an NFL statement is consistent with a learning-
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theoretic guarantee for this algorithm. However, we there discussed the NFL variant
due to Shalev-Shwartz and Ben-David (2014), a version of statement (*), and not the
original Wolpert-Schaffer result. The original case still leaves something to explain.

Consider a finite hypothesis class F , and two different learning algorithms: ERM,
turned into a data-only algorithm by equipping it with hypothesis class F (write
AERM(F)) and anti-ERM with the same hypothesis class (selecting, for any train-
ing sample S, an f ∈ F with the worst empirical error on S; write Aa- ERM(F)).
The Wolpert-Schaffer results tell us that, under a uniform prior over learning situa-
tions, for any sample size n, both AERM(F) and Aa- ERM(F) have the same expected
ots risk of 1/2. Yet the learning theoretic guarantee mentioned in the main text
and proved below says that the expected iid risk of AERM(F) is not more than
min f ∗∈F LD( f ∗) + √| logF |/(2n), whereas the expected iid risk of Aa- ERM(F)

is not less than max f∗∈F LD( f∗) − √| logF |/(2n).
This presents us with something of a paradox: it appears that AERM(F) and

Aa- ERM(F) behave equally well under the uniform prior on learning situations (NFL
result), whereas one behaves much better than the other (learning theory) under arbi-
trary priors, including the uniform. Similar paradoxes have been noted before, and it
has been suggested that the reason the former negative result and the latter positive
result can exist together is that the latter and not the former relies on iid error (Wolpert
1996a, p. 1368f). But this contradicts Roos et al. (2006), who show that in many
realistic learning situations the iid and ots error are very close to each other.

Here, we show how to resolve the paradox and reconcile both results in situations
in which both types of errors are essentially equally large. In A.1 we discuss ots and
iid risk and in A.2 we explain how the paradox is resolved. In A.3 we provide a short
proof of the relevant learning-theoretic bounds.

A.1. OTS and IID risk

First recall that both the NFL and the learning theory setting assume that data
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) are i.i.d. ∼ D where D is some distribution on
instances in X and labels in Y = {0, 1}. For given D, let DX denote the marginal
distribution on X and DY |X the conditional distribution for Y given X (that is, for
each x ∈ X , D(Y | X = x) is a distribution on Y). With this notation we have
that X1, X2, . . . , Xn are i.i.d. ∼ DX (we simply write Xn ∼ DX , leaving indepen-
dence implicit and abbreviating (X1, . . . , Xn) as Xn). Similarly, given X1, . . . , Xn ,
we have that Y1, . . . ,Yn are independent with Yi ∼ DY |X | Xi (we simply write
Yn ∼ DY |X | Xn).

Based on an analysis of DX , Roos et al. (2006) show that in practically realistic
settings, iid and ots risk are often (though not always) extremely close, and analyses
pertaining to the one transfer to the other. To get a first idea of why this might be so,
assume that the instance space X is continuous and DX has a probability density on
X . Then, for i �= j , DX (Xi = X j ) = 0: the probability that we see the same feature
vector twice is 0, and more generally, for any finite sample S, the probability that an
independently sampled test instance X ∼ DX is contained in S is also 0. Since both iid
and ots risk involve an expectation over such an independent X , this implies that for
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continuousX , wemust have that iid and ots risk coincide: LD\S(A(S)) = LD(A(S)),
almost-surely under D.

