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Introduction
Many biological processes involve polypeptide translocation
across phospholipid membranes. Among them are export to the
extracellular milieu (Blobel, 1995), transport in and out of the
nucleus (Weis, 2003), and import into mitochondria (Endo et
al., 2003; Gordon et al., 2000) and peroxisomes (Holroyd and
Erdmann, 2001). These processes use specific transporters and
frequently involve transmembrane pores and channels. The
proteins translocated usually possess appropriate signal
sequences and, in the case of classical protein secretion, this is
a hydrophobic N-terminal sequence that allows the protein to
enter the ER-Golgi pathway (Blobel, 2000).

However, several extracellular proteins lack signal
sequences, and their export proceeds through endoplasmic
reticulum (ER)-Golgi-independent non-classical routes (Table
1) (reviewed by Nickel, 2003). Currently, we know little about
the export mechanisms of most of these proteins, the only two
common features being the absence of a signal sequence in the
protein and the insensitivity of the pathway to brefeldin A [a
drug that specifically inhibits ER-to-Golgi transport (Misumi
et al., 1986)]. Nevertheless, what is apparent is that non-
classical export is not a single pathway but instead comprises
several transport mechanisms. Here, we concentrate on two
biologically important and functionally related proteins,
fibroblast growth factor 1 (FGF1) and interleukin (IL)-1α, and
their non-classical export pathways.

Structure and function of FGF1 and IL-1 α
FGF1 and FGF2 are prototypical members of the FGF family
(Szebenyi and Fallon, 1999). FGFs have a wide variety of
biological activities. During embryogenesis, these growth
factors regulate mesodermal induction, neurulation, and the
formation of the circulatory and skeletal systems (Friesel and

Maciag, 1999). Subsequently, they play a crucial role in
angiogenesis, tissue regeneration, inflammation and the
formation of some tumors (Friesel and Maciag, 1999). Their
biological effects are mediated through activation of four
transmembrane phosphotyrosine kinase receptors (FGFR1-4),
with the participation of cell-surface heparan sulfate
proteoglycans (HSPGs), and consequently require release of
the polypeptide (Friesel and Maciag, 1999). Most members of
the family therefore possess classical signal sequences but
FGF1 and FGF2 are devoid of such sequences and thus are
released by novel secretion mechanisms (Coulier et al., 1997;
Friesel and Maciag, 1999).

The existence of FGF1- and FGF2-specific secretion
pathways might represent a protective mechanism developed
in the course of evolution and might be related to their high
mitogenic potential and widespread expression. Indeed, a
recombinant derivative of FGF1 that has an attached N-
terminal signal sequence is a potent oncoprotein (Forough et
al., 1993). Significantly, the FGFs of Caenorhabditis elegans
and Drosophila have signal sequences (Coulier et al., 1997).
Apparently, strictly programmed mosaic development of these
organisms can rely on the regulation of FGF availability solely
at the level of its expression. The more complicated and less
hierarchical developmental strategies of chordates probably
required the evolution of signal-peptide-less FGFs, whose
accessibility might be more flexibly regulated post-
translationally.

The IL-1 family (Dinarello, 1996; Stylianou and Saklatvala,
1998), of which IL-1α and IL-1β are prototypical members,
numbers at least ten proteins. Nine of these, including IL-1α
and IL-1β, do not have signal sequences despite acting through
transmembrane receptors and thus requiring export (Dinarello,
1998; Stylianou and Saklatvala, 1998). These proteins are
potent pro-inflammatory cytokines (Dinarello, 1996), inducing
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Non-classical protein release independent of the ER-Golgi
pathway has been reported for an increasing number of
proteins lacking an N-terminal signal sequence. The export
of FGF1 and IL-1α, two pro-angiogenic polypeptides,
provides two such examples. In both cases, export is
based on the Cu2+-dependent formation of multiprotein
complexes containing the S100A13 protein and might
involve translocation of the protein across the membrane

as a ‘molten globule’. FGF1 and IL-1α are involved in
pathological processes such as restenosis and tumor
formation. Inhibition of their export by Cu 2+ chelators is
thus an effective strategy for treatment of several diseases.
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biosynthesis of a variety of inflammation-related molecules,
such as tumor necrosis factor (TNF), transforming growth
factor (TGF)-β, granulocyte colony-stimulating factor (G-
CSF), macrophage colony-stimulating factor (M-CSF),
cyclooxygenase 2, endothelin-1, phospholipase A2, and
inducible nitric oxide synthase (Dinarello, 1996). Unlike the
FGFs, IL-1s are synthesized as higher molecular weight
precursor (p) proteins. pIL-1α is cleaved by calpain or calpain-
like proteases to form mature (m) IL-1α, and pIL-1β is cleaved
by the IL-1-converting enzyme to form mIL-1β (Dinarello,
1996; Stylianou and Saklatvala, 1998).

