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Abstract

Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide

range of applications ranging from interfacial flows to fluid mixtures with several velocities.

These models account for waves propagation (acoustic and convective) and consist in hy-

perbolic systems of partial differential equations. In this context, each phase is compressible

and needs an appropriate convex equation of state (EOS). The EOS must be simple enough

for intensive computations as well as boundary conditions treatment. It must also be accu-

rate, this being challenging with respect to simplicity. In the present approach, each fluid is

governed by a novel EOS named ‘Noble Abel Stiffened Gas’ (NASG), this formulation being

a significant improvement of the popular ‘Stiffened Gas’ (SG) EOS. It is a combination of

the so-called ‘Noble-Abel’ and ‘Stiffened Gas’ equations of state that adds repulsive effects

to the SG formulation. The determination of the various thermodynamic functions and

associated coefficients is the aim of this article. We first use thermodynamic considerations

to determine the different state functions such as the specific internal energy, enthalpy and

entropy. Then we propose to determine the associated coefficients for a liquid in the pres-

ence of its vapor. The EOS parameters are determined from experimental saturation curves.

Some examples of liquid-vapor fluids are examined and associated parameters are computed

with the help of the present method. Comparisons between analytical and experimental

saturation curves show very good agreement for wide ranges of temperature for both liquid

and vapor.
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I. INTRODUCTION

This article deals with a novel equation of state (EOS) formulation to deal with both

compressible liquid and associated vapour. This type of EOS couple (each fluid is governed

by its own EOS) is needed in non-equilibrium two-phase compressible flow models. In this

context the determination of accurate EOS when evaporation and condensation processes

occur is of paramount importance.

Various multiphase flow models considering compressible fluids are present in the literature.

The simplest model considers fluids in mechanical and thermal equilibrium and corresponds

to a set of 4 partial differential equations [1–3]. To deal with fluid mixtures in mechanical

equilibrium but out of thermal equilibrium 5 equations models are available [4–8]. Seven-

equation models [9–16] are devoted to flows in total disequilibrium. All these models are

unconditionally hyperbolic and are of interest regarding their ability to solve a wide range

of physical problems. They allow the resolution of macroscopic interfaces between miscible,

immiscible and/or reactive fluids as well as a large range of mixture flows situations.

In these models, the knowledge of each phase EOS is required and their determination is

very sensitive when dealing with liquid and vapor phases. Indeed the EOS parameters of

both phases are strongly linked each others. Their determination has been the subject of [17]

when dealing with ‘Stiffened Gas’ (SG) EOS. This last EOS summarizes two main molec-

ular effects (agitation and repulsive effects) in a simplified formulation. The determination

of the corresponding parameters has also been achieved carefully in [17] with the help of

reference data corresponding to experimental saturation results. For example, in Fig.1, the

experimental and resulting theoretical (SG EOS) saturation curves are compared for liquid

water and steam in the temperature range [300− 500 K].

In this figure, the saturated vapor pressure Psat, the latent heat of vaporization Lv, the liquid

and vapor saturated specific enthalpies (resp. hl and hg) and volumes (resp. vl and vg) are

represented versus temperature T . All graphs show good agreement between experimental

and theoretical curves except in the vicinity of the critical point and for the liquid saturated

specific volume. These observations still hold for arbitrary liquid/vapor couples as shown
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FIG. 1. Experimental (lines) and SG theoretical (dots) saturated variables as functions of the tem-

perature for liquid water and steam. The agreement is excellent for all variables in the temperature

range [300 − 500 K] except for the liquid specific volume.

in Fig.2 where liquid saturated specific volume curve is shown for dodecane. Again poor

agreement appears for the liquid specific volume.

Nonlinear effects are clearly present near the critical point and the determination of phases

thermodynamics near this particular point does not fall in the scope of the present paper.

Nevertheless, the problem linked to the liquid specific volume may be fixed by building a new

equation of state that accounts for the missing last molecular effect (repulsion) in addition

to those already considered (agitation and attraction). The repulsive effect is absent in the

SG formulation. Its consideration is the subject of this article that is organized as follows.
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FIG. 2. Experimental (lines) and SG theoretical (dots) saturated specific volume of liquid dodecane.

First general thermodynamic considerations about phase changes are recalled in Section 2.

In Section 3, a new EOS named ‘Noble Abel Stiffened gas’ (NASG) is presented. In Section

4 the determination of the corresponding parameters for both liquid and vapor phases is

examined with the help of experimental saturation curves. These parameters are computed

for various liquid/vapor couples. Experimental and theoretical curves are systematically

compared for each couple. Then in Section 5 a comparison with van der Waals constants is

achieved.

II. THERMODYNAMIC CONSIDERATIONS

In thermodynamics science, knowledge of two state variables is enough to represent the

whole thermodynamic state of a pure fluid. These variables are chosen among the following

set of variables or combination of them : specific internal energy, specific entropy, specific

volume, pressure and temperature. The equation of state links three of these preceding

variables. In the literature, many EOS exist, more or less complex regarding the medium

to represent. For evaporation/condensation situations, the EOS must reproduce each fluid

behavior (liquid and vapor) as well as the two-phase mixture zone appearing in the phase

diagram (P, v) as shown in Fig.3.

In this figure a mixture zone where the liquid and vapor coexist is clearly visible : the

saturation dome. This particular zone is bounded by two curves (in liquid and vapor states

respectively) merging at the critical point (Pc, vc) and belonging to the critical isotherm

T = Tc. Another important curve is given by a relation linking the pressure and the tem-

perature : the saturated vapor pressure relation Psat(T ).
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FIG. 3. Schematized liquid/vapor phase diagram.

