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The Non-Constant-Sum Colonel Blotto Game 
 

 

Abstract 

 

The Colonel Blotto game is a two-player constant-sum game in which each player 

simultaneously distributes her fixed level of resources across a set of contests. In the 

traditional formulation of the Colonel Blotto game, the players’ resources are “use it or lose 

it” in the sense that any resources which are not allocated to one of the contests are forfeited. 

This paper examines a non-constant-sum version of the Colonel Blotto game which relaxes 

this use it or lose it feature. We find that if the level of asymmetry between the players’ 

budgets is below a threshold, then the unique set of equilibrium univariate marginal 

distributions of the non-constant-sum game is equivalent up to an affine transformation to the 

unique set of equilibrium univariate marginal distributions of the constant-sum game. Once 

the asymmetry of the players’ budgets exceeds the threshold we construct a new equilibrium. 
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1 Introduction

Kvasov (2007) introduces a non-constant-sum version of the classic Colonel Blotto

game. Originating with Borel (1921), the Colonel Blotto game examines strategic re-

source allocation across multiple simultaneous contests. Borel formulates this problem

as a constant-sum game involving two players, A and B, who must each allocate a fixed

amount of resources, XA = XB, over a finite number of contests. Each player must dis-

tribute their resources without knowing their opponent’s distribution of resources. In

each contest, the player who allocates the higher level of resources wins, and the payoff

for the whole game is the sum of the wins across the individual contests. A novel feature

of the Colonel Blotto game is that a mixed strategy is a multivariate distribution function

in which each individual contest is represented as a dimension. The restriction on the

players’ expenditures implicitly places a constraint on the support of the players’ joint

distributions. Namely, each point contained in the support of a player’s joint distribution

must satisfy their budget constraint with probability one.

While a focal point in the early game theory literature,1 the Colonel Blotto game

has also experienced a recent resurgence of interest (see for example Golman and Page

(2006), Hart (2008), Kovenock and Roberson (2007), Laslier (2002), Laslier and Picard

(2002), Roberson (2008), or Weinstein (2005)). Most closely related to this paper are

Roberson (2006) and Kvasov (2007). For all configurations of the asymmetric Colonel

Blotto game with three or more contests, Roberson (2006) provides the characterization

of the unique equilibrium payoffs.2 The characterization of the equilibrium univariate

marginal distributions and the existence of joint distributions which provide the equilib-

rium univariate marginal distributions and expend the players’ respective budgets with

probability one are also given in Roberson (2006).

In Borel’s original formulation of the Colonel Blotto game the players’ resources are

“use it or lose it” in the sense that any resources which are not allocated to one of the

contests are forfeited. Kvasov’s (2007) non-constant-sum version of the Colonel Blotto

game relaxes this use it or lose it feature. In the case of symmetric budgets, that paper

1 See Kvasov (2007) or Roberson (2006) for surveys of this literature.
2 The case of n = 2, with symmetric and asymmetric forces, is discussed by Gross

and Wagner (1950). Moving from n = 2 to n ≥ 3 greatly enlarges the space of feasible

n-variate distribution functions, and the equilibrium strategies examined in that paper

differ dramatically from the case of n = 2.
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establishes that a suitable affine transformation of the constant-sum equilibrium is an

equilibrium of the non-constant-sum game.

In this paper we extend the analysis of the non-constant-sum version of the Colonel

Blotto game to allow for asymmetric budget constraints. As long as the level of asym-

metry between the players’ budgets is below a threshold, we find that there exists an

affine transformation of the equilibrium to the constant-sum game which provides an

equilibrium to the non-constant-sum game. Once the asymmetry of the players’ budgets

exceeds the threshold this correspondence breaks down and we construct an entirely

new equilibrium. For all configurations of the players’ aggregate levels of force we

characterize the unique equilibrium payoffs, and for most parameter configurations we

characterize the complete set of equilibrium univariate marginal distributions.

Section 2 presents the model. Section 3 characterizes the equilibrium payoffs and the

equilibrium set of univariate marginal distributions for the asymmetric non-constant-

sum version of the Colonel Blotto game. Section 4 concludes.

2 The Model

Two players, A and B, simultaneously enter bids in a finite number, n≥ 3, of independent

all-pay auctions. Each contest has a common value of v for each player. Each player has

a fixed level of available resources (or budget), Xi for i = A,B. Let XA ≤ XB, and define

the modified budgets as X̄A = min{XA,nv/2} and X̄B = min{XB,
√

nvX̄A/2}.3 In the case

that the players enter the same bid in a given contest, it is assumed that player B wins

the auction if the common bid is XA, otherwise each player wins the auction with equal

probability. The specification of the tie-breaking rule does not affect the results as long

as (2/n)X̄B ≤ X̄A. In the case that (2/n)X̄B > X̄A, this specification of the tie-breaking

rule avoids the need to have player B provide a bid arbitrarily close to, but above, player

A’s maximal bid, XA. A range of tie-breaking rules yield similar results.

3 As shown in Appendix A, X̄i corresponds to the equilibrium expected expenditure

for player i. This specification of X̄i allows for a unified treatment of the three possible

cases: (a) neither player using all of her available resources, (b) only the weaker player

(A) using all of her available resources, and (c) both players A and B using all of their

available resources.
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Each contest is modeled as an all-pay auction. The payoff to player i for a bid of b
j
i

in contest j is given by

πj
i =







v−b
j
i if b

j
i > b

j
−i

−b
j
i if b

j
i < b

j
−i

where ties are handled as described above. Each player’s payoff across all n all-pay

auctions is the sum of the payoffs across the individual auctions.

The bid provided to each all-pay auction must be nonnegative. For player i, the set

of feasible bids across the n all-pay auctions is denoted by

Bi =

{

b ∈ R
n
+

∣

∣

∣

∣

n

∑
j=1

b
j
i ≤ Xi

}

.

It will also be useful to define the set of n-tuples which exhaust the modified budgets X̄A

and X̄B. Let Bi denote this set, defined as

Bi =

{

b ∈ R
n
+

∣

∣

∣

∣

n

∑
j=1

b
j
i = X̄i

}

.

Strategies

It is well known that there are no pure strategy equilibria for this class of games. A

mixed strategy, which we term a distribution of resources, for player i is an n-variate

distribution function Pi : R
n
+ → [0,1] with support (denoted Supp(Pi)) contained in the

set of player i’s set of feasible bids Bi and with one-dimensional marginal distribution

functions {F
j

i }
n
j=1, one univariate marginal distribution function for each all-pay auc-

tion j. The n-tuple of player i’s bids across the n all-pay auctions is a random n-tuple

drawn from the n-variate distribution function Pi.