Comparison of the crystal structures of FGF1, FGF2, IL-1α
and IL-1β (Graves et al., 1990; Venkataraman et al., 1999; Zhu
et al., 1991) reveals that they have very similar folds in spite
of their very low sequence similarity (Fig. 1). These proteins
contain β-barrel structures that are often found in
transmembrane proteins, including bacterial pore-forming
proteins (Chen and Funk, 2001; Heuck et al., 2000; Montoya
and Gouaux, 2003) and are crucial for membrane insertion of
some proteins (Heuck et al., 2000). This provided the first
indication that similarities might exist between the release
mechanisms of the IL-1 and FGF prototypes. It was especially
interesting to compare the release of IL-1α and FGF1 since

these two proteins have antagonistic effects upon the
proliferation and migration of endothelial cells (Maier et al.,
1990; Friesel and Maciag, 1999).

Cell stress induces FGF1 and IL-1 α release
Under normal conditions, cells expressing FGF1 and IL-1α do
not release these proteins. However, several stresses, such as
heat shock (Jackson et al., 1992), hypoxia (Mouta Carreira et
al., 2001), cultivation under low serum conditions (Shin et al.,
1996) and cell treatment with low-density lipoproteins (LDLs)
(Ananyeva et al., 1997), induce release of FGF1 from NIH
3T3 cells. Heat shock induces the export of mIL-1α from
human promonocytic leukemia cells and activated peripheral
mononuclear cells (Tarantini et al., 2001; Mandinova et al.,
2003). The two latter cell types also exhibit heat-shock-
induced export of pIL-1α (Mandinova et al., 2003).
Interestingly, similarly to FGF2 (Shi et al., 1997), pIL-1α is
not secreted from stressed NIH 3T3 cells (Tarantini et al.,
2001). The retention of pIL-1α is most likely because of the
nuclear localization sequence (Wessendorf et al., 1993) in its
cleavable N-terminal precursor domain. Although pIL-1α
is cleaved in monocytes/macrophages (Dinarello, 1992;
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Table 1. Proteins exported through non-classical pathways
Signal Export sensitivity 

Protein Reference peptide to brefeldin A Release characteristics

Secretory transglutaminase Aumuller et al., 1999 – Insensitive Constitutive, through membrane blebbing
Thioredoxin Rubartelli et al.,1992; – Insensitive Induced by antigen-specific T cells, intracellular vesicles 

Rubartelli et al., 1995; not involved
Angelini et al., 2002

Galectins Hughes, 1999; Sato et al., – Insensitive Constitutive, through membrane blebbing
1993; Lindstedt et al., 1993

Il-1α Tarantini et al., 2001; – Insensitive Stress-induced, Cu2+-dependent, in complex with S100A13
Mandinova et al., 2003

Il-1β Rubartelli et al., 1990; – Insensitive Stress-induced, ABC-transporter-dependent, through the 
Andrei et al., 1999 endolysosomal pathway

FGF1 Jackson et al., 1992; – Insensitive Stress-induced, Cu2+-dependent, in complex with S100A13 
Tarantini et al., 1998; and p40 Syt1
LaVallee et al., 1998; 
Mouta Carreira et al., 1998; 
Landriscina et al., 2001a; 
Landriscina et al., 2001b

FGF2 Florkiewicz et al., 1995; 
Mignatti et al., 1992; – Insensitive Constitutive, Na+/K+ ATPase-dependent
Engling et al., 2002

Sphingosine kinase Ancellin et al., 2002 – Insensitive Constitutive, inhibited by cytochalasin
Annexin I Chapman et al., 2003 – Not tested Glucocorticoid-induced, ABC-transporter-dependent
Annexin II Peterson et al., 2003 – Not tested Thrombin-induced, in complex with p11
p40 Synaptotagmin 1 LaVallee et al., 1998; – Insensitive Constitutive

Tarantini et al., 1998
S100A13 Landriscina et al., 2001a; – Insensitive Constitutive

Landriscina et al., 2001b
HIV Tat Chang et al., 1997 – Insensitive Constitutive
Herpes VP 22 protein Elliott and O’Hare, 1997 – Insensitive Constitutive
Foamy virus Bet protein Lecellier et al., 2002 – Insensitive Constitutive
Engrailed 2 Joliot et al., 1998; Maizel – Insensitive Attenuated by the CK2-dependent phosphorylation

et al., 1999; Maizel et al., 
2002

HMGB1 Gardella et al., 2002; – Insensitive Stress-induced, through an endolysosomal pathway
Passalacqua et al., 1997; 
Passalacqua et al., 1998; 
Sparatore et al., 1996

