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THE NONEQUIVARIANT COHERENT-CONSTRUCTIBLE

CORRESPONDENCE AND TILTING

SARAH SCHEROTZKE AND NICOLÒ SIBILLA

Abstract. The coherent-constructible correspondence is a relationship between coherent
sheaves on a toric variety X and constructible sheaves on a real torus T. This was discovered
by Bondal, and explored in the equivariant setting by Fang, Liu, Treumann and Zaslow. In
this paper we prove the equivariant coherent-constructible correspondence for a class of toric
varieties including weighted projective space. Also, we give applications to the construction
of tilting complexes in the derived category of toric DM stacks.
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1. Introduction

The coherent-constructible correspondence (CC correspondence) is an equivalence of cat-
egories that relates coherent sheaves on a toric variety X , and constructible sheaves on a
real torus T which is dual to the compact torus acting on X . The CC correspondence was
first conjectured by Bondal in the very influential preprint [Bo], and was established in the
equivariant setting by Fang, Liu, Treumann, and Zaslow in [FLTZ1, FLTZ2]. In this paper
we prove the non-equivariant CC correspondence for a class of toric varieties: our main ap-
plication is the construction of tilting complexes for an interesting class of toric DM stacks.
Below we give a more detailed sketch of our results.
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1.1. The non-equivariant coherent constructible correspondence. LetΣ = (N,Σ, β)
be a stacky fan (see Section 3 for a definition), and let M = Hom(N,Z) and MR =M ⊗ZR.
Denote XΣ the corresponding toric orbifold. In [FLTZ1, FLTZ2] the authors define a conical
Lagrangian Λ̃Σ ⊂ T ∗MR, and construct an equivalence between the torus equivariant cate-
gory of perfect complexes PerfT (XΣ), and the category of compactly supported constructible

sheaves on MR with singular support in Λ̃Σ, Shc(MR, Λ̃Σ). The notion of singular support
is due to Kashiwara and Schapira [KS], informally it is an invariant that measures the way
sections of constructible sheaves propagate. We recall its definition and some of its basic
properties in Section 4.

The authors in [FLTZ1, FLTZ2] conjecture that a similar statement holds when replacing
the equivariant category with ordinary perfect complexes, Perf(XΣ). For toric varieties
partial results in this direction were obtained by Treumann in the preprint [Tr]. In Section
5 we extend Treumann’s work to toric orbifolds. More precisely, let T be the quotient of MR

by the integral lattice M , T = MR/M . As Λ̃ is invariant under translation by M we obtain

a conical Lagrangian subset Λ = Λ̃/M of T ∗T.

Theorem 1.1. There is a fully faithful functor κ : Perf(XΣ) → Shc(T,ΛΣ) which makes
the diagram commute (up to natural equivalence)

PerfT (XΣ)

Forg

��

κ̃

∼=
// Shc(MR, Λ̃Σ)

p!

��
Perf(XΣ)

κ // Shc(T,ΛΣ),

where p :MR →MR/MZ is the quotient map, and Forg is the forgetful functor.

If XΣ is a toric orbifold, we say that the non-equivariant CC correspondence holds for XΣ

if κ is an equivalence. Following [FLTZ1, FLTZ2] we make the following Conjecture.

Conjecture 1.2. The non-equivariant CC correspondence holds for all toric orbifolds.

One of or main results is a proof of Conjecture 1.2 for a class of stacky fansΣ called cragged
(see Definition 6.3), which satisfy some special combinatorial conditions. Bondal and Ruan
announced that the non-equivariant CC correspondence holds for weighted projective space
[BR]: as weighted projective spaces have cragged fans, this follows from our work.

Theorem 1.3. If Σ is a cragged stacky fan then the functor κ : Perf(XΣ) → Shc(T,ΛΣ) is
an equivalence.