The Non-Constant-Sum Colonel Blotto game

The N-C-S Colonel Blotto game, which we label

NCB
{

XA,XB,n,v
}

,

is the one-shot game in which players compete by simultaneously announcing distri-

butions of resources subject to their budget constraints, each all-pay auction is won by

the player that provides the higher bid in that auction (where in the case of a tie the
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tie-breaking rule described above applies), and players’ receive the sum of their payoffs

across all of the all-pay auctions.

Note that in the non-constant-sum Colonel Blotto game two players simultaneously

compete in a set of independent all-pay auctions subject to their respective budget

constraints. The presence of the budget constraints gives rise to strategic considera-

tions which are reminiscent of those arising in the single all-pay auction with budget-

constrained bidders (see Che and Gale (1998)). However, in the non-constant-sum

Colonel Blotto game the budget constraints hold not within one auction but across the

entire set of auctions. As will be seen, the equilibria of these two games differ in funda-

mental ways.

Before proceeding with the analysis, it is also instructive to compare this formulation

with that of the constant-sum Colonel Blotto game. The constant-sum Colonel Blotto

game differs from the non-constant-sum game in that in each contest j the payoff to

each player i for a bid of b
j
i is given by

πj
i =







1 if b
j
i > b

j
−i

0 if b
j
i < b

j
−i

where ties are handled as described above. Note that, in the constant-sum game re-

sources which are not allocated to one of the contests have no value; that is, resources

are use it or lose it. Each player’s payoff across all n contests is the sum of the wins

across the contests to which the player provides a higher bid.

3 Optimal Distributions of Resources

The following four theorems examine the equilibrium distributions of resources for all

symmetric and asymmetric configurations of resource levels. Theorems 1, 2 and 4 char-

acterize the unique sets of equilibrium univariate marginal distributions and the unique

equilibrium payoffs. Theorem 3 provides the unique equilibrium payoffs and a pair of

equilibrium distributions of resources.4

The first two theorems address the portion of the parameter space in which there

exists an affine transformation (with respect to the modified budgets) of the equilibrium

of the constant-sum game which constitutes an equilibrium of the non-constant-sum

game. Once (X̄A/X̄B) < (2/n) and XB > (n− 1)XA the correspondence between these

4 In this parameter range there exist a continuum of equilibrium univariate marginal

distributions.
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two games breaks down. Theorem 3 is based on the equilibrium of the constant-sum

game. However, in this case the transformation entails a more involved modification to

the support of the distribution. We conclude with Theorem 4 which constructs entirely

new equilibrium distributions of resources in the remaining parameter range.

For the game NCB{XA,XB,n,v}, Theorem 1 examines all configurations of resource

levels XA and XB which satisfy (2/n) < (X̄A/X̄B) ≤ 1.

Theorem 1 Let XA, XB, v, and n ≥ 3 satisfy (2/n) ≤ (X̄A/X̄B) ≤ 1. The pair of n-

variate distribution functions P∗
A and P∗

B constitute a Nash equilibrium of the game

NCB{XA,XB,n,v} if and only if they satisfy the two conditions: (1) Supp(P∗
i ) ⊂ Bi

and (2) Pi provides the corresponding set of univariate marginal distribution functions

{F
j

i }
n
j=1 outlined below.

For player A the unique set of equilibrium univariate marginal distributions {F
j

A}
n
j=1

are described as follows

∀ j ∈ {1, . . . ,n} F
j

A (x) =
(

1− X̄A

X̄B

)

+ x
(2/n)X̄B

(

X̄A

X̄B

)

for x ∈
[

0, 2
n
X̄B

]

.

Similarly for player B

∀ j ∈ {1, . . . ,n} F
j

B (x) = x
(2/n)X̄B

for x ∈
[

0, 2
n
X̄B

]

.

The unique equilibrium expected payoff for player A is (nvX̄A/2X̄B)−X̄A, and the unique

equilibrium expected payoff for player B is nv(1− (X̄A/2X̄B))− X̄B.

The existence of a pair of n-variate distribution functions which satisfy conditions (1)

and (2) of Theorem 1 is provided in Roberson (2006). In particular, Roberson (2006)

establishes the existence of n-variate distribution functions for which Supp(P∗
i ) ⊂ Bi

and that provide the necessary sets of univariate marginal distribution functions given

in Theorem 1. The proof of uniqueness of the univariate marginal distribution functions

and equilibrium payoffs is given in Appendix A.

An important distinction between the constant-sum and the non-constant-sum ver-

sions of the game is that in the constant-sum version each player expends all of her

resources with probability one as long as (1/n− 1) ≤ (XA/XB) ≤ 1. This need not be

the case in the non-constant-sum game. In particular there are three possible cases: (a)

neither player uses all of her available resources, (b) only (the weaker) player A uses

all of her available resources, and (c) both players A and B use all of their available

resources.

While it is straightforward to show that any pair of n-variate distribution functions

which satisfy conditions (1) and (2) of Theorem 1 form an equilibrium, it is useful to
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provide the intuition for this result. We begin with the equilibrium expected payoffs for

each player and any XA and XB contained in the portion of the parameter space for which

Theorem 1 applies, and then examine these payoffs in each of the three possible cases.

Let P∗
B denote a feasible n-variate distribution function for player B with the univariate

marginal distributions {F
j

B}
n
j=1 given in Theroem 1. If player B is using P∗

B, then player

A’s expected payoff πA, when player A chooses any n-tuple of bids bA ∈ BA (one bid

for each of the n all-pay auctions) such that b
j
A ∈ [0,(2/n)X̄B] for each auction j, is

πA (bA,P∗
B) =

n

∑
j=1

[

vF
j

B

(

b
j
A

)

−b
j
A

]

.

Recall that for all j, F
j

B (x) = x
(2/n)X̄B

for x ∈ [0,(2/n)X̄B]. Simplifying yields

πA (bA,P∗
B) =

(

nv

2X̄B

−1

)

n

∑
j=1

b
j
A. (1)

The expected payoff πB to player B from any n-tuple of bids across the n all-pay

auctions bB ∈ BB such that b
j
B ∈ (0,(2/n)X̄B] for each auction j — when player A uses

a feasible n-variate distribution P∗
A with the univariate marginal distributions {F

j
A}

n
j=1

given in Theroem 1 — follows directly,

πB (bB,P∗
A) = nv

(

1−
X̄A

X̄B

)

+

(

nvX̄A

2X̄2
B

−1

)

n

∑
j=1

b
j
B. (2)

Observe that neither player can bid below 0 and that bidding above (2/n)X̄B is subopti-

mal. Thus, (1) and (2) provide the maximal payoffs (for player A and player B respec-

tively) for any feasible n-tuple of bids across the n all-pay auctions.