All the preceding curves are obtained experimentally and correspond to pressure, temper-

ature and Gibbs free energy equilibria between liquid and vapor phases. Many different

expressions are available in the literature [18]. For example, [19] proposed the following re-

lation to represent the pressure and temperature dependence at saturation of hydrocarbons,

lnPsat = A−
B

T
+ ClnT +

DP

T 2
, (1)

where Psat and T are respectively the saturated pressure and the associated temperature.

The coefficients A, B, C and D are constants obtained experimentally.

Another curve is linked to the latent heat of vaporization Lv(T ). This one represents the

energy needed to evaporate a given liquid quantity at a given temperature. The famous

‘Clausius-Clapeyron’ relation belongs to the many expressions available in the literature

[18],

Lv(T ) = T (vg(T )− vl(T ))
dPsat

dT
, (2)

where vg(T ) and vl(T ) are respectively the vapor and liquid saturated specific volumes

depending on the temperature T .

It is clear that all saturations curves are representative of the liquid/vapor couple under

consideration. The different EOS aimed to describe the pure fluid behavior are thus strongly

dependent on these saturation curves. The strategy adopted in the paper thus needs the

determination of each phase EOS and the determination of mass transfer kinetics when

evaporation or condensation occur. This last can be modelled as instantaneous [3, 7] or

finite rate [21]. The building of such EOS couples is the aim of the present work. The

EOS under investigation in this paper is a combination of the so-called ‘Noble-Abel’ and
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‘Stiffened Gas’ EOS. Its simple analytical form allows explicit mathematical calculations of

important flow relations which are at the centre of theoretical analysis (acoustic properties,

invariants, Riemann problems, ...) while retaining with high accuracy the main physical

properties of the matter (agitation, attractive and repulsive molecular effects). This EOS is

described hereafter.

III. THE ‘NOBLE-ABEL STIFFENED GAS’ (NASG) EQUATION OF STATE

The NASG caloric equation of state P = P (v, e) reads,

P = (γ − 1)
(e− q)

(v − b)
− γP∞, (3)

where P , v, e and q are respectively the pressure, the specific volume, the specific internal

energy and the heat bond of the corresponding phase. Parameters γ, P∞, q and b are constant

coefficients characteristic of the thermodynamic properties of the fluid. Among them the

coefficient b represents the covolume of the fluid. This equation of state is a combination of

the ‘Stiffened Gas’ EOS described in [22–24] and the so-called ‘Noble-Abel’ EOS [25].

The term (γ− 1)(e− q) represents thermal agitation while (v− b) represents repulsive short

distance effects linked to molecular motion in gases, liquids and solids. The term γP∞

corresponds to attractive effects leading to matter cohesion in liquid and solid states [26].

In many applications, knowledge of the temperature is needed. It is thus necessary to

determine the thermal equations of state T = T (v, e) or T = T (v, P ) that are not yet

available at this stage. In order to determine these ones, some fundamental relations are

needed : the Maxwell rules.

A. Maxwell rules

These relations are obtained by equating the second derivatives of thermodynamic po-

tentials such as the Helmholtz free energy F = e−Ts and the Gibbs free energy G = h−Ts

where h = e+Pv is the specific enthalpy. For more details about the determination of such

relations, we refer for example to [27].

Maxwell rules read,
(

∂e

∂v

)

T

= T

(

∂P

∂T

)

v

− P, (4)
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(

∂s

∂P

)

T

= −

(

∂v

∂T

)

P

. (5)

B. Determination of the different NASG EOS

In this section the determination of the thermal EOS P (v, T ) is in focus. This EOS has

to fulfill the preceding Maxwell rules. When determined, other thermodynamic functions

are deduced.

By inverting the relation (3), we get,

e(v, T ) =
P (v, T ) + γP∞

(γ − 1)
(v − b) + q, (6)

where P (v, T ) is unknown at this stage.

The following partial derivatives are deduced from the relation (6),

(

∂e

∂T

)

v

=
(v − b)

(γ − 1)

(

∂P

∂T

)

v

, (7)

(

∂e

∂v

)

T

=
(v − b)

(γ − 1)

(

∂P

∂v

)

T

+
P + γP∞

(γ − 1)
. (8)

The Maxwell rule (4) and the last relation (8) are now combined leading to,

(

∂P

∂v

)

T

=
(γ − 1)T

(v − b)

(

∂P

∂T

)

v

−
γ(P + P∞)

(v − b)
. (9)

Besides Cv =

(

∂e

∂T

)

v

where Cv is the heat capacity at constant volume is now used. This

parameter has a constant value for each phase in the NASG approximation. With the help

of relation (7), we get,
(

∂P

∂T

)

v

=
(γ − 1)Cv

(v − b)
. (10)

The preceding relation is integrated over the temperature T ,

P (v, T ) =
(γ − 1)CvT

(v − b)
+K(v), (11)

where K(v) is a function of the specific volume v.

The expression (11) is derived over v at constant temperature yielding,

(

∂P

∂v

)

T

= −
(γ − 1)CvT

(v − b)2
+

dK

dv
. (12)
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Now expressions (10) and (11) are embedded in relation (9),

(

∂P

∂v

)

T

= −
(γ − 1)CvT

(v − b)2
−

γ

(v − b)
(K(v) + P∞). (13)

The equality between relations (12) and (13) leads to the following first order differential

equation,
dK

dv
+

γ

(v − b)
(K(v) + P∞) = 0. (14)

The solution of (14) is given by,

K(v) =
C

(v − b)γ
− P∞, (15)

where C is a constant to be determined.

