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Introduction. The tensor product of two arbitrary groups acting on each other was
introduced by R. Brown and J.-L. Loday in [5, 6]. It arose from consideration of the
pushout of crossed squares in connection with applications of a van Kampen theorem for
crossed squares. Special cases of the product had previously been studied by A. S.-T. Lue
[10] and R. K. Dennis [7]. The tensor product of crossed complexes was introduced by R.
Brown and the second author [3] in connection with the fundamental crossed complex
n(X) of a filtered space X, which also satisfies a van Kampen theorem. This tensor
product provides an algebraic description of the crossed complex 7(X ® Y) and gives a
symmetric monoidal closed structure to the category of crossed complexes (over
groupoids). Both constructions involve non-abelian bilinearity conditions which are
versions of standard identities between group commutators. Since any group can be
viewed as a crossed complex of rank 1, a close relationship might be expected between
the two products. One purpose of this paper is to display the direct connections that exist
between them and to clarify their differences.

Given a group A, we denote by A the crossed complex which has A in dimension 1
but is otherwise trivial. For two arbitrary groups A and B, without actions, the tensor
product A ® B, as defined in [3], can be easily described; it is effectively the crossed
module AOB— A * B, where AOIB is the Cartesian subgroup of A * B (the kernel of the
canonical homomorphism A * B— A X B).

The tensor product G ® H of two groups acting on one another is more subtle. It is a
quotient of GOH and is a crossed module over a group G X H introduced by J. H. C.
Whitehead [11] which we here call the Peiffer product of G and H (because of its
connection with Peiffer identities). The tensor product G ® H does not have the
functorial properties enjoyed by the tensor product of crossed complexes but it essentially
includes A ® B as a special case: if A and B are groups without actions then A ® B is the
crossed module A ® B— Ax B where A and B are obtained by freely generating from A
and B two groups acting compatibly on each other.

On the other hand, for groups G, H acting on each other, the crossed module
G ® H— G X H cannot in general be written in the form A ® B since the latter is always
infinite, whereas G ® H and GXH are finite whenever G and H are finite [8]. We
compute some examples which show that reasonable conjectures on how to obtain G ® H
from G ® H are false.

1. Two tensor products of groups. A group G may be regarded as a crossed
complex G of rank 1; thus G has G in dimension 1 and is otherwise trivial. Given two
groups G and H, we may therefore form the tensor product of the crossed complexes G
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and H, as defined in [3]. This product is a crossed complex of rank 2, that is a crossed

module, and it has an explicit description which we now recall (cf. [3, Proposition 6.1]).
For arbitrary groups G, H we denote by GOH the Cartesian subgroup of the free

product G * H (that is, the kernel of the canonical homomorphism G * H— G X H).

1.1 ProrosiTiON. Given arbitrary groups G and H, the tensor product of the crossed
complexes G and H is the crossed module i: GOH— G * H where i is the inclusion
map. B

Now suppose that G and H act on each other on the right. Then the free product
G * H acts on both G and H, each group acting on itself by conjugation. We assume that
the actions are compatible, that is

he&) _ g~k "y _ ph7igh
gV =gt hE =Y

for all g, g, € G, h, h; € H. The non-abelian tensor product of G and H was defined in
[5, 6]; after a change to right-handed notation it is the group G ® H generated by symbols
g ® h (g € G, h € H) subject to defining relations

818 ®h=(g§®h*)(g ®h), ¢))
g®hh=(g®h)(g" ®hY). ()

We note that these relations have the form of standard commutator identities when g ® h
is replaced by [g, h] =g 'h~'gh and the actions by conjugation.