Suppose that we are in case (a) in which neither player uses all of her available

resources. Case (a) corresponds to the situation in which the total value of the n auc-

tions nv is low enough relative to the players’ budgets that neither player has incentive

to commit all of her resources. If player A does not use all of her budget, then from

X̄A = min{XA,nv/2} it must be that XA > (nv/2) and so X̄A = (nv/2). Similarly from

X̄B = min{XB,
√

nvX̄A/2}, it follows that if player A (the weaker player) is not using

all of her budget then X̄B = (nv/2). Given that X̄A = X̄B = (nv/2), the expected payoffs

given in (1) and (2) are πA (bA,P∗
B) = 0 and πB (bB,P∗

A) = 0 respectively. Observe that in

case (a) neither player has incentive to change the aggregate level of resources that they

commit to the n all-pay auctions. That is, given that the opponent is using the equilib-

rium strategy, the expected payoff to each player is independent of the aggregate level

of resources that they commit across the n all-pay auctions.
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Now suppose that we are in case (b) in which only player A uses all of her budget.

Case (b) corresponds to the situation in which the total value of the n all-pay auctions

nv is high enough that the weaker player optimally commits all of her resources but not

so high that the stronger player must also commit all of her resources to the n all-pay

auctions. From the proceeding discussion it follows that XA ≤ (nv/2) and thus X̄A = XA.

If player B is not using all of her budget then from X̄B = min{XB,
√

nvXA/2}, it must

be that XB >
√

nvXA/2 and so X̄B =
√

nvXA/2. Inserting X̄A and X̄B into (1) and (2) and

simplifying yields

πA (bA,P∗
B) =

(√

nv

2XA

−1

)

n

∑
j=1

b
j
A (3)

and

πB (bB,P∗
A) = nv

(

1−

√

2XA

nv

)

. (4)

Recall that in case (b) XA ≤ (nv/2) and so (
√

nv/2XA − 1) ≥ 0. From (3) we see that

player A is indifferent with regards to which all-pay auctions to commit resources to, but

has incentive to increase her aggregate level of resource commitment across the n all-pay

auctions. However in case (b), player A is at her budget constraint and her equilibrium

distribution of resources P∗
A expends her budget with probability one.5 From (4) we see

that the expected payoff to player B is independent of the aggregate level of resources

that she commits across the n all-pay auctions (so long as she commits a strictly positive

level of resources to each auction), and so player B does not have incentive to change

the aggregate level of resources that she commits to the n all-pay auctions.

Finally, suppose that we are in case (c) in which both players use all of their budgets.

Case (c) corresponds to the situation in which the total value of the n all-pay auctions nv

is high enough that both players optimally commit all of their resources to the n all-pay

auctions. Thus, X̄A = XA and X̄B = XB. From (1) and (2) it follows that

πA (bA,P∗
B) =

(

nv

2XB
−1

)

n

∑
j=1

b
j
A (5)

and

πB (bB,P∗
A) = nv

(

1−
XA

XB

)

+

(

nvXA

2X2
B

−1

)

n

∑
j=1

b
j
B. (6)

5 Recall that Roberson (2006) establishes the existence of n-variate distribution func-

tions for which Supp(P∗
i ) ⊂ Bi, and that in this case X̄A = XA. It follows directly that

player A expends her budget with probability one.
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In case (c), XA < (nv/2) and XB <
√

nvXA/2 < (nv/2). Observe in (5) that ((nv/2XB)−

1) > 0 and, thus, player A has incentive to increase her aggregate level of resource

commitment across the n all-pay auctions, but in her equilibrium distribution of re-

sources P∗
A she is already at her budget constraint with probability one. Similarly, in (6)

((nvXA/2X2
B)−1) > 0 and, thus, player B has incentive to increase her aggregate level of

resource commitment across the n all-pay auctions, but in her equilibrium distribution

of resources P∗
B she is already at her budget constraint with probability one.

Given that Roberson (2006) demonstrates the existence of a pair of n-variate distri-

butions that satisfy conditions (1) and (2) of Theorem 1, it follows from the arguments

given above that such a pair of n-variate distribution functions constitute an equilibrium

in all three cases (a), (b), and (c). The proof of the uniqueness of the sets of univariate

marginal distributions is given in Appendix A.

The following Theorem addresses the remaining portion of the parameter space for

which there exists an affine transformation of the equilibrium of the constant-sum game

which constitutes an equilibrium of the non-constant-sum game.

Theorem 2 Let XA, XB, v, and n ≥ 3 satisfy (X̄A/X̄B) < (2/n) and XB ≤ (n−1)XA. The

pair of n-variate distribution functions P∗
A and P∗

B constitute a Nash equilibrium of the

game NCB{XA,XB,n,v} if and only if they satisfy the two conditions: (1) Supp(P∗
i )⊂Bi

and (2) Pi provides the corresponding set of univariate marginal distribution functions

{F
j

i }
n
j=1 outlined below.

For player A the unique set of equilibrium univariate marginal distribution functions

{F
j

A}
n
j=1 are described as follows

∀ j ∈ {1, . . . ,n} F
j

A (x) =
(

1− 2
n

)

+ x
XA

(

2
n

)

for x ∈ [0,XA] .

Similarly for player B

∀ j ∈ {1, . . . ,n} F
j

B (x) =











2x
(

XA−
XB
n

)

(XA)2 for x ∈ [0,XA)

1 for x ≥ XA

.

The unique equilibrium expected payoff for player A is nv((2/n)− ((2XB)/(n2XA)))−

XA, and the unique equilibrium expected payoff for player B is nv(1 − (2/n))+

nv((2XB)/(n2XA))−XB.

