
1

The Node Degree Distribution in Power Grid and
Its Topology Robustness under Random and

Selective Node Removals
Zhifang Wang, Member, IEEE, Anna Scaglione, Member, IEEE, and Robert J. Thomas, Fellow, IEEE

Abstract—In this paper we numerically study the topology
robustness of power grids under random and selective node
breakdowns, and analytically estimate the critical node-removal
thresholds to disintegrate a system, based on the available US
power grid data. We also present an analysis on the node degree
distribution in power grids because it closely relates with the
topology robustness. It is found that the node degree in a power
grid can be well fitted by a mixture distribution coming from the
sum of a truncated Geometric random variable and an irregular
Discrete random variable. With the findings we obtain better
estimates of the threshold under selective node breakdowns which
predict the numerical thresholds more correctly.

Index Terms—Power grid, Topology Robustness, Node Degree
Distribution

I. INTRODUCTION

The electrical power grid belongs to the most critical
infrastructures. Its reliable, robust, and efficient operation sus-
tains our national economics, politics, and people’s everyday
life. A Smart Grid takes advantage of intelligent two-way
digital communication to enable new control and management
applications that will increase the efficiency and flexibility
of the power distribution network. Investigating the intrinsic
robustness of the power grid has the immediate benefit to
understand the system characteristics. It also helps greatly the
search for “smart” designs of the communication architecture
that can enable control schemes able to enhance the robustness.

During the past decade more research efforts have been seen
to study the robustness of power grids under random equip-
ment breakdowns or intentional attacks. Dobson, Carresra et
al. (2001) proposed an electrical power transmission model to
study the dynamics of power grid blackouts in [4]. Carresras,
Lynch et al. (2002) used the power transmission model from
[4] to identify the critical points and transitions for cascading
blackouts, based on a tree-topology network and the IEEE 118-
bus network [5]. Ioannis and Konstantinos (2006) proposed
a power transmission model which describes load demands
and network improvements evolving on a slow timescale,
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and analyzed power grid blackouts in simple networks with
ring or tree topology [7]. In [11] Wang and Rong (2009)
applied a special load model to the western US power grid
and studied its vulnerability to cascading failures. The model
assumed that load is implemented on each bus and initially
set to a power function of the product of its own node degree
and the summation of the node degrees of all its immediate
neighboring buses. If one node is attacked, its load would be
proportionally redistributed to all its neighbors. In [10] and
[9], Rosas-Casals, Valverde, Sole et al. (2007) studied the
topology of European power grids and analyzed its robustness
under random node breakdowns and intentional attacks. The
adopted approaches include the numerical analysis of the
relation between node removal and system global connectivity,
and the analytical evaluation of the critical threshold of node
removals to fragment a network.

[10] and [9] highlighted that the topology robustness of a
network is closely related with its node degree distribution. In
[12] we examined the node degree distribution of power grid
based on available real-world US power grid data and found
that it can be very well fitted by a mixture distribution from the
sum of a truncated Geometric random variable and an irregular
Discrete random variable. In this paper we applied these
findings to analyze the topology robustness of the power grid
under random and selective node removals, and to estimate the
critical threshold of node removals to disintegrate a network.
It was shown that the latter is able to predict the numerical
results very well.

The rest of the paper is organized as follows. Section II
discusses the effects of random and selective node breakdowns
in a network. Section III presents our study of the node degree
distribution in power grids. Section IV studies the topology
robustness of power grids and compares the empirical results
to the theoretical estimate. Section V concludes the paper.

II. RANDOM AND SELECTIVE NODE BREAKDOWNS IN A
NETWORK

Assume the original network has a node degree distribution
P (k). After randomly breaking down a fraction f of the nodes,
its node degree distribution is changed to:

P̃ (k) =
∞∑

i=k

P (i)
(
i
k

)
f i−k(1− f)k (1)

When f is below a certain threshold, f ≤ fc, there still
exists a large connected cluster spanning the entire network



2

while its size is proportional to that of the entire network.
However, if the node removal fraction exceeds that threshold,
the network will disintegrate into small and disconnected parts.
This phenomenon is called a Percolation Transition [1]-[3].
Cohen, Erez, ben Avraham, and Havlin, in their study of
resilience of the Internet to random breakdowns [6], found
that for networks whose nodes are connected randomly to
each other so that the probability for any two nodes to be
connected depends solely on their respective connectivity, its
critical breakdown threshold can be found by the following
criterion: if loops of connected nodes may be neglected, the
percolation transition takes place when a node (i), connected
to a node (j) in the spanning cluster, is also connected to
at least one other node; otherwise the spanning cluster is
fragmented.