As a consequence the law P (v, T ) reads,

P (v, T ) =
(γ − 1)CvT

(v − b)
+

C

(v − b)γ
− P∞. (16)

The constant C is computed so that the preceding relation (16) is fulfilled at a given reference

state (P0, T0, v0),

P (v0, T0) =
(γ − 1)CvT0

(v0 − b)
+

C

(v0 − b)γ
− P∞ = P0. (17)

The corresponding expression of C thus reads,

C = (v0 − b)γ
(

P0 + P∞ −
(γ − 1)CvT0

(v0 − b)

)

. (18)

A simple analysis of this relation may lead to a negative value for the constant C. In this

case the isothermal curves are non-monotonic. Indeed for a single value of the pressure

and the temperature, more than one value of the specific volume may be obtained, such

behavior being unacceptable. Furthermore the square sound speed may become negative.

In order to avoid such unphysical behavior linked to the term
C

(v − b)γ
in the law P (v, T )

(16), another particular solution of (14) is preferred by imposing C = 0. The corresponding

solution reads,

P (v, T ) =
(γ − 1)CvT

(v − b)
− P∞. (19)

Then the reference state is not used explicitly anymore. Nevertheless as shown later the

determination of the parameters for each phase will be based on some reference states.

The expression of the law P (v, T ) being available at this stage, the other thermodynamic
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variables may be obtained from the knowledge of the two independent variables P and T .

The relation (19) is inverted and reads,

v(P, T ) =
(γ − 1)CvT

P + P∞

+ b. (20)

From the expressions (6) and (20) we get,

e(P, T ) =
P + γP∞

γ − 1
(v(P, T )− b) + q =

P + γP∞

P + P∞

CvT + q. (21)

Then the expression of the specific enthalpy is readily obtained,

h(P, T ) = e(P, T ) + Pv(P, T ) = γCvT + bP + q. (22)

The constant q is computed so that the specific internal energy is equal to e0 at a reference

state (P0,T0),

q = e0 −
P0 + γP∞

P0 + P∞

CvT0. (23)

As h0 = e0 + P0v0 = e0 + P0

(

(γ − 1)CvT0

P0 + P∞

+ b

)

we still have,

q = h0 − γCvT0 − bP0. (24)

It is important to note that the specific enthalpy h depends on the temperature T and the

pressure P . In the ‘Stiffened Gas’ approximation this one only depends on the temperature.

Another parameter under consideration in our study is the heat capacity at constant pressure

defined as CP =

(

∂h

∂T

)

P

. For the NASG EOS the expression of this parameter is deduced

from relation (22),

CP = γCv. (25)

In order to determine the specific entropy s the second Maxwell rule (5) is now considered.

Taking the derivative of expression (20) the second Maxwell rule becomes,
(

∂s

∂P

)

T

= −

(

∂v

∂T

)

P

= −
(γ − 1)Cv

P + P∞

. (26)

The integration of (26) is immediate,

s(P, T ) = −(γ − 1)Cvln(P + P∞) +K(T ), (27)

where K(T ) is a function of the temperature. The expression of the Gibbs free energy

G = h− Ts is now considered through temperature derivative at constant pressure,
(

∂G

∂T

)

P

=

(

∂h

∂T

)

P

− s− T

(

∂s

∂T

)

P

. (28)
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Moreover combining relations (22) and

(

∂G

∂T

)

P

= −s leads to,

(

∂s

∂T

)

P

=
1

T

(

∂h

∂T

)

P

=
γCv

T
. (29)

By taking the temperature derivative of (27) at constant pressure and using the preceding

relation (29), the function K(T ) reads,

K(T ) = γCvlnT + q′, (30)

where q′ is a constant. The general expression of the law s(P, T ) thus becomes,

s(P, T ) = Cvln
T γ

(P + P∞)γ−1
+ q′. (31)

Now the expression of the Gibbs free energy G is readily obtained,

G(P, T ) = h(P, T )− Ts(P, T ) = (γCv − q′)T − CvT ln
T γ

(P + P∞)γ−1
+ bP + q. (32)

Additional thermodynamic coefficients may be needed. In compressible fluid mechanics

knowledge of the speed of sound is fundamental. With the NASG formulation this one

reads,

c2 = −v2
(

∂P

∂v

)

s

=
γv2(P + P∞)

(v − b)
. (33)

Furthermore convexity of the NASG EOS is examined in Appendix.

C. Summary of the different NASG state functions

The different state functions of common use are,

e(P, v) =
P + γP∞

γ − 1
(v − b) + q, (34)

v(P, T ) =
(γ − 1)CvT

P + P∞

+ b, (35)

h(P, T ) = γCvT + bP + q, (36)

G(P, T ) = (γCv − q′)T − CvT ln
T γ

(P + P∞)γ−1
+ bP + q. (37)

The parameters that have to be determined are the followings : γ, P∞, Cv, b, q and q′. Thus

for a liquid/vapor couple twelve constants are needed.
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IV. DETERMINATION OF THE NASG PARAMETERS

A. Methodology

Determination of the various parameters is based on experimental data denoted by sub-

script exp in the paper. Considering a liquid and its vapor denoted by subscripts l and g

respectively the experimental curves under consideration are the so-called saturation curves.

The experimental points from these curves are obtained by varying the pressure or the tem-

perature of a liquid/vapor mixture at thermodynamic equilibrium (pressure, temperature

and Gibbs free energy equilibrium). Each value of the temperature leads to a unique value

of the pressure (named saturated vapor pressure) and a unique value of the Gibbs free en-

ergy. At each equilibrium state each phase has its own specific volume and specific enthalpy.

All saturated thermodynamic states are denoted in the rest of the paper by subscript sat.