The existence of a pair of n-variate distribution functions which satisfy conditions

(1) and (2) of Theorem 2 is provided in Roberson (2006). The proof of uniqueness of

the univariate marginal distributions and equilibrium payoffs is given in Appendix A.
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Before proceeding with a sketch of the proof that a pair of n-variate distributions that

satisfy conditions (1) and (2) of Theorem 2 form an equilibrium, it is helpful to trace out

the Theorem 2 parameter range. Since X̄B = min{XB,
√

nvX̄A/2} and (X̄A/X̄B) < (2/n)

it follows that

X̄A <
2

n
X̄B ≤

√

2vX̄A

n

and so X̄A < (2v/n). Therefore it must be the case that X̄A = XA. It also follows that

XB ≤ (n−1)XA combined with (n−1)XA <
√

nvXA/2 implies that X̄B = XB. Thus, the

Theorem 2 parameter range is given by 0 ≤ XA < (2v/n) and (n/2)XA < XB ≤ (n−1)XA

Returning to the sketch of the proof that a pair of n-variate distributions that satisfy

conditions (1) and (2) of Theorem 2 form an equilibrium, let P∗
B denote a feasible n-

variate distribution for player B with the univariate marginal distributions {F
j

B}
n
j=1 given

in Theorem 2. If player B is using P∗
B, then player A’s expected payoff πA, when player

A chooses any n-tuple of bids bA ∈ BA such that b
j
A ∈ [0,XA) for each auction j, is

πA (bA,P∗
B) =

(

2v(XA − (XB/n))

X2
A

−1

)

n

∑
j=1

b
j
A. (7)

Note that (2v/X2
A)(XA−(XB/n))−1 ≥ 0 is equivalent to XB ≤ (n−(nXA/2v))XA. Since

XA < (2v/n), it follows from (7) that player A has incentive to expend all of her available

resources in the n all-pay auctions not only in expectation but with certainty.

Similarly, the expected payoff πB to player B from any n-tuple of bids across the n

all-pay auctions bB ∈ BB such that b
j
B ∈ (0,XA] for each auction j, when player A uses

a feasible n-variate distribution P∗
A with the univariate marginal distributions {F

j
A}

n
j=1

given in Theroem 2, is

πB (bB,P∗
A) = nv

(

1−
2

n

)

+

(

2v

nXA

−1

)

n

∑
j=1

b
j
B. (8)

Since XA < (2v/n) it follows that (2v/nXA)−1 > 0, and, thus, player B has incentive to

expend all of her available resources in the n all-pay auctions with certainty.

Given that Roberson (2006) demonstrates the existence of a pair of n-variate distri-

butions that result in the sets of univariate marginal distributions given in Theorem 2

and that satisfy the budget restriction with probability 1, it follows from the arguments

given above that such a pair of n-variate distribution functions constitute an equilibrium.

The proof of uniqueness of the univariate marginal distributions is given in Appendix

A.
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While the first two theorems involve affine transformations (with respect to the mod-

ified budgets) of the equilibrium of the constant-sum game, once (X̄A/X̄B) < (2/n)

and XB > (n− 1)XA the correspondence between the constant-sum and non-constant-

sum games breaks down. For the remaining parameter range, Theorems 3 and 4 con-

struct new equilibrium joint distributions. Theorem 3, which addresses the case that

(X̄A/X̄B) > (2/n) and min{nXA,(n− 2)XA +(2v/n)} > XB > (n− 1)XA, is also based

on the equilibrium of the constant-sum game but includes a more involved modification

of the support. Theorem 4, which addresses the remaining case that (X̄A/X̄B) < (2/n)

and XB ≥ min{nXA,(n−2)XA +(2v/n)} (note that if XA < (2v/n) then min{nXA,(n−

2)XA +(2v/n)} > (n− 1)XA), constructs entirely new equilibrium distributions of re-

sources.

Before turning to the statements of Theorems 3 and 4, observe that while the rela-

tionship between the constant-sum and and non-constant-sum versions of the game is

linear with respect to the modified budgets — as long as the level of asymmetry between

the players’ budgets is below the threshold given in Theorem 2 — the relationship be-

tween these games with respect to the aggregate resource levels is highly non-linear.

Panel (i) of Figure 1 illustrates the regions of the parameter space corresponding to each

of the four theorems in the non-constant-sum game, and Panel (ii) of Figure 1 illustrates

the regions which correspond, for the constant-sum game, to Theorems 2, 3, and 5 of

Roberson (2006).

✲ XA

✻
XB

v

nv
2

v
(

2− 2
n

)

2v
n

v
n

nv
2

T. 1 (b)

T. 1 (a)

T. 4

T. 2

■

T. 3

■

XA = XB

T. 1
(c

)

(i) Non-constant-sum

✲ XA

✻
XB

XA = XBXA = 2XB
n

XA = XB
(n−1)XA = XB

n

T. 2

T.
3

T
.
5

(ii) Constant-Sum

Fig. 1 Resource Level Configurations
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In the constant-sum game, four rays emanating from the origin partition the param-

eter space into four disjoint regions. As shown in Panel (ii) of Figure 1, these regions

are delineated by (1) XA = (XB/(n− 1)), (2) XA = (2XB/n), and (3) XA = XB. While

Theorems 1, 2 and 3 of this paper (the non-constant-sum game) are transformations of

Theorems 2, 3 and 5 of Roberson (2006) (the constant-sum game) respectively, the cor-

responding parameter regions differ in nontrivial ways. The complicating factor in the

relationship between the two versions of the game is the strategic considerations arising

from the use it or lose it feature of the constant-sum formulation and the corresponding

relaxation of this feature in the non-constant-sum formulation. In particular, recall that

in the non-constant-sum game with resource levels which satisfy (2/n) ≤ (X̄A/X̄B) ≤ 1

(as in Theorem 1) there were three possible cases: (a) neither player uses all of their

available resources, (b) only (the weaker) player A uses all of her available resources,

and (c) both players A and B use all of their available resources. (The regions corre-

sponding to each of these cases is labeled in panel (i) of Figure 1.)

Furthermore, in the region in which XA < (XB/n) the constant-sum game is trivial

since resources are use it or lose it and the stronger player (B) has a sufficient level of

resources to win each of the n contests with certainty. In this is region there is no rela-

tionship between the two games. Due to the relaxation of the use it or lose it feature, the

non-constant-sum game never becomes trivial, and for the non-constant-sum game The-

orem 4 constructs entirely new equilibrium distributions of resources in the remaining

parameter range.

In the case that (X̄A/X̄B) < (2/n) and min{nXA,(n− 2)XA +(2v/n)} > XB > (n−

1)XA Theorem 2 would provide the unique set of equilibrium marginal distributions if

a sufficient n-variate distribution function were to exist for each player. As in the corre-

sponding constant-sum parameter range, such a joint distribution fails to exist for player

B. One equilibrium is given by an extension of the case of n = 2 with asymmetric forces

discussed by Gross and Wagner (1950). The set of equilibrium univariate marginal dis-

tributions is not unique, but the equilibrium payoffs are unique.