〈ki|i ↔ j〉 =
∑

ki

kiP (ki|i ↔ j) = 2 (2)

with ki being the node degree of node (i).
The above criterion can be translated into a more obvious

statement: when one randomly picks a link in the spanning
cluster, the average node degree of its end nodes equals to 2,
which can be written as

〈ki|i ↔ j〉 = k =
〈k2〉
〈k〉 = 2 (3)

where 〈k2〉 and 〈k〉 are the second and the first moment
of node degree respectively. This finally gives the critical
breakdown threshold under random node removals as [6]:

f rand
c = 1− 1

k0 − 1
(4)

where k0 is the average node degree of any picked link from
the original intact network.

Sole, Rosas-Casals, Corominas-Murtra, and Valverde (2007)
extended the study of Cohen and Erez et al. and studied
the vulnerability of European power grids under intentional
attacks [9]. That is, the node breakdowns are no longer random
but selective with the node with largest connectivity being
eliminated first. Therefore even a small fraction of node break-
downs may cause dramatic damages to the network structure.
They also concluded that European power grids are sparsely
connected with global average nodal degree of 〈k〉 = 2.8
and the link distribution (i.e. nodal degree distribution) is
exponential: the probability of having a node linked to k other
nodes is p(k) = exp(− k

γ )/γ, with the constant γ = 〈k〉.
Given this special node degree distribution, they translated
the selective node breakdowns with fraction of f sel into an
equivalent random failure with a much larger fraction f rand

eqv ,
which equals to the fraction of the lost links connected with
the breakdown nodes.

f rand
eqv =

∫ K

K̃

kP (k)
〈k〉 dk =

(
1− ln f sel) f sel (5)

where K is the largest node degree in the original network and
K̃ is the new largest node degree after node removals which
satisfies

∫ K

K̃
P (k)dk = f sel, therefore

K̃ = −γ ln f sel (6)
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Fig. 1. Empirical PDF of Nodal Degrees in Real-world Power Grids (NYISO)

By substituting Equation (5) into (4), one gets the criterion
for the critical threshold for selective node breakdowns as:

(
1− ln f sel

c

)
f sel

c = 1− 1
k0 − 1

(7)

III. NODE DEGREE DISTRIBUTION IN POWER GRIDS

We examined the empirical distribution of nodal degrees
k = diag(L) in the available real-world power grids. Fig.
1 shows the histogram probability mass function (PMF) of
node degrees in the NYISO system1. Except for the beginning
part for smaller node degrees, most part of the PMF is
well fitted with a straight line in the semi-logarithmic plot
(i.e., log (P (k)) vs. k), which suggests a good fit with an
exponential distribution, such as the Geometric distribution.
However, for the range k ≤ 3 in the NYISO case, the PMF
function clearly deviates from that of Geometric distribution.
As a matter of fact, this phenomenon is observable in many
available data set that describe the topology of real-world
power grids, both for the US [8][12] and for the European
power grids data in [9] and [10]. As we will show in
Section IV, this deviation from a pure Geometric distribution
substantially affects the topology vulnerability of a network
under intentional attacks.

In our previous work [12], we analyzed the probability
generation function (PGF) to search for an accurate model
for the node degree distribution in power grids. The PGF of a
random variable X is defined as GX(z) =

∑
k Pr(x=k)z

k. Our
working hypothesis is that the degree distribution was most
likely well fitted by a mixture model, one providing most of
the mass for the tail of the distribution and one responsible
for the lower degrees probability mass.