Then the available experimental saturation curves in analytical or tabulated forms are :

Psat,exp(T ), hl,exp(T ), hg,exp(T ), vl,exp(T ), vg,exp(T ). The latent heat of vaporization is given

by the formula,

Lv,exp(T ) = hg,exp(T )− hl,exp(T ). (38)

The corresponding theoretical expressions of the saturated vapor pressure and the latent

heat of vaporization with the NASG formulation are now examined. In the rest of the

paper, the liquid and vapor phases are represented by subscripts l and g respectively.

From the relation (37) the Gibbs free energy for both phases reads,

Gl(P, T ) = (γlCv,l − q′l)T − Cv,lT ln
T γl

(P + P∞,l)γl−1
+ blP + ql, (39)

Gg(P, T ) = (γgCv,g − q′g)T − Cv,gT ln
T γg

(P + P∞,g)γg−1
+ bgP + qg. (40)

Equality of the two previous relations (39) and (40) leads to the following expression linking

the pressure and the temperature,

ln(P + P∞,g) = A+
(B + EP )

T
+ ClnT +Dln(P + P∞,l), (41)

where the coefficients are given by,

A =
CP,l − CP,g + q′g − q′l

CP,g − Cv,g

, B =
ql − qg

CP,g − Cv,g

,
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C =
CP,g − CP,l

CP,g − Cv,g

, D =
CP,l − Cv,l

CP,g − Cv,g

,

E =
bl − bg

CP,g − Cv,g

.

Relation (41) provides a unique value of the pressure for a given temperature. Actually

this relation implicitly represents the theoretical saturated vapor pressure as a function of

temperature : Psat(T ). It is worth to mention that this theoretical expression is quite close

to experimental curve fittings such as (1).

The theoretical expression of the latent heat of vaporization reads,

Lv(T ) = hg(T )− hl(T ), (42)

where the saturated specific enthalpies of both phases read,

hg(T ) = γgCv,gT + bgPsat(T ) + qg, (43)

hl(T ) = γlCv,lT + blPsat(T ) + ql. (44)

The saturated specific volumes of both phases also read,

vg(T ) =
(γg − 1)Cv,gT

Psat(T ) + P∞,g

+ bg, (45)

vl(T ) =
(γl − 1)Cv,lT

Psat(T ) + P∞,l

+ bl. (46)

The coefficients γ, Cv, P∞, q, b and q′ must be determined for each phase in order that the

preceding theoretical relations match as much as possible the experimental saturation data.

As described in [17] the vapor phase may obey the ideal gas EOS. Indeed the theoretical

curves obtained with the ideal gas EOS are close to the experimental ones. This remark

leads to the following trivial relations : bg = 0 m3/kg and P∞,g = 0 Pa. For the vapor phase

the coefficients that must be determined are consequently : γg, Cv,g, qg and q′g.

In order to determine the preceding coefficients, a temperature range is given and the number

of experimental points inside this range is denoted in the following by N .

First the relation under consideration is,

hg(T ) = γgCv,gT + qg = CP,gT + qg. (47)
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1. Determination of CP,g and qg for the vapor phase

At this stage, the experimental points (Texp,i, i = 1..N) and (hg,exp,i, i = 1..N) are consid-

ered. The least squares method is used to determine the coefficients CP,g and qg in relation

(47). The function to minimize reads,

f(CP,g, qg) =
N
∑

i=1

(hg,exp,i − CP,gTexp,i − qg)
2. (48)

The system to be solved is thus the following,






















N
∑

i=1

(hg,exp,i − CP,gTexp,i − qg)Texp,i = 0

N
∑

i=1

(hg,exp,i − CP,gTexp,i − qg) = 0

. (49)

The solutions of (49) correspond to the coefficients CP,g and qg,

CP,g =

N
∑

i=1

Texp,i(hg,exp,i − hg,exp)

N
∑

i=1

Texp,i(Texp,i − T exp)

, (50)

qg = hg,exp − CP,gT exp, (51)

where hg,exp =
1

N

N
∑

i=1

hg,exp,i and T exp =
1

N

N
∑

i=1

Texp,i are respectively the vapor specific en-

thalpy and the temperature averages inside the considered temperature range.

The average coefficients CP,g and qg are now determined and are only valid inside the corre-

sponding temperature range.

Now the relation under consideration is,

vg(T ) =
(γg − 1)Cv,gT

Psat(T )
=

(CP,g − Cv,g)T

Psat(T )
. (52)

2. Determination of CP,g −Cv,g for the vapor phase

The experimental points (Texp,i, i = 1..N) and (Pexp,i, i = 1..N) corresponding to the

same preceding temperature range are considered. The least squares method is again used

to determine the only coefficient CP,g − Cv,g appearing in relation (52). The function to

minimize reads,

f(CP,g − Cv,g) =
N
∑

i=1

(

vg,exp,i −
(CP,g − Cv,g)Texp,i

Pexp,i

)2

. (53)
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The system to solve reduces to the single following relation,

N
∑

i=1

(

vg,exp,i −
(CP,g − Cv,g)Texp,i

Pexp,i

)

Texp,i

Pexp,i

= 0. (54)

The solution of (54) is given by,

CP,g − Cv,g =

N
∑

i=1

vg,exp,i
Texp,i

Pexp,i

N
∑

i=1

(

Texp,i

Pexp,i

)2 . (55)

Combining relations (50) and (55) allows the determination of the coefficients Cv,g and

γg =
CP,g

Cv,g

. The parameter q′g will be determined further when considering the theoretical

vapor pressure relation.