Theorem 3 Define k = ⌈(XA)/(XB−XA (n−1))⌉. Let XA, XB, v, and n ≥ 3 satisfy

(X̄A/X̄B) < (2/n) and min{nXA,(n− 2)XA +(2v/n)} > XB > (n− 1)XA. A Nash equi-

librium of the game NCB{XA,XB,v,n} is for each player to allocate her resources ac-

cording to the following n-variate distributions:

Player A randomly allocates 0 resources to n−2 of the all-pay auctions, each all-pay

auction chosen with equal probability, (n−2)/n. On the remaining 2 all-pay auctions

player A utilizes a bivariate distribution function with k mass points, each mass point
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receiving the same weight, (1− (nXA)/(2v))/k. Player A’s mass points on these two

remaining all-pay auctions are located at the points

(

(k−1− i)
XA

k−1
, i

XA

k−1

)

, i = 0, . . . ,k−1.

Player A uniformly distributes the remaining (nXA)/(2v) of the mass along her budget

line {(x1,x2)| x1 + x2 = XA}.

Player B randomly allocates XA forces to n−2 all-pay auctions, each all-pay auction

chosen with equal probability, (n−2)/n. On the remaining 2 all-pay auctions player B

utilizes a bivariate distribution function with k mass points, each mass point receiving

the same weight, (1− n(XB −XA(n− 2))/(2v))/(k). Player B’s mass points on the 2

remaining battlefields are located at

(

XA − i
nXA −XB

k−1
,XA − (k−1− i)

nXA −XB

k−1

)

, i = 0, . . . ,k−1.

Player B uniformly distributes the remaining (XB −XA(n−2))/(2v) of the mass along

her budget line {(x1,x2)| x1 + x2 = XB − XA(n − 2)} and the two line segments

{(x1,x2)| x1 = XA and 0 ≤ x2 ≤ XB −XA(n−1)}, and {(x1,x2)| x2 = XA and 0 ≤ x1 ≤

XB −XA(n−1)}.

The unique equilibrium expected payoff for player A is v(k − 1)
(

(2/n)− ((XB −

(XA(n− 2))/v)
)

/k, and the unique equilibrium expected payoff for player B is (v−

XA)(n−2)+((v2(n−2))/n)+ v(k−1)
(

(2/n)− (XA/v)
)

/k.

The proof of Theorem 3 is given in Appendix B.

The following Theorem constructs entirely new equilibrium distributions of resources

for the portion of the parameter space in which the correspondence between the constant-

sum and non-constant-sum versions of the game breaks down.

Theorem 4 Let XA, XB, v, and n ≥ 3 satisfy (X̄A/X̄B) < (2/n) and XB ≥ min{nXA,(n−

2)XA +(2v/n)}. The pair of n-variate distribution functions P∗
A and P∗

B constitute a Nash

equilibrium of the game NCB{XA,XB,n,v} if and only if they satisfy the two conditions:

(1) Supp(P∗
i ) ⊂ Bi and (2) Pi provides the corresponding set of univariate marginal

distribution functions {F
j

i }
n
j=1 outlined below.

For player A the unique set of equilibrium univariate marginal distribution functions

{F
j

A}
n
j=1 are described as follows

∀ j ∈ {1, . . . ,n} F
j

A (x) =
(

1− XA

v

)

+ x
v

for x ∈ [0,XA] .
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Similarly for player B

∀ j ∈ {1, . . . ,n} F
j

B (x) =







x
v

for x ∈ [0,XA)

1 for x ≥ XA

.

The unique equilibrium expected payoff for player A is 0, and the unique equilibrium

expected payoff for player B is nv(1− (XA/v)).

The existence of n-variate distributions which satisfy conditions (1) and (2) of Theo-

rem 4 is provided in Appendix C. The proof of uniqueness of the univariate marginal

distributions and equilibrium payoffs is given in Appendix A.

To see that these two sets of univariate marginal distributions form an equilibrium in

the Theorem 4 parameter region, let P∗
B denote a feasible n-variate distribution for player

B with the univariate marginal distributions {F
j

B}
n
j=1 given in Theorem 4. If player B is

using P∗
B, then player A’s expected payoff πA, when player A chooses any n-tuple of bids

bA ∈ BA is

πA (bA,P∗
B) = 0. (9)

From (9), player A does not have incentive to increase or decrease her level of resource

commitment in the n all-pay auctions.

Similarly, the expected payoff πB to player B from any n-tuple of bids across the n

all-pay auctions bB ∈ BB such that b
j
B ∈ (0,XA] for each auction j, when player A uses

a feasible n-variate distribution P∗
A with the univariate marginal distributions {F

j
A}

n
j=1

given in Theroem 4, is

πB (bB,P∗
A) = nv

(

1−
XA

v

)

. (10)

Thus, player B also has no incentive to increase or decrease her level of resource com-

mitment in the n all-pay auctions.

Given that Appendix C provides the construction of n-variate distribution functions

which satisfy conditions (1) and (2) of Theorem 4, it follows from the arguments given

above that such a pair of n-variate distribution functions constitute an equilibrium. The

proof of uniqueness of the univariate marginal distributions is given in Appendix A.

4 Conclusion

Kvasov (2007) introduces a non-constant-sum version of the Colonel Blotto game which

relaxes the “use it or lose it” feature of the traditional constant-sum formulation of the

game. In the case of symmetric budgets, that paper establishes that a suitable affine
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transformation of the constant-sum equilibrium is an equilibrium of the non-constant-

sum game. In this paper we characterize all asymmetric parameter configurations of the

non-constant-sum version of the Colonel Blotto game. As long as the player’s budgets

are not too asymmetric, a suitable affine transformation (with respect to the modified

budgets) of the constant-sum asymmetric equilibrium (Roberson 2006) is an equilib-

rium of the non-constant-sum asymmetric game. However, once the players’ budgets

are sufficiently asymmetric this correspondence breaks down. In this parameter range,

we construct entirely new equilibrium joint distributions.

Appendix A

This appendix characterizes the sets of equilibrium univariate marginal distributions in

Theorems 1, 2, and 4. Given that the non-constant-sum Colonel Blotto game is a set of

independent and simultaneous all-pay auctions with (symmetric and asymmetric) bud-

get constraints, the characterization of the equilibrium univariate marginal distributions

follows along the line of argument for the characterization of the all-pay auction by

Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996). Roberson (2006)

establishes the existence of feasible n-variate distribution functions for Theorems 1 and

2. The existence of such n-variate distribution functions for Theorem 4 is given in Ap-

pendix C.

In the discussion that follows we will focus on Theorem 1. The proofs for Theorems

2 and 4 follow directly. Let s̄
j
i and s

j
i denote the upper and lower bounds of player i’s

distribution of resources for all-pay auction j.

Recall that in Theorem 1 the corresponding parameter space is (2/n)≤ (X̄A/X̄B)≤ 1.