1.2 LemMma. (i) G * H acts on G ® H with
(g®h)"=g"®h", (weG=*H).
(ii)) G ® H is the G * H-group generated by symbols g @ h with defining relations

818 ®h=(g:®h)P(g®h), )
g®mh=(g®h)(g®h), 4)
(g ®h) =g" @h". (5)

Proof. Tt is straightforward to check that the subgroup of the free group on symbols
g ® h generated by the relators corresponding to the relations (1) and (2) admits the
action of G * H given by (g ® h)" =g" ® h"™. Note that compatibility is crucial here. This
proves (i) and then (ii) is inmediate. W

1.3 LemMA. In G ® H the following relations hold and are equivalent to (1) and (2):
880 @ h = (8o ® h¥)(g @ h), (6)
g ® hhy= (g @ h)(g" ® hy). 7

Proof. Setting g, =ggog ™' and h, = hhoh™" in (1) and (2) yields (6) and (7). W

We now have the two tensor products: however, the notation G ® H will always
refer to the non-abelian tensor product of Brown and Loday. In Proposition 1.1 we
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obtained a crossed module as a tensor product of crossed complexes. We now show. that
G ® H is naturally a crossed module and to do this we need to introduce another product
of pairs of groups and actions.

Given G and H acting compatibly on each other, we define their Peiffer product
G X H as the quotient of G * H by the normal closure K of all elements of the form

h7'g 'hg" or g 'h 'gh® (8)
where g € G and h € H (see [11, p. 428]). Compatibility ensures that these elements act
trivially on G and H so that GXH acts on G and H. Moreover, the canonical maps

G

N\

H
make G and H into crossed G »x H-modules and the original actions are induced by the
action of G H.
1.4 ProrosiTiON. The tensor product G ® H is a crossed G W H-module and there is a
morphism (¢, ) of crossed modules
GOH 2> G®H

,l la

in yhich Y is the quotient map and ¢([g, h]) =g ® h. Here 8(g ® h) = y([g, h)) and the
action of GMH on G ® H is induced by that of G * H. Furthermore, L = ker ¢ is the
normal closure in GOH of all elements

W_l[g, h]W[gw, hw]—l
where w € G * H, and is a normal subgroup of G * H.

Proof. The group GOH is freely generated by all elements [g, h], g€ G, heH,
g#1, h#1 (see [9]). There is therefore a morphism of groups ¢ :GOH— G ® H with
¢(lg, h])=g®h for all ge G, he H. Now G * H acts on GOH by conjugation and on.
G ® H by the action described in Lemma 1.2. The map ¢ is compatible with these actions
because, for g, g, € G and h, h, € H,

¢(g7'[g1, hlg) = (818, hllg, K]7Y)
=(g:g®h)(g®h)™
= (g ® h)®

and similarly ¢(h~'[g, h1]h) = (g ® h,)". It follows that L = ker ¢ is a normal subgroup of
G * H. Furthermore, for w € G * H, the element u =w™'[g, h]w[g”, h”]™" is in L since
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d(u)=¢(lg, )" o([g”, "] ' =(g ®h)*(g” ® ") ' =1. However, by definition of
G ® H, L is generated, as a normal subgroup of GOH, by all elements

d (818, hllg, h] (g7 '818, h¥]™' =g '8, hlglg 'g18, h5]!
an

[g, h]_l[g’ hlh][ghr h_lhlh]—l = h_l[g: hl]h[gh: h—lhlh]_]‘

Since these elements are of the form w™![g, hlw[g”, h*]"!, the last part of the
proposition follows. :

Now, modulo K =ker vy, we have g”*=w"'gw and h* =w 'hw so Lc K and
(L) =1. Consequently, there is a unique morphism 6:G ® H— GXH with 6¢ = yi,
that is 8(g ® h) = y([g, h]). It remains only to show that K acts trivially on G ® H, for
then v induces an action of GXH on G ® H and it is immediate that .G ® H— GxH
is a crossed module and (¢, y) is a morphism of crossed modules. However, K is
normally generated by all w=h""'g™'hg" and w' = g~'h~'gh? so it is enough to show that

w and w’' act trivially on G ® H. This follows from the fact, already noted, that they act
triviallyon Gand H. B

Let A and B be groups, with no actions assumed. We shall show how to construct the
tensor product of the crossed complexes A and B as a crossed module G ® H— G X H by
judicious choices of G and H.