LeishmaniaHASPB protein Denny et al., 2000 – Insensitive Constitutive, acylation-dependent
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Dinarello, 1996), the cleavage does not occur in NIH 3T3 cells
(Tarantini et al., 2001), perhaps because of high levels of the
calpain inhibitor calpastatin (Goll et al., 2003) in the cytosol
of these cells. In macrophage-like cells, the control of pIL-1α
nuclear localization is less stringent since these cells display
pIL-1α both in the nucleus and in the cytoplasm (Beuscher et
al., 1988; Kobayashi et al., 1990).

Significantly, co-expression of pIL-1α and FGF1 in NIH
3T3 cells inhibits the stress-induced release of FGF1 (Tarantini
et al., 2001). It appears that the release pathways used by FGF1
and IL-1α interact. Thus, pIL-1α could bind some important
protein(s) shared by these pathways and sequester it in the
nucleus. Indeed, FGF1 and IL-1α release pathways share
several similarities, including the delayed character of export,
which becomes detectable only after 90 minutes of stress
(Jackson et al., 1992; Tarantini et al., 2001). This delay
presumably reflects the need for stress-induced synthesis of
proteins that participate in the export of IL-1α and FGF1
because both IL-1α release and FGF1 release are sensitive to
inhibition of transcription and translation (Jackson et al., 1992;
Tarantini et al., 2001).

FGF2 and IL-1β also exhibit non-classical release. However,
their export mechanisms appear to be quite different. Unlike
FGF1 and IL-1α, FGF2 is exported constitutively (Florkiewicz
et al., 1995; Mignatti et al., 1992). The release of FGF2 is
highly sensitive to the inhibitors of Na+/K+ ATPase (Dahl et
al., 2000; Florkiewicz et al., 1998), whereas the export of FGF1
is refractory to these compounds (F.T., I.P. and T.M.,
unpublished).

The release of IL-1β is induced by lipopolysaccharides
(Andrei et al., 1999; Rubartelli et al., 1990) but not by heat
shock (A.M. and T.M., unpublished). In addition, unlike the
export of FGF1 and IL-1α (Jackson et al., 1992) (F.T., I.P. and
T.M., unpublished), IL-1β release is sensitive to methylamine
(Rubartelli et al., 1990), an inhibitor of exocytosis, and to
sulfonylurea glybenclamide, an inhibitor of the mammalian
ATP-binding cassette (ABC) translocator ABC1 (Andrei et al.,
1999). Another notable difference is that, unlike FGF1 and IL-
1α, which are distributed homogeneously in the cytoplasm
(Prudovsky et al., 2002), IL-1β is contained within cytoplasmic

vesicles expressing lysosomal but not ER-Golgi markers
(Andrei et al., 1999). Export of IL-1β thus appears to be based
on its intracellular translocation into lysosome-like vesicles
and the subsequent exocytotic fusion of these vesicles with the
cell membrane (Andrei et al., 1999). It will be interesting to
determine whether the constitutive release of FGF2 is also
sensitive to these pharmacological agents. Thus, in spite of the
very similar 3D structures of FGF1 and IL-1 prototypes, FGF2
and IL-1β appear to be secreted through pathways different
from IL-1α and FGF1.

The stress-mediated intracellular transport of FGF1
and IL-1 α
The inhibition of FGF1 and IL-1α release by 2-deoxyglucose
(Jackson et al., 1992; Tarantini et al., 2001) demonstrates that
these pathways are dependent on ATP. In addition, an intact
actin cytoskeleton is important, since release of FGF1 and IL-
1α is sensitive to agents that attenuate actin stress fibers, such
as latrunculin and amlexanox (Landriscina et al., 2000; Mouta
Carreira et al., 1998; Tarantini et al., 2001). By contrast,
microtubule inhibitors, such as nocodazole, fail to inhibit FGF1
release (F.T., I.P. and T.M., unpublished). Real-time confocal
studies of cells transfected with an FGF1-GFP chimera have
demonstrated stress-induced migration of cytosolic FGF1 to
the cell membrane 60 minutes after heat shock and this
translocation can be completely inhibited by amlexanox
(Prudovsky et al., 2002). Likewise, heat shock also induces
translocation of an IL-1α-RFP chimera from the cytosol to the
cell membrane (Mandinova et al., 2003). Although the actin
cytoskeleton transports different types of cytoplasmic
membrane vesicle (Rogers and Gelfand, 2000), at least at the
level of fluorescence microscopy, neither FGF1 nor IL-1α
appears to be present in vesicular structures under normal
conditions or during heat shock (Prudovsky et al., 2002).

