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Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate

decisions. However, their expression patterns and regulatory functions during normal

and malignant human hematopoiesis are incompletely understood. Here we present a

comprehensive resource defining the non-coding RNA landscape of the human hematopoietic

system. Based on highly specific non-coding RNA expression portraits per blood

cell population, we identify unique fingerprint non-coding RNAs—such as LINC00173 in

granulocytes—and assign these to critical regulatory circuits involved in blood homeostasis.

Following the incorporation of acute myeloid leukemia samples into the landscape, we further

uncover prognostically relevant non-coding RNA stem cell signatures shared between acute

myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the

importance of the non-coding transcriptome in the formation and maintenance of the human

blood hierarchy.
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T
o maintain hematopoietic stem cell (HSC) homeostasis and
lifelong blood production, a complex interplay of growth
factors, signaling cascades, and transcription factors con-

trols the balance between self-renewal, proliferation, quiescence,
and differentiation. Deregulation of this critical balance results in
myelodysplasia, myeloproliferation, or leukemia. Despite the
discovery of an enormous number and diversity of transcripts
from the previously ignored non-protein-coding genome1,
our knowledge remains limited regarding how non-coding RNAs
(ncRNAs) are involved in this interplay. In particular, ncRNAs
encompass a plethora of small regulatory RNAs including
microRNAs (miRNAs), as well as tens of thousands of

polyadenylated and non-polyadenylated long ncRNAs
(lncRNAs)1. LncRNAs can be antisense, intronic, intergenic, and
overlapping with respect to protein-coding loci, and can affect
multiple stages of gene regulation including chromatin mod-
ification, chromatin structure, and mRNA and protein biogenesis
during differentiation and development1, 2. Consistent with this
model, lncRNA expression is tightly controlled and exhibits even
higher cell specificity than proteins—including lineage-
determining transcription factors3, 4.

While miRNAs are established regulators of hematopoiesis and
leukemogenesis5, 6, lncRNAs as a class of transcripts remain
largely undescribed. Even in the case of known lncRNAs,
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Fig. 1 Microarray-based profiling of the ncRNA landscape in normal hematopoiesis. a Blood cell populations purified by multicolor flow cytometry from

different healthy individuals: hematopoietic stem cells (HSCs), common myeloid progenitor cells (CMPs), granulocyte-monocyte progenitor cells (GMPs),

megakaryocytes (MEGA), erythroid precursors (ERY), granulocytes (GRAN), monocytes (MONO), CD4 and CD8 T-cells, NK cells (NKC), and B-cells.

Cytospins were prepared after sorting. For HSCs, CMPs, and GMPs representative cytospins from in vitro expanded CB HSPCs are depicted. b Annotation,

distribution, and functional classes of the Arraystar Human lncRNA Microarray V2.0 probes according to the indicated databases. c Overlapping features

between the Arraystar Human lncRNA Microarray V2.0 and the NCode Human Long Non-coding RNA microarray. d Annotation, distribution, and

functional classes of the NCode Human Long Non-coding RNA microarray probes. e Box plots of log2-probe intensities for mRNAs (n= 978,840), ncRNAs

(n= 784,530), and lincRNAs (n= 90,855) from all NCode Human Long Non-coding RNA microarrays. P-values were calculated using the two-tailed

Welsh’s t-test
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Fig. 2 Distinct ncRNA expression profiles characterize cells of the different human blood lineages. All depicted data refer to the Arraystar Human lncRNA

Microarray V2.0 platform. a–c t-SNE of all samples using the most variable a mRNAs (3926), b ncRNAs (3151), and c lincRNAs (767). d Self-organizing maps

(SOMs) trained using the 17,655 most variable mRNAs and ncRNAs in 11 sample groups. Black rectangles: group-specific overexpression spots. Center: neighbor-

joining tree built using the 68 lineage-specific spot metagenes. e Heatmaps of (left) 2493 fingerprint ncRNAs and (right) 581 anti-fingerprint ncRNAs, defined by

integrating SOM and limma analyses. f Guilt-by-association workflow for the fingerprint/anti-fingerprint ncRNAs and all protein-coding genes. g Enrichment

map network analysis for HOTAIRM1 (FDR<0.05, see the methods section for details). Circle size corresponds to the size of the gene set, and connecting line

thickness represents the degree of similarity between two gene sets. Red and blue nodes indicate positive and negative correlation to HOTAIRM1 expression,

respectively. Gene set labels printed in bold indicate a similar association (FDR<0.05) observed in at least one AML validation cohort
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little functional information exists about their contribution to
hematopoietic processes and malignant transformation, with the
exception of a handful of well-characterized examples. Several of
these examples have been shown to control the maintenance
of mouse long-term HSCs7, 8 or the emergence of hematologic
cancers9–11.

Given the poor cross-species conservation and species-specific
expression patterns of ncRNAs, it is crucial to study their
regulation and regulatory function in humans, in order to develop
new strategies for leukemia treatment and regenerative medicine.
However, a systematic profiling and functional investigation of
known ncRNAs in the human hematopoietic system—including a
comparison to malignant leukemic blasts—has yet to be reported.
Here, we present a gene expression-based landscape of the
normal human hematopoietic hierarchy, generated by using
short and long ncRNAs, mRNAs from purified HSCs, and their
differentiated progenies. With this resource, we identify finger-
print ncRNAs for each blood lineage and predict their functions
during blood formation. By mapping pediatric AML patient
samples onto this landscape, we identify a stem cell signature of
ncRNAs upregulated in HSCs and AML blasts, as well as AML
subtype-specific ncRNAs. Our data and bioinformatic analyses
constitute a publically available resource for exploring the
transcriptional networks that underlie normal and malignant
hematopoiesis.

Results
Establishing a ncRNA expression atlas of human hematopoi-
esis. In order to establish a human ncRNA hematopoietic
expression atlas, we profiled the expression of known ncRNAs in
12 distinct blood cell populations purified by multicolor flow
cytometry from three to eight healthy donors. For each blood cell
population, RNA was hybridized onto three microarray platforms
(Fig. 1a), yielding a coverage of 38,860 unique ncRNAs, 20,466
mRNAs, and 900 miRNAs on 146 arrays (Fig. 1b–d). All array
probes were re-annotated using GENCODE v23, LNCipedia 3.1,
NONCODEv4, the human lincRNA body map4, and GenBank, in
that order of priority. The quantified transcripts were comprised
of mRNAs and different types of ncRNAs including long-
intervening ncRNAs (lincRNAs), pseudogenes, antisense tran-
scripts, retained introns, and small nucleolar RNAs (snoRNAs)
(Fig. 1b–d). As previously shown4, the mean expression level of
ncRNAs was nearly twofold lower (PWelsh’s< 2.2 × 10−16, Fig. 1e)
compared to mRNAs. Principle component analysis (PCA)
demonstrated high inter-platform concordance between the
different array platforms (Supplementary Fig. 1a–c). Furthermore,
the identity of the input populations and the performance of the
microarray platforms were confirmed by correlating our mRNA
expression profiles with those previously published in the differ-
entiation map of (human) hematopoiesis (DMAP)12 (Supple-
mentary Fig. 1d–g). Thus, we confirmed the quality of our
expression data and input cell populations, allowing for subsequent
systematic analysis of ncRNAs in the hematopoietic hierarchy.

Unique ncRNA expression profiles characterize blood lineages.
To test whether the blood cell populations could be distinguished
based on mRNA, ncRNA, or lincRNA expression, we performed
non-linear dimensionality reduction by t-distributed stochastic
neighbor embedding (t-SNE)13. The t-SNE representation of the
data showed robust separation of the samples according to cell
type, not only implying specific mRNA signatures (Fig. 2a and
Supplementary Fig. 2a), but also unique ncRNA (Fig. 2b and
Supplementary Fig. 2b) and lincRNA (Fig. 2c and Supplementary
Fig. 2c) expression profiles for each population. We further
structured the data set using self-organized maps (SOMs), which

combine sample- and gene-centered analyses14. In a SOM every
gene is plotted onto a 2D grid in such a way that genes with
similar expression profiles map to the same region of the graph,
forming spots of co-expressed genes. With this method, we
obtained unique expression portraits for each blood cell type,
from which coordinately upregulated mRNAs, ncRNAs, and
lincRNAs could be extracted from hotspots in the portraits
(Fig. 2d and Supplementary Fig. 2d). Furthermore, neighbor-
joining on the unique SOM-expression profiles constructed a
tree of the samples that recapitulated the hematopoietic tree
(Fig. 2d and Supplementary Fig. 2d). Constructing the tree
based only on ncRNA expression produced similar results
(Supplementary Fig. 2e).

To obtain high confidence lineage-specific ncRNA and
lincRNA signatures for each blood cell type, we determined the
overlap between SOM analyses and empirical Bayes methods
(linear models for microarray analysis (limma))15. This overlap
contained a total of 2493 fingerprint and 581 anti-fingerprint
ncRNAs (Fig. 2e and Supplementary Fig. 2f, g, Supplementary
Data 1, 2). The cell type specificity of the top-ranked HSC
fingerprint lincRNAs was validated by qRT-PCR (Supplementary
Fig. 2h). Overall, the highly cell-type-specific ncRNA expression
we observe in the human hematopoietic system implies the tight
regulation and coordinated function of this class of RNAs.