Define A to be the universal B-group on A, that is, A is the group generated by
symbols a® (ae€ A, b e B) with defining relations (a,a,)’ =a%a5. Thus A is the free
product of copies A® of A, one for each b € B, and B permutes these copies according to
(a®)® = a®*". We identify A with the subgroup A' of A and so we write a = a'. Similarly
we define B to be the universal A-group on B.

The action of B on A can be extended to an action of B on A by the rule
(@) =ab“ " where a is identified with a' and acts by conjugation in A. Thus, in
normal form,

(@) =a'aa}?(@®)'a.

Similarly we can define an action of A on B and it is easy to see that the two actions are
compatible. o o
We may now form A ® B: it is a crossed module over A X B.

1.5 ProposiTioN. The crossed module A® B— AXB is isomorphic to the tensor
product of A and B regarded as crossed complexes of rank 1, that is, to the crossed module
AOB—A*B.

Proof. Consider the composite morphism of crossed modules where i, j, k, [ are
inclusion maps and (¢, ) is the morphism given by Proposition 1.4 applied to A and B.
AOB——~ ADB —> AQ®B
S

A*B——>A+*B—>A><B
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The kernel K of v is the normal subgroup of A * B generated by all x 'y ~'xy* and
y~'x"'yx’ for x € A, y € B. Modulo this kernel we have a®=b""ab and b* =a~'ba for
acA, beB. So A+ B is generated by A * B and K. Since v is surjective, it follows that
yl is surjective.

On the other hand, because of the freeness of A and B, there is a morphism
6:A*B—A*B with

6(a®) = b~'ab, 0(b*)=a"'ba for ac€A, beB. 9

Clearly 6! is the identity on A * B. Also, if x € A, one may deduce from (9) firstly that
0(x®) =b~'0(x)b and then that 6(x*")=0(b*)"'6(x)0(b"), where acA and beB.
Hence, for all x € A and y € B we have 6(x*) = 6(y) '6(x)0(y) and similarly 8(y*) =
0(x)~'6(y)0(x). Thus 6(K)=1. If now, ue A*B and yl(u)=1, then /(u) e K and
therefore u = 6l(u) = 1. This proves that y/: A * B—> A X B is an injection and therefore
an isomorphism.

Now consider ¢k:ACDB— A ® B. It is clearly an injection, because d¢k = 6lj is an
injection. Thus the theorem will be proved if we can show that ¢k is a surjection. This we
will do by showing that A ® B is generated as crossed A X B-module by the elements
¢k([a, b]) = a ® b. Since the action of AX B on A @ B is induced from that of A * B, this
is equivalent to showing that A® B is generated as A * B-group by all a® b with
a€A,beB. Now A® B is certainly generated as a group by all x®y, x€ A, y € B and
the relations (3), (4) can be used to express any such x ® y as a product of elements of the
form (a® ® b%)", where a, a, € A, b, b; € B and w € A * B. Finally,

&} ® b= (a, ® b)'(a, ® bb3) by (7)
=(a; ®b)"'(a, ® b$)(a, ® b)* by (4)
=(a, ® b)"'(a ® b;)(a; ® b,)(a ® b,) '(a; ® b)*" by (6) and (3)
and this completes the proof. W

2. The Peiffer product. We shall return in Section 3 to the crossed module
morphism of Proposition 1.4. Before doing so we consider the Peiffer product GX H in

more detail. As mentioned in the introduction, this construction was introduced by
Whitehead in [11]. There he posed his famous question on the asphericity of sub-
complexes of aspherical 2-complexes and reformulated it as part of the wider problem of
finding conditions under which the groups G and H are embedded in GX H.