The examination of PGFs indicated that the node degree
distribution in power grids can be very well approximated by
a sum of two independent random variables, that is,

K = G +D, (8)

where G is a truncated Geometric with the threshold of kmax,

Pr(G=k) =
p(1− p)k

1− (1− p)kmax+1
, k = 0, 1, 2, · · · , kmax (9)

1NYISO stands for New York Independent System Operator, which is the
operator of the New York electric power grid. The power grid topology we
used to represent the NYISO transmission network contains 2935 nodes and
6568 links, with the average node degree 〈k〉 = 4.47 .
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Fig. 2. The Contour Plot of E(zX) of Node Degrees: (a) the NYISO system;
(b) the WSCC system; the zeros are marked by red ’+’s.

and D is an irregular Discrete random variable with probability
masses {p1, p2, · · · , pkt},

Pr(D=k) = pk, k = 1, 2, · · · , kt (10)

Therefore the PMF of K is

Pr(K=k) = Pr(G=k) ⊗ Pr(D=k) (11)

And the PGF of K can be written as

GK(z) =
p

(
1− ((1− p)z)kmax+1

) ∑kt

i=1 piz
i

(1− (1− p)kmax+1) (1− (1− p)z)
(12)

The equation (12) indicates that the PGF GK(z) has kmax

zeros evenly distributed around a circle of radius of 1
1−p which

are introduced by the truncation of the Geometric G (because
the zero at 1

1−p has been neutralized by the denominator
(1− (1− p)z) and has kt zeros introduced by the irregular
Discrete D with {p1, p2, · · · , pkt}.

Fig. 2 shows the contour plots of PGF of node degrees in
the NYISO system and the WSCC2 system. Three interesting
observations are supported by Fig. 2: (a) Clearly each plot
contains evenly distributed zeros around a circle, which match

what predicted by the term (1−((1−p)z)kmax+1)
1−(1−p)z in Equation

(12), indicating a truncated Geometric component; (b) Besides
the zeros around the circle, the contour plots also have a
small number of other zeros (off the circle), which come from
the factor

∑kt

i=1 piz
i associated with the irregular Discrete

component; (c) The contour plots for the two systems have
zeros with similar pattern but different positions. This implies
that their node degrees have similar distribution functions but
with different parameters.

From the contour plots one can easily locate the zeros in
PGF, and further determine the parameters of corresponding
distribution functions. The estimated parameters for the nodes
in the NYISO and the WSCC systems are listed in the Table
I. Fig. 3 compares the probability mass function (PMF) with
estimate parameters and the empirical PMF for both systems
and shows that the former matches the latter with quite a
good approximation. The results validated our assumption of
node degree distribution in power grids, i.e., that it can be
expressed as a sum of a truncated Geometric random variable
and an irregular Discrete random variable. And the results

2The WSCC system represents the electrical power grid of the western
United States. The topology contains 4941 nodes and 6954 links, with the
average node degree 〈k〉 = 2.67.

TABLE I
ESTIMATE PARAMETERS OF THE TRUNCATED GEOMETRIC AND THE

IRREGULAR DISCRETE FOR THE NODE DEGREES IN THE NYISO AND
WSCC SYSTEM

node groups max(k) p kmax kt {p1, p2, · · · , pkt}
NYISO 37 0.2269 34 3 0.4875, 0.2700, 0.2425

WSCC 19 0.4084 16 3 0.3545, 0.4499, 0.1956

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

K −− node degree

lo
g 

(P
M

F)

 

 

Empirical PMF
Fitting PMF

(a)

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

K −− node degree

lo
g 

(P
M

F)

 

 

Empirical PMF
Fitting PMF

(b)

Fig. 3. Comparing the Empirical and Fitting PMF of Node Degrees: (a) the
NYISO System; (b) the WSCC System

also demonstrated the effectiveness of the proposed method
of analyzing node degree distribution by using the probability
generation function which, to the best of our knowledge, has
not been employed before.