The stress-induced formation of multiprotein FGF1
and IL-1 α release complexes
FGF1 is released during stress as a covalent cysteine-linked

Fig. 1.Three-dimensional representation of the β-barrel structures of human mIL-1α (Graves et al., 1990) and human FGF1 (Lozano et al.,
2000). β-sheet domains are indicated in yellow and are depicted as rotating counter clockwise around the open centers of the structures. The
structures were downloaded from the Protein Data Bank of the NCBI (http://www.rcsb.org/pdb/).
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homodimer (Jackson et al., 1992). The evolutionarily
conserved Cys30 residue is crucial for its stress-mediated
release (Tarantini et al., 1995). Interestingly, the FGF1
homodimer exhibits a low heparin affinity (compared with the
monomer), as well as low mitogenic activity in vitro (Engleka
and Maciag, 1992). Dimer formation might therefore be a way
of storing and possibly transporting FGF1 in an inactive form.
However, low heparin affinity makes dimeric FGF1 potentially
more susceptible to proteolysis, since heparin and HSPGs
protect FGF family members from proteases (Friesel and
Maciag, 1999; Rosengart et al., 1988). The balance between
the monomeric and dimeric forms of FGF1 in the extracellular
compartment might be regulated by stress-induced
extracellular reducing and oxidizing agents. For example, the
reducing agent thioredoxin is a signal-peptide-less protein
released through a non-classical pathway (Rubartelli et al.,
1992; Rubartelli et al., 1995), and Cu2+ ions are potential
extracellular oxidizing agents that could convert reduced
monomeric FGF1 to the dimeric form. Indeed, in a cell-free
system, Cu2+ efficiently induces FGF1 dimerization (Engleka
and Maciag, 1992). However, the role of intracellular Cu2+ in
the release of FGF1 and IL-1α is even more significant (see
below).

IL-1α release does not appear to depend on covalent
dimerization. mIL-1α is exported as a monomeric, biologically
active cytokine (Mandinova et al., 2003; Tarantini et al., 2001).
Moreover, it has no evolutionarily conserved equivalent of
Cys30 in FGF1 (Furutani et al., 1986; Lomedico et al., 1984),
and a cysteine-free IL-1α mutant is released normally in
response to cellular stress (A.M., I.P. and T.M., unpublished).

Both mIL-1α and FGF1 are exported as components of
multiprotein release complexes that, at least in the case of
FGF1, assemble near the inner surface of the plasma membrane
(Prudovsky et al., 2002). The first evidence for such complexes
resulted from HPLC analysis of high-molecular-weight FGF1-
containing fractions from bovine and ovine brains (Maciag et
al., 1982; Mouta Carreira et al., 1998). Brain-derived FGF1 is
associated with at least four other polypeptides, which include
S100A13 and the p40 form of synaptotagmin 1 (Syt1) (Burgess
et al., 1985; Mouta Carreira et al., 1998). S100A13 belongs to
the S100 family of polypeptides, which are small acidic
proteins that have two Ca2+-binding EF-hand domains
(Heizmann et al., 2002). The biological functions of most
S100s are not defined but, significantly, the intracellular
distributions and/or expression levels of some family members
are modified in response to cellular stress (Breen et al., 1999;
Du et al., 2002; Duarte et al., 1999; Hoyaux et al., 2000; Hsieh
et al., 2002; Kucharczak et al., 2001; Lam et al., 2001;
Mandinova et al., 1998; Migheli et al., 1999; Zhang et al.,
2002). A specific structural characteristic of S100A13 is the
presence of a C-terminal domain rich in basic residues (Wicki
et al., 1996). The expression of S100A13 in NIH 3T3 cells is
detectable by RT-PCR analysis (Landriscina et al., 2001a).

All S100 proteins lack classical signal sequences, but at least
some of them are released into the extracellular compartment
(Heizmann and Cox, 1998). S100A13 transfected into NIH
3T3 cells is constitutively released (Landriscina et al., 2001a);
however, when it is co-expressed with either FGF1 or mIL-1α,
its release becomes stress-dependent (Landriscina et al., 2001a;
Mandinova et al., 2003). This observation in conjunction with
experiments using a dominant-negative S100A13 deletion

mutant lacking the basic C-terminal domain demonstrated that
S100A13 is an indispensable part of the multiprotein FGF1
release complex (Landriscina et al., 2001a). Similar
experiments provided evidence that S100A13 expression is
also critical for IL-1α release (Mandinova et al., 2003).
Interestingly, although a cysteine-free FGF1 mutant is not
released in response to stress (Tarantini et al., 1995), its co-
expression with S100A13 results in the stress-induced export
of both proteins (Landriscina et al., 2001a). It appears that
overexpression of S100A13 induces the non-covalent
dimerization of cysteine-free FGF1.