“Guilt-by-association” approach predicts ncRNA functions.
Aiming to infer putative functions for lineage-associated ncRNAs
during differentiation, we constructed a correlation matrix
between the expression profiles of the fingerprint/anti-fingerprint
ncRNAs and 18,295 protein-coding genes (Fig. 2f). We hypo-
thesized that ncRNAs and coding genes belonging to the
same biological pathways are likely coordinately regulated. In a
guilt-by-association approach16, the correlation data
were aggregated by parametric analysis of gene set enrichment
(PAGE)17 to compute the associations of each ncRNA with over
6000 gene sets18 (Supplementary Data 3). This yielded more than
70,000 significant ncRNA-gene set interactions (false discovery
rate (FDR)< 0.01), which could be further interrogated by
clustering functional modules (Fig. 2f). For HOTAIRM1, a well-
known granulocyte fingerprint lncRNA19, the analysis predicted
association with inflammatory and innate immune response
pathways, and showed a strong correlation with gene sets
upregulated in NPM1-mutated AML (Fig. 2g). Furthermore, the
algorithm predicted a negative association between HOTAIRM1
and ribosome biogenesis, pluripotency and cell cycle progression,
which is consistent with HOTAIRM1 being a negative cell cycle
regulator during myeloid differentiation20.

We validated our approach in two independent data sets of
more than 600 AML samples21, 22, demonstrating remarkable
stability with an overlap of 80% of all associated gene sets
(Supplementary Fig. 3a, b, Supplementary Data 4). Most
importantly, as predicted by our data set, AMLs with NPM1
mutations were characterized by significantly higher expression of
HOTAIRM1 compared to NPM1-wild type samples in both AML
cohorts (PWelsh’s< 10−7 and PWelsh’s< 10−15; Supplementary
Fig. 3c, d). In summary, for every blood cell population we were
able to identify fingerprint ncRNAs, to which we assigned
potential functions using a guilt-by-association approach coupled
with gene set enrichment analyses (GSEA). The capacity of this
pipeline to infer putative functions and generate testable
hypotheses was exemplified with the well-studied lncRNA
HOTAIRM1.

Prediction of novel ncRNA regulators of granulopoiesis.
To test whether our expression resource and established
bioinformatic pipeline can identify novel functionally important
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fingerprint lncRNAs and guide hypothesis-driven research, we
focused on the granulocyte signature ncRNAs. Within this
signature, we identified a set of lncRNAs—including HOTAIRM1
—that are absent from HSCs but become gradually upregulated
from CMPs to GMPs to granulocytes (Fig. 3a).

To maximize coverage of the non-coding transcriptome and to
confirm that the use of microarray platforms did not bias our

analyses of myelopoiesis, we performed RNA-sequencing
(RNA-seq) in myeloblasts, promyelocytes, metamyelocytes, and
mature neutrophils to represent the myeloid differentiation
path23 (Fig. 3b, c). Whereas RNA-seq performed equally well as
arrays for the detection of coding genes, we found that low read
counts impaired the ability of RNA-seq to reliably estimate the
abundance of many ncRNAs. The combination of two array
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platforms yielded more than a twofold higher coverage of
GENCODE-annotated ncRNAs (18,280) or lincRNAs (4228)
than RNA-seq (7759 ncRNAs and 1502 lincRNAs; Supplemen-
tary Fig. 4a). Additional 2569 GENCODE-annotated ncRNAs
were detected by RNA-seq, but were not captured by the arrays.
To extract modules of co-regulated ncRNAs in the RNA-seq data
set, we again trained a SOM. This led to the identification of three
robust co-expression modules of ncRNAs upregulated early,
transiently, or late during myeloid differentiation (Fig. 3c,
Supplementary Fig. 4b–d, and Supplementary Data 5).

We reasoned that ncRNAs which are gradually upregulated
from HSCs to CMPs to GMPs to granulocytes (microarray
platforms) and from myeloblasts, promyelocytes, metamyelo-
cytes, and mature neutrophils (RNA-seq) may be early regulators
of granulopoiesis. Of these, LINC00173 was the lincRNA with the
most specific expression in mature granulocytes (Fig. 3a, d–f).
LINC00173 is encoded on the long arm of chromosome 12 and
exists in four major isoforms (Fig. 3g). In human neutrophils, the
LINC00173 locus shows promoter- (H3K4me3, H3K27ac) and
elongation-associated (H3K36me3) histone modifications24 as
well as a strong cap analysis of gene expression (CAGE) signal at
its transcriptional start site25 (TSS) indicative of active transcrip-
tion (Fig. 3g) Whole-genome bisulfite sequencing data further
showed demethylation of the LINC00173 locus in differentiated
blood cells. Meanwhile, the absence of CAGE-seq signals,
H3K4me3, H3K27ac, or H3K36me3 in B-cells, T-cells, erythro-
blasts, and monocytes (Supplementary Fig. 5a) validate
LINC00173 as an actively transcribed and regulated gene
specifically in granulocytes. CAGE-seq data from more than
700 human tissue samples and cell lines25 confirmed that
LINC00173 has more than a tenfold higher expression in
granulocytes than in any other human tissue (Supplementary
Fig. 5b). Notably, LINC00173 shows substantial sequence
conservation both at the TSS (P< 10−20; RS score >median
background25) and in the gene body (P< 10−18; RS score>
median background25) based on its overlap with Genomic
Evolutionary Rate Profiling (GERP)-elements26 (Fig. 3g).

Our guilt-by-association approach revealed LINC00173 to be
co-expressed with genes involved in interferon response, myeloid
differentiation, and polycomb repressive complex 2 (PRC2)-
regulated networks (Fig. 3h). Inversely, LINC00173 expression
was negatively associated with gene sets involved in stemness and
cancer, as well as cell cycle progression (Fig. 3h). Together, the
guilt-by-association network and the expression pattern of
LINC00173 suggest the involvement of this lincRNA in regulating
the proliferation and maturation of granulocytes.

LINC00173 controls myeloid differentiation. The repression of
stemness and proliferation programs is an essential requirement
for granulocytic differentiation, and has been linked to chromatin
remodeling27, 28. The positive correlation between LINC00173
and PRC2-regulated networks and the negative correlation with
stem cell and cell cycle networks identified by our bioinformatic

pipeline led us to hypothesize that LINC00173 represses the latter
expression programs during granulopoiesis. To test this hypoth-
esis, we knocked down LINC00173 in human CD34+ hemato-
poietic stem and progenitor cells (HSPCs) using two different
validated shRNAs (Supplementary Fig. 5c). This caused a defect
in granulocytic differentiation in vitro, as indicated by a
significantly reduced proportion of CD66b+ granulocytic cells
compared to the non-targeting shRNA-transduced control cells
(Fig. 4a). Morphologic analyses and leukocyte peroxidase (POX)
staining confirmed an increase of myeloid precursors and a
concomitant decrease of mature POX+ granulocytes with multi-
lobed nuclei (Fig. 4a). Functionally, LINC00173-knockdown cells
showed significantly decreased phagocytic capacity—indicating
impaired functionality as is expected with perturbed maturation
(Fig. 4b and Supplementary Fig. 5d). However, while we observed
reduced proliferation and myeloid colony formation, erythroid
colony formation was almost unaffected by LINC00173 knock-
down (Fig. 4c, d). This not only suggests a role for LINC00173
during proper granulocytic differentiation, but also that
LINC00173 is already required for the growth and maintenance of
early myeloid progenitors or precursors.

Next, we applied CRISPR-interference (CRISPRi)29 for
transcriptional repression of LINC00173 in the NB4 leukemia
cell line. NB4 cells have an intrinsic block of granulocytic
differentiation at the promyelocyte stage. Repression of
LINC00173 using two different sgRNAs (Supplementary Fig. 5e)
reduced proliferation in six independent NB4:dCas9-KRAB
monoclones (Fig. 4e), underlining the importance of LINC00173
at an early stage of myelopoiesis.

Localization studies can provide first insights into the
molecular functions of lncRNAs. For LINC00173 we therefore
performed RNA fractionation followed by qRT-PCR and RNA
fluorescence in situ hybridization. These experiments revealed
the localization of LINC00173 in the nucleus, similar to the
X-inactivating XIST and tumor suppressor MALAT1 lncRNAs
(Fig. 4f, g and Supplementary Fig. 5f, g).

To capture early transcriptional changes mediated by
LINC00173, we examined the effects of LINC00173 knockdown
on gene expression profiles in transduced CD34+ HSPCs. GSEA
(Fig. 4h) and a comparison of the leading-edge genes with the
human DMAP data set12 (Fig. 4i) revealed an upregulation of
gene sets related to stemness, megakaryopoiesis, and erythropoi-
esis upon LINC00173 knockdown. These data indicate that the
negative association between LINC00173 and stemness gene sets
observed in the guilt-by-association approach is indeed the
consequence and not the cause of LINC00173 expression.