It will also be convenient to note that, for a given P−i, with the set of univariate marginal

distribution functions {F
j
−i}

n
j=1, the Lagrangian of each player i’s optimization problem6

can be written as

max
{F

j
i }

n
j=1

(1+λi)
n

∑
j=1

[

∫ ∞

0

[

v

(1+λi)
F

j
−i (x)− x

]

dF
j

i

]

+λiXi (11)

where the set of univariate marginal distribution functions {F
j

i }
n
j=1 satisfy the con-

straint that there exists a mapping of the set of univariate marginal distributions into

6 This formulation assumes that for all battlefields the players’ univariate marginal

distributions do not place an atom on the same value. However, it is straightforward

to incorporate the tie-breaking rule into the Lagrangian of each player’s optimization

problem.
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a joint distribution (an n-copula), C, such that the support of the n-variate distribution

C(F1
i (x1), . . . ,Fn

i (xn)) is contained in Bi.

The first two lemmas follow along the lines of the proofs for the symmetric case

given in Kvasov (2007).7

Lemma 1 In any equilibrium {F
j

i ,F
j
−i} j∈{1,...,n}, no F

j
i can place an atom in the half

open interval (0, s̄ j].

Lemma 2 For each j ∈ {1, . . . ,n} and for each i ∈ {A,B}, v
1+λi

F
j
−i(x)−x is constant ∀

x ∈ (0, s̄ j].

The next two lemmas follow along the lines of the proofs in Baye, Kovenock, and de

Vries (1996).

Lemma 3 For each j ∈ {1, . . . ,n}, s̄
j
−i = s̄

j
i = s̄ j.

Lemma 4 ∀ j ∈ {1, . . . ,n}, F
j

B(0) = 0 and, thus, v
1+λA

F
j

B(x)− x = 0 ∀ x ∈ [0, s̄ j].

The following lemma characterizes the relationship between λA and λB. Let X̄i denote

player i’s expected expenditure, that is

X̄i =
n

∑
j=1

∫ s̄ j

0
xdF

j
i (x) . (12)

Lemma 5 In equilibrium (1+λA) = (1+λB) X̄B

X̄A
.

Proof From Lemma 2, it follows that dF
j

A(x) = (1+λB)
v

dx and dF
j

B (x) = (1+λA)
v

dx for

all x ∈ [0, s̄ j]. Substituting these expressions into equation (12), we have (1 + λA) =

X̄B
2v

∑ j(s̄
j)2 and (1+λB) = X̄A

2v

∑ j(s̄
j)2 . The result follows directly. ⊓⊔

The following lemma establishes the value of s̄ j.

7 While the characterization of the equilibrium univariate marginal distributions for

the constant-sum and non-constant-sum versions of the game follow along similar lines,

there are important distinctions. In both cases, Lemmas 1-4 are established using fea-

sible points in the support. In the non-constant-sum game Kvasov (2007) uses a sepa-

rating hyperplane argument to prove that each of the univariate marginal distributions

is strictly increasing and continuous on its support. Conversely, in the constant-sum

game Roberson (2006) relies on properties of two-player constant-sum games (namely,

interchangeability of equilibrium strategies and uniqueness of equilibrium payoffs) to

establish these properties of the univariate marginal distributions.
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Lemma 6 s̄ j = v
1+λA

.

Proof From Lemma 2, we know that for each player i and any battlefield j, v
1+λi

F
j
−i(x)−

x is constant ∀ x ∈
(

0, s̄ j
]

. It then follows that player i would never use a strategy that

provides offers in ( v
1+λi

,∞) since an offer of zero strictly dominates such a strategy. It

follows from Lemma 4 that v
1+λA

≤ v
1+λB

. Thus s̄ j ≤ v
1+λA

and ∀ x ∈ (0, s̄ j]

v

1+λi
F

j
−i (x)− x ≥

v

1+λi
− s̄ j.

By way of contradiction, assume that s̄ j < v
1+λA

. By allocating a level of force to battle-

field j that is greater than s̄ j by an arbitrarily small amount, player A can earn arbitrarily

close to v
1+λA

− s̄ j > 0 on battlefield j, which contradicts Lemma 4. ⊓⊔

The following lemma establishes that there exists a unique pair λA, λB that satisfies

the budget constraint.

Lemma 7 There exists a unique value for λA, and thus for λB. λA = nv
2X̄B

− 1 and thus

λB = nvX̄A

2X̄2
B

−1.

Proof The expected expenditure determines the unique pair λA, λB. Thus, λA solves

n(1+λA)

v

∫ v
1+λA

0
xλAdx = X̄B.

Solving for λA we have that

λA =
nv

2X̄B
−1. (13)

It follows directly from Lemma 5 that

λB =
nvX̄A

2X̄2
B

−1. (14)

To complete the proof of Lemma 7, recall the three possible cases: (a) neither player

uses all of her available resources, (b) only (the weaker) player A uses all of her available

resources, and (c) both players A and B use all of their available resources.

In case (a) λA = λB = 0. From (13) and (14) we have that X̄B = nv
2

and X̄B =

√

nvX̄A

2
.

Thus, XB ≥ nv
2

and XA ≥ nv
2

. In case (b) λA > 0 and λB = 0. From (13) and (14) we have

that X̄B < nv
2

and X̄B =

√

nvX̄A

2
. Thus, XB ≥

√

nvXA

2
and XA < nv

2
. In case (c) λA > 0 and

λB > 0. From (13) and (14) we have that X̄B < nv
2

and X̄B <

√

nvX̄A

2
. Thus, XB <

√

nvXA

2

and XA < nv
2

.

To summarize X̄B = min{XB,

√

nvX̄A

2
} and X̄A = min{XA, nv

2
}. Thus, for any pair XA,

XB there exists a unique pair X̄A, X̄B, and a unique pair λA, λB. ⊓⊔
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This completes the characterization of the sets of equilibrium univariate marginal

distributions in Theorem 1. The proofs for Theorems 2 and 4 follow along similar lines.

Appendix B

The proof of Theorem 3, stated below, establishes the existence of an equilibrium in the

game NCB{XA,XB,n} for XA, XB, and n ≥ 3 such that X̄A

X̄B
< 2

n
and min{nXA,(n−2)XA +

2v
n
} > XB > (n−1)XA. The proof of uniqueness of the equilibrium payoffs follows di-

rectly. In the discussion that follows, recall that k =
⌈

XA

XB−XA(n−1)

⌉

, and thus, 2 ≤ k < ∞.

First, the strategies in the statement of Theorem 5 are feasible since for player A

(k−1− i)
XA

k−1
+ i

XA

k−1
= XA,

and for player B

XA (n−2)+XA − i
nXA−XB

k−1
+XA − (k−1− i)

nXA −XB

k−1
= XB

for all i = 0, . . . ,k−1.