The p40 Syt1 component of the brain-derived FGF1-
containing multiprotein complex represents the extravesicular
portion of the transmembrane p65 Syt1 protein. Syt1
participates in the docking of a variety of secretory vesicles,
including synaptic vesicles, at the cell membrane prior to their
subsequent exocytosis (Sudhoff and Rizo, 1996). Similarly to
other members of the synaptotagmin protein family, Syt1
displays two Ca2+-binding C2 domains in its extravesicular
portion (Marqueze et al., 2000). p40 Syt1 is believed to be
produced by proteolytic cleavage of p65 near its
transmembrane domain (Marqueze et al., 2000; Sudhoff and
Rizo, 1996). In contrast to p65 Syt1, which displays a classical
N-terminal signal peptide in its primary structure and localizes
primarily to the ER-Golgi apparatus, cytoplasmic vesicles and
cell membrane, signal-peptide-less p40 Syt1 displays a diffuse
cytosolic distribution (C.B., I.P. and T.M., unpublished).
Interestingly, like S100A13, p40 Syt1 is also constitutively
released from cells under normal cell culture conditions
(LaVallee et al., 1998). Experiments using either an antisense
strategy or the expression of a dominant-negative p65 Syt1
mutant, as well as immunoblot analysis of the exported FGF1
complex at non-reducing low denaturation conditions for
electrophoresis, demonstrated that, similarly to S100A13, p40
Syt1 is a crucial component of the FGF1 release complex
(LaVallee et al., 1998; Tarantini et al., 1998).

Surprisingly, unlike S100A13, p40 Syt1 is dispensable for
IL-1α release (Tarantini et al., 2001). However, it is
conceivable that IL-1α uses another member of the
synaptotagmin family or other C2-domain-containing
polypeptides, for example calpain, the intracellular protease
responsible for pIL-1α cleavage, which contains a C2 domain
(Goll et al., 2003) and associates with annexin II (Barnes and
Gomes, 2002). Interestingly, although expression of FGF1 in
the presence of S100A13 inhibits the constitutive release of
S100A13, it does not affect release of p40 Syt1 (LaVallee et
al., 1998).

Annexin II might also be a part of the FGF1 and IL-1α
release complexes. This protein exhibits inducible flipping
from the inner to the outer surface of the cell membrane
(Peterson, 2003), where it functions as a receptor for
plasminogen and plasminogen activators (Hajjar et al., 1994;
Hajjar et al., 1998). Studies using amlexanox affinity
chromatography were able to resolve annexin II in a non-
covalent complex with S100A13 (Oyama et al., 1997), and we
have recently demonstrated the presence of annexin II in the
brain-derived FGF1-containing multiprotein complex (R.S.,
I.P. and T.M., unpublished). Since annexin II forms
heterotetramers with S100A10 (p11) (Kim and Hajjar, 2002),
its participation in the multiprotein complexes might rely upon
interactions with S100A13. Furthermore, since annexin II
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associates with the inner surface of the plasma membrane (Goll
et al., 2003) and the assembly of the FGF1 multiprotein
complex also occurs near the inner surface of the plasma
membrane (Prudovsky et al., 2002), it is possible that annexin
II serves as the site of assembly for the non-classical export of
these multiprotein complexes. However, more experiments are
needed to verify its role in FGF1 and IL-1α release.

The role of Cu 2+ in FGF1 and IL-1 α export
How do the FGF1 and IL-1α release complexes assemble?
Association of the members of these multiprotein aggregates
might involve Cu2+. FGF1, IL-1α, S100A13 and p40 Syt1
are Cu2+-binding proteins (Engleka and Maciag, 1992;
Landriscina et al., 2001b; Mandinova et al., 2003). Also, Cu2+