Since our guilt-by-association approach also revealed the
co-expression of LINC00173 with genes involved in PRC2-
associated networks (Fig. 3h), we speculated that LINC00173
associates with components of PRC2, as has been shown for
several other lncRNAs30. Indeed, RNA immunoprecipitation
(RIP) followed by qRT-PCR using two independent antibodies in
two different cell lines indicated binding between LINC00173 and
the EZH2 subunit of PRC2 (Fig. 4j and Supplementary Fig. 5h).

Fig. 3 LINC00173 is a granulocyte-specific lincRNA. a Averaged expression (top) and heatmap of granulocyte fingerprint ncRNAs (top 30 without

pseudogenes) which show increasing expression from HSCs to CMPs to GMPs. b RNA-seq of human myelopoiesis: PCA on the 1373 most variable ncRNAs

in the data set. The arrow indicates the main trajectory of myeloid maturation. Bl/PM blasts/promyelocytes,MM metamyelocytes, PMN polymorphonuclear

neutrophils. c SOM representation of RNA-seq data set revealing three spots of co-regulated metagenes (modules), whose expression properties are

depicted in the bar charts below. d–f LINC00173 expression normalized to granulocytes as measured by d the Arraystar Human lncRNA Microarray V2.0

(n= 3–5 per data point), e qRT-PCR (n= 3), and f RNA-Seq (n= 2–4). Error bars indicate± s.e.m. g The LINC00173 gene locus depicting the array probe and

alternative isoforms (according to ENSEMBL GRCh38.p5), together with UCSC genome browser tracks (http://genome.ucsc.edu; assembly: GRCh38/hg38)

of RNA-Seq and ChIP-seq data (BLUEPRINT)24, CAGE-Seq Signals (FANTOM5)25, and sequence conservation (GERP-elements)26 in mature human

neutrophils. h Guilt-by-association results for LINC00173. Circle size corresponds to the size of the gene set, and connecting line thickness represents the

degree of similarity between two gene sets. Red and blue nodes indicate positive and negative correlation to LINC00173 expression, respectively
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PRC2 is required for proper lineage specification during
hematopoietic differentiation, and acts by silencing a “legacy” of
stem cell genes and suppressing alternative cell fates via
trimethylation of H3K2727. ChIP-seq demonstrated that
LINC00173 knockdown in CD34+ HSPCs results in differential
H3K27 trimethylation at the promoter regions of leading-edge
genes (Fig. 4i) related to stemness, megakaryopoiesis, and

erythropoiesis during early myeloid specification (Fig. 4k).
Among these was the HOXA7-HOXA10 locus containing
HOXA7, HOXA9, and HOXA10—homeodomain-containing
transcription factors with important roles in the expansion of
HSCs and AML blasts31 (Fig. 4k). The promoter of the Rho
GTPase-activating protein SYDE1 also showed loss of H3K27me3
(Fig. 4k).
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In total, our data strongly suggests the contribution of
LINC00173 to lineage fidelity in complex with PRC2. We have
shown this link through a wide range of cellular and molecular
techniques, culminating in proof of a direct interaction between
LINC00173 and EZH2, and changes in H3K27 at HOX promoters
upon LINC00173 knockdown.

DLK1-DIO3 cluster ncRNAs are upregulated in mega-
karyopoiesis. As previously shown, each blood cell population
possesses a distinct miRNA expression profile5, which we
confirmed with our data set using t-SNE, limma, and
SOM-expression portraits (Fig. 5a, b, Supplementary Fig. 6a and
Supplementary Data 6). Next, we integrated hematopoietic
miRNA and ncRNA expression data from our resource and
coupled them to chromosomal positioning, in order to detect
coordinated expression changes of genes located within specific
cytogenetic bands. This multi-dimensional approach uncovered a
strong and highly coordinated upregulation of several ncRNA
classes in the DLK1-DIO3 locus on human chromosome 14,
specifically in megakaryocytes (average log2-fold change> 5,
average adj. P< 10−8; moderated t test15, confirmed by qRT-PCR;
Fig. 5c, d and Supplementary Fig. 6b–d). The DLK1-DIO3 locus
(Fig. 5e) is imprinted and harbors three paternally expressed
coding genes (DLK1, RTL1, and DIO3), as well as numerous
maternally expressed ncRNAs—all of which are regulated by a
common cis-element (IG-DMR) and transcribed as a single huge
polycistronic transcript32, 33. Among the ncRNAs are several
lncRNAs, a box C/D snoRNA cluster, and 54 miRNAs, including
the miR-127~136 cluster (7 miRNA-members), the miR-379~410
megacluster (42 miRNAs), and intronic miR-770. While the
lncRNAs of the homologous mouse Dlk1-Gtl2 (alias Dlk1-Meg3)
locus are specifically expressed in murine LT-HSCs7, we
discovered that this specificity is not conserved in the human
system. Instead several of these ncRNAs and their isoforms are
upregulated in megakaryocytes compared to HSCs (Supplemen-
tary Fig. 6c, d; validated by qRT-PCR in Fig. 5c, d) and are
retained in thrombocytes (Fig. 5c). In CD41+ megakaryocytes the
locus is marked by H3K4 trimethylation, as well as H3K27
acetylation at the promoter region and H3K36 trimethylation
along the length of the ncRNA cluster24, confirming active
transcription in these cells (Fig. 5e).

To investigate whether the miRNAs and lncRNAs of the
human DLK1-DIO3 locus play a role in the differentiation and
maintenance of megakaryocytes, we performed gain- and loss-of-
function studies using human CD34+ HSPCs. We ectopically
expressed four miRNAs representing different clusters and/or
miRNA-families: miR-770 located in the intron of MEG3, miR-
136 from the miR-127~136 cluster, and miR-379 and miR-410 as

the first and last miRNAs from the megacluster (Supplementary
Fig. 7a). During megakaryocytic differentiation we noted a sharp
increase of CD41+/CD42b+ megakaryocytic cells upon forced
expression of each of the four miRNAs (Fig. 5f); meanwhile, their
effects on proliferation were subtle (Supplementary Fig. 7b). The
impact of the DLK1-DIO3 locus on megakaryopoiesis was
reinforced by loss-of-function experiments, with shRNAs directed
against the MEG3, MEG8, MEG9 lncRNAs, and the coding gene
DLK1 (two shRNAs per gene; Supplementary Fig. 7c). Knock-
down of each of the four genes interfered with megakaryocytic
differentiation, as evidenced by a reduction of differentiated
CD41+/CD42b+ megakaryocytes in culture, with little effect on
proliferation (Fig. 5g and Supplementary Fig. 7d). Similarly, a
reduction of CD41+ CFU-megakaryocytes was observed upon
knockdown of the three lncRNAs (Supplementary Fig. 7e, f).
In conjunction with our integrated microarray-based miRNA/
ncRNA expression analysis, these gain- and loss-of-function
experiments define a novel but important function for the DLK1-
DIO3 locus during differentiation along the megakaryocytic
lineage—thereby classifying the locus as a positive regulator of
megakaryopoiesis.

Self-organizing maps reveal ncRNA stem cell signatures in
AML. To extend our findings and our resource to malignant
hematopoiesis, we incorporated 46 pediatric AML samples into
the human hematopoietic ncRNA expression atlas. The AML
samples included Down syndrome (DS) and non-DS
acute megakaryoblastic leukemia (AMKL; i.e., AML FAB M7),
core-binding factor (CBF) AMLs (inv[16] and t[8;21]) and
MLL-rearranged AMLs (t[9;11] and t[10;11]). The identities of
the underlying AML subgroups in the corresponding samples
were confirmed by single-sample pathway activity analysis34

on coding genes (Supplementary Fig. 8a), enabling a credible
systematic analysis of the ncRNAs associated with each subgroup.
Indeed, we identified ncRNA signatures specific to DS-AMKL,
AMKL, t(8;21), inv(16), and MLL-rearranged samples (Fig. 6a).