Although the conditions defining cragged fans are quite restrictive they are satisfied in
a number of interesting cases: we have already mentioned weighted projective spaces, also
all toric Fano surfaces have cragged fans. The proof of Theorem 1.3 depends on a careful
study of the category of constructible sheaves Shc(T,ΛΣ). When Σ is cragged Shc(T,ΛΣ)
has some important properties, including the fact that it is closed under tensor product of
constructible sheaves. This is one of the key ingredients in the proof of Theorem 1.3.

These properties of Shc(T,ΛΣ) follow from general results about constructible sheaves.
In Section 4 we define cragged Lagrangians : if Σ is a cragged fan then ΛΣ is a cragged
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Lagrangian in this sense. Using techniques from Kashiwara and Schapira’s microlocal sheaf
theory [KS] we prove that if M is a real analytic manifold and Λ ⊂ T ∗M is cragged then
Shc(M,Λ) is always closed under tensor product, and the restriction of the tautological
t-structure of constructible sheaves restrict to a t-structure on this category.

1.2. Tilting. Section 7 contains an application of the non-equivariant CC correspondence to
the algebraic geometry of toric DM stacks. In [Ki] King conjectured that the derived category
of a toric variety should contain a tilting object E , such that E decomposes as a direct sum
of line bundles. A lot of work has been done towards establishing King’s Conjecture and its
extension to toric orbifolds in several classes of examples, see for instance [CM] and [BH] and
references therein. Although King’s Conjecture is now known to be false in general [HP, Ef]
weaker statements are likely to be true:

Conjecture 1.4 ([Ef] Conjecture 1.6). Let X be a smooth and proper toric DM stack. Then
Perf(X ) admits a full strong exceptional collection.1

In Section 7 we prove the following result, that gives new evidence for Conjecture 1.4.

Theorem 1.5. If Σ is a cragged stacky fan then Perf(XΣ) admits a tilting complex. That
is, Perf(XΣ) is quasi-equivalent to the derived category of a finite dimensional algebra A.

The key point in the proof of Theorem 1.5 is the fact that as ΛΣ is cragged, Shc(T,ΛΣ)
comes together with a very natural t-structure and we have a good control of its heart.
Theorem 1.5 does not give a complete proof of Conjecture 1.4 for toric orbifolds with cragged
fans: we are currently unable to show that the algebra A that is produced by our argument
is directed.2 However we believe that this is the case, we plan to investigate this issue in
future work.

Acknowledgements: We thank David Treumann and Eric Zaslow for their interest in
this project. We thank particularly David Treumann for many useful discussions and for
letting us include in our paper some results from his preprint [Tr]. N.S. thanks the Max
Planck Institute for Mathematics for excellent working conditions.

2. Conventions and background

Throughout the paper we work over the field of complex numbers C.

2.1. Categories. By dg category we shall always mean a C-linear differential graded cate-
gory, see [Ke] and [Dr] for definitions and basic properties. If C is a dg category and x, y
are objects in C, we denote homC(x, y) the complex of morphisms between x and y. We
denote D(C) the homotopy category of the dg category C: D(C) has the same objects then
C, while the set of morphisms HomD(C)(x, y) is given by the zero-th cohomology of the
complex homC(x, y). It will be often useful to work with triangulated dg categories, which
are defined for instance in Section 2.4 of [Dr].3 If E is the set of objects in a triangulated dg

1Dropping the condition that the collection be strong, this has been proved by Kawamata [Kaw]. Note
also that if X is Fano Conjecture 1.4 follows from Dubrovin’s Conjecture, which is motivated by Kontsevich’s
Homological Mirror Symmetry: see [Bay] and references therein for more information on work in this area.

2A is directed if and only if the derived category of A-modules admits a full strong exceptional collection.
3Drinfeld calls such categories pre-triangulated.
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category C we denote 〈E〉 ⊂ C the smallest triangulated dg subcategory of C containing E.
The homotopy category D(C) of a triangulated dg category C is triangulated in the classical
sense. We say that a triangulated dg category C has a t-structure if its homotopy category
D(C) has one. The reader can consult [Lu] Section 1.2.1 for basic facts on t-structures in
the context of stable (∞, 1)-categories: all the statements there can be adapted to triangu-
lated dg categories in a straightforward way. We sometimes consider diagrams of functors
between dg categories: we say that such a diagram is commutative if it is commutative up
to canonical natural equivalence.

