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The Noise Performance of a High-Speed
Capacitive-Sensor Interface Based on a
Relaxation Oscillator and a Fast Counter

Manel Gasulla, Member, IEEE, Xiujun Li, and Gerard C. M. Meijer

Abstract—This paper presents the analysis and experimental re-
sults on the noise performances of a capacitive-sensor interface.
The interface is able to measure low capacitance values in the order
of picofarads and is implemented with a simple relaxation oscil-
lator, a fast counter, and a microcontroller. The goal is to find the
criteria to implement a low-noise system, so that, even with a short
measuring time, low noise can be obtained. Experimental results
are performed in order to prove the validity of the theoretical anal-
ysis. The achieved resolution, with a measuring time of 20 ms, was
better than 14.2 10 7 for the measurement of a capacitance value
of 2.2 pF.

Index Terms—Capacitance measurement, capacitance trans-
ducers, jitter, oscillator noise, relaxation oscillator.

I. INTRODUCTION

C
APACITIVE sensors are used in a wide variety of mea-

surement and control systems, such as liquid-level gauges,

pressure meters, accelerometers, and precision positioners. In

these applications, the capacitances to be measured are often in

the range of 0.1–10 pF and, normally, a high resolution (low

noise) is required.

Electronic interfaces whose output signals are period modu-

lated are very attractive because they can directly be interfaced

to a microcontroller. Such interfaces can easily be implemented

with a simple relaxation oscillator [1] and applied to capacitive

sensors [2]. Reference [2] reported a resolution of better than

10 for a measurement range of 1 pF with a measurement

time of 100 ms. Such a measurement time can be acceptable

for measurement systems with slow-changing physical signals.

However, in some applications, this measurement time can be

too long. Normally, there is a tradeoff between the measurement

time and the resolution, so a shorter measurement time implies

a worse resolution. To maintain the resolution while reducing

the measuring time, we should improve the noise performance

of the sensor interface.
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In order to achieve a high resolution 10 10 with a

short measuring time ( 1 10 ms), we investigated the noise

performance of a common type of interface, with a period-

modulated output signal. In such interfaces, noise is contributed

both by the relaxation oscillator and by the counter which

counts the period of the output signal. The contributions for the

different noise sources in the relaxation oscillator have been

analyzed to determine criteria for implementing a low-noise

(high-resolution) sensor interface. In a previous work, a similar

analysis was performed for an oscillator implemented as an

integrated circuit [3]. In this paper, we consider the application

of commercially available ICs (op-amps and comparators)

to implement the oscillator. The flexibility in replacing the

applied components by other ones with different performance

has allowed us to perform a wide range of experiments to verify

the theoretical analysis. As a counter, we could use the internal

counters of a general purpose microcontroller. However, most

of the commercial low-cost microcontrollers can be driven

with clock frequencies only up to 20 MHz, with their internal

counters normally working at an even lower frequency. In this

paper, it is proposed to use an additional counter working at

a higher frequency in order to reduce the quantization noise,

caused by digitizing the period-modulated output signal.

Regarding the overall accuracy of capacitive systems, the

reduction of systematic error sources and the sensitivity to

electromagnetic interference (EMI) also have to be consid-

ered. Many advanced measurement techniques to achieve this

could be discussed, including the application of three-signal

autocalibration [1] and advanced techniques for chopping and

synchronous detection. However, in this paper, we will mainly

limit our attention to the noise performance of the sensor

interface. The resulting interface system will be applied in a

contactless capacitive angular position sensor [4] and in the

feedback loop of an active magnetic-bearing positioner.

II. INTERFACE SYSTEM

A. Relaxation Oscillator

Fig. 1 shows the schematic circuit of the first-order relax-

ation oscillator [1], [2], which is the core of the capacitive in-

terface. The oscillator is implemented with an operational am-

plifier (op-amp), a comparator (comp), two digital inverters, the

capacitances and , and a controlled current source ,

which value depends on the resistor . The performance of

the oscillator is described elsewhere [3], [5]. The capacitor

represents the capacitance of the sensor to be measured and

0018-9456/$20.00 © 2005 IEEE
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Fig. 1. First-order relaxation oscillator.