Now the original NFL results require X to be finite or countable, so the above
reasoning does not necessarily hold. But if X is finite but not too small, and equipped
with a uniform distribution DX , then the situation is quite similar to the continuous
setting (the probability that an X contained in S is also contained in a test set is almost
zero) and we can still show that, at sample sizes of interest, the difference between
both quantities is negligible. For example, suppose that features are m-dimensional
binary vectors, X = {0, 1}m , DX = UX is uniform, and the sample size is n. Then
lemma 1 of Roos et al. (2006) gives that, under every distribution DY |X ,

∣∣EXn∼UX ,Yn∼DY |X |Xn
[
LD\S(A(S)) − LD(A(S))

]∣∣ ≤ n2−m . (4)

So, for example, if m ≥ 40 (40 covariates being much less than what is common
in modern machine learning) and sample size n is less than 106 (as is the case in
many realistic scenarios), then the difference between the expected behaviour, over
training samples, of the two risk measures is less than approximately 10−6, which is
completely negligible for practical purposes. It is true that in practice,DX will usually
not be uniform. But Roos et al. (2006) show that even for highly nonuniformDX , both
error measures are often very close—the closeness can even be estimated from the
obtained sample S.

So in those (realistic) situations where iid and ots essentially coincide, how do we
account for the co-existence of the NFL results and positive learning guarantees?

A.2. Consistency of theWolpert–Schaffer results with learning theory

We first restate the NFL result in a fully precise manner. Assume that X is finite or
countable, and recall that S = ((X1,Y1), . . . , (Xn,Yn)). Then for every distribution
DX on X ,

EDY |X∼U EXn∼DX ,Yn∼DY |X |Xn
[
LD\S(A(S))

] = 1/2, (5)

where U is the uniform distribution on conditional distributionsDY |X . To be clear, this
is the distribution such that conditional on each x ∈ X , p|x := D(Y = 1 | X = x) has
a uniform distribution on the unit interval [0, 1]. To see that this is a natural definition
of ‘uniform’ in this context, note that p|x indicates the mean of Y given x according
to D, and U is thus also uniform on the mean.

In contrast to (5), we derive below that for every distribution DX , and for every
distribution U ′ on DY |X (including the uniform NFL distribution U defined above),
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EDY |X∼U ′ EXn∼DX ,Yn∼DY |X |Xn

[
LD(AERM(F , S)) − min

f ∗∈F
LD( f ∗)

]
≤

√
log |F |
2n

(6)

EDY |X∼U ′ EXn∼DX ,Yn∼DY |X |Xn

[
max
f ◦∈F

LD( f ◦) − LD(Aa- ERM(F , S)

]
≤

√
log |F |
2n

.

(7)

Since both the NFL and learning theory results hold for every distribution on finite
or countable X , we get an instance of our paradox if we (a) take a distribution DX

for which iid and ots error differ by a negligible amount, say δ very close to 0, at
the given sample size n, and (b) a combination of F and n for which

√
(log |F |)/2n

is very close, say ε, to 0, so that the bounds (6) and (7) are non-void. We henceforth
call any combination (DX , |F |, n) for which both (a) and (b) are the case an (ε, δ)-
paradoxical learning situation, with the understanding that the closer ε and δ to 0, the
more paradoxical.

To be in an (ε, δ)-paradoxical situation, we see that it is sufficient, for any finite F ,
to take n sufficiently large, and, from (4), to take X finite and DX uniform, with m
and n so that δ = n2−m is negligibly small. We thus already know that such situations
exist, and the result of Roos et al. (2006) implies that they exist for much more general
DX as well. Note that only the size of F , not the definitions of its constituent f ’s, is
relevant to determine whether the situation is paradoxical.

How can we reconcile (5), (6) and (7) in paradoxical learning situations? The key
observation is that there would only be a real contradiction if the optimal classifier
f ∗ ∈ F in our class and the worst classifier f ◦ ∈ F in our class differed substantially
in terms of their risk LD. Thus, rather than being contradictory, taken together, (5),
(6) and (7) simply imply that, in (ε, δ)-paradoxical situations, under the NFL prior, no
matter what F of given size we chose, we expect both the optimal classifier f ∗ ∈ F
and the worst classifier f ◦ ∈ F to have both iid and ots error within about ε(1 + δ)

of 1/2. Thus, in the paradoxical cases in which ε, δ are very small, both f ∗ and f ◦
behave essentially no better or worse than random guessing. As a consequence, in
paradoxical situations, under the NFL prior, we expect F , no matter how we chose it,
to be essentially useless: it contains no useful (classification error substantially smaller
than 1/2) f , hence “there is nothing to be learned from F .” This reinforces the point
made in Sect. 2.4 that the NFL prior is a prior under which learning is impossible:
at least in paradoxical situations, it makes it next to impossible that any F we might
choose provides us with anything to learn.