For future reference we recall the notion of Postnikov systems in triangulated dg categories,
see Chapter 4 of [GM]. Postnikov systems give a convenient way of talking about resolutions
in triangulated categories.

Definition 2.1. Let C be a triangulated dg category, and let

X• = Xc dc

→ Xc+1 dc+1

→ · · ·
d0

→ X0

be a sequence of objects in C with degree zero maps between them, such that di+1di = 0 in
the homotopy category.

• A (left) Postnikov system attached to X• is a diagram in C of the form

Xc dc //

Id
■■

■■
■

$$■■
■■

Xc+1 dc+1
//

gc+1

❑❑
❑❑

%%❑❑
❑

Xc+2 dc+2
//

gc+2

●●
●●

##●●
●

· · ·
d−1

// X0

g0
❈❈

❈❈

!!❈
❈❈

Y c = Xc

fc=dc

OO

Y c+1

fc+1

OO

+1
oo Y c+2

fc+2

OO

+1
oo · · ·

f−1

OO

+1
oo Y 0,

+1
oo

which satisfies the following conditions:
(1) f i and gi have degree zero, and f igi = di in the homotopy category.

(2) Y i f i

→ X i+1 gi+1

→ Y i+1 is a cofiber sequence.
• We call an object Y of C a left convolution of X• if there is a Postnikov system
attached to X• with the property that Y = Y 0.

Remark 2.2. Postnikov systems are preserved by dg functors of triangulated dg categories.
Note also that if Y ∈ C is a left convolution of X• then Y belongs to the subcategory
〈Xc, . . . , X0〉 ⊂ C.

2.2. Constructible sheaves. The classical reference for microlocal sheaf theory is [KS].
Although the theory of [KS] is cast in the language of ordinary triangulated categories, it is
straightforward to adapt it to the setting of dg categories. This issue is discussed at greater
length in [NZ, N1] to which we refer the reader for further details. IfM is a topological space
we denote Sh(M) the dg category of bounded complexes of sheaves of C-vector spaces onM
localized at quasi-isomorphisms: Sh(M) is a dg enhancement of the usual derived category
of sheaves over M , which is equivalent to the homotopy category D(Sh(M)). For the theory
of localization in the dg setting we refer the reader to [Dr].

Assume that M is a real analytic manifold. A sheaf F of C-vector spaces is called quasi-
constructible if there is a Whitney stratification of M such that the restriction of F to each
stratum is locally constant. F is called constructible if additionally its stalks Fx are finite
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dimensional vector spaces for all x ∈ M . We denote Shc(M) (resp. Shqc(M)) the triangu-
lated dg category of complexes with constructible (resp. quasi-constructible) cohomology.
We often refer to objects in Shc(M) simply as constructible sheaves. If S is a Whitney
stratification, we denote Shc(M,S) ⊂ Shc(M) the triangulated dg category of complexes
that have cohomology sheaves which are constructible with respect to S. An important
invariant of an object F ∈ Shc(M) is its singular support, see [KS] chapter V. We give a
detailed review of this concept in Section 4. If Λ ⊂ T ∗M is a R>0-invariant Lagrangian, the
triangulated dg category of constructible sheaves whose singular support is contained in Λ
is denoted Shc(M,Λ) ⊂ Shc(M).

The theory of Grothendieck’s (derived) six operations f∗, f
∗, f!, f

!,⊗,Hom can be lifted to
the dg category of constructible sheaves Shc(M), see [N1] Section 2.2. We denote Γ(−) the
functor of global sections. If F ∈ Shc(M) and Z ⊂ M is a closed subset we denote ΓZ(F)
the derived functor of the subsheaf of sections supported on Z. Throughout the paper, it
will always be understood that all the functors between triangulated dg categories are dg
derived: thus, for instance, we denote the derived push-forward simply f∗, and not Rf∗, and
similarly for Γ(−) and ΓZ(−).