IV. ROBUSTNESS EXPERIMENTS ON REAL-WORLD
POWER GRIDS

In this section we perform numerical tests to determine
the robustness on the IEEE model systems, the NYISO and
the WSCC systems under random and selective breakdowns.
The former eliminates a fraction of nodes from the system
randomly, i.e., the selection of breakdown nodes is indepen-
dent of the network structure. While the latter intends to
disintegrate the network in one of the most effective ways,
as in an intentional attack, with the nodes with largest node
degrees eliminated first. And, for the nodes with the same
node degrees, their chance of breakdown is uniform. After a
fraction f of node removal (f is a fraction to the original
intact network size), the relative size of the largest connected
spanning cluster in the remaining network, Sinf, is evaluated
to indicate the effects of the node breakdowns. The critical
breakdown threshold is computed by using the criterion as
Equation (3). Fig. 4 shows the experiment results: comparing
(a) and (b), one can clearly see that Sinf in the remaining
network is brought down much more effectively under the
selective node breakdowns than that at random.

Table II presents the critical thresholds under random and
selective breakdowns in IEEE model systems and real-world
power grids such as the NYISO and the WSCC systems. As
expected f sel

c is much less than f rand
c which means that the

removal of a small fraction of nodes with larger degrees in
the network will disintegrate the system very quickly.

Fig. 6 shows the empirical results compared to the theo-
retical thresholds from Equation (4) and (7), given k0 of the
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original network. An interesting discovery is that the empirical
critical thresholds under random breakdowns matches the
theoretical f rand

c with good approximation; while the empirical
critical thresholds under selective breakdowns deviates from
the theoretical value substantially. The reason is that Equation
(4) holds in general for any node degree distribution as long
as it is random; Equation (7), instead, is derived from the
assumption of a pure Geometric (or equivalently Exponential)
distribution for the node degrees. As we pointed out in Section
III, the node degree in power grids fits well a mixture model
which includes the sum of a truncated Geometric random
variable G(p, kmax) plus an irregular Discrete random vari-
able D(p1, p2, . . . , pkt

). In the following paragraphs we will
provide a intuitive quantitative argument showing that it is the
discrepancy in the assumed node degree distribution model
that causes the substantial deviations observed in the empirical
and the theoretical f sel

c .
The probability distribution of the node degrees K in a

power grid, equal to the convolution of that of the two
components, can be expressed as following by using Equation
(9) and (10).

Pr(K=k) =





α
∑k

i=1 pqk−ipi , k < kt

α
∑kt

i=1 pqk−ipi , kt ≤ k ≤ kmax + 1

α
∑kt

i=k−kmax
pqk−ipi , kmax + 1 < k ≤ K

(13)
with q = 1 − p, K = kt + kmax, and α = 1

1−qkmax+1 as
constants.

On the other hand, a pure Geometric with truncation at K
has Pr

(K̃=k)
= αpqk−1, with k = 1, 2, . . . , K. Dividing

Pr(K=k) by Pr
(K̃=k)

, we have the ratio as

rK/K̃(k) =
Pr(K=k)

Pr
(K̃=k)

=





∑k

i=1
pi

qi−1 , k < kt∑kt

i=1
pi

qi−1 , kt ≤ k ≤ kmax + 1∑kt

i=k−kmax

pi

qi−1 , kmax + 1 < k ≤ K
(14)

Fig. 5 plots the ratio rK/K̃(k) growing as a function of
the node degree k, with the parameters obtained from Table
I for the NYISO system and the WSCC system respectively.
Our study on the node degree distribution of the power grid in
Section III has shown that a real-world power grid usually has
kmax À kt (refer to Table I). As a result, the ratio curve has a
very short monotonically-increasing section at the beginning
and a very short monotonically-decreasing section at the tail,
each with a length of kt−1; while for the much longer middle
interval, i.e., where k ∈ [kt, kmax + 1], the ratio stabilizes at
its upper bound:

rmax =
kt∑

i=1

pi

qi−1
(15)

Furthermore, due to the short length of the tail section and
due to the negligible probability mass of a Geometric random
variable in that portion (that is, with the PMF decreasing
exponentially, its probability mass dies out very quickly as
k increases), it should be reasonable to roughly assume that
the ratio rK/K̃(k) ≡ rmax as long as k ≥ kt. And this

approximation will not cause substantial numerical errors in
the evaluation of integral probability to estimate the critical
node breakdown threshold as in Equation (5) and (16).