Next wemove to a variation of the paradox: consider the instance of NFL statement
(*) that is implied by the Wolpert-Schaffer result, saying that for any two data-only
algorithms, there is a learning situation D such that the first algorithm has expected
ots risk at least 1/2, while the second has expected ots risk strictly below 1/2. Again,
this may appear paradoxical if we apply this result to AERM(F) and Aa- ERM(F), but
now the paradox may seem more serious because it does not refer to the NFL prior.
But again, the statement can be reconciled with the learning-theoretic guarantees (6)
and (7). Rather than contradicting (*), in conjunction with (*) and (4), they imply that
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(1) there do exist (ε, δ)-paradoxical learning situations with very small ε and δ in
which both the iid and ots error of Aa- ERM(F) is smaller than 1/2 while both iid
and ots error of AERM(F) are larger than 1/2 (“anti-ERM is better than random
guessing, ERM is worse”), . . .

(2) . . . yet in such situations F must be essentially useless in the sense that both iid
and ots errors of its best element f ∗ and its worst element f ◦ are within about ε
of 1/2: the only (ε, δ)-paradoxical learning situations in which anti-ERM is better
than random guessing and outperforms ERM must concern hypothesis classes F
that only contain f that are themselves at most ε-better than random guessing (and
then anti-ERM is itself also at most ε better than random guessing).

Viewed in this way, the paradoxical situations become much less paradoxical.

A.3. Derivation of expected risk bounds

We now give a compact derivation of the following result: for all distributions DX on
X ,all conditional distributionsDY |X onY given X ,withD denoting the corresponding
joint distribution on X × Y and S = ((X1,Y1), . . . , (Xn,Yn)), we have:

ES∼D
[
LD(AERM(F , S)) − min

f ∗∈F
LD( f ∗)

]

= EXn∼DX ,Yn∼DY |X |Xn

[
LD(AERM(F , S)) − min

f ∗∈F
LD( f ∗)

]
≤

√
log |F |
2n

. (8)

Since (8) holds for all conditional distributionsDY |X , itmust also hold in expectation
over every prior distribution U ′ on DY |X , so that (6) follows. Then (7) follows by
repeating all the steps of the proof below with obvious modifications. The result
for two-fold forward-validation in the main text follows from (8) as follows. First,
let F = { f̂1, . . . , f̂m} be the m classifiers that were output by the m algorithms
A1, . . . , Am on S1, the first half of the sample. Now, use the result above with S2 in
the role of S, conditional on S1. Then F is fixed, and n gets replaced by n/2, and the
result follows by further using that the expectation (over S1) of a minimum is no larger
than the minimum of the expectation.

Proof Denote for each fixed classifier f ∈ F , the loss it makes on the i th outcome by
� f (Xi ,Yi ) and one minus this loss as �′

f (Xi ,Yi ). Then �′
f (X1,Y1), �′

f (X2,Y2), . . .
is i.i.d. Bernoulli. Let (X ,Y ) be another i.i.d. copy of X1,Y1 (think of it as a “test”
example). By Hoeffding’s inequality (Shalev-Shwartz and Ben-David 2014, p. 56) we

have, for all η > 0, that E
[
exp(η

∑n
i=1(�

′
f (Xi ,Yi ) − E[�′

f (X ,Y )]))
]

≤ exp(η2n/8)

so that also, for any learning algorithm A that outputs, upon seeing sample S =
(X1,Y1), . . . , (Xn,Yn), a classifier A(S) ∈ F , we have
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E

[

exp(η
n∑

i=1

(�′
A(S)(Xi ,Yi ) − E[�′

A(S)(X ,Y )]))
]

≤ E

[

exp(max
f ∈F

η ·
n∑

i=1

(�′
f (Xi ,Yi ) − E[�′

f (X ,Y )]))
]

= max
f ∈F

E

[

exp(η
n∑

i=1

(�′
f (Xi ,Yi ) − E[�′

f (X ,Y )]))
]

≤
∑

f ∈F
E

[

exp(η
n∑

i=1

(�′
f (Xi ,Yi ) − E[�′

f (X ,Y )]))
]

≤ exp(log |F | + η2n/8).