Regarding the liquid phase the coefficients that must be determined are : γl, Cv,l, P∞,l, ql,

bl and q′l. The theoretical relations (44) and (46) of the liquid phase read,

hl(T ) = CP,lT + blPsat(T ) + ql, (56)

vl(T ) =
(CP,l − Cv,l)T

Psat(T ) + P∞,l

+ bl. (57)

3. Determination of CP,l and ql for the liquid phase

The experimental points (Texp,i, i = 1..N), (Pexp,i, i = 1..N) and (hl,exp,i, i = 1..N) are now

considered. When applying the least squares method in relation (56) aimed to determine

the coefficients CP,l and ql, the function to minimize reads,

f(CP,l, ql) =
N
∑

i=1

(hl,exp,i − CP,lTexp,i − blPexp,i − ql)
2. (58)

The resulting system to solve reads,






















N
∑

i=1

(hl,exp,i − CP,lTexp,i − blPexp,i − ql)Texp,i = 0

N
∑

i=1

(hl,exp,i − CP,lTexp,i − blPexp,i − ql) = 0

. (59)

The solution of system (59) is obtained as,

CP,l =

N
∑

i=1

Texp,i(hl,exp,i − hl,exp)− bl
N
∑

i=1

Texp,i(Pexp,i − P exp)

N
∑

i=1

Texp,i(Texp,i − T exp)

, (60)
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ql = hl,exp − CP,lT exp − blP exp, (61)

where hl,exp =
1

N

N
∑

i=1

hl,exp,i, T exp =
1

N

N
∑

i=1

Texp,i and P exp =
1

N

N
∑

i=1

Pexp,i are respectively the

liquid specific enthalpy, the temperature and the pressure averages inside the corresponding

range.

In relations (60) and (61) a dependence of the parameters CP,l and ql on the coefficient bl

appears. Once bl is computed the coefficients CP,l and ql are deduced.

4. Determination of CP,l − Cv,l and bl for the liquid phase

The experimental points (Texp,i, i = 1..N), (Pexp,i, i = 1..N) and (vl,exp,i, i = 1..N) are

considered. The coefficients CP,l − Cv,l and bl are determined applying the least squares

method in relation (57). Here the function to minimize is given by,

f(CP,l − Cv,l, bl) =
N
∑

i=1

(

vl,exp,i −
(CP,l − Cv,l)Texp,i

Pexp,i + P∞,l

− bl

)2

. (62)

The system to solve is now given by,























N
∑

i=1

(

vl,exp,i −
(CP,l − Cv,l)Texp,i

Pexp,i + P∞,l

− bl

)

Texp,i

Pexp,i + P∞,l

= 0

N
∑

i=1

(

vl,exp,i −
(CP,l − Cv,l)Texp,i

Pexp,i + P∞,l

− bl

)

= 0

. (63)

Solutions of system (63) reads,

CP,l − Cv,l =

N
∑

i=1

Texp,i

Pexp,i + P∞,l

(vl,exp,i − vl,exp)

N
∑

i=1

Texp,i

Pexp,i + P∞,l





Texp,i

Pexp,i + P∞,l

−

(

T

P

)

exp





, (64)

bl = vl,exp − (CP,l − Cv,l)

(

T

P

)

exp

, (65)

where vl,exp =
1

N

N
∑

i=1

vl,exp,i is the liquid specific volume average inside the temperature range

and

(

T

P

)

exp

=
1

N

N
∑

i=1

Texp,i

Pexp,i + P∞,l

.

A dependence of the parameters CP,l − Cv,l and bl on the coefficient P∞,l appears. Once

this coefficient is known the parameters CP,l − Cv,l and bl are fully determined thanks to
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relations (64) and (65) and so are the parameters CP,l and ql with the help of relations (60)

and (61). Hence the four previous parameters only depend on the variable P∞,l that has to

be determined.

5. Determination of P∞,l for the liquid phase

Knowledge of a liquid reference state is now needed : c0, P0 and ρ0. The theoretical

relation linking these preceding values corresponds to relation (33) and reads,

c20 =
CP,l(P0 + P∞,l)

Cv,lρ0(1− blρ0)
, (66)

where CP,l, Cv,l, P∞,l and bl are still unknowns. As previously mentioned all parameters in

relation (66) only depend on the variable P∞,l.

The relation (66) may be written under the following form,

P0 + P∞,l −

(

1−
(CP,l − Cv,l)

CP,l

)

ρ0c
2
0(1− blρ0) = 0. (67)

As the parameters CP,l − Cv,l, CP,l and bl only depend on P∞,l the relation (67) consists in

a function depending on P∞,l only,

f(P∞,l) = P0 + P∞,l −

(

1−
(CP,l − Cv,l)

CP,l

)

ρ0c
2
0(1− blρ0) = 0. (68)

The solution of (68) is found by an arbitrary numerical method (Newton-Raphson method

for example).

6. Determination of the entropy constants q′l and q′g

The parameters that are still unknown at this stage are the entropy constants : q′l and

q′g. They are determined with the help of the experimental vapor pressure as a function of

temperature. The theoretical relation is given by relation (41),

lnP = A +
(B + EP )

T
+ ClnT +Dln(P + P∞,l), (69)

where the coefficients B, C, D and E are fully determined by the previous methodology.

The only unknown corresponds to the coefficient A =
CP,l − CP,g + q′g − q′l

CP,g − Cv,g

where q′l and q′g

are present. As these last coefficients are constant reference energies, the adopted convention
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is the following : q′l = 0 J/(kg.K).

Here the experimental points (Texp,i, i = 1..N) and (Pexp,i, i = 1..N) are considered. The

least squares method is once again used to determine the coefficient A in relation (69).