Fig. 2. Voltage at the output of the op-amp.

and model the parasitic capacitances to ground due to, for

example, the connected cables. Fig. 2 shows the voltage at the

output of the op-amp. When this voltage crosses the threshold

level , the output of the comparator and the inverters

switch, and the charge is transferred from capacitors and

to , generating a step voltage at the op-amp output.

Next, the current removes the charge stored at until the

op-amp output reaches the threshold level again. The period of

the oscillator output signal is given by

(1)

Some parameters are fixed: the sensor itself determines , and

is normally chosen to be around the maximum value of ;

the value of must be at least in order to avoid

saturation of the op-amp output (considering a rail-to-rail output

op-amp); the supply voltage is determined by the application

itself. So, the period, , of the output signal can be controlled

by the value of , i.e., the value of the integration current .

B. Complete Interface

The capacitive–sensor interface is mainly composed of a re-

laxation oscillator, a multiplexer, a fast counter, and a micro-

controller (Fig. 3). The relaxation oscillator converts the ca-

pacitance values of the sensing element to a period-modulated

output. The counter measures the elapsed time of periods.

The multiplexer selects the measured capacitance. The micro-

controller controls the external counter and multiplexer, reads

the data, and transmits them via a RS232 interface to a PC.

Fig. 3. Functional block diagram of the capacitive–sensor interface.

Fig. 4. Relaxation oscillator with the main noise sources.

To measure the period of the square-wave signal at the os-

cillator output, a constant pulse counting (CPC) method [6] is

used. In the CPC method, we count the elapsed time, , for

periods of the output signal of the relaxation oscillator. So,

(2)

The counter measures this elapsed time by counting clock

pulses with a counting frequency of 50 MHz (20 ns). The mea-

sured times for the capacitances and the external capaci-

tances to are sent to the PC.

III. NOISE ANALYSIS

The noise performance of the oscillator is investigated using

the circuit schematic of Fig. 4 in which the main noise sources

have been indicated.

The considered noise sources are as follows:

— the input noise voltage of the op-amp;

— the input noise current of the op-amp;

— the input noise voltage of the comparator.

As compared to the other noise sources, the noise due to the

resistor is negligible in all the experiments carried out in Sec-

tion IV. Furthermore, the input noise current of the comparator

has no influence. Therefore, these noise sources have not been

included into the model. In the analysis, we will assume that all

of the noise sources have a flat-band (white noise) spectrum and

are uncorrelated with the output signal of the comparator.

White noise can be described as the sum of an infinite number

of sinusoidal components having equal amplitudes, differing

frequencies, and a random phase. The influence of the noise in

the circuit will be first calculated by evaluating the influence of a

single sinusoidal noise component. In this way, a transfer func-

tion will be obtained and used, together with the power spectral

density (PSD) of the input noise, to calculate the influence of

the overall noise on the period of the output signal.
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A. Noise Voltage Analysis

First, the effect of and is analyzed. The normalized

one-period time error of the output signal is defined as

(3)

According to the analysis described in the Appendix, the mag-

nitude of the transfer function given by (A.6), , relates

(3) with the (sinusoidal) components of the noise voltage at the

input of the comparator, . The standard deviation of (3), ,

which we will refer in this paper as the jitter of the oscillator, is

given by

(4)

where is the equivalent bandwidth of the system (for sim-

plicity, we assume an ideal brick-wall low-pass frequency re-

sponse) and is the PSD of the noise voltage at the input

of the comparator. Considering , a condi-

tion that has to be satisfied to assure a low nonlinearity [3], [5],

and a flat frequency spectrum of the noise, (4) can be approxi-

mated as

(5)

When the corner frequency of is much lower than , the

contribution of the noise is negligible. Using (5) the jitter

due to the voltage noise source of the comparator can be

expressed as

(6)

where is the PSD of , and is the “unity-gain band-

width” of the comparator.