Second, each player is indifferent between each point in the support of their strat-

egy. For this equilibrium the univariate marginal distributions for player A and ∀ j ∈

{1, . . . ,n} are

F
j

A (x) =















































































n−2
n

+

(

2
n
−

XA
v

)

k
+ x

v
if x ∈

[

0, XA

k−1

)

n−2
n

+
2
(

2
n
−

XA
v

)

k
+ x

v
if x ∈

[

XA

k−1
, 2XA

k−1

)

...
...

n−2
n

+
(i+1)

(

2
n
−

XA
v

)

k
+ x

v
if x ∈

[

iXA

k−1
,
(i+1)XA

k−1

)

...
...

n−2
n

+
(k−1)

(

2
n
−

XA
v

)

k
+ x

v
if x ∈

[

(k−2)XA

k−1
,XA

)

1 if x ≥ XA

.
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Similarly for player B and ∀ j ∈ {1, . . . ,n} we have

F
j

B (x) =











































































x
v

if x ∈ [0,XB−XA (n−1))
(

2
n
−

XB−XA(n−2)
v

)

k
+ x

v
if x ∈

[

XB −XA (n−1) ,XA−
(k−2)(nXA−XB)

k−1

)

...
...

(i+1)
(

2
n−

XB−XA(n−2)
v

)

k
+ x

v
if x ∈

[

XA −
(k−1−i)(nXA−XB)

k−1
,XA −

(k−2−i)(nXA−XB)
k−1

)

...
...

(k−1)
(

2
n
−

XB−XA(n−2)
v

)

k
+ x

v
if x ∈

[

XA −
nXA−XB

k−1
,XA

)

1 if x ≥ XA

.

We begin with player A’s expected payoff for each of her k mass points, and then exam-

ine the remaining uniform randomization. Note that for i = 1, . . . ,k−1,8

XA − (k− i)
nXA −XB

k−1
< i

XA

k−1
≤ XA − (k−1− i)

nXA −XB

k−1
.

Thus, given that player B is following the equilibrium strategy, player A’s allocation of

i
XA

k−1
to an all-pay auction yields the expected payoff

vi
(

2
n
−

XB−XA(n−2)
v

)

k

for each i = 0, . . . ,k−1. Similarly, player A’s remaining resources (k−1− i) XA

k−1
have

expected payoff of

v(k−1− i)
(

2
n
− XB−XA(n−2)

v

)

k
.

Thus, for each i = 0, . . . ,k − 1 player A’s allocation of ((k − 1 − i) XA

k−1
, i XA

k−1
) has an

expected payoff of

v(k−1)
(

2
n
− XB−XA(n−2)

v

)

k
.

Lastly, we consider player A’s expected payoff from the uniform randomization be-

tween the mass points. Given that player B is following the equilibrium strategy, the

payoff to player A for any allocation in which no all-pay auction is allocated more

than XB −XA(n− 1) is zero. Similarly, if, for any 0 < ε ≤ nXA−XB

k−1
and for some i =

8 For the remaining case that i = 0, 0 < XB −XA (n−1).
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1, . . . ,k − 2,9 player A allocates XA − (k − 1− i)nXA−XB

k−1
+ ε to an all-pay auction the

expected payoff for that all-pay auction is v(i + 1)
(

2
n
− XB−XA(n−2)

v

)

/k. Player A’s re-

maining resources are (k−1− i)nXA−XB

k−1
− ε and

(k−1− i)
nXA−XB

k−1
− ε ≤ XA − (i+1)

nXA −XB

k−1

since, from the definition of k, nXA−XB ≤ XA
k−1

k
. If player A allocates all of her remain-

ing resources to a single all-pay auction the maximum expected payoff for that all-pay

auction is v(k− i−2)
(

2
n
− XB−XA(n−2)

v

)

/k. Thus, for player A any feasible allocation of

force in which only 1 or 2 all-pay auctions receive a strictly positive level of force has

a maximum expected payoff of v(k−1)
(

2
n
− XB−XA(n−2)

v

)

/k. In addition, since the step

size between each mass point in player B’s equilibrium strategy is nXA−XB

k−1
, player B’s

minimal mass point is at XB −XA(n− 1) ≥ nXA−XB

k−1
, and each mass point has the same

weight, player A cannot achieve a higher expected payoff from dividing these remaining

resources among more than one all-pay auction. Thus, given that player B is following

the equilibrium strategy, the maximum expected payoff to player A for an arbitrary strat-

egy x ∈ BA is

n

∑
j=1

[

vF
j

B

(

x j

)

− x j

]

≤
v(k−1)

(

2
n
−

XB−XA(n−2)
v

)

k
.

The argument for player B is symmetric.

This completes the proof of Theorem 3.

Appendix C

Subject to the constraint that there exist sufficient n-variate distribution functions, The-

orems 1, 2, and 4 characterize the unique sets of equilibrium univariate marginal distri-

bution functions for their respective parameter ranges.

For Theorems 1 and 2 Roberson (2006) demonstrates the existence of such n-variate

distribution functions. This Appendix establishes the existence of sufficient n-variate

distributions for the Theorem 4 parameter range.

9 For the remaining case that i = k− 1, player A’s payoff from allocating all XA to a

given all-pay auction is the same as if player A allocates XA −
nXA−XB

k−1
+ ε to the all-pay

auction. This follows from the tie-breaking rule and the fact that in this case player A’s

remaining resources are nXA−XB

k−1
−ε , and nXA−XB

k−1
−ε < XB−XA(n−1), for all admissible

k and ε > 0, so that the payoff from player A’s remaining resources is 0.
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Theorem 5 For each unique set of equilibrium univariate marginal distribution func-

tions, {F
j

i }
n
j=1, characterized in Theorem 4, there exists an n-copula, C, such that the

support of the n-variate distribution function C(F1
i (x1), . . . ,Fn

i (xn)) is contained in Bi.

We begin with the proof for player A. The construction of a sufficient n-variate distribu-

tion function for player A and XA ≥ v
n

is outlined as follows (recall that in the Theorem

4 parameter region XA < 2v
n

). The remaining case that XA < v
n

is addressed directly fol-

lowing this case.

1. Player A selects n−2 of the all-pay auctions, each all-pay auction chosen with equal

probability, and provides zero resources to those all-pay auctions.