Next, we used t-SNE to map the pediatric AML samples onto
the ncRNA expression landscape of normal hematopoietic
differentiation. Density-based clustering (densVM)—a machine-
aided subset identification algorithm35

—correctly identified all
groups of normal blood cells, which served as landmarks on the
two-dimensional (2D) t-SNE landscape (Fig. 6b and Supplemen-
tary Fig. 8b, c). The AML samples were divided into four distinct
groups on this landscape, based on their ncRNA expression
(Fig. 6b and Supplementary Fig. 8b, c). Two groups mapped
closely with healthy HSCs, which we termed stem cell AML (SC-
AML) groups I and II. The SC-AML group I contained mainly
DS- and non-DS-AMKL samples (six out of eight samples),

Fig. 4 LINC00173 is a novel regulator of granulocytic development. a–d RNAi (shRNA)-mediated knockdown of LINC00173 in CD34+ HSPCs in vitro.

a Granulocytic in vitro differentiation (day 14). Upper panel: May-Grünwald Giemsa (MGG) staining; scale bars 20 µm. Middle panel: neutrophil peroxidase

(POX) staining; scale bar 20 µm. Lower panel: flow cytometric analysis of CD66b and CD13 surface marker expression. The bar graphs (right) show the

mean± s.d. of three independent experiments. b Percentage of bead-positive cells in a phagocytosis assay. The histogram depicts the fluorescence

intensity. c Number of BFU-E and CFU-G/M (CFU-my) in methylcellulose-based CFU-assays normalized to the non-silencing shRNA control (ctrl).

d Number of shRNA-transduced cells during granulocytic in vitro differentiation normalized to day 0. e Ratio of RFP657+ sgRNA-transduced vs.

untransduced cells relative to the non-targeting control (sgRNAs against luciferase), using monoclonal NB4 cell lines stably expressing dCas-KRAB (n= 6).

f Cytoplasmic to nuclear ratio of LINC00173 determined by qRT-PCR on fractionated RNA from THP-1 cells. g RNA FISH with tiled biotinylated probes in

THP-1 cells; scale bars 10 µm. h GSEA results for 52 hematopoiesis-associated gene sets upon LINC00173 knockdown in CD34+ HSPCs. The plot shows

normalized enrichment scores (NES) against nominal P-values of the normalized enrichment score18, dotted line: P= 0.05. i Heatmap showing expression

of leading-edge genes from the “Fischer_DOWN IN SEVERE APLASTIC ANEMIA” gene set across the human DMAP data set12. j RIP in NB4 cells using two

different antibodies, followed by qRT-PCR to detect binding of EZH2 to LINC00173. Data are presented as percent of input in comparison to B2M. k ChIP-

seq density heatmaps for H3K27me3 in promoter regions of leading-edge genes from the indicated gene sets upon LINC00173 knockdown. shRNA-

transduced CD34+ HSPCs (sh-L173 and sh-CTRL) are compared to untransduced and uncultured CD34+ HSPCs. Clusters of promoters with differential

H3K27me3 marks are highlighted. Representative stem cell-specific genes are shown (right). Data are presented as mean± s.d. a–f, j, or s.e.m. c, e.

*P< 0.05; **P< 0.01; ns not significant; P-values were calculated using one-way ANOVA with Dunnett’s post hoc test
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Fig. 5 ncRNAs of the DLK1-DIO3 locus control human megakaryopoiesis. a t-SNE of all samples using 240 variance-filtered miRNAs from the NCode

Human miRNA Microarray V3 platform. b Heat map of 174 cell-type-specific fingerprint miRNAs. c, d Genome-wide view of log2-FC for c miRNAs (NCode
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whereas the SC-AML group II mostly consisted of
MLL-rearranged samples (six out of eight samples). The
remaining AML samples mapped to a space between the GMPs,
monocytes and CMPs (referred to as group “MP-AML”, Fig. 6b).
Interestingly, pathway activity clustering and t-SNE revealed the
effective absence of a myeloid expression program in SC-AML
samples (Fig. 6c and Supplementary Fig. 8a). Thus, the SC-AML
samples were not characterized by upregulation of HSC
fingerprint ncRNAs compared to the remaining AML samples,
but rather by downregulation of differentiation-associated
ncRNAs (Fig. 6c and Supplementary Data 7). This suggests that
transformed AML blasts express a conserved HSC program
independent of the expression of a differentiation program, as has
been previously shown for protein-coding genes36, 37.

In order to uncover such a ncRNA HSC program in AML
blasts, we proceeded with an integrated approach that could
capture the shared features of AMLs and healthy HSCs. To this
end, we trained a SOM containing 7094 ncRNAs selected by
variance-based filtering. We identified two spots (“A” and “B”;
Fig. 6d) containing 1215 and 300 ncRNAs, respectively, which
were expressed in HSCs and AML blasts from diverse cytogenetic
backgrounds (MLL-rearrangement and t[8;21]) and morpholo-
gies (with or without maturation; monoblastic/monocytic, or
megakaryoblastic). The signatures could be further refined by
calculating the overlap with limma, resulting in 576 spot A and
99 spot B high confidence ncRNAs, respectively (Supplementary
Data 7). Pathway activity analysis revealed that samples with high
expression of spot B ncRNAs were mainly from the core-binding
factor rearranged subgroup, whereas samples with high expres-
sion of spot A ncRNAs came from all AML subgroups and
showed upregulation of HSC fingerprint genes (Fig. 6e, f,
Supplementary Fig. 8d, e and 9). Therefore, we reasoned that
the ncRNAs in spot A are indeed HSC-related and represent a
general ncRNA stem cell core signature.

ncRNA stem cell signatures determine prognosis in AML. To
test whether our defined ncRNA stem cell signatures can be
used to predict the survival of AML patients, we applied an
unsupervised clustering approach and grouped 171 adult AML
patients from an independent patient cohort38 (Supplementary
Table 1) based on their ncRNA expression (Fig. 7a, d). Indeed,
patients who showed higher expression of the ncRNA stem cell
signature (spot A signature) also showed significantly better
overall (OS) and event-free survival (EFS; Fig. 7b, c). In contrast,
downregulation of differentiation-associated ncRNAs—which
characterized t-SNE SC-AML groups I and II (SC-AML
signature)—predicted poor OS and EFS (Fig. 7d–f). Of note, the
ncRNA expression signatures could add further prognostic
value to a recently published gene stemness score that includes
17 coding genes (LSC17; Supplementary Fig. 10)39. Within the
LSC17 high-risk patients (Supplementary Fig. 10a), the spot A
signature and SC-AML ncRNA signature could identify
those with a very high risk and an even worse OS (spot A:
Plog-rank= 0.011; SC-AML: Plog-rank< 0.0001) and EFS (spot A:
Plog-rank= 0.006; SC-AML: Plog-rank< 0.0001; Supplementary
Fig. 10c, e). In contrast to the spot A lncRNA set, the SC-AML
signature was also prognostic for patients with a low
LSC17 signature (OS: Plog-rank= 0.005; EFS: Plog-rank= 0.003;
Supplementary Fig. 10b, d, and f). Inversely, the average
LSC17 score of patients grouped according to the SC-AML
expression profile did not significantly differ (0.54 vs. 0.48;
PWelsh’s= 0.53). The LSC17-high group did not contain a higher
proportion of SC-AML high-risk patients than the LSC17
low group (PFisher’s exact= 0.79), showing that the LSC17 score
and our ncRNA signatures are indeed independent risk

predictors. Thus, our expression resource enabled the identifica-
tion of prognostically useful ncRNA signatures shared by normal
HSCs and AML blasts of distinct cytogenetic and morphologic
subgroups. These results show that the incorporation of ncRNAs
will improve the prognostic value of published gene signatures
based on coding genes.

Discussion
By high density reconstruction of the human coding and
non-coding hematopoietic landscape, our study enabled us to
identify highly relevant fingerprint ncRNAs that regulate lineage
specification, HSPC maintenance and differentiation. Integration
of a comprehensive set of pediatric AML samples allowed us to
further define a core ncRNA stem cell signature in normal HSCs
and AML blasts, which served as a prognostic marker in
an independent cohort of AML patients. This signature will
inform our understanding of self-renewal and the underlying
transcriptional programs which are hijacked during malignant
transformation, and may pave the way for novel therapeutic
interventions targeting the non-coding transcriptome. The
open-access resource provided by our study will be of value for
advancing the current knowledge of ncRNA functions in normal
hematopoiesis, and may help to uncover ncRNAs for therapeutic
targets in myeloid leukemia and for regenerative medicine.

For the granulocyte-specific LINC00173, we demonstrated that
our expression resource coupled with the established bioinfor-
matic pipeline can define functionally relevant fingerprint
lncRNAs and infer their functions. We validated that LINC00173
controls the proliferation of myeloid progenitor cells and
differentiation into granulocytes. We propose that this occurs
through transcriptional silencing of the expression programs of
alternative blood lineages via interaction between LINC00173 and
EZH2, a core component of the repressive PRC2 complex. Future
studies will need to investigate whether modulating LINC00173
expression can instruct or block granulocytic differentiation in
patients with perturbed granulopoiesis, such as severe congenital
neutropenia (Kostmann’s disease). As we have made our
fingerprint ncRNAs plus their co-expressed coding gene sets
publically available in an online resource, we expect our data set
to prompt the discovery and characterization of many more
functional ncRNAs with roles in health and disease.

Our work additionally underscores the importance of studying
ncRNAs in human samples in order to understand and perturb
the human blood system. While Qian et al. showed that ncRNAs
from the imprinted Dlk1-Gtl2 cluster are specifically expressed in
mouse LT-HSCs and are essential for their maintenance7, we
did not observe this specificity in the human system. Instead,
miRNAs, snoRNAs and several lncRNAs from the human
DLK1-DIO3 locus were highly expressed in megakaryocytes
and controlled the differentiation of these cells. One possible
explanation for the prominence of this cluster in both HSCs
and megakaryocytes is the close relationship between the two
cell types40—underlined by the recent proposal that
human megakaryocytes differentiate through a direct route
from HSCs, bypassing a multipotent progenitor cell state
(i.e., megakaryocytic/erythroid progenitor cells)41. Whether
the miRNAs of the human DLK3-DIO3 locus also maintain
megakaryopoiesis through repression of PI3K-mTOR signaling—
as shown for LT-HSCs7—remains to be elucidated, as does the
mechanism through which the lncRNAs feed into this circuit.