On the other hand, we can see that rK/K̃(1) = p1 < 1,
and rmax > 1, which means the irregular Discrete random
variable component embedded in the node degree distribution
function reduces the relative mass of probability for lowest
degree values, while magnifying the probability of large node
degrees. This leads to the conclusion that, compared to a
network with pure Geometric node degree distribution, the
power grid is more vulnerable to intentional attacks when
nodes with large degrees become first targets of the attack;
this happens because the number of links lost due to the node
breakdowns statistically increases, even if the fraction of node
removal is kept the same as that dictated by the pure Geometric
distribution model.

Following the estimation method of f sel
c in [9] and taking

into account the correct node degree distribution for power
grid in Section III, we derived a new cut-off node degree K̃new

after node removal which satisfies rmax
∫ K

K̃new P (k)dk = f sel,
therefore

K̃new = −γ ln
f sel

rmax
(16)

and a new equivalent f rand
eqv given the same f sel. With

f rand
eqv =

∫ K

K̃new

kPr(K=k)

〈k〉 dk (17)

= rmax

∫ K

K̃new

kPr
(K̃=k)

〈k〉 dk (18)

=
(

1− ln
f sel

rmax

)
f sel (19)

with Pr
(K̃=k)

representing the pure Geometric (or Exponential)
distribution assumed in [9]. Under selective node breakdowns,
only a small fraction of nodes need to be eliminated in order to
disintegrate the network (refer to Table II with 0.15 < f sel

c <
0.40), which means K̃ is big enough therefore K̃ > kt (as a
matter of fact K̃ = 5 or 6 for the NYISO and the WSCC).
Therefore we set the ratio to its maximum value. Consequently
the critical breakdown threshold for power grid under selective
node removal can obtained by solving below equation:

(
1− ln

f sel
c

rmax

)
f sel

c = 1− 1
k0 − 1

(20)

Obviously, Equation (20), compared to (7), implies a much
smaller critical node removal threshold due to the presence of
rmax. With the maximum ratios rmax

NYISO = 1.4074 and rmax
WSCC =

1.9690, the new theoretical f sel
c curves have been drawn in

Fig. 6. It shows that these curves match the empirical results
much more closely than that obtained from Solé’s model as
in Equation (7), which verifies our analysis above.

V. CONCLUSION

In this paper we numerically study the topology robustness
of power grids under random and selective node breakdowns,
and analytically estimate the critical node-removal thresholds
to disintegrate a system, based on the available US power grid
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Fig. 4. Effects of Random and Selective Node Breakdowns on Real-world
Power Grids: (a) Random Breakdowns; (b) Selective Breakdowns

TABLE II
CRITICAL THRESHOLDS UNDER RANDOM AND SELECTIVE BREAKDOWNS

IN REAL-WORLD POWER NETWORKS

(N, m) 〈k〉 k f rand
c f sel

c

IEEE-30 (30,41) 2.73 3.44 0.5298 0.1618

IEEE-57 (57,78) 2.74 3.18 0.4680 0.1892

IEEE-118 (118,179) 3.03 3.84 0.6278 0.2062

IEEE-300 (300, 409) 2.73 3.60 0.6114 0.2088

NYISO (2935,6567) 4.47 7.92 0.8470 0.3595

WSCC (4941, 6594) 2.67 3.87 0.6545 0.1685
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data. It is evident that selective node breakdowns is much more
effective to fragment a network because the nodes with largest
degrees become first targets of attack and even a small fraction
of node removal can cause dramatic damage. Although the
empirical thresholds under random node breakdowns match
the theoretical values very well, the thresholds under selective
breakdowns obviously deviates from the predicted results from
[9] which assumed that node degree in a power grid follows a
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line), our model with rmax-WSCC (square-marked green line), IEEE model
system (solid circles), WSCC (solid diamond), NYISO (solid star).

pure Geometric distribution. Our analysis shows that the node
degree distribution of power grids is not a pure Geometric
probability mass function but that it can be well fitted by
a mixture distribution coming from the sum of a truncated
Geometric random variable and an irregular Discrete random
variable. Our findings give better estimates of the threshold
for a disintegrated topology under selective node breakdowns
which we compared to the numerical thresholds obtained with
real grid data. The study results provide a deeper understand-
ing of the intrinsic robustness of power grid and will help us
search for the “smart” designs of communication architecture
and control schemes in order to compensate for the network
intrinsic vulnerability and to enhance its robustness.
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