Jensen’s inequality, division by ηn, using that the result holds for all η > 0, and
differentiation, now give that:

E

[
1

n

n∑

i=1

(�′
A(S)(Xi ,Yi ) − E[�′

A(S)(X ,Y )])
]

≤ min
η>0

{
η

8
+ log |F |

ηn

}
=

√
log |F |
2n

.

If we take A(S) = AERM(F , S) to be an instance of ERM applied to F , and replace
� = 1 − �′, this gives

ES∼D[E(X ,Y )∼D[�AERM(F ,S)(X ,Y )] − E(X ,Y )∼D[� f ∗(X ,Y )]] ≤

ES∼D

[
1

n

n∑

i=1

�AERM(F ,S)(Xi ,Yi )

]

− E(X ,Y )∼D[� f ∗(X ,Y )] +
√
log |F |
2n

= ES∼D

[
1

n

n∑

i=1

�AERM(F ,S)(Xi ,Yi )− 1

n

n∑

i=1

� f ∗(Xi ,Yi )]+
√
log |F |
2n

]

≤
√
log |F |
2n

,

where we used that � f ∗(Xi ,Yi ) is an i.i.d. random variable, and the fact that ERM’s
risk on the training data can by definition not be larger than that of f ∗. This shows
(8). ��

Appendix B. Model-dependent algorithms: some details and nuances

Herewe discuss some limitations of standardmodel-relative learning algorithms (B.1),
and the existence of learning algorithms that are not clearly model-dependent (B.2).

B.1. Even good learning algorithms have limitations

Our point in Sect. 3.3 is emphatically not that (pragmatic) Bayes, ERM or cross-
validation are perfect methods.

In the case of ERM, we already mentioned that it is not suitable for F that are
very complex or large relative to the given training set size n. More generally, in this
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regime it can sometimes behave in surprisingly badways, with ERM’s risk temporarily
increasing in the small n-regime (Loog et al. 2019). Additionally, even if the goal is
to learn a classifier with small classification (0/1)-error, ERM often delivers better
results if applied on the training set with a different, proxy loss function that has
nicer mathematical properties. This includes logistic and hinge loss, which avoid the
discontinuites of the 0/1-loss.

As to cross-validation, it can perform poorly when the bound stated above does not
hold, i.e., if the number of constituent algorithms grows exponentially in n. This
happens, for example, in variable selection problems. For these, penalized ERM
approaches such as the Lasso are more suitable (Hastie et al. 2009). Moreover, if
we adopt different loss functions, such as the squared error loss, typical in regression,
or the logarithmic loss in density estimation, the picture changes completely. Whether
or not cross-validation is the right approach can then depend to some extent on the
goal of the inference (Yang 2005; van Erven et al. 2012): does one want to learn the
best squared-error predictor (cross-validation, behaving like AIC, is often suitable),
or does one want to find out which components of the vector X are correlated with Y
(cross-validation is not suitable)?

There are also inherent differences in the type of assumption codified into a prob-
abilistic model M, as in Bayesian machine learning, or a class F as in ERM, which
further point to necessary conditions for the algorithms to work well. For example,
if the employed probabilistic model is wrong-but-useful (that is to say, if it contains
a distribution that leads to good predictions for the prediction task of interest), the
inductive assumption underlying pragmatic Bayesian inference does not hold and in
some cases Bayesian inference does fail dramatically in practice, both in regression
and classification (Grünwald and van Ommen 2017; Grünwald and Langford 2007).
Specifically, in such cases it can happen that no matter how many data are observed,
the Bayesian posterior never concentrates around the best-predicting distribution in
the model. In contrast, the inductive assumption underlying ERM is of a much more
agnostic type, in which hypotheses are not assumed to be “true” but just “useful”
(have small classification error), so by construction there can be no problems with
“wrong-but-useful” models.