For the noise voltage of the amplifier, its equivalent PSD

at the input of the comparator is given by

(7)

where is the PSD of and .

Defining as

(8)

where is the unity-gain bandwidth of the op-amp, and using

(5), the jitter due to can be expressed as

(9)

where is the lowest value of and . When

, the jitter can be expressed as

(10)

Keeping the parasitic capacitance , and then , at a

minimum will reduce the jitter. On the other hand, if ,

the jitter will increase with the square root of .

B. Noise Current Analysis

Similarly to the analysis developed in the Appendix for the

effects of the noise voltage, a transfer function can be found that

relates (3) with the (sinusoidal) components of the noise current.

The magnitude of this transfer function is given by [7]

(11)

where the frequency in the denominator accounts for the inte-

gration of the current by the circuit. The jitter due to the current

noise is given by

(12)

where is the PSD of . Considering white noise and

, the jitter due to the input noise current of the

amplifier can be approximated as

(13)

In this case, the bandwidth of the comparator and the op-amp

do not contribute to the jitter.

C. Final Jitter

The jitter for periods of the oscillator output is given by

(14)

After some extensive calculations, it can be found that

(15)

(16)

When , (15) can be rewritten as

(17)
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As can be seen, the jitter given by (16) and (17) decreases with

the square root of the measured period number . The jitter

due to the voltage noise (comparator and amplifier) is indepen-

dent of the frequency of the oscillator. The jitter due to the cur-

rent noise of the amplifier decreases with an increasing value

of . However, when the oscillator frequency is too high,

approaching to , the nonlinearity of the conversion from

the capacitance to the period of the oscillator will increase [3],

[5]. By choosing , we assure that the nonlin-

earity due to this high-frequency influence is less than 10 .

The use of a low-noise comparator and a low-noise op-amp will

reduce the jitter. Bipolar op-amps have a low-noise voltage but

a high-noise current. On the other hand, JFET-input and com-

plimentary metal–oxide–semiconductor (CMOS) op-amps have

a higher noise voltage but a negligible noise current. So, there

will be a tradeoff in choosing an appropriate op-amp.

When a time period is digitized with a counter, quantization

noise will be intruded. The magnitude of the quantization noise

depends on the digitized time period . In the worst-case, when

, where is the sampling time of the counter

and is an integer, the jitter due to the quantization noise of the

counter amounts to

(18)

The quantization noise is inversely proportional to measured pe-

riod number . In the best case, when . As

all the noise sources are uncorrelated, we obtain the final jitter

by calculating the root of the sum-of-squares of the different

noise sources

(19)

IV. EXPERIMENTAL RESULTS

The capacitive-sensor interface has been applied in a contact-

less capacitive angular-position sensor [4] and in the feedback

loop of an active magnetic-bearing positioner. In these appli-

cations, the capacitance values were lower than 3 pF. For the

magnetic-bearing positioner application, a measurement time of

less than 1 ms and a resolution of 10 were required in order

to guarantee the stability of the closed loop and the accuracy of

the positioner.

In the first step, only the noise performance of the relaxation

oscillator (Fig. 1) was investigated. The time interval for dif-

ferent number of periods was measured using a universal

counter instrument 53132A (Agilent), which has a resolution

of 300 ps. With this setup, the contribution of the quantization

noise to the measured jitter was negligible. The measurement

results were sent to a PC via a general purpose interface bus

(GPIB) bus.

The relaxation oscillator was implemented with

1.8 pF and 10 pF, allowing a measurement range for the

external capacitances of 3.2 pF (using a rail-to-rail op-amp).

This range was sufficient for the intended applications. In this

first step, no external capacitance was used. The (single)

supply voltage was fixed to 5 V. In order to investigate the

TABLE I
SIGNIFICATIVE PARAMETERS FOR THE APPLIED AMPLIFIERS

Fig. 5. Jitter using an OPA2350 as the op-amp and an OPA2132 and an
MAX942 as comparators. The interval time was measured a universal counter
instrument.

noise effects of the used components, different types of ampli-

fiers and comparators with different noise performances and

bandwidths were used. As representatives for two different

types of op-amps, we selected an OPA2350 and an MAX412.