Despite the enormous diversity of reported genetic alterations
in AML38 affecting many different cellular pathways and
programs, the ultimate result of their interplay in AML blasts is
uniform. Malignant stem or progenitor cells possess enhanced
self-renewal capacity while their differentiation is abnormal36.
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Therefore, we reasoned that normal HSCs and AML blasts of
different cytogenetically and morphologically defined subgroups
share a common characteristic, namely a core self-renewal or
stemness program37. We applied artificial neural networks to
identify such a core ncRNA stem cell signature. Since lncRNAs
have the capacity to precisely control the cellular epigenetic and
transcriptional landscape30, this core ncRNA signature may be
essential for establishing and maintaining a stem cell-like state.
Indeed, we showed that high expression of the ncRNA signature
or the absence of a ncRNA differentiation program serve as
prognostic factors in an independent cohort of 171 adult AML
patients, suggesting the functional importance of these ncRNAs.

As these signatures added prognostic value to a previously
published 17 coding gene stemness score in AML39, we believe
that ncRNAs expression data will help to identify patients who
are at high risk of death or relapse and may profit from more
intensive or alternative treatment approaches.

As of yet, therapeutic targeting of causative oncogenic proteins
has remained widely unsuccessful. Hence, unraveling the self-
renewal programs shaped by lncRNAs will not only enhance
regenerative medicine. Defining similarities and differences
between stem cell programs in normal HSCs and leukemic cells
will also delineate a yet unrecognized therapeutic window,
enabling us to develop novel cancer-specific treatments. With
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metagenes (corresponding to 1215 and 300 ncRNAs, respectively)—and AML samples displaying high expression of Spot A or Spot B metagenes.
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recent advances in RNA-based therapies, targeting aberrant
transcriptional programs in AML is a strategy that is now within
reach42. Our publically available resource and bioinformatic
pipeline will certainly advance our understanding of the tran-
scriptional organization underlying stem cell homeostasis and
lineage specification, and will bring us another step closer towards
achieving this overarching aim.

Methods
Primary cells and patient samples. Cord blood (CB), peripheral blood (PB), and
G-CSF mobilized mononuclear cells (PBMCs) were obtained from anonymous
healthy donors. HSPCs were positively selected by labeling CD34-expressing cells
with magnetic cell-sorting beads (Miltenyi Biotech). Fetal liver CD34+ HSPCs were
purchased from Novogenic Laboratories (LLC USA). Culture conditions for
maintenance, granulocytic, megakaryocytic, erythroid, and megakaryocytic/ery-
throid in vitro differentiation of CD34+ HSPCs have all been previously descri-
bed43, 44. Megakaryocytes and erythroblasts were obtained from CB CD34+ HSPCs
through 7 days of in vitro differentiation followed by sorting for CD41+/CD42b+

(megakaryocytes) or CD36+/CD235a+ (erythroid cells). Granulocytes (FShigh,
SShigh, CD15+, CD66+), monocytes (FShigh, SSlow/mid, CD14+), NK cells (FSlow,
SSlow,CD56+,CD3–), CD4-T-cells (FSlow, SSlow, CD3+, CD4+, CD8–), CD8-T-cells
(FSlow, SSlow, CD3+, CD4–, CD8+), and B-cells (FSlow, SSlow, CD19+, CD3–,
CD56–) were sorted based on surface markers from the PB of five healthy donors.
HSCs (Lin–/CD34+/CD38–), CMPs (Lin–/CD34+/CD38+/CD123+/CD45RAmid),
and GMPs (Lin–/CD34+/CD38+/CD123+/CD45RAhigh) were sorted from
CD34-enriched HSPCs from fetal liver samples, CB, or PBMCs. Cell lines (THP-1
(DSMZ: ACC-16), NB4 (ACC-207), 293T (ACC-635), HT1080 (ACC-315), 32D

(ACC-411) were purchased from the German National Resource Center for Bio-
logical Material (DSMZ), maintained under recommended conditions and monthly
tested negatively for mycoplasma. The Berlin-Frankfurt-Münster AML Study
Group (AML-BFM-SG, Hannover, Germany) provided anonymous AML patient
samples. Bone marrow or PB samples were sorted for blasts (AMKL/DS-AMKL:
CD3–, CD19–, CD41+, CD117+, and/or CD34+; other AML subtypes: CD3–,
CD19–, CD117+, and/or CD34+). Informed consent was obtained from all human
participants. All investigations were approved by the local Ethics Committee of
Hannover Medical School and were performed in accordance with the declaration
of Helsinki and local laws and regulations.

Microarray data collection. Total RNA was isolated with Quick RNA Microprep
for HSCs, CMPs, GMPs, MEPs, and AML samples with <1×105 cells and with
Quick RNA Miniprep for all other samples (both Zymo Research). RNA quality
was assessed using the Agilent 2100 Bioanalyzer. For microarray analysis, the
Agilent Array platform was employed. Briefly, rRNA was removed from 1 μg total
RNA (mRNA-ONLY Eukaryotic mRNA Isolation Kit, Epicentre). Each sample was
then amplified and transcribed into fluorescent cRNA using a random-priming
method, thus capturing the entire length transcripts without 3′ bias. The
labeled cRNA was hybridized onto three platforms: the Arraystar Human lncRNA
Microarray V2.0 (Agilent-033010), and the NCode Human Long Non-coding RNA
microarray (Agilent-021441) and NCode Human miRNA Microarray V3 (Agilent-
021827). After washing the slides, the arrays were scanned by the Agilent Scanner
G2505B. Agilent Feature Extraction software (version 10.7.3.1) was used to analyze
acquired array images. These steps were either performed by Arraystar Inc. or the
core facility of the Helmholtz Center for Infection Research in Braunschweig,
Germany. For LINC00173 knockdown in human CD34+ HSPCs, SurePrint G3
Human Gene Expression v3 Microarrays (Agilent-072363) were used. These were
processed in the core facility of the Helmholtz Center for Infection Research in
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Fig. 7 ncRNA stem cell signatures predict survival in adult AML. a PCA of 171 adult AML samples38 using the Spot A signature (Supplementary Data 7).
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Braunschweig, Germany, using the Agilent Technologies Scanner G2505C. Back-
ground corrected features were extracted using Agilent Feature Extraction software.

The data were analyzed using R and Bioconductor45. Arraystar Human lncRNA
Microarray V2.0 NCode Human Long Non-coding RNA microarray, and NCode
Human miRNA Microarray V3 data sets were processed and analyzed separately,
with the exception described in Supplementary Fig. 1a–c for PCA on a joint data
set of 15,219 GENCODE-annotated transcripts shared by the Arraystar Human
lncRNA Microarray V2.0 and NCode Human Long Non-coding RNA microarray
platforms. For assessment of the global concordance between the two ncRNA
platforms, the correlation coefficients between all possible pairwise sample
combinations on each platform were calculated and plotted against each other,
yielding a “correlation of correlations” coefficient46.

Probe annotation. The GENCODE v23 (release 09/2015)47, LNCipedia 3.1
(release 02/2015)48, and NONCODE v4 (release 01/2014)49 transcript databases
were downloaded as FASTA files. All 60mer probes on each array (Arraystar
Human lncRNA Microarray V2.0: 60,699, NCode Human Long Non-coding RNA
microarray: 39,246) were then aligned against primary transcript sequences with
one mismatch allowed. In the case of multiple hits, final gene symbols, and names
were assigned in the following order of priority: 1. GENCODE, 2. LNCipedia, 3.
NONCODE, 4. as designated by the manufacturer including more than
4000 lincRNAs described by Cabili et al4. For the NCode Human miRNA
Microarray V3 the manufacturers annotation was used.

Preprocessing. Array quality was checked by inspection of probe intensity
distributions and by PCA of log2-transformed unprocessed data. At this point three
outlier arrays (1 B-cell, 1 NK-cell, and 1 CD4-T-cell array from the Arraystar set)
were excluded from further analysis due to low signal strength. Data were
log2-transformed and quantile-normalized using the “limma” package15. For the
integrated analysis of healthy blood and AML samples, a batch correction between
AML and healthy cells was performed on quantile-normalized log2-values, using
the parametric ComBat algorithm as implemented in the R package sva50.