2.3. Deligne-Mumford stacks. An introduction to Deligne-Mumford (DM) stacks can be
found in the appendix of [Vi]. We refer to [Vi] also for a definition of (quasi)-coherent sheaves
and vector bundles on DM stacks. If X is a DM stack we denote QCoh(X ) the triangulated
dg category of bounded complexes of quasi-coherent sheaves on X : QCoh(X ) is obtained
from the dg category of bounded complexes of quasi-coherent sheaves on X by localizing
at quasi-isomorphisms. A perfect complex is an object of QCoh(X ) which is locally quasi-
isomorphic to a complex of vector bundles on X . The triangulated dg category of perfect
complexes is denoted Perf(X ) ⊂ QCoh(X ). Let G be an algebraic group acting on X in the
sense of [Ro]. The G-equivariant categories of quasi-coherent sheaves and perfect complexes
on X will be denoted respectively QCohG(X ) and PerfG(X ).

3. Toric orbifolds and stacky fans

In this section we review the definition of toric DM stacks and stacky fans due to Borisov,
Chen and Smith [BCS], see also [FMN] and [Iw]. We also recall a few facts in toric geometry
which will be important later. We follow quite closely [BCS] except we work in somewhat
lesser generality. Indeed, in order to simplify the exposition we restrict to toric orbifolds, i.e.
toric DM stacks with trivial generic stabilizers.

Definition 3.1. A (strict) stacky fan Σ is given by a tuple (N,Σ, β), where:

• N ∼= Zn is a finitely generated free abelian group.
• Σ is a finite rational simplicial fan inNR = N⊗ZR, such that its set of one dimensional
cones Σ(1) = {ρ1, . . . , ρr} spans NR.

• β : Zr =
⊕i=r

i=1 Z ·ei → N is a homomorphism such that for all i ∈ {1 . . . r} bi := β(ei)
belongs to ρi.

To any stacky fan we can attach a toric orbifold XΣ in the following way. Let M =
Hom(N,Z) and let β∗ : M → M ′ := Hom(Zr,Z) be the dual of β. It follows from our
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assumptions that β∗ is injective. Denote Gale(N) the cockernel of β∗, and set

GΣ := Hom(Gale(N),C∗).

The morphism β∗ induces an embedding GΣ →֒ Hom(M ′,C∗) ∼= (C∗)r. For all σ ∈ Σ denote
Zσ ⊂ Hom(M ′,C) ∼= Cr the closed subset defined as follows

Zσ := {(z1, . . . , zr) ∈ Cr|
∏

i s.t. ρi*σ

zi = 0}.

Let UΣ be equal to the open subset Cr −
⋃

σ∈Σ Zσ. Note that UΣ is invariant under the
action of GΣ.

Definition 3.2. The toric orbifold XΣ associated to the stacky fan Σ is the quotient stack
[UΣ/GΣ].

The fact that XΣ is a DM stack is proved in Proposition 3.2 of [BCS]. Also, it follows
from Definition 3.1 that XΣ is an orbifold, i.e. it has trivial generic stabilizer.

Remark 3.3. The coarse moduli space of XΣ is the toric variety associated to the underlying
ordinary fan Σ, XΣ, see [BCS] Proposition 3.7. If Σ is smooth and all the vectors bi = β(ei)
are primitive, then XΣ is a variety and is isomorphic to XΣ. This is not the case if the bi-s
are primitive vectors but Σ is not smooth: indeed XΣ is always smooth.

Remark 3.4. As explained in [FMN] toric DM stacks admit an intrinsic definition as com-
pactifications of DM tori (see [FMN] Definition 3.2) carrying a DM torus action, much in
the same way as ordinary toric varieties. The case of toric orbifolds is especially simple.
Indeed, if the generic stabilizer is trivial the DM torus of [FMN] coincides with the ordinary
algebraic torus T = N ⊗Z C∗ and there is an open embedding T →֒ XΣ.