Let G and H be groups acting compatibly on each other and let K be the kernel of
the natural map v :G * H— G X H. Then modulo K, hg = gh®, so that every element of
G H can be written as y(g)y(h) for suitable g, h. We write (g, h) for y(g)y(h). By
considering the implied presentation of GXH as (G * H)/K it is easy to see that the

relations et
(8 h) (g1, h1) = (gg1, h¥:hy) = (ggi , hhy)

are defining relations for G @ H on the generators (g, &) and so G X H is a homomorphic
image of both the semidirect products GX H and G X H. This explains our choice of
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notation. The group GXH is obtained from G X H (or from G XH) by imposing the

relations @ 'g" 1)=(1, h=h), (10)
These facts were proved by R. Brown in [1].

Given two crossed P-modules A: G— P and u : H— P, we can form the Peiffer product
G X H using the actions of G and H on each other induced via P. Such actions are always
compatible. R. Brown also proved in [1] that in this case GXH is itself a crossed
P-module with boundary map 3:GXH— P given by (g, h)—A(g)u(h) and is the
coproduct of G and H in the category of crossed P-modules. The expression of GXH as a
quotient of G X H greatly facilitates the study of the kernel of 3:GXH— P.

On the other hand, if G and H act compatibly on one another, then each is a crossed
G 4 H-module with boundary map induced by the respective inclusion into G * H and the
given actions then coincide with those obtained via G X H. It follows that the coproduct of
G and H as crossed G X H-modules is just the identity map GXH— G XH.

We now consider some special cases in which the Peiffer product G X H of groups G
and H acting compatibly on one another may be described explicitly in terms of G and H.
We write Dy(G) for the displacement subgroup of G relative to the action of H, that is
the subgroup of G generated by all elements g ~'g” where g € G and h € H. Then Dy(G)
is normal in G and G/Dy(G) is the largest quotient of G on which H acts trivially: we
denote this quotient by Gj,.

2.1 ProrosiTioN., Let A:G—P and pu:H-—>P be crossed P-modules such that
A(G) c u(H) and suppose that u:H— u(H) is split by a homomorphism o:u(H)— H.
Then the Peiffer product GXH formed with respect to the actions of G and H on each
other via P is isomorphic as a group to Gy X H.

Proof. Form the semidirect product G X H and define a map §:GX H— G X H by
(g, h)— (g, oA(g)h). Then & is an isomorphism, for it is clearly bijective and

E((81, h1)(g, h)) = §(g.g, hih)
= (818, oA(g.18)h%h)
= (818, oA(g1)oA(g)hsh).

Now h§ = hi® = htO) for some y € H and 0A(g) =y (mod ker u). Hence h§ = A% =
y~'hyy = oA(g)'h,0A(g) since ker p is central in H. So

£((g1, 1)(8, 1)) = (818, oA(g1)h1oA(g)h) = E(g1, h1)E(g, ).
Further, & maps the relation (10) to
(87'8", o(g™'8") = (1, h™*h).
oMg'g") = o([Ag), u(h)])
=[oA(g), h] (since ker u is central)
=oAg Hh " 'oA(g)h
=h"%h.

Now
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So the kernel of the map G X H— G M H is mapped to the normal closure in G X H of the
elements (g7'g", 1) and so GXH=Gy xH. B

Note that under the hypotheses of Proposition 2.1, G is abelian and since H is a
crossed module with a splitting of its boundary map, we have a split central extension

O—-keru—>H—u(H)—1

and H =ker u X u(H) as groups. Further, if we can find a P-equivariant splitting ¢ then
this isomorphism and that of Proposition 2.1 are isomorphisms of crossed P-modules.

2.2 CoroLLARY. Under the hypotheses of Proposition 2.1 the canonical map H—
G X H is an embedding, but the canonical map G— G X H is an embedding if and only if
ker AN Dy(G)=1.