The function to minimize reads,

f(A) =
N
∑

i=1

(

ln(Pexp,i)− A−
(B + EPexp,i)

Texp,i

− Cln(Texp,i)−Dln(Pexp,i + P∞,l)

)2

. (70)

The equation to be solved is given by,

N
∑

i=1

(

ln(Pexp,i)−A−
(B + EPexp,i)

Texp,i

− Cln(Texp,i)−Dln(Pexp,i + P∞,l)

)

= 0. (71)

Solution of (71) reads,

A =
1

N

N
∑

i=1

(

ln(Pexp,i)−
(B + EPexp,i)

Texp,i

− Cln(Texp,i)−Dln(Pexp,i + P∞,l)

)

. (72)

The parameter q′g is thus readily obtained.

The preceding methodology is now directly applied to dodecane parameters determination.
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B. NASG coefficients for liquid/vapor dodecane

The experimental data for dodecane are given in [20]. The reference state for the liquid

phase is : ρ0 = 589.73 kg/m3, P0 = 1.128 bar, c0 = 620.4 m/s.

For T ∈ [300 − 500 K], the corresponding values of the NASG parameters of both phases

are given in the Table I.

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 2608 2063

Cv(J/kg/K) 2393 2016

γ 1.09 1.02

P∞(Pa) 1159 × 105 0

b(m3/kg) 7.51 × 10−4 0

q(J/kg) −794696 −268561

q′(J/(kg.K)) 0 471

TABLE I. NASG coefficients for dodecane in the temperature range [300 − 500 K].

For comparison the SG parameters obtained with the method given in [17] are given in the

Table II for the same temperature range.

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 2608 2063

Cv(J/kg/K) 1974 2016

γ 1.32 1.02

P∞(Pa) 1717 × 105 0

q(J/kg) −794826 −268561

q′(J/(kg.K)) 0 −7569

TABLE II. SG coefficients for dodecane in the temperature range [300 − 500 K].

The experimental and theoretical saturation curves are compared in Fig.4. The theoretical

saturation curves are represented for both NASG and SG EOS with the coefficients of Tables

I and II.
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FIG. 4. Comparison between experimental (symbols) and theoretical (thin lines : SG EOS ; thick

lines : NASG EOS) saturation curves for dodecane with coefficients determined in the temperature

range [300 − 500 K].

In this figure, it appears that experimental and NASG theoretical curves are merged in the

temperature range [300 − 500 K]. The SG and NASG theoretical curves are quite similar

for all variables except the saturated liquid specific volume now perfectly predicted with the

NASG EOS.

Outside the temperature range, deviations between experimental and NASG theoretical

results gradually appear. If better accuracy is needed for higher temperatures the associated

temperature range should be adjusted. An example is given hereafter.

For T ∈ [400− 600 K], the coefficients of the NASG parameters are re-computed with the

method described in Section 4 and are given in the Table III.

The SG coefficients in the same temperature range are given in the Table IV for comparison.
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Coefficients Liquid phase Vapor phase

CP (J/kg/K) 3055 2322

Cv(J/kg/K) 2532 2274

γ 1.21 1.02

P∞(Pa) 1681 × 105 0

b(m3/kg) 1.8× 10−4 0

q(J/kg) −996054 −384592

q′(J/(kg.K)) 0 −4301

TABLE III. NASG coefficients for dodecane in the temperature range [400− 600 K].

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 3056 2322

Cv(J/kg/K) 2430 2274

γ 1.26 1.02

P∞(Pa) 1804 × 105 0

q(J/kg) −996336 −384592

q′(J/(kg.K)) 0 −6280

TABLE IV. SG coefficients for dodecane in the temperature range [400 − 600 K].

Experimental and theoretical saturation curves are compared in Fig.5. The theoretical

saturation curves are represented for both NASG and SG EOS with coefficients of Tables

III and IV.

It appears that experimental and NASG theoretical curves are in very good agreement in

the temperature range [400 − 600 K]. For this particular temperature range the SG and

NASG theoretical curves are almost similar for all variables including the saturated liquid

specific volume. Nevertheless this is not the case for arbitrary temperature ranges as shown

before.

The method described in this paper may be used to arbitrary liquid and vapor phases. In



21

❇❈❇❇❉

❇❈❇❉

❇❈❉

❉

❉❇

❉❇❇

❉❇❇❇

❉❇❇❇❇

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❖P ▲◗●❘❙P◆

❚❯❱
❲❳

❨❩❲❳

❇

❋❇❇❇❇

❉❇❇❇❇❇

❉❋❇❇❇❇

❊❇❇❇❇❇

❊❋❇❇❇❇

●❇❇❇❇❇

●❋❇❇❇❇

❍❇❇❇❇❇

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❬❖ ▲❭❘❙P◆

❚❯❱
❲❳

❨❩❲❳

❇

❊

❍

■

❪

❉❇

❉❊

❉❍

❉■

❉❪

❊❇

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❫❴❵❛ ▲❜❵❝◆

❚❯❱
❲❳

❨❩❲❳

❇❈❇❇❉

❇❈❇❇❉❋

❇❈❇❇❊

❇❈❇❇❊❋

❇❈❇❇●

❇❈❇❇●❋

❇❈❇❇❍

❇❈❇❇❍❋

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❖❞ ▲◗●❘❙P◆

❚❯❱
❲❳

❨❩❲❳

❡❊❇❇❇❇❇

❇

❊❇❇❇❇❇

❍❇❇❇❇❇

■❇❇❇❇❇

❪❇❇❇❇❇

❉❢❣❇❇■

❉❈❊❢❣❇❇■

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❤❞ ▲❭❘❙P◆

❚❯❱
❲❳

❨❩❲❳
●❇❇❇❇❇

❍❇❇❇❇❇

❋❇❇❇❇❇

■❇❇❇❇❇

❏❇❇❇❇❇

❪❇❇❇❇❇

✐❇❇❇❇❇

❉❢❣❇❇■

❉❈❉❢❣❇❇■

❉❈❊❢❣❇❇■

❊❋❇ ●❇❇ ●❋❇ ❍❇❇ ❍❋❇ ❋❇❇ ❋❋❇ ■❇❇ ■❋❇ ❏❇❇

❑ ▲▼◆

❤P ▲❭❘❙P◆

❚❯❱
❲❳

❨❩❲❳

FIG. 5. Comparison between experimental (symbols) and theoretical (thin lines : SG EOS ; thick