Next we state some results which extend to toric orbifolds some familiar properties of
toric varieties. In the sequel when referring to objects in Perf(XΣ) admitting an equivariant
structure, this will always be with respect to the natural action by the open dense torus
T →֒ XΣ.

Proposition 3.5 ([BH]). Let X be a toric orbifold, then any coherent sheaf F on X admits
a resolution P• = (· · · → P1 → P0) → F such that, for all m, Pm is isomorphic to a direct

sum of line bundles: Pm ∼=
⊕i=r

i=1 Li.

Proof. This is proved in [BH], see Corollary 4.8. �

Remark 3.6. It will be useful to think of the resolution P• using the language of Postnikov
systems. Indeed, we can regard P i as objects in Perf(X ) placed in degree zero. Then
Proposition 3.5 can be restated as saying that F is a left convolution of P•.

Proposition 3.7. Any line bundle L on a toric orbifold X admits a T -equivariant structure.

Proof. Line bundles on XΣ = [UΣ/GΣ] are given by GΣ-equivariant line bundles on UΣ. The
statement then follows because UΣ is an ordinary toric variety and line bundles on ordinary
toric varieties always admit an equivariant structure. �

Corollary 3.8. • Let L be the set of line bundles on X , then 〈L〉 = Perf(X ).
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• Let ET be the set of objects in Perf(X ) admitting an equivariant structure, then
〈ET 〉 = Perf(X ).

4. Constructible sheaves and cragged lagrangians

In this section we prove a few general results about constructible sheaves which will play
a key role in our argument. We start by giving some more explanations on the notion of
singular support. For the rest of this section we assume that M is a real analytic manifold.
Let F be an object in Shc(M):

Definition 4.1 ([KS] Definition 5.1.2). The singular support SS(F) of F is the subset of
T ∗M defined by the following condition: if p is a point in T ∗M , p /∈ SS(F) if and only if
there exists an open neighborhood U of p having the property that for all x0 ∈ M , and for
all 1-differentiable function ψ defined in a neighborhood of x0 and such that ψ(x0) = 0 and
dψ(x0) ∈ U , we have an isomorphism (RΓ{x∈M s. t. ψ(x)≥0}(F))x0

∼= 0.

In Theorem 4.2 we gather a few important properties of the singular support, referring to
[KS] Chapter V and VI for proofs. We say that a subset A ⊂ T ∗M is conical if it is invariant
under fiber-wise dilation by positive real numbers, that is if for all z ∈ M and λ ∈ R≥0

λ(A ∩ T ∗
zM) ⊂ A.

Theorem 4.2. Let F ∈ Shc(M), then

(1) SS(F) ⊂ T ∗M is a conical Lagrangian subset.
(2) The support of F is equal to SS(F) ∩ T ∗

MM .
(3) If S is a Whitney stratification of M and F is constructible with respect to S, then

SS(F) ⊂
⋃

S∈S T
∗
SM .

(4) If F1 → F2 → F3 is a cofiber sequence in Shc(M), SS(F2) ⊂ SS(F1) ∪ SS(F3).

As we mentioned in Section 2.2 if Λ ⊂ T ∗M is a conical Lagrangian set, we can consider
the subcategory Shc(M,Λ) of constructible sheaves F such that SS(F) ⊂ Λ: Theorem 4.2
(4) shows that Shc(M,Λ) is triangulated.

Remark 4.3. Let S be a Whitney stratification, and let ΛS =
⋃

S∈S T
∗
SM . Then by Theorem

4.2 (3), Shc(M,S) ⊂ Shc(M,ΛS). It is easy to see that this inclusion is an equivalence.

The category Shc(M) has two additional structures which will be of interest for us: it
is a symmetric monoidal category under tensor product of sheaves; also, it comes equipped
with a tautological t-structure whose heart is given by sheaves placed in degree 0. However
for a general conical Lagrangian Λ the tensor product does not restrict to the subcategory
Shc(M,Λ) ⊂ Shc(M), and similarly for the t-structure. In the rest of this Section we
introduce a class of Lagrangians, called cragged, having the property that both the t-structure
and the tensor product restrict to Shc(M,Λ).