2. On the remaining 2 all-pay auctions, player A randomizes uniformly on three line

segments: (i) {(x1,x2)| x1 + x2 = 2XA − 2v
n
}, (ii) {(x1,x2)| x1 = 0 and 2XA −

2v
n
≤

x2 ≤ XA}, and (iii) {(x1,x2)| x2 = 0 and 2XA−
2v
n
≤ x1 ≤ XA}. This support is shown

in Panel (ii) of Figure 2, and this randomization is discussed in greater detail directly

following this outline.

3. There are nC2 ways of dividing the n all-pay auctions into disjoint subsets such that

n−2 all-pay auctions receive zero resources with probability 1 and 2 all-pay auctions

involve randomizations of resources as in point 2. The n-variate distribution function

formed by placing probability [nC2]
−1 on each of these n-variate distribution func-

tions has univariate marginal distribution functions which each have a mass point of

(1− XA

v
) at 0 and randomize uniformly on (0,XA] with the remaining mass.

The pivotal step in this construction is point 2. Let xi denote the allocation of resources

to all-pay auction i ∈ {1,2}. Consider the support of a bivariate distribution function,

F , for x1 and x2 which uniformly places mass 1− nXA

2v
on each of the two following line

segments

{(x1,x2)| x1 = 0 and 2XA−
2v
n
≤ x2 ≤ XA}

{(x1,x2)| x2 = 0 and 2XA−
2v
n
≤ x1 ≤ XA}

and uniformly places the remaining mass, nXA

v
−1, on the line segment

{(x1,x2)| x1 + x2 = 2XA −
2v
n
}

This support is shown in Panel (ii) of Figure 2.



22

✲ x1

✻
x2

2v
n
−XA

XA

XA
2v
n −XA

✠

mass
nXA

v
−1

✲

✻

mass 1− nXA
2v

(i) Player B

✲ x1

✻
x2

XA

2XA −
2v
n

❄

mass 1− nXA
2v✛

✒
mass

nXA
v

−1

(ii) Player A

Fig. 2 Support of players’ bivariate distributions ((X̄A/X̄B) < (2/n), XA > (v/n) and XB > (n−2)XA +(2v/n))

In the expression for this bivariate distribution function we will use the following

notation.

R1:
{

(x1,x2) ∈ [0,2XA−
2v
n
]2
}

R2:
{

(x1,x2) ∈ [2XA−
2v
n
,XA]× [0,2XA−

2v
n
]
}

R3:
{

(x1,x2) ∈ [0,2XA−
2v
n
]× [2XA−

2v
n
,XA]

}

R4:
{

(x1,x2) ∈ (2XA−
2v
n
,XA]2

}

The bivariate distribution function for x1,x2 is given by

F (x1,x2) =







(

n
2v

)

max
{

x1 + x2 −2XA + 2
vn

,0
}

if (x1,x2) ∈ R1
(

1− nXA

v

)

+ nx1

2v
+ nx2

2v
if (x1,x2) ∈ R2∪R3∪R4

The univariate marginal distributions are given by F(x1,XA) = (1 − nXA

2v
) + nx1

2v
and

F(XA,x2) = (1− nXA

2v
)+ nx2

2v
. To see that F provides the necessary univariate marginal

distributions, observe that given the randomization outlined above player A allocates

zero resources to each all-pay auction j with probability n−2
n

+ 2
n
(1− nXA

2v
) = (1− XA

v
)

and randomizes uniformly over the interval (0,XA] with the remaining mass.

If XA < v
n
, then player A allocates zero resources to n−1 of the all-pay auctions and

provides a random level of resources in the one remaining all-pay auction. In this one

remaining all-pay auction player A has a mass point of (1− nXA

v
) at 0 and randomizes

uniformly over the interval [0,XA] with the remaining mass.

The proof for player B is similar. The construction of a sufficient n-variate distribu-

tion function for player B and XA ≥ v
n

is outlined as follows. In the Theorem 4 parameter

region XB ≥ min{nXA,(n− 2)XA +(2v/n)}. If XA ≥ v
n

then XB ≥ (n− 2)XA +(2v/n).

The remaining case that XA < v
n

and XB ≥ nXA is addressed directly following this case.
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1. Player B selects n−2 of the all-pay auctions, each all-pay auction chosen with equal

probability, and allocates XA to each of those all-pay auctions.

2. On the remaining 2 all-pay auctions, player B randomizes uniformly on three line

segments: (i) {(x1,x2)| x1 + x2 = 2v
n
}, (ii) {(x1,x2)| x1 = XA and 0 ≤ x2 ≤

2v
n
−XA},

and (iii) {(x1,x2)| x2 = XA and 0 ≤ x1 ≤
2v
n
−XA}. This support is shown in Panel (i)

of Figure 2, and this randomization is discussed in greater detail directly following

this outline.

3. There are nC2 ways of dividing the n all-pay auctions into disjoint subsets such that

n− 2 all-pay auctions receive XA with probability 1 and 2 all-pay auctions involve

randomizations of force as in point 2. The n-variate distribution function formed

by placing probability [nC2]
−1 on each of these n-variate distribution functions has

univariate marginal distribution functions which each have a mass point of (1− XA

v
)

at XA and randomize uniformly on [0,XA) with the remaining mass.

The pivotal step in this construction is again point 2. Let xi denote the allocation to all-

pay auction i ∈ {1,2}. Consider the support of a bivariate distribution function, F , for x1

and x2 which uniformly places mass 1− nXA

2v
on each of the two following line segments

{(x1,x2)| x1 = XA and 0 ≤ x2 ≤
2v
n
−XA}

{(x1,x2)| x2 = XA and 0 ≤ x1 ≤
2v
n
−XA}

and uniformly places the remaining mass, nXA

v
−1, on the line segment

{(x1,x2)| x1 + x2 = 2v
n
}

This support is shown in Panel (i) of Figure 2.

The bivariate distribution function for x1,x2 is given by

F (x1,x2) =



























(

n
2v

)

max
{

x1 + x2 −
2
vn

,0
}

if (x1,x2) ∈ [0,XA)2

nx1
2v

if x2 = XA, x1 ∈ [0,XA)
nx2

2v
if x1 = XA, x2 ∈ [0,XA)

1 if x1,x2 ≥ XA

Following from the arguments given above for player A, it follows that F provides the

necessary univariate marginal distributions for all-pay auctions 1 and 2.

If XA < v
n

and XB ≥ nXA, then player B allocates XA to n−1 of the all-pay auctions and

provides a random level of resources in the one remaining all-pay auction. In this one

remaining all-pay auction player A has a mass point of (1− nXA

v
) at XA and randomizes

uniformly over the interval [0,XA) with the remaining mass.
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This completes the proof of the existence of sufficient n-variate distributions for the

Theorem 4 parameter range.
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