The OPA2350 is a rail-to-rail CMOS amplifier with a low bias

current, whereas the MAX412 is a low-voltage-noise bipolar

jucntion transistor (BJT) device. For the comparator, two dif-

ferent devices, an MAX942 and an OPA2132 were selected. The

first one is a high-speed BJT comparator, whereas the second

one is a junction field-effect transistor (JFET)-input amplifier

with a low transition time. Table I lists the unity-gain-band-

width and the input noise voltage and current of the OPA2350,

MAX412, and OPA2132. These specifications are not listed

for the MAX942 because, as usual for comparators, the man-

ufacturer only provides the information about the delay time.

However, we can expect that it will have a wide “bandwidth.”

The relaxation oscillator was tested with a parasitic input

capacitance up to 400 pF ( in Fig. 1). In this case, when

using a MAX412 as op-amp, amounts to 0.7 MHz. In

order to reduce nonlinear effects by accomplishing the relation

, we chose 1.2 M . Then, with 0

has a value of 116 kHz.

Fig. 5 shows the jitter results when using an OPA2350 as

op-amp, and an OPA2132 and an MAX942 as comparators. In

case of using an OPA2132 as comparator, the experimental and

theoretical results agreed with each other. For the theoretical

calculations, we assumed that there is a residual parasitic ca-

pacitance with a value of 5 pF. In this case, the main jitter con-

tribution was due to the noise voltages of the op-amp and the

comparator, and the noise current of the op-amp had a negligible

contribution. Then, as predicted by (17), the jitter decreased in-

versely proportional with the square root of . For 1000

(measuring time of 8.6 ms), the jitter amounted to 1.7 10 .
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Fig. 6. Jitter using an MAX412 as the op-amp and an OPA2132 as the
comparator. The interval time was measured a universal counter instrument.

Fig. 7. Jitter using an OPA2350 as the op-amp and an OPA2132 as the
comparator, for N = 1 and different values of C . The interval time was
measured by a universal counter instrument.

When using an MAX942 as comparator a larger (more than

twice) amount of jitter was observed. Probably, this could be

due to the larger “bandwidth” or the different noise level of the

comparator MAX942 as compared to the OPA2132. Due to the

lack of data about the input noise and bandwidth of the com-

parator MAX942, there is not a theoretical prediction.

Fig. 6 shows the results of the jitter when using a BJT ampli-

fier MAX412 as op-amp and an OPA2132 as comparator. Here,

there was a slight difference between the theoretical and exper-

imental results. This could be due to a difference of the actual

noise current with respect to the typical value provided by the

manufacturer. In this case, the jitter was mainly contributed by

the noise current of the op-amp. This jitter was four times larger

than that when using an OPA2350 for the op-amp. Therefore,

in order to reduce the jitter of the oscillator, a CMOS op-amp

is more suitable than a BJT op-amp. The jitter was also mea-

sured by using an MAX412 as op-amp and an MAX942 as com-

parator. The results (not shown) were similar to those shown in

Fig. 6, confirming that the input noise voltage and the band-

width of the comparator have no influence when the predomi-

nant source is the noise current of the op-amp, as predicted by

(16).

Fig. 7 shows the effect of the parasitic capacitance on the

jitter. In this measurement, we applied the “best” choice using an

OPA2350 as op-amp and an OPA2132 as comparator. For

Fig. 8. Jitter using an OPA2350 as the op-amp and a OPA2132 as the
comparator. The interval time was measured using the circuit of Fig. 3.

Fig. 9. Jitter using an MAX412 as the op-amp and an MAX942 as the
comparator. The interval time is measured using the circuit of Fig. 3.

1, as predicted by (10), the jitter increased with an increasing

value of .

To evaluate the effect of the quantization noise due to the

counter, in the second step, a complete capacitive-sensor inter-

face according to the functional block diagram of Fig. 3 was

implemented, using a 74HC4040 counter with a 50-MHz clock

(sampling time of 20 ns) and a PIC16F876 microcontroller (Mi-

crochip) with a clock frequency of 20 MHz. For the oscillator

(Fig. 1), we used 1.2 M 1.8 pF, and

2.2 pF, which results in 19.2 s ( 52 kHz).