Selection of probes for unsupervised analyses. The performance of
unsupervised (class discovery) algorithms depends on the number of features used
as input. To reduce the noise inherent to any high-dimensional data set, selection
of potentially interesting features displaying at least some variation needs to be
applied. This is normally performed using the interquartile range or coefficient of
variation (standard deviation (s.d.)/mean). We applied both methods to our data
set using the R package genefiler. However, upon close inspection of the selected
features we noted that many informative genes were not selected, either due to
exclusive expression in a subgroup of samples constituting <12.5% of the total
sample size or due to relatively high baseline expression in all other samples. To
circumvent this problem and to select features that might be expressed highly
specifically in our smallest subgroups (NK cells; CMPs, GMPs: three samples each)
we used an adaption of the ROSE algorithm (Recognition of Outliers by Sampling
Ends)51. For ROSE, the intensity values of each probe were plotted in ascending
order over all samples. The plots were divided into thirds and a linear regression
curve was fitted to the middle third of the set of intensities. The third and ante-
penultimate samples (to account for group size ≥3) were used as fixed cutoff points
were the observed intensity was compared to the trend line. When the observed
log2-FC at these points was higher than a defined threshold the probe was included
for further analysis. This procedure excluded probes showing only high variances
and selected a higher number of informative, lineage-specific “fingerprint” genes.
The R-script for our implementation of ROSE is available upon request. The
thresholds used for ROSE were as follows: for Arraystar Human lncRNA Micro-
array V2.0, Fig. 2a–c t-SNE: log2-FC> 2 and log2-FC< 2.5 resulting in 7077
probes; Fig. 2d SOM: log2-FC> 1 and log2-FC< 2 resulting in 17,655 probes; and
for NCode Human Long Non-coding RNA microarrays, Supplementary Fig. 2a–c
t-SNE: log2-FC > 1.5 and log2-FC< 1.7 resulting in 5279 probes; Supplementary
Fig. 2d SOM: log2-FC> 0.6 and log2-FC< 1.5 resulting in 14,256 probes.

Unsupervised analyses. For 3D and 2D representation of sample maps we used
t-SNE13. t-SNE is a non-linear dimensionality reduction technique which maps the
original sample to sample distances in the high-dimensional feature space.
These distances are subsequently mapped to a lower dimensional space by
stochastic minimization of the Kullback–Leibler divergence between the
distribution of pairwise similarities in the high-dimensional space and the
t-distribution of similarities in the lower dimensional space. We used the
Barnes–Hut implementation of t-SNE from the Rtsne-package on the indicated
numbers of ROSE-selected probes with no prior PCA, and visualized the results as
2D or 3D plots. Density-based clustering for automated subset identification was
performed on the BH-SNE output using the function densVM from the R-package
cytofkit35. PCA was carried out with the prcomp function from the R-package
stats. Heatmaps were generated using the function heatmap.2 from the R-package
gplots. Unless otherwise noted all heatmaps were row-scaled with the color key
indicated below the heatmap.

Self-organizing maps. Self-organizing maps allow dimensionality reduction,
similarity analyses and easy extraction of group-specific co-regulated genes14.
During the training process of a SOM every gene is assigned to a representative
metagene that matches its expression profile across the data set. Each metagene is
represented by a tile in a mosaic grid (in our case 30 × 30). The SOM is trained in
such a way that metagenes with similar expression profiles localize to the same
region of the SOM, thereby forming spots of co-expressed genes. For the Arraystar
Human lncRNA Microarray V2.0 and NCode Human Long Non-coding RNA
microarray SOMs we used 17,655 and 14,256 ROSE-selected probes (mRNAs and
ncRNAs), respectively, as inputs to the oposSOM package14. The algorithm was
run with the groupmap parameter set to 0.85; otherwise the default parameters
recommended in the package vignette were used. The phylogenetic trees were
reconstructed by the oposSOM package using neighbor-joining on spot metagenes
identified by the package.

Fingerprint genes. We used the limma package15 with Benjamini–Hochberg
multiple-testing correction to detect differentially expressed probes. Every
lineage-specific “fingerprint” gene was required to show a significant moderated
t-test statistic (adjusted P< 0.05 and log2-FC > 1) in the respective lineage vs. every
other lineage in the data set, and additionally to be significantly enriched in the
corresponding group overexpression spots in the SOM.

“Guilt-by-association” and gene set enrichment analyses. The guilt-by-
association approach for ncRNAs was carried out as previously described16. Briefly,
a Pearson product moment correlation matrix was constructed between over
4000 signature ncRNAs (from the fingerprints and SOM overexpression spots) and
18,295 unique protein-coding genes. This resulted in 18,295 correlation coefficients
for each investigated ncRNA, constituting a ranked gene list. These ranked lists
were then used as inputs for PAGE17, which is significantly faster than the
classical GSEA algorithm18 since it uses the normal distribution to infer statistical
significance17. We used the PAGE implementation from the Bioconductor package
piano with the standard parameters recommended by the authors. The FDR
was estimated using the standard Benjamini and Hochberg approach on nominal
P-values. The gene sets tested for enrichment were from MSigDB.v5.1 (C2, C3, C5,
C6, hallmark gene sets) and 140 custom gene sets related to hematopoiesis. The
latter are given in Supplementary Data 3. Gene sets smaller than 15 genes or larger
than 300 were filtered out, resulting in 5591 gene sets that were tested for each of
the over 4000 ranked gene lists. The enrichment results for HOTAIRM1 and
LINC00173 were visualized using the output from the BROAD GSEA software18 as
the input for the Enrichment Map plugin52 of Cytoscape 3.3.0. Gene sets with a
nominal P< 0.001 and a FDR< 0.05 (based on a simulated null distribution of
1000 random gene set permutations and multiple-testing adjustment to control the
FDR as computed by the BROAD GSEA software) were selected for visualization.
For validation of the guilt-by-association pipeline two independent AML data sets
(GSE15434 and GSE14468)21, 22; both on the Affymetrix Humane Genome U133
2.0 Plus platform) were downloaded from GEO including the associated metadata.
We performed quality control and discarded outlier samples based on the raw
intensity distribution of the probesets and normalized unscaled standard error
(NUSE) plots, which yielded n= 190 CN-AML samples in GSE15434 and n= 457
AML samples in GSE14468, including n = 187 CN-AML. The guilt-by-association
approach for HOTAIRM1 (228642_at) was repeated as described above.

For cross validation of our top lineage-specific genes and leading-edge genes
with the human DMAP data set12, the DMAP data set was downloaded from the
GEO (GSE24759), preprocessed using RMA53, and the top lineage-specific genes
were extracted for each lineage. A custom gene set database (Supplementary
Data 3)—comprised of our fingerprint coding genes and the top lineage-specific
genes from the DMAP—was constructed and tested on the Arraystar, NCode, and
DMAP data sets using the Broad GSEA tool. Gene sets smaller than 15 genes or
larger than 300 were filtered out, the data sets were collapsed to contain only
unique identifiers, and the permutation type was set to Gene_set (1000
permutations). The other parameters were all set to default values.

For the LINC00173-knockdown experiments in primary human CD34+ HSPCs
cultured under myeloid differentiation conditions, three independent biological
replicates were preprocessed separately by quantile normalization with the limma
package15. The Agilent SurePrint G3 Human GE v3 expression matrix (58,341
features) was filtered to contain only coding genes. In cases with multiple probes
per gene the most variable probe was selected, resulting in 18,295 unique coding
genes. log2-FC between knockdown and control samples within each replicate were
computed for all unique 18,364 coding genes using the limma package. These
18,364 log2-FC values were subsequently analyzed with the Broad GSEA software18

using GSEA-preranked with the permutation type set to Gene_set (1000
permutations). GSEA results were averaged over the three replicates.

Assessment of pathway activity in single AML samples was performed using a
single-sample gene set enrichment method which aggregates z-score transformed
gene expression values of a given gene set into a single pathway activity score34.
The algorithm is implemented in the R-package GSVA54. Briefly, the Arraystar
expression matrix (60,699 features) was filtered to contain only coding genes. In
cases with multiple probes per gene the most variable probe was selected, resulting
in 18,295 unique genes. The algorithm transforms the gene-by-sample matrix into
a gene set-by-sample matrix. For the gene set database we used 80 custom gene sets
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related to hematopoiesis and leukemia. The 30 gene sets with highest variance were
selected for the heatmap shown in Supplementary Fig. 8a.

Circos plots. The megakaryocyte vs. all other contrast was visualized by plotting
limma-generated log2-FC values over genomic locations using the R-package
RCircos55. log2-FC> 3 were indicated by red and log2-FC< 3 were indicated by
blue in the Circos plots.

RNA-seq data collection and analysis. RNA from sorted healthy bone marrow
subpopulations was obtained as previously described23. The sample quality was
verified with the DNA 1000 Assay on an Agilent Bioanalyzer. Subsequently,
libraries were generated using the TruSeq Stranded Total RNA LT (with Ribo-Zero
Gold) kit from Illumina and sequenced on an Illumina HiSeq at the Stanford
Sequencing Service Center, CA, USA. RNA-seq reads (on average 85 × 106 read
counts per sample) were aligned to the human reference genome GRCh38 release
23 using STAR version 2.456. Alignment quality statistics and count matrices were
computed using HTSeq57 by mapping the reads to the exons of GENCODE.V2347.
All uniquely aligned reads that were unambiguously assigned to annotated exons
were submitted to further expression analysis with DESeq258. SOMs were trained
by using rlog-transformed (Regularized logarithm transformation) values of
normalized counts as input for the oposSOM package14. ncRNAs which mapped to
the SOM-modules were then probed for differential expression with DESeq2 using
pairwise comparison between all lineages. To compare the coverage of RNA-seq,
NCode Human Long Non-coding RNA microarrays, and the Arraystar Human
lncRNA Microarray V2.0 microarrays, we analyzed expression sets of similar
populations of cells (HSPC/HSC plus granulocytes). For estimation of the real
coverage we modeled the background distribution on the arrays by fitting a
Gaussian kernel to the lowest 15% of the probes forming the peak at the lower end
of the probeset distribution. Genes were marked as expressed if the signal
was above the mean background plus three s.d. on more than four arrays. For the
RNA-seq data mapped to GENCODE.V23 we filtered out all features with a
summarized expression of <15 reads in total over the nine samples.