Proof. Identifying GXH with G, X H, the canonical maps in question are g+—
(gDy(G), oA(g)) and h—(1, h). So H certainly embeds in G X H and the statement for G
follows since o is injective. B

2.3 CoroLLARY. If A:G— P is a crossed P-module then GXP and Gp X P are
isomorphic as crossed P-modules. B

In particular, if M is a normal subgroup of P we can form the Peiffer product of M
and P with respect to the conjugation actions and M X P =M/[M, P} x P. So, putting
M =P, we find PKxP=P*®x P.

We now return to the general case of groups G and H given as crossed P-modules
acting on each other via A:G— P and p:H-> P. The kernel of 3: GXMH — P has been
investigated by R. Brown in [1]. Let G X, H be the pullback: this is again a crossed
P-module under the diagonal action of P with boundary map given by (g, h) = A(g) =
u(h). 1t is easy to verify that in fact G Xp H is the product of G and H in the category of
crossed P-modules. Define the function §:G X H— G X, H by &(g, k)= (g~ 'g", h™%h)
and let J be the subgroup of G X, H generated by the image of {. Then J is normal in
G %Xp H and contains the commutator subgroup. Let us write M = A(G) and N = u(H):
then there are exact sequences of groups, [1, Propositions 2.5 and 2.8],

0~ (GxpH)/J-> GXH— P, (1)
0— (ker A@ker p) NJ—>ker A@ ker u— (G Xp H)/J > (M NN)/[M, N]-0, (12)

where the map j in (11) is induced by the map G X H— GX H given by (g, h)—
(g, #™"). If A and u are injective then (11) and (12) show that ker 3= (M N N)/[M, N]. In
particular, for any normal subgroups M and N of a group P, there is a short exact
sequence

MNON

0= 0, N

> MXN—>MN-—1
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showing how M XN depends on the normal structure of M and N relative to each other.
Note further that both M and N embed in M XN,

3. Induced crossed modules and the tensor products. We recall from [2] the
definition of an induced crossed module. Suppose that d:A— P is a crossed P-module
and that f:P— S is a homomorphism of groups. Then there is a crossed S-module
C =f.A and a morphism of crossed modules

A— f.A
o
P — S

which is universal for morphisms from A to crossed S-modules which induce f:P—S.
The crossed S-module f,A is said to be induced by f and f, is a functor from crossed
P-modules to crossed S-modules. A presentation of f,A is given in [2}. For our present
purposes we have need only of the simpler description that applies when f is surjective.

3.1 ProposITION [2]. If f:P— S is a surjective homomorphism and A is a crossed
P-module then A=Ay, B

R. Brown has asked the following questions. Does the crossed module morphism of
Proposition 1.4 present G ® H as the crossed G X H-module induced from GOH by the
natural map ¢:G*x H— GXH? Or is G ® H the crossed S-module induced from GOH
by some other morphism G * H— §?

From Proposition 3.1 the induced crossed module y,(GOH) is obtained from GOH
by killing the action of K = ker . Since this action is by conjugation we have

¥,(GOH) = (GOH)/[GOH, K].

Let x:GOH— ¢, (GOH) be the natural map. By the universal property of induced
crossed modules there is a morphism t:vy,(GOH)— G ® H of crossed G x H-modules
such that Tk = ¢. The question at issue now is whether or not 7 is an isomorphism.

We consider the simplest case, in which G and H act on one another trivially. In this
case G X H is just the direct product G X H and K = GOH. Thus 9,(GOH) is (GOH)™
which is free abelian on the basis {[g, 4] | g # 1, h # 1} of mixed commutators in G * H,
which we now wish to regard merely as a set of ordered pairs.

Since we are assuming that G and H act trivially on one another, from (6) we obtain
the relation

880® h = (8o ®h)(g ® h).