Remark 4.4. Let S be a Whitney stratification. It is easy to see that Shc(M,S) is closed
under tensor product, and that the tautological t-structure of Shc(M) restricts as well.
Lagrangians of the form ΛS are encompassed by our notion of cragged Lagrangian.

We will need a notion of stratification which is more flexible than Whitney’s. The exact
properties that we require are specified below.
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Definition 4.5. LetM be a manifold. We call a stratification ofM the datum of a preorder
I, and a locally finite collection of locally closed subsets of M indexed by I, {Zi}i∈I , with
the following properties

•
⋃

i∈I Zi = X ,
• for all i, j, if i 6= j then Zi ∩ Zj = ∅,

• Zi ∩ Zj 6= ∅ if and only if Zi is contained in Zj , and this holds if and only of i ≤ j.

Definition 4.6. (1) Let U be an open subset of a vector space E. We say that a closed
subset A ⊂ T ∗U is globally cragged if there is a stratification {Zi}i∈I of U , and a
collection of closed convex cones {Vi}i∈I in E

∗ such that: A =
⋃

i∈I Zi × Vi.
(2) More generally, suppose that M is a manifold and that A ⊂ T ∗M is a closed subset.

We say that A is cragged if there is an atlas (Uα, φα)α∈J ofM such that, for all α ∈ J ,
(φα, dφα) is a trivialization of the cotangent bundle that maps Aα = A ∩ T ∗Uα onto
a globally cragged set.

Lemma 4.7. Under the assumptions of Definition 4.6 (1), we also have that if i ≤ j then
Vi ⊃ Vj.

Proof. If z lies in Zi, there is a sequence (xn)n∈N in Zj having the property that xn converges
to z. Let ξ be in Vj , and consider the sequence (xn, ξ)n∈N → (z, ξ). As A is closed and
(xn, ξ)n belongs to A for all n, the limit (z, ξ) belongs to A as well: thus ξ lies in Vi. �

Denote + : T ∗M ×M T ∗M → T ∗M the map of fiberwise addition. If A and B are subsets
of T ∗M , write A + B for the image of A ×M B under +. Following [KS] denote A+̂B the
subset of T ∗M given in coordinates as follows: (z, ζ) ∈ T ∗M lies in A+̂B if and only if there
are sequences (xn, ξn)n∈N in A and (yn, ηn)n∈N in B such that

(1) xn
n
→ z, yn

n
→ z, and ξn + ηn

n
→ ζ , and

(2) |xn − yn||ξn|
n
→ 0.

Definition 4.8. A subset A ⊂ T ∗M is called pre-additive (resp.additive) if it is conical, and
A+ A = A (resp. A+̂A = A).

Note that an additive set is also pre-additive.

Lemma 4.9. Let M be a manifold. If A ⊂ T ∗M is a cragged set, then A is additive.

Proof. Since additivity is a local property, we can assume that M = U where U is an open
subset in a vector space E, and that A is globally cragged. We use the notation of Definition
4.6 (1). If p lies in M we denote ip the element of I such that p belongs to Zip.

Fix z ∈ M . We need to show that we have an inclusion (A+̂A)z ⊂ Az. Note that for
all points p in a sufficiently small neighborhood of z, we have that iz ≤ ip. Let (z, ξ) be

in (A+̂A)z. Then there are sequences (xn, ξn)n∈N and (yn, ηn)n∈N in A such that xn
n
→ z,

yn
n
→ z, and ξn + ηn

n
→ ζ . We can assume that iz ≤ ixn and iz ≤ iyn for all n. Since A

is cragged, this implies that for all n both (z, ξn) and (z, ηn) belong to Az. Also Az is a
closed convex cone: since the sequence (z, ξn+ηn)n∈N lies in Az, the limit (z, ξ) to which this
sequence converges belongs to Az as well. That is, (z, ξ) ∈ Az as we wanted to prove. �
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Suppose thatM , A ⊂ T ∗M and {Uα, φα}α∈J satisfy the conditions described in Definition
4.6 (2) in the following weaker form. The chart (φα, dφα) maps Aα = T ∗Uα ∩ A onto a set
of the form