Analysis of TCGA AML RNA-seq data. RNA-seq data were obtained from
the AML project of The Cancer Genome Atlas Research Network38. The
raw sequencing files were aligned to the human genome (hg38) using TopHat2
(v2.011)59. Experiment-specific parameters (e.g., read lengths or inner-mat
distances) were estimated from each data set independently, while all other
parameters were those suggested by the developers. Coding and non-coding genes
were annotated using GENCODE47, LNCipedia48, NONCODE49, and the lincRNA
catalog4, and expression levels were quantified as sequencing reads across exons
using HTSeq (v0.6.1)57. Visualization of these data identified a sample outlier,
TCGA-AB-2811, which we excluded from further analysis. The expression of gene
signature i was thus defined as Ei= [en,m], n= 1,…,Ni and m = 1,…,M where Ni is
the number of genes in signature i and M= 171 is the number of patient samples
analyzed in this study. The matrix Ei was normalized using the trimmed mean
approach60 and unsupervised k-means clustering was applied to optimally separate
all 171 patient samples into two groups37. The Kaplan–Meier and Cox-regression
models were then used to determine whether OS and EFS were significantly dif-
ferent between the two groups.

TCGA AML microarray data and LSC17 score calculation. Microarray data of
183 AML patients within the TCGA LAML data set38 were obtained from the
TCGA data portal. Raw Affymetrix CEL files (generated on the HG-U133 Plus 2.0
array) were processed with the R package gcrma. The LSC17 score was calculated
for each patient as described39 as a linear combination of Affymetrix probesets
belonging to the LSC17 signature with the provided coefficents for each probeset.
The median of all LSC17 scores was determined and patients were assigned a
LSC17-high status if they had a LSC17 score above the median or LSC17 low if
their LSC17 score was below the median. For analysis of overlaps between the
ncRNA signatures and LSC17 scores, only patients who had Microarray and
mapped RNA-seq data available were included (162 patients). The survival between
the different groups was compared using Kaplan–Meier Plots and standard log-
rank tests.

Transduction and hematopoietic assays. CD34+ HSPCs were lentivirally
transduced on RetroNectin-coated (Takara) plates as previously described6, and
sorted according to the construct’s fluorescent marker (Cerulean or eGFP).
Methylcellulose-based (Human Methylcellulose Complete Medium HSC003, R&D
Systems) and collagen-based (Megacult, Stem Cell Technologies) colony-forming
assays were carried out according to the manufacturers’ instructions and analyzed
on day 14. Five thousand sorted cells were used as input. CD41+ cells on Megacult
assays (Stem Cell Technologies) were enumerated by scoring stained colonies
against the Evan’s Blue counterstain. Slides were imaged on a BZ9000 (Keyence)
automated microscope, and merging, background fluorescence reduction, gamma-
level, brightness and contrast enhancement, and counting by Hybrid-Cell-Counter
were again performed using BZ-II Analyzer v.2.2 (Keyence).

Cytochemistry and cell assays. Standard protocols were used to perform
May-Grünwald Giemsa staining of cytospins. Myelocytic metabolic activity was
analyzed using immunohistochemical leukocyte POX staining. Briefly, cytospins of
cells collected fixated for 30 s using methanol with 1% formalin. After rinsing in
water, the slides were incubated for 12 min in filtered staining solution (160 mg
C14H14N2 in 4 ml acetone, 4 ml DMSO, and 0.03% H2O2; all Sigma), followed by a
second water rinse. The slides were then dried at room temperature and stained
with Haemalaun for 20 min. After a final water rinse, they were fixated using
Kaiser’s glycerin gelatin (Merck). Cell growth was quantified by trypan blue
exclusion dye, or by flow cytometry-based cell counting using a CytoFLEX flow
cytometer (Beckman Coulter). Growth competition assays were performed by
lentiviral supernatant infections reaching transduction efficiencies between
20–40%, thus yielding a mixed population of construct-positive fluorescent cells
and untransduced competitor cells. All subsequent measurements were
normalized to day 0. Phagocytosis capacity was assessed on day 12 by
culturing cells for 24 h in RPMI (with 10% FCS and 1% Penicillin/Streptomycin).
Amine-modified polystyrene latex beads of 2 µm mean particle size (Sigma)
were added to the cells at a ratio of 1:2000. After 3 h of incubation at 37 °C
(a negative control was incubated at 4 °C), the cells were washed three times
and bead uptake was measured by flow cytometry.

Lentiviral constructs. shRNAs against human lncRNAs were obtained by applying
the SENSOR design rules61 and subcloning the 97mer oligos into a pLKO5d.SFFV.
eGFP.miR30n backbone construct (Addgene #90333). A non-silencing shRNA
against Renilla luciferase was used as a control (sh-ctrl). For shRNA reporter
assays, gBlocks (Integrated DNA Technologies, Inc., IDT) with shRNA binding
sites were inserted into pTtNPT or pRSF91.mTagBFP2.Sensor.WPRE as descri-
bed62 to generate stable 32D reporter cell lines, which were then transduced with
shRNA constructs to perform the reporter assay62. For CRISPRi experiments the
lentiviral construct pLKO5d.SFFV.dCas9-KRAB.P2A.BSD (Addgene #90332) was
used to generate stable NB4 cell lines. sgRNA oligos were designed using CCTop63

and selected based on CRISPRi design rules29, then subcloned into a pLKO5
derivative with a fluorescent color (RFP657) and the human U6 promoter for
driving sgRNA expression. A non-silencing sgRNA against Renilla luciferase was
used as a control (Luc). Human miRNA genes were cloned into LeGO-vector
derivatives and lentiviral supernatant was generated and collected using standard
protocols as previously described64. All shRNA and sgRNA sequences are shown in
Supplementary Data 8.

Flow cytometry and cell sorting. Transduced HSPCs were sorted based on
expression of GFP or Cerulean. In vitro differentiation was analyzed on day 14 of
culture. Flow cytometry analyses was performed on a Navios 10/3 or a CytoFLEX
B5-R3-V5 (both Beckman Coulter). Kaluza 1.3/1.5 (Beckman Coulter) or FlowJo
V10 were used for data analysis. Staining and measurement were performed
according to standard protocols as previously described for human cells44, using
the antibodies FITC-CD8 (B9.11), FITC-CD19 (89B), FITC-CD38 (T16), FITC-
CD41 (P2), FITC-CD66b (80H3), PE-CD42b (SZ2), PE-CD56 (IM2073U),
PE-CD123 (9F5), PE-CD117 (95C3), PC5.5-CD14 (RMO52), PC7-CD3 (UCHT1),
PC7-CD34 (581), PC7-CD41 (P2), PC7-CD235a (11E4B-7-6), APC-CD4 (13B8.2),
APC-CD13 (Immu103.44), APC-CD34 (581), APC-CD45RA (2H4LDH11LDB9),
AlexaFluor750-CD19 (89B), AlexaFluor750-CD235a (11E4B-7-6), KromOrange-
CD3 (UCHT1) (all Beckman Coulter), PE-CD36 (CB38), PC7-CD66b (G10F5),
and APC-CD42b (HIP1) (Becton Dickinson).

Quantitative real-time PCR. Total RNA was isolated with Quick RNA Microprep
for HSCs, CMPs, GMPs, and AML samples with< 1 × 105 cells and with Quick
RNA Miniprep for all other samples (both Zymo Research). cDNA synthesis was
done using the High Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems) with 500 ng or 1 µg input RNA depending on the sample group. QRT-PCRs
were performed using SYBR Select Mastermix (Thermofisher). QRT-PCR primer
sequences are available upon request. MiRNA-detection was performed with
TaqMan miRNA assays (ABI). All data were measured in a StepOnePlus Cycler
(ABI). Microarray validation ΔCt’s were calculated as 2−(CtGOI–CtHK) (GOI, gene of
interest; HK, housekeeping gene). Overexpression and knockdown fold changes
were quantified using the geNORM ΔΔCt equations. RNA fractionation into
cytoplasmic and nuclear lysates was done using the Cytoplasmic & Nuclear RNA
Purification Kit (Norgen biotek corp.) according to the manufacturer’s instructions.
Expression profiling in the different compartments was performed by qPCR as
described above. Ratios were calculated as 2–(Ctcytoplasmic−Ctnuclear).