Now G ® H is abelian (it is a homomorphic image of (GOH)™) and so

880®h=(g®h)(go®h)=gog ®h.
Similarly
g ®hhy=(g ®h)(g® hy) =g ® hh,.
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It follows that G ® H = G* ®, H™ (see [6, Proposition 2.4]) and that G+ H and G X H
act trivially on G ® H. '

It is now clear that the map 7 from y,(GOH)=(GOH)™ to G® H=G>* ®,; H*®
is not an isomorphism unless one of G, H is trivial; forif ge G, he H, g#1, h+1, then -
[g, Kllg~", k] #1 in (GOH)* but (g @ h)(g ' ®h)=1in G ® H. In fact it follows from
Lemma 1.2 and Proposition 3.1 that G ® H is obtained from GOH by killing the action
of G * H, that is:

3.2 ProvposiTiON. If G and H act trivially on each other, G ® H is the crossed module
over the trivial group induced from GOH— G * H by the map GxH—1. 1

Thus there remains the possibility that G @ H is in all cases the crossed module
induced from GOH— G * H by some quotient map x:G * H— S. We show that this is
not the case by means of the example of two infinite cyclic groups acting non-trivially on
each other.

3.3 ProrosiTiON. Let X and Y be infinite cyclic groups generated by x and y
respectively, acting on each other by

x =x—1, yx =y—1.
These actions are compatible and the Peiffer product X®Y is the quaternion group
Q = {1, ti, xj, £k} with canonical map y:X*Y— Q given by y(x) =i and y(y) =j.
The induced crossed Q-module v, (XOY) is Z* and X ® Y is 7* with bases, Q-actions and
boundary maps given by the formulae (13), . .., (17) and (20), . . ., (24) below.

Proof. The compatibility of the given actions is easily checked. Further, it is clear
that if we are given presentations of groups G and H that act compatibily on one another,
we obtain a presentation of G H by adjoining to the natural presentation of G % H the
relations (8) between generators. Hence

XXY=(x,y|y xy=x""x"lyx=y"").

The map x — i, y —>j defines a surjection XX Y — Q. However, in XX Y, [x, y]=x"% and
[y, x]=y 2 and so x>=y~>=[y, x]. Hence
yx=xy[y, x] =xy~' =x.

Therefore x =y~ 'x*y =x~> and so x*=1 and since x>=y~% y*=1. Every element of
XXY can now be written as x’y* where r,5=0,1,2,3 and x?y*=1. This implies
|XxY|=<8and so XXY=Q. ‘

We now compute ¥,.(XOY) where p: X*Y—Q is given by x+—i y—j. Let
K=kery, M=y, (X0OY), ¢:XOY—>M and N =ker(6:M— Q). For each generator

[x™, y"] of XOY we have
' v(x", y" ) =" "= (=)™
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Thus 8(M)= {£1} and N is central in M and of index 2: hence M is abelian and 6(M)
acts trivially on M. So i2, j* and k? act trivially on M. We write {x™, y"} for ¢([x™, y"]).
Now

{x™, y"y = {x™, y"}*
= ¢([x", y"T*)
= o([x™*2, y"II¥%, y"17)
= {xm+2,‘ yn}{x2, yn}—l'

So {x™*2, y"} = {x™, y"Hx?, y"} and similarly {x"™, y"*?} = {x™, y"}{x™, y*}. Thus M is
generated as a group by the four elements

{x,y}, (2%}, {x, y%), % y7)
The actions of i and j on these generators are easily computed and we find

(e, Y =02y ey} ey ={xy}x ¥}
(oY =02y Py =03y y)
(£ y =2y He y} L (yY ={xy7),
{2y =2y, 2y = {4y}
So M, as a Q-module, is a homomorphic image of Z* with basis b,, b, b5, b, mapping
respectively to {x, y}, {x% y}, {x, ¥*}, {x% y*} and with the action of i and j given by

1=by— by, h=bs—by, (13)
b} = b,, bh=b,—b,, (14)
by=b,— bs, b} = bs, (15)

bi=b,,  bi=b, (16)

It is easy to verify that the map d:Z*— Q given by

by—>-1, b,—>1 (r=2), (17)
is a crossed module and that the map 6:X0OY— Z* given by

8([x>, y*]) = rsb,,
O([x**", y*]) =sb; + rsb,,
0([x*, y**')) =rb, + rsb,,
O([x**!, y**')) = b, + rb, + sbs + rsb,,
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gives a morphism of crossed modules
xgy % 7¢

il ld
Fix,y)—> Q.