specifically induces formation of FGF1 but not FGF2
homodimers even though two of the three Cys residues present
in FGF1 are conserved in FGF2 (Engleka and Maciag, 1992).
In addition, several studies have demonstrated angiogenic and
pro-inflammatory effects of Cu2+ (Brewer, 2001; Gullino,
1983; Hannan and McAuslan, 1982; Raju et al., 1982; Zoli et
al., 1998), indicating that Cu2+ might participate in the
non-classical release of angiogenic and pro-inflammatory
polypeptides. The role of Cu2+ in mediating the release of
FGF1 and IL-1α export has been examined in some detail, and
indeed we and others have demonstrated in a cell-free system
that Cu2+ is able to induce the formation of a complex
containing p40Syt1, FGF1 and S100A13 at a molar ratio
of 1:2:2, respectively, as well as the formation of a
heterotetrameric (2:2) IL-1α-S100A13 complex (Landriscina
et al., 2001b; Mandinova et al., 1998). The depletion of
intracellular free Cu2+ through continuous application of a
specific chelator, tetrathiomolybdate (TTM), can attenuate the
stress-induced release of IL-1α and FGF1, as well as of
S100A13 when co-expressed with IL-1α or FGF1 (Landriscina
et al., 2001b; Mandinova et al., 2003). These data indicate that
the stress-induced Cu2+-dependent assembly of IL-1α and
FGF1 multiprotein release complexes is indeed a prerequisite
for the non-classical export of these proteins in vitro (Fig. 2).

The plasma membrane as a platform for the
assembly of release complexes
Considerable experimental evidence indicates that the Cu2+-
dependent formation of IL-1α and FGF1 multiprotein release
complexes occurs at the inner leaflet of the cell membrane.
Indeed, TTM treatment does not prevent the stress-induced
migration of FGF1 to the cell membrane (Prudovsky et al.,
2002), and thus complex formation (including formation of the
FGF1 homodimer) does not appear to be important for the
intracellular transport of FGF1 to the cell periphery. Moreover,
dominant-negative mutants of S100A13 and p40 Syt1 that are
known to inhibit FGF1 release are transported to the cell
membrane in response to heat shock, and they do not prevent
the stress-induced translocation of FGF1 to the periphery
(Prudovsky et al., 2002). Apparently, the members of the FGF1
multiprotein complex follow independent stress-induced
pathways to the cell periphery. Interestingly, FGF1, IL-1α, p40
Syt1 and members of the S100 family can all bind acidic
phospholipids in a cell-free system (Heizmann et al., 1998;
Marqueze et al., 2000; Mandinova et al., 2003; Tarantini et al.,

1995). Furthermore, mutational analyses have revealed specific
acidic phospholipid-binding domains in FGF1 (Tarantini et al.,
1995) and Syt1 (Fernandez et al., 2001). Interestingly, a few of
these acidic phospholipids are asymmetrically distributed
between the leaflets of the plasma membrane (Pomorski et al.,
2001) and thus, under normal conditions, acidic phospholipids
such as phosphatidylserine localize preferentially to the inner
leaflet. However, in response to a variety of different stresses,
including heat shock, phosphatidylserine flips to the outer
leaflet (Sims and Wiedmer, 2001).

Phosphatidylserine could drive the transmembrane
translocation of the IL-1α and FGF1 release complexes since
immunofluorescence data suggest that the inner side of the cell
membrane is a platform for the assembly of IL-1α and FGF1
release complexes after the participant proteins reach the
membrane through heat-shock-induced, actin-dependent
transport. Cu2+ ions needed for the assembly of release
complexes might be provided by transmembrane Cu2+

transporters (Finney and O’Halloran, 2003), and it is
noteworthy that the recently characterized human Cu2+

transporter 1 (hCtr1) is activated by cellular stress (Lee et al.,
2002). Since free Cu2+ is virtually absent from the cytosol
(Rae et al., 1999), the inner leaflet of the cell membrane is the
most likely locale for the function of transient Cu2+ ions in the
assembly of the FGF1 and IL-1α multiprotein complexes.
However, it is unclear whether the Cu2+ ions involved in
the formation of these complexes are released into the
extracellular compartment with the exported polypeptides
or whether they are recycled back to their intracellular
transporters.

Potential role of detergent-like properties and the
molten globule state of proteins in facilitating non-
classical protein export
The key moment in non-classical export is translocation across
the cell membrane. The mechanism might involve local
destabilization of the phospholipid bilayer at the inner surface
of the plasma membrane, which would allow the protein to
insert into the membrane and eventually exit the cell. Several
proteins including bactericidal peptides (Wiese et al., 2003)
and viral fusion proteins (Dutch et al., 2000) have detergent-
like properties that destabilize and permeabilize phospholipid
bilayers. It has been observed that FGF1 has similar properties,
demonstrating that it can induce temperature-dependent
permeabilization of phosphatidylserine/phosphatidylglycerol
liposomes (Mach and Middaugh, 1995). IL-1α also behaves
similarly (Oku et al., 1995; Mandinova et al., 2003). The
phospholipid-binding and detergent-like activities of these
proteins indicate that the inner leaflet of the cell membrane
could contain sites that recognize the multiprotein complexes
destined for release. These sites could contain specific acidic
phospholipid ‘signatures’ that determine both the composition
of assembled protein aggregates and the export mechanism.