⋃

i∈I Pi× Vi, where {Vi}i∈I are convex cones, but we do not assume that {Pi}i∈I
is a stratification: instead {Pi}i∈I is a locally finite collection of closed subsets such that
⋃

i∈I Pi = φα(Uα). We will refer to this condition as (2′).
Then the following holds:

Lemma 4.10. Let A ⊂ T ∗M be a closed subset. The following are equivalent:

• A is cragged.
• A is pre-additive and satisfies condition (2′).

Proof. Lemma 4.9 shows that cragged implies pre-additive, so we only have to prove the
other implication. Let α ∈ J : using φα we identify T ∗Uα and Uα × E∗, and we set U := Uα
and A := A ∩ T ∗U . By pre-additivity the fibers of A over the points of U are cones: also,
they can be written as finite unions of elements in {Vi}i∈I . By shrinking U we can assume
that, regarded as subsets of E∗, there are only finitely many fibers of A over U . We denote
themW1, . . . ,Wn. By further shrinking U we can also assume that the intersection of {Pi}i∈I
with U is a finite collection of closed subsets, which we denote P1, . . . , Pm.

Recall that a constructible set is a finite union of locally closed sets. Given any partition
of a space such that all its elements are constructible, we can refine it and get a stratification
in the sense of Definition 4.5, see the proof of Theorem 18.11 in [Wh]. Now consider the
partition Q1, . . . , Qn of U defined by the following rule: p ∈ Qj if Ap = Wj. Note that
the Qj-s are obtained from the closed subsets P1, . . . , Pm by taking unions, intersections,
and complements: thus, they are constructible. Let {Zi}i∈I′ be a stratification refining
the partition {Q1 . . . Qn}. By construction, we can write A =

⋃

i∈I′ Zi ×Wi, where Wi ∈
{W1, . . . ,Wn} are convex cones. That is, A is cragged, as we wanted to show. �

Lemma 4.11. Let Λ ⊂ T ∗M be a conical Lagrangian subset and assume further that Λ is
additive. Then Shc(M,Λ) is closed under tensor product.

Proof. This follows from results contained in Chapter 5 of [KS] (see also Theorem 1.1 of
[GS]): in particular, we have an inclusion SS(F ⊗ G) ⊂ SS(F )+̂SS(G). If Λ is additive,
then SS(F )+̂SS(G) ⊂ Λ+̂Λ = Λ. �

Corollary 4.12. If Λ ⊂ T ∗M is a cragged conical Lagrangian, then Shc(M,Λ) is closed
under tensor product.

Next, we prove that if Λ is a cragged conical Lagrangian the tautological t-structure on
Sh(M) restricts to a t-structure on Sh(M,Λ).

Lemma 4.13. Let i : U →֒ M be an open subset, and let F and G be two objects in Sh(M).
Then:

• SS(i∗F) = SS(F) ∩ T ∗U .
• Hj(i∗F) ∼= i∗(Hj(F)).

Proof. As the definition of singular support is local in nature, the first claim follows imme-
diately. The second is a consequence of the fact that i∗ is exact. �
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Lemma 4.14. Let U be an open subset of a vector space E, and let V be a closed convex
cone in E∗. If F ∈ Sh(M) has the property that SS(F) is contained in U × V , then
SS(Hj(F)) ⊂ U × V for all j.

Proof. See [KS], Exercise VI.1. �

Proposition 4.15. Let M be a manifold, and let Λ ⊂ T ∗M be a cragged conical lagrangian.
Then the t-structure on Sh(M) restricts to a t-structure on Sh(M,Λ).

Proof. We have to prove that for all objects F in Sh(M,Λ), and for all i ∈ Z, H i(F) lies in
Sh(M,Λ), or equivalently that SS(H i(F)) ⊂ Λ. By Lemma 4.13 we can assume that M is
an open subset U in a vector space E, and that Λ is globally cragged. We use the notations
of Definition 4.6 (1).