RNA fluorescence in situ hybridization. Probes were designed using Stellaris
probe designer 4.0 (Bisoearch technologies). For LINC00173 a masking level of
5 was applied, retrieving 26 probes used at a concentration of 3 µM. Controls were
predesigned probesets and were used at 250 nM (GAPDH) and 500 nM
(MALAT1). For RNA FISH, THP-1 cells, or CD34+ PB HSPCs differentiated for
11 days in granulocytic differentiation medium were used. These were washed and
suspended at 10 × 106ml−1 in phosphate-buffered saline (PBS), of which 1 × 106

cells were plated on a Poly-L-Lysine coated cover glass. After PBS evaporation, the
cover glass was placed into a 6 well plate and fixed with 3.7% formaldehyde in
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1×PBS for 10 min. Following a PBS wash the cells were permeabilized using
70% ethanol for 1 h at +2 to +8 °C, then washed using wash buffer (10% formamide
in 2 × SSC; Biosearch technologies). For the hybridization step the probes were
diluted in hybridization buffer (100 mgml−1 dextran sulfate and 10% formamide in
2×SSC) and dispensed onto the cells. The solution was covered with Parafilm and
the cover glass was placed into a humidified chamber (150 mm tissue culture plate
with a flat water-saturated paper towel and a single layer of Parafilm placed on top
of the paper towel, all covered with a tissue culture lid and sealed with Parafilm) for
8 h of incubation at 37 °C. The cells were then washed with wash buffer and
incubated in the dark for 30 min, followed by nuclear staining with 5 ng ml−1 DAPI
in wash buffer and another 30 min in the dark, and finally a wash with 2×SSC. For
mounting, Glox buffer anti fade (0.4% glucose in 10 mM Tris, 2×SSC with 3.7 mg
ml−1 glucose oxidase, and catalase suspension (SIGMA)) was dispensed onto the
cells and covered with a microscope slide, and the edges were sealed with nail
polish. Imaging proceeded using a BZ9000 (Keyence) automated microscope.
Background fluorescence reduction, contrast enhancement, and merging were
performed with Biorevo Software (Keyence).

RNA immunoprecipitation. RIP was performed as previously described65. Briefly,
1 × 107 NB4 or THP-1 cells were lysed and frozen at −80° overnight. Dynabeads
protein G (Invitrogen) were then washed twice using a Dynal magnet (Invitrogen)
with 0.5 ml citrate-phosphate buffer (pH 5), and resuspended in citrate-phosphate
buffer with the following antibodies: Anti-EZH2 polyclonal rabbit antibody
(07-689; Millipore), Anti-Ezh2 (D2C9) XP rabbit antibody (Cell Signaling), and
rabbit (DA1E) mAb IgG XP Isotype Control #3900 (Cell Signaling). Reactions were
left at room temperature while rotating for 30 min. The beads were washed and
mixed with cleared (14,000×g for 10 min at 4 °C) lysate (100 µl) overnight at 4 °C.
Afterwards, the beads were washed six times with 500 µl of cold NT-2 Buffer. Then
beads were resuspended in 300 ml Proteinase K Buffer (Invitrogen) and shaken
(300 rpm) at 55 °C for 30 min. RNA was isolated using phenol:chloroform:isoamyl
and precipitated with 50 µl 5 M ammonium acetate, 15 µl 7.5 M lithium chloride,
5 µl of 5 mgml−1 glycogen and 850 µl absolute ethanol per reaction. After
centrifugation and washing with 80% ethanol, RNA was air dried, and resuspended
in 20 µl RNAse free water. For cDNA synthesis 500 ng of RNA was used.

Chromatin Immunoprecipitation. ChIP assays were performed as previously
described66 with 1 × 106 cells per condition using antibody against H3K27me3
(Millipore, 07-449). Briefly, cells were collected and washed with PBS, followed
by incubation in 1% (w/v) formaldehyde for 10 min at room temperature.
To terminate cross-linking reaction, cells were incubated with 0.125 M glycine for
5 min while rotating. Cells were washed with PBS and lysed on ice in cell lysis
buffer (10 mM Tris [pH 8.0], 10 mM NaCl, and 0.2% NP-40) for 10 min to recover
nuclei. After centrifugation at 1500×g for 5 min, nuclei were lysed in nucleus lysis
buffer (50 mM Tris, 10 mM EDTA, and 1% SDS [pH 8.0]) on ice for 10 min.
The lysate was diluted in IP dilution buffer (20 mM Tris [pH 8.0], 2 mM
EDTA, 150 mM NaCl, 1% Triton-X100, and 0.01% SDS) and sonicated
(Settings: High, 30 s pulses, 12 cycles) using a BioRuptor Pico sonicator
(Diagenode, Liège, Belgium) to yield an average fragmentation size of ~200 bp. The
chromatin was precleared with 5 µg rabbit IgG per condition for 1 h followed by
incubation with 20 μl protein-G-agarose (Roche Applied Science, Penzberg,
Germany) for 2 h. Precleared chromatin was incubated with H3K27me3 antibody
(3 µg per condition) for 18 h at 4 °C. To collect immune complexes, 20 μl protein-
G-agarose was added to the chromatin and incubated for additional 2 h at 4 °C.
Unbound chromatin was kept as input for the subsequent sonication band check.
Protein-G-agarose pellets were washed at 5000 × g; twice with 500 μl IP wash buffer
1 (20 mM Tris [pH 8.0], 2 mM EDTA 50 mM NaCl, 1% Triton-X100, and 0.1%
SDS), once with IP wash buffer 2 (10 mM Tris [pH 8.0], 1 mM EDTA, 0.25 M LiCl,
1% NP-40, and 1% Sodium deoxycholate) and twice with TE (10 mM Tris, 1 mM
EDTA [pH 8.0]). Immuno-precipitated chromatin was eluted in 300 μl Elution
Buffer (100 mM NaHCO3, 1% SDS) and cross-linking was reversed by incubation
with RNase A and NaCl (0.3 M final concentration) at 67 °C for 18 h followed by
treatment with Proteinase K at 45 °C for 2 h. Input DNA was treated with RNase A
and Proteinase K simultaneously. DNA was extracted twice using phenol-
chloroform followed by ethanol precipitation. Purified DNA was resuspended in
20 µl nuclease-free water, and sent on dry-ice for sequencing.

ChIP sequencing. Library preparation was performed by BGI (Hong Kong) using
a variation of the Illumina’s standard protocol. The workflow involves end repair of
ChIP enriched DNA using T4 DNA polymerase, Klenow DNA polymerase and T4
polynucleotide kinase to generate blunt ended fragments. “A” bases were added to
the 3′ ends using Klenow fragments (3′ to 5′ exo minus) to generate DNA
fragments for ligation of adapters, which have a single “T” base overhang at their
3′ end. Adapters were ligated to the DNA fragments using DNA ligase.
Adapter-modified DNA fragments were amplified by PCR (15 cycles) and size
selected (200± 25 bp) by running PCR products on a 2% agarose gel and purifying
using a QIAGEN Gel Extraction Kit (QIAGEN, #28704). The libraries were
validated and sequenced using a HiSeq 2500 analyzer.

Bioinformatics ChIP-Seq. The raw sequencing reads were filtered for adapter
contamination, low quality scores, and we also excluded reads in which more than
10% of bases were unknown. The filtered reads were aligned to the human genome
(hg19) using the software package BWA67 with standard parameters resulting in
20 × 106 reads for both, sh-LINC00173 and sh-control samples. Peak calling was
performed using the software package MACS2 with options to detect broad
peaks for histone modifications (--broad) and to filter sites with an adjusted
q-value< 0.05 (--broad-cutoff 0.05). The MACS268 routine bdgdiff was used to
identify differentially methylated regions. Annotations from the RefSeq database
(http://www.ncbi.nlm.nih.gov/refseq/) were used to catalog the locations of
proximal promoter (−1 kbp to TSS) and heatmaps were generated using the
publicly available software seqMINER69.

UCSC tracks. Histone-CHIP-Seq, DNA-methylation and RNA-Seq data for
LINC00173 from mature human blood cells were obtained through the Blueprint
hub24 from within the UCSC Genome Browser (http://genome.ucsc.edu/; Human
Dec. 2013 (GRCh38/hg38) Assembly). CAGE-Seq tracks, Genomic Evolutionary
Rate Profiling RS-Scores and RS-score P-values were downloaded from FANTOM
CAT Browser25 (http://fantom.gsc.riken.jp/cat/v1/#/genes/ENSG00000196668.3).
Visualization was performed with the UCSC Genome browser.

Statistics. Statistical evaluations were carried out using two-sided Welsh’s t-test
accounting for unequal variances between two groups and one-way ANOVA with
Dunnet’s post hoc test for multiple comparisons for more than two groups.
The level of significance was set at P< 0.05. All data are presented as mean ± s.d. or
s.e.m. as indicated. Calculations were performed using GraphPad Prism 6
(STATCON) or R statistical language.

Data availability. ncRNA expression profiles, fingerprint ncRNAs and guilt by
association results are publically available (www.lncScape.de). All raw data have
been deposited in NCBI’s Gene Expression Omnibus and are accessible through
GEO Series accession numbers: GSE98633, GSE98697, GSE98791, GSE98830,
GSE98829, GSE98854, GSE98946. All other remaining data are available within the
Article and Supplementary Files, or available from the authors upon request.
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