Translocation of a protein across the bilayer might require
conformational changes that increase its hydrophobicity.
Proteins can achieve this by adopting a ‘molten globule’
conformation (Ptitsyn, 1995). This is a partially unfolded
intermediate conformation assumed during denaturation and
renaturation (Arai and Kuwajima, 2000; Ptitsyn, 1995). It is
characterized by (1) the presence of secondary structure, (2)
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the absence of most of the tertiary structure normally produced
by tight packing of side chains, (3) a relative compactness (a
radius of gyration only 10-30% larger than that of the native
state), and (4) the presence of a loosely packed hydrophobic
core that increases the hydrophobic surface accessible to
solvent (Arai and Kuwajima, 2000). The fourth characteristic
could allow proteins to traverse lipid bilayers (Bychkova et
al., 1988), and it has been reported that FGF1 exhibits a
temperature-dependent molten globule conformation (Sanz et
al., 2002). Additional studies using two-dimensional nuclear
magnetic resonance have confirmed this and underlined the
importance of an all-β-barrel structure for formation of the
molten globule (Srisailam et al., 2002). This structural feature
might therefore enable FGF1, IL-1α and the other polypeptide

components of the release complex to lose their solubility in
an aqueous environment and simultaneously become soluble in
a non-aqueous lipophilic environment, which is a prerequisite
for their transport through the plasma membrane. It is
interesting to note that the β-barrel structure may be
responsible for the ability of FGF1 to form amyloid-like fibrils
(Srisailam et al., 2003). However, whether this feature
contributes to the Cu2+-induced assembly of the FGF1
(Landriscina et al., 2001b) and IL-1α (Mandinova et al., 2003)
high-molecular-weight complexes formed prior to export is not
known. Interaction with acidic phospholipids might also
significantly contribute to the transition of FGF1 and possibly
IL-1α to a molten globule conformation. The importance of
unfolded or partially unfolded protein conformations is
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stressed by results demonstrating that, upon overexpression of
rhodanese and GFP, excess unfolded proteins are evacuated
from the cells through non-classical export pathways (Sloan et
al., 1994; Tanudji et al., 2002).

Whereas there is no direct biophysical evidence for the
ability of either S100A13 or p40 Syt1 to assume the molten
globule conformation, both proteins are known to be
constitutively released independently of FGF1 or IL-1α
(Landriscina et al., 2001a; LaVallee et al., 1998) and interact
with acidic phospholipids. They could therefore play a role as
chaperones that stabilize FGF1 and possibly IL-1α in a molten
globule conformation. Indeed, observing the interaction
between a bacterial pilin and its chaperone, Knight and co-
authors (Zavialov et al., 2003) have recently demonstrated that
chaperones can maintain polypeptides in a partially folded,
high-energy state. Previously, cytosolic chaperones, such as
members of the Hsp70 family, had been shown to maintain
the mitochondrial pre-proteins in a translocation-competent
conformation, which is crucial for their post-translational
import into mitochondria (Gordon et al., 2000). It is possible
that S100A13 performs a chaperone-like service needed for
membrane translocation since its overexpression alleviates the
requirements of IL-1α and FGF1 export for new transcription
and translation (Landriscina et al., 2001b; Mandinova et al.,
2003). Indeed, some other members of the S100 family have
chaperone activity (Heizmann et al., 2002), and S100A10, also
known as p11, serves as a chaperone for the hepatitis virus B
polymerase and is needed for its nuclear translocation (Choi et
al., 2003). Also, acting as a chaperone, it appears to be crucial
for insertion of annexin II into the plasma membrane, as well
as its thrombin-induced flipping to the outer surface of the
plasma membrane (Peterson et al., 2003).

The pathological significance of non-classical FGF1
and IL-1 α export
The elucidation of the mechanisms responsible for the non-
classical export of FGF1 and IL-1α has required the use of in
vitro methods of analysis and, as a result, it has been difficult
to determine the role of these mechanisms in vivo and/or in
pathological processes. However, clinical studies pioneered by
G. Brewer and S. Merajver (Brewer et al., 2000; Cox et al.,
2001) in which the Cu2+ chelator TTM was used to manage
the progress of stage IV tumors in humans have provided
insight into the potential role of TTM as an angiogenic
inhibitor capable of attenuating mammary gland tumor
formation in the Her transgenic mouse (Pan et al., 2002). Since
these studies suggested that TTM can repress the
transcriptional activation of NF-κB, and NF-κB lies
downstream of IL-1 receptor signaling (Baldwin, 1996), it
appeared possible that TTM functions as a repressor of non-
classical IL-1α export. Both FGF1 and IL-1 play a pro-
angiogenic role in vivo (Friesel and Maciag, 1999; Voronov et
al., 2003) although, in vitro, FGF1 stimulates proliferation and
migration of endothelial cells (Maciag et al., 1979; McMahon
et al., 1997), whereas IL-1α inhibits both of these activities
(Maier et al., 1990). It appears that the regulation of
angiogenesis and inflammation involves a coordination of non-
classical FGF1 and IL-1α release. Indeed, IL-1α stimulates the
infiltration of tissues with macrophages (Dinarello, 1996),
which present an abundant source of the FGF prototypes (Sano