Indeed (viz. the references above), one of us has published extensively on the
limitations and suitable domain of application of methods such as pragmatic Bayes,
ERM and cross-validation. But acknowledging that these methods have limitations is
very different from saying they lack any inherent justification. In fact, studying their
strengths and limitations is done with, and shows the usefulness of, machine learning
theory. AnNFL claim that “all algorithms are equally (un)justified in principle” seems
to preclude such study.

B.2. Algorithms that are not clearly model-dependent

Some popular learning algorithms that appear to be data-only can be understood as
being model-dependent with a particular model already filled in. A prototypical exam-
ple are support vector machines (SVM’s, Vapnik 1998) with a particular choice of
kernel. While commonly viewed as “machines” that take merely data as input, they
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can be recast as a model-dependent algorithm: the model is a hypothesis class F of
linear combinations of basis functions φ1(X), φ2(X), . . . of the instances, with the
φ j implicitly given by the kernel. The learning algorithm is penalized ERM with the
hinge loss, a “proxy” for the 0/1-loss: it picks the f ∈ F that minimizes the hinge
loss on the training sample with a penalty for the L1-norm of the parameters (Hastie
et al. 2009).

For other data-only learning algorithms, however, such a decomposition is more
tenuous. For example, it is not immediately clear whether one can recast the nearest-
neighbor algorithm as such. (Though see von Luxburg and Schölkopf 2011, p. 666 for
a discussion of k-nearest neighbor as working with a certain function class determined
by the parameter k.) We stress that this does not contradict our main point: we merely
state that many (that is to say, not all!) often-used learning methods are inherently
model-dependent, and for those, claims that they work well should be understood
relative to the given models.

Finally, for some instances of ERM, though clearly a model-dependent procedure,
an additional complication arises. What we have in mind here is deep learning, where
F is the set of all neural networks with a given structure, parameterized by their
weights. The standard learning algorithm in this setting is stochastic gradient descent
(SGD), which is usually iterated until the error on the training set is zero. This makes
SGD an instance of ERM, but it is a very special one. Neural nets typically allow for a
multitude (billions) of different local minima in weight space, all with empirical error
zero, but SGD directs learning towards very particular minima. For example, these
minima tend to be “broad” (small perturbations of weights do not cause a noticeable
change in predictions) or equivalently, theweights can be grossly discretized and hence
the description of the network shortened without sacrificing accuracy (Dziugaite and
Roy 2017). Moreover, the found weight vector tends to be small under a particular,
nonstandard norm on vector spaces (Bartlett et al. 2017; Neyshabur et al. 2015).

Thus, in the use of ERM-by-SGD with a neural network model there is a com-
plicated interaction between the learning algorithm and the model: the same model
trained with different instances of ERM that end up in very different minima might
lead to very different generalization behaviour.Moreover, themodels typically have so
many weights that they can represent basically any continuous function from input to
output, so they are much too large or complex to represent our inductive bias. Rather,
it seems that in those instances of learning problems on which deep learning works
so well, SGD has a tendency to find a solution in a particularly “simple” (small norm,
broad minima, compressible) subset of weight space. There is therefore an interplay
between the learning algorithm (SGD), the “true” inductive bias (namely, those prob-
lems in which deep learning works well) and “effective” model complexity (for such
problems, SGD only explores a tiny fraction of weight space making the model much
less complex).

In sum, in deep learning, there is no crisp separation between inductive bias and
learning algorithm. We stress again that this does not invalidate our main point: for
algorithms like cross-validation, there is a clear separation, and quality assessments
should be done in a model-relative way.
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