By the universal property of 6 : M — Q there is a morphism of crossed modules

M2 7t
||
Q —290

and it follows that M is isomorphic as a crossed Q-module to Z*.
Now X ® Y is abelian (since M is) and in X ® Y,

r®y*=(x®y)x"'®y),
xQ@y=x"2’Qy=x"'®y)x*®y),

and so

(x®y)(x*®y)=(x ®y)>.
Further, x ® y’=x"'x*® y? = (x "' ® y?)(x? ® y?) so that
xRy = (x ®@y)x* @ y?) L

But also
QY =(x®yY =(x®y)'(x®y’)
=(x®y)'x®y)(x ®y)
=x ®y
Therefore
*®y*=1.

27

(18)

(19)

(18) and (19) show that x ® y aad x*®y generate X ® Y as an abelian group and the

action of Q is given by
(x®y)=x®y '=(*@y)x®y),
x®yy=x"'®y=(’®y) '(x®y),
(FPRyY=x*Qy '=x’®y,
F*®yy=x2Qy=x*®y)""
It is now straightforward to show that 7%, with basis
x®y, x*Q®y

(20)
1)
(22)
(23)

24

and the action just given, is a crossed Q-module and that the defining relations for X ® Y

are satisfied. B
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As a consequence of this computation, we see that in the diagram

xXgy — 72— 7°=XQ®Y

Ll

X*Y—=>0=—0

the only elements of Q which act trivially on X ® Y are %1, and these already act trivially
on Z*. Therefore, all elements of X * Y which act trivially on X ® Y already act trivially
on Z* and it follows that X ® Y cannot be obtained from XOY by Kkilling the action of a
normal subgroup of X*Y. Thus X® Y is not the crossed S-module induced from
XOY — X * Y by any surjection X # Y — §. It seems to be difficult (but less interesting) to
determine when X ® Y is induced by a non-surjective map X * Y — §.

We conclude with a discussion of another special case of the tensor product. Given
any group G we may form its tensor square G ® G using the conjugation action of G on
itself. Then G & G is a G * G-group and the images g, and g, of g € G in the factors of
G * G each act via

(®y)Fi=g xg®gyg (i=12).
It follows that the kernel of the folding map G * G — G which identifies the two copies of
G in G * G acts trivially on G ® G and that G ® G is a crossed G-module with G-action
given by (x ® y)®* =g~ 'xg ® g"'yg and boundary map 6:G® G— G by x @y~ [x, y].
We refer to [4] and [6] for further results on and applications of the tensor square.

The question of the relationship between GOG and G ® G first arose in conversa-
tions between H. J. Baues and R. Brown. We shall show that G ® G is not induced from
the inclusion map GOG — G * G by the folding map G+ G— G.

Let (G, G) denote the induced crossed module just described. Then (G, G) is
obtained from GOG by killing the action of the kernel of the folding map, that is by
making the two images of g € G in G * G act in the same way. It follows that (G, G) is the
group generated by all pairs (x, y) where x, y € G, subject to defining relations

1,x)=1=(x1),
(x, y)(xy, 2) = (x, 2y)(y, 2).
The G-action is given by
(x, ) = (xg, y)(8, ¥)™' = (x, 8)"'(x, y8)
and the boundary map is d:(x, y)—[x, y]. So if G is abelian, d is the zero map and
(G, G) is abelian. It is easy to see that if G is cyclic of order 2 then (G, G) is infinite
cyclic, whereas G ® G =G.
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