lines : NASG EOS) saturation curves for dodecane with coefficients determined in the temperature

range [400 − 600 K].

the following this method is applied to two extra liquid/vapor couples : liquid water/steam

and liquid/vapor oxygen.
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C. NASG coefficients for liquid water and steam

The associated experimental curves may be found in [28] for example. The reference state

of the liquid phase is given by : ρ0 = 957.74 kg/m3, P0 = 1.0453 bar, c0 = 1542 m/s.

For T ∈ [300− 500 K], the corresponding values of the NASG parameters are given in the

Table V.

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 4285 1401

Cv(J/kg/K) 3610 955

γ 1.19 1.47

P∞(Pa) 7028 × 105 0

b(m3/kg) 6.61 × 10−4 0

q(J/kg) −1177788 2077616

q′(J/(kg.K)) 0 14317

TABLE V. NASG coefficients for liquid water and steam in the temperature range [300− 500 K].

The experimental and NASG corresponding curves are shown in Fig.6.

Very good agreement appears between experimental and NASG theoretical curves inside the

temperature range [300− 500 K].

For T ∈ [350−550 K], the computed values of the NASG parameters are given in the Table

VI. Experimental and NASG corresponding curves are shown in Fig.7.

In this figure, the correct behavior of the NASG theoretical curves compared to the experi-

mental ones is still noticeable in the temperature range [350− 550 K].
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FIG. 6. Comparison between experimental (symbols) and NASG theoretical (lines) saturation

curves for liquid water and steam with coefficients determined in the temperature range [300 −

500 K].

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 4444 903

Cv(J/kg/K) 3202 462

γ 1.39 1.95

P∞(Pa) 8899 × 105 0

b(m3/kg) 4.78 × 10−4 0

q(J/kg) −1244191 2287484

q′(J/(kg.K)) 0 6417

TABLE VI. NASG coefficients for liquid water and steam in the temperature range [350− 550 K].
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FIG. 7. Comparison between experimental (symbols) and NASG theoretical (lines) saturation

curves for liquid water and steam with coefficients determined in the temperature range [350 −

550 K].
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D. NASG coefficients for liquid and vapor oxygen

The experimental data for oxygen are available at the NIST website [29]. The liquid

reference state data are : ρ0 = 1142.1 kg/m3, P0 = 0.9935 bar, c0 = 905.9 m/s.

For T ∈ [60− 100 K], the corresponding NASG parameters are given in the Table VII.

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 1683 791

Cv(J/kg/K) 1016 553

γ 1.66 1.43

P∞(Pa) 1964 × 105 0

b(m3/kg) 5.71 × 10−4 0

q(J/kg) −284969 7632

q′(J/(kg.K)) 0 −3601

TABLE VII. NASG coefficients for oxygen in the temperature range [60 − 100 K].

The associated curves are represented in Fig.8 showing excellent agreement in the corre-

sponding temperature range.

For another temperature range [80− 120 K], the values of the NASG parameters are given

in the Table VIII.

Coefficients Liquid phase Vapor phase

CP (J/kg/K) 1741 552

Cv(J/kg/K) 791 299

γ 2.2 1.85

P∞(Pa) 2036 × 105 0

b(m3/kg) 4.57 × 10−4 0

q(J/kg) −290222 29274

q′(J/(kg.K)) 0 −7527

TABLE VIII. NASG coefficients for oxygen determined in the temperature range [80− 120 K].

The associated curves are represented in Fig.9.
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FIG. 8. Comparison between experimental (symbols) and NASG theoretical (lines) saturation

curves for oxygen with coefficients determined in the temperature range [60− 100 K].

For any temperature range considered above the experimental and NASG theoretical curves

are in very good agreement in the related temperature range.

In the following section comparison with van der Waals constants is addressed.
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FIG. 9. Comparison between experimental (symbols) and NASG theoretical (lines) saturation

curves for oxygen with coefficients determined in the temperature range [80− 120 K].
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V. COMPARISON WITH VAN DER WAALS CONSTANTS

It is interesting to compare the constants of the NASG EOS with those of the van der

Waals one. Indeed, in the NASG formulation attractive effects are constant and summarized

in the term γP∞ while in van der Waals EOS they are varying with the specific volume.

From this evidence an important difference appears : NASG EOS is convex while van der

Waals EOS is not. However physically speaking the various constants should be closed each

others. To do this, the van der Waals EOS has to be expressed in the same system of units.

In the literature it is found in molar units,

P (V, T ) =
nR̂T

V − nβ
−

n2α

V 2
, (73)

where n represents the number of moles and R̂ = 8.314 J/(mol.K) is the molar gas constant.

The constants α and β are expressed in the same system i.e. (J.m3)/mol2 and m3/mol

respectively.

In mass units relation (73) becomes,

P (V, T ) =
nM̂

R̂

M̂
T

V

(

1−
nM̂β

V M̂

) −
(nM̂)2α

V 2M̂2
, (74)

where M̂ represents the molar mass.