Fig. 8 shows the jitter results when using an OPA2350 as

op-amp and an OPA2132 as comparator. The quantization noise

predominated up to 1000 (measurement time of 19.2 ms).

At this point, the total jitter amounted to 7.8 10 . With (1),

it can be calculated that the interface can measure with a

resolution of 14.2 10 . With 10 (measurement time

of 192 s), the resolution was better than 10 , thus accom-

plishing the requirements for the magnetic-bearing positioner

application. Replacing the comparator by a MAX942 increased

the noise of the oscillator resulting in a total jitter of 2.1 10

for 1000. In this case, the quantization noise predomi-

nated up to 100. Fig. 9 shows the resulting jitter when

using a MAX412 as op-amp and an MAX942 as comparator. In

this case, the total jitter for 1000 increased to 5.7 10 ,
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Fig. 10. (a) Time-domain filter model that relates v (t) with �(t).
(b) S-domain filter model that relates V (jf) with Z(jf).

and the quantization noise predominated up to 10. Similar

results to those shown in Fig. 9 were obtained when replacing

the comparator MAX942 by an OPA2132.

V. CONCLUSION

A high-speed capacitive-sensor interface, implemented with

a simple relaxation oscillator, a fast counter, and a microcon-

troller, has been presented. The interface is able to measure

low-capacitance values in the order of several picoFarads with

a high resolution and has been applied in a contactless capac-

itive angular-position sensor and in the feedback loop of an

active magnetic-bearing positioner. The noise performance of

the relaxation oscillator has theoretically been analyzed, and

guidelines for implementing a low-noise oscillator have been

pointed out. The theoretical predictions have been verified by

experimental measurements using different types of amplifiers

and comparators. It has been shown that to achieve a low jitter,

a CMOS op-amp with a low input-noise voltage and a rel-

atively narrow bandwidth has to be applied, together with a

low-noise comparator. Meanwhile, the parasitic capacitance at

the input of the op-amp should be kept at a minimum. As

to be expected, the jitter appears to be inversely proportional

to the square root of the measurement time. A prototype of

a complete setup implemented with a microcontroller and a

high-speed (50-MHz) counter has also been tested. For the

best combination of op-amp and comparator, a resolution of

14.2 10 has been obtained for a measuring time of 19.2 ms

and an external capacitance value of 2.2 pF. For a measuring

time of 192 s, a resolution better than 10 has been obtained,

thus accomplishing the requirements of the magnetic-bearing

positioner application.

APPENDIX

Fig. 2 shows the output signal of the op-amp. The voltage

and current noise sources described in Section III will affect the

position of the switching times , and in Fig. 2 and then

the value of . We define the variation due to the various

noise sources as

(A.1)

where

(A.2)

(A.3)

The instants , and correspond to the switching times

in a noise-free oscillator. In (A.2) and (A.3), we assume that

the noise voltage at the actual switching time and at the

fictitious noise-free transition are approximately equal

[7]. The factor represents the absolute value of the slope of

the integrating voltage versus the time

(A.4)

Substituting (A.2) to (A.4) in (3), we obtain

(A.5)

Following the analysis in [7], (A.5) can be seen as a combination

of noise samples at different moments. Suppose that the is the

moment “now.” Then, is a moment ago, and is a mo-

ment ago. We can “shift” and in time by using

two delay lines. Fig. 10 depicts a time-domain filter model for

(A.5) and its frequency-domain filter model. In Fig. 10(b), the

input represents one sinusoidal component of the input

noise. Because signal phase is not considered in noise analysis,

only the magnitude of the frequency response of the filter is eval-

uated. That is given by

(A.6)

where . As can be derived from (A.6), the influence

of the uncorrelated voltage-noise source on the period of the

oscillation is maximal for frequencies at the odd multiples of

and minimal (zero) for frequencies at the even multiples of .
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