et. al., 1990; Brogi et al., 1993). The absence of extracellular
IL-1α in a tumor setting would limit the recruitment of FGF1-
laden mononuclear cells (Sano et al., 1990; Sano et al., 1992)
to tumor sites exhibiting an anoxic and/or hypoxic
microenvironment. Thus, in the absence of mononuclear cell
infiltration, FGF1 would not be delivered to the tumor
environment and, even if FGF1 was available within the tumor
microvasculature itself, TTM would also repress its export.

Interestingly, a similar mechanism has been proposed to
explain the response to injury in large vessels as a result of
catheter-mediated clinical management of atherosclerotic
arteries (Mandinov et al., 2003). Since the infiltration of
mononuclear cells into the injured area in response to the
release of IL-1α could result in the generation of an FGF1-rich
microenvironment, and FGF1 is a potent mitogen for the
vascular smooth muscle cells (Winkles et al., 1987), its export
into the extracellular compartment could be responsible for the
onset of restenosis. Indeed, the long-term administration of
TTM significantly suppresses restenosis induced by catheter
injury in the rat carotid artery (Mandinov et al., 2003). The
arterial walls of TTM-treated rats display a strong attenuation
of neointimal growth, impaired vasa vasorum formation,
little, if any, macrophage/monocyte infiltration and, most
importantly, very low levels of FGF1 and IL-1α expression
when compared with injured arteries from control animals.
Thus, the inhibition of restenosis by TTM could be due to the
ability of the Cu2+ chelator to repress the stress-induced release
of pro-inflammatory IL-1α, which would prevent infiltration of
mononuclear cells known to be a source of pro-angiogenic and
pro-restenotic FGF1 in the wall of the damaged vessel. These
data also suggest that the repression of non-classical FGF1 and
IL-1α export by Cu2+ chelation might ultimately be useful for
the clinical management of pro-inflammatory angiogenesis in
humans.

These data corroborate the preclinical and clinical reports on
the ability of TTM to inhibit solid tumor growth (Brewer et al.,
2000; Cox et al., 2001), which depends on the availability of
pro-angiogenic polypeptides (Folkman, 2002). Thus, the
potential significance of the role of Cu2+ as a mediator of the
non-classical export of FGF1 and IL-1α could provide an
alternative approach for the clinical management of other
pathological conditions dependent on pro-inflammatory
angiogenesis, such as rheumatoid arthritis (Maini and Taylor,
2000). Indeed, studies have demonstrated that Zn2+/Cu2+

chelation can repress the onset of Alzheimer’s disease in the
β-amyloid transgenic mouse (Cherny et al., 2001). Because the
β-amyloid gene is known to be regulated by IL-1α in human
endothelial cells (Goldgaber et al., 1989), it is likely that the
repression of Alzheimer’s disease is due, at least in part, to the
absence of extracellular IL-1α. The recent report (Voronov et
al., 2003) that IL-1α- and IL-1β-null mice cannot sustain an
active angiogenic environment to support tumor growth is
consistent with the premise that the function of these signal-
peptide-less polypeptides is crucial for the regulation of pro-
inflammatory angiogenic responses in vivo.

Future directions
Several important questions related to non-classical
polypeptide release remain to be answered. Are there other
alternative pathways for non-classical export of FGF1 and IL-
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1α and, if so, how are they regulated? Is the molten globule a
common feature of such mechanisms? What are the transporter
molecules responsible for actin-dependent translocation of the
proteins from the cytosol to the cell membranes? How is this
translocation induced by cellular stress? Which phospholipids
or which groups of phospholipids interact with specific protein
members of the release complexes? Do phospholipid
signatures permanently exist in the inner leaflet of the cell
membrane or are they arranged in response to cellular stress?
How does the Cu2+- and phospholipid-dependent formation of
multiprotein release complexes induce their subsequent
translocation across the cell membrane? What is the source of
energy used for stress-induced transmembrane translocation?
Solving these problems will result in a better understanding of
the non-classical protein release and eventually in an improved
ability to regulate both inflammation and angiogenesis.
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