In terms of specific volume relation (74) reads,

P (v, T ) =
RT

(

v −
β

M̂

) −
α

v2M̂2
, (75)

where R =
R̂

M̂
is the gas constant in mass unit.

Equation (75) has to be compared with the NASG EOS expressed as,

P (v, T ) =
(γ − 1)CvT

v − b
− P∞. (76)

Therefore the constant b has to be compared to
β

M̂
and P∞ has to be compared to

α

v2M̂2
=

ρ2α

M̂2
. For the last coefficients comparison is achieved in the reference state 0 used to deter-

mine the NASG EOS parameters. Two fluids are considered in the following for comparison
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: water and oxygen.

For water, the van der Waals parameters are : α = 0.553 (J.m3)/mol2, β = 3.05 ×

10−5 m3/mol and M̂ = 18 × 10−3 kg/mol. The density of the reference state 0 is :

ρ0 = 957.74 kg/m3.

The coefficients to compare are shown in the Table IX.

van der Waals coefficients NASG coefficients

ρ20α

M̂2
= 15655 × 105Pa P∞ = [7028, 8899] × 105 Pa

β

M̂
= 16.9× 10−4 m3/kg b = [4.78, 6.61] × 10−4 m3/kg

TABLE IX. Comparison between van der Waals and NASG coefficients for water.

For oxygen, the van der Waals parameters are given by : α = 0.138 (J.m3)/mol2, β =

3.186 × 10−5 m3/mol and M̂ = 32 × 10−3 kg/mol. The density of the reference state 0 is

ρ0 = 1142.1 kg/m3.

The coefficients to compare are shown in the Table X for oxygen.

van der Waals coefficients NASG coefficients

ρ20α

M̂2
= 1758 × 105Pa P∞ = [1964, 2036] × 105 Pa

β

M̂
= 9.96× 10−4 m3/kg b = [4.57, 5.71] × 10−4 m3/kg

TABLE X. Comparison between van der Waals and NASG coefficients for oxygen.

It is remarkable to note that the order of magnitude of
ρ2α

M̂2
and P∞ are the same for both

oxygen and water. The same remark holds for the covolumes
β

M̂
and b. This is a remarkable

fact as the van der Waals parameters are determined from molecular physics while NASG

parameters are just consequences of the saturation curves. Also, there is no reason that van

der Waals parameters and NASG ones be strictly equal as the attractive potential
ρ2α

M̂2
in

the van der Waals EOS varies with density, while it is constant in NASG EOS.

VI. CONCLUSION

A novel equation of state (NASG EOS) has been built to deal with liquid and vapor

phases. A method to determine EOS parameters is also given. The coefficients of both
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phases are strongly linked and are obtained to fit the experimental saturation curves of

the liquid/vapor couple. In particular the NASG formulation allows to cure the liquid

specific volume inaccuracy present in the SG formulation [17]. The method described in

the paper to compute liquid and vapor NASG EOS parameters has been applied to three

different liquid/vapor couples : dodecane, water and oxygen. The corresponding theoretical

and experimental curves are in good agreement for various temperature ranges and for all

liquid/vapor couples considered herein.

With the NASG EOS there is no difficulty to derive exact and approximate Riemann solvers

for various flow models [24, 30, 31]. Boundary conditions can be treated accurately as

characteristic relations and Riemann invariants are easy to determine. Various relaxation

solvers such as those given in [32] can also be derived unambiguously.

APPENDIX: CONVEXITY OF THE NASG EOS

Convexity of the NASG EOS is examined in this part. For this the state function e(v, s)

is needed.

First relation (35) is used to express T as a function of pressure P and specific volume v,

T (P, v) =
(P + P∞)(v − b)

(γ − 1)Cv

. (77)

Combining relations (77) and (31) leads to a relation linking pressure P , specific volume v

and specific entropy s,

P (v, s) =

(

(γ − 1)Cv

v − b

)γ

exp

(

s− q′

Cv

)

− P∞. (78)

Then the state function e(v, s) is obtained embedding relation (78) in (34),

e(v, s) = Cv

(

(γ − 1)Cv

v − b

)γ−1

exp

(

s− q′

Cv

)

+ P∞(v − b) + q. (79)

The necessary conditions to have a convex EOS are the following,











































∂2e

∂s2

)

v

≥ 0

∂2e

∂v2

)

s

≥ 0

∂2e

∂s2

)

v

∂2e

∂v2

)

s

−

(

∂2e

∂v∂s

)2

≥ 0

. (80)
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For the NASG EOS, the second derivatives of specific internal energy given by relation (79)

read,

∂2e

∂s2

)

v

=
1

Cv

(

(γ − 1)Cv

v − b

)γ−1

exp

(

s− q′

Cv

)

, (81)

∂2e

∂v2

)

s

=
γ

(γ − 1)Cv

(

(γ − 1)Cv

v − b

)γ+1

exp

(

s− q′

Cv

)

, (82)

∂2e

∂v∂s
= −

1

Cv

(

(γ − 1)Cv

v − b

)γ

exp

(

s− q′

Cv

)

. (83)

From relations (81) and (82) it follows that
∂2e

∂s2

)

v

> 0 and
∂2e

∂v2

)

s

> 0.

Furthermore the last condition in (80) is fulfilled as,

∂2e

∂s2

)

v

∂2e

∂v2

)

s

−

(

∂2e

∂v∂s

)2

=
1

(γ − 1)C2
v

(

(γ − 1)Cv

v − b

)2γ

exp

(

2(s− q′)

Cv

)

> 0. (84)
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