If p is a point in U we denote ip ∈ I the index such that p ∈ Zip. It is sufficient to show that
for all p, the fiber SS(H i(F))p is contained in Vip. We can consider an open neighborhood
U ′ of p having the property that for all q ∈ U ′, ip ≤ iq. Let i : U

′ ⊂ U be the inclusion. By
Lemma 4.13 SS(i∗F) = SS(F) ∩ T ∗U ′ ⊂ U ′ × Vip. Applying Lemma 4.13 and then Lemma
4.14 we obtain the inclusion

SS(Hj(F)) ∩ T ∗U ′ = SS(i∗Hj(F)) = SS(Hj(i∗F)) ⊂ U ′ × Vip,

This implies in particular that SS(Hj(F))p ⊂ Vip. �

If S is a stratification satisfying some extra conditions then Shc(M,S) can be described
very explicitly as a category of quiver representations. We make use of the convenient recent
reference [Ba], but remark that this circle of ideas goes back to McPherson and others: for
more information see for instance [Ka], and the discussion in the first Section of [Tr1].

Let us briefly summarize the results in [Ba] that we will need in the sequel. Let S be an
acyclic stratification of M in the sense of [Ba] Definition 17. For our purposes it is sufficient
to remark that any triangulation of M yields such a stratification, and that any Whitney
stratification admits a refinement that is acyclic. Section 4 of [Ba] contains a prescription
that attaches to S a directed quiver with relations (QS , RS). Let AS be the path algebra of
(QS , RS), and let Db

dg(modAS) be the triangulated dg category of finite AS-modules.

Remark 4.16. Note that as the quiver QS is directed, AS has finite global dimension.

Theorem 4.17 ([Ba] Theorem 21). There is a quasi-equivalence Φ : Shc(M,S) ∼= Db
dg(modAS).

Also, Φ preserves the tautological t-structures.

5. The coherent-constructible correspondence

We start by reviewing the statement of the equivariant coherent-constructible (CC) corre-
spondence of [FLTZ1, FLTZ2]. Next we extend to toric orbifolds partial results of Treumann
[Tr] on the non-equivariant CC-correspondence. Building on these results in the next Section
we prove one of our main theorems: we establish a complete statement of the non-equivariant
CC-correspondence for a class of toric orbifolds satisfying some special combinatorial condi-
tions.

We use the notations introduced in Section 3. Let Σ = (N,Σ, β) be a stacky fan. Hence-
forth, we assume that all stacky fans Σ are complete: that is, that their underlying ordinary
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fan Σ is complete. Recall that we write M = Hom(N,Z), MR = M ⊗Z R, and that β is a
homorphism of the form β : Zr = ⊕i=r

i=1Zei → N . We set bi = β(ei) and B = {b1, . . . , br}.
For all σ ∈ Σ, we denote Nσ ⊂ N the sublattice generated by B ∩ σ = {w1, . . . , wd}, and
we denote Mσ the dual lattice Mσ = Hom(Nσ,Z). If σ ∈ Σ, and χ ∈ Mσ, we make the
following definitions:

σ⊥
χ := {x ∈MR|〈x, wi〉 = 〈χ,wi〉σ}, σ

∨
χ := {x ∈MR|〈x, wi〉 ≥ 〈χ,wi〉σ},

where 〈•, •〉 and 〈•, •〉σ are the natural pairings. Following [FLTZ2] we define the conical

Lagrangian subset Λ̃Σ ⊂MR ×NR = T ∗MR by the formula:

Λ̃Σ =
⋃

τ∈Σ

⋃

χ∈Mτ

τ⊥χ ×−τ ⊂MR ×NR = T ∗MR.

Let Shcc(M, Λ̃Σ) ⊂ Shc(M, Λ̃Σ) be the subcategory of sheaves with compact support.
Denote T = N ⊗Z C∗ the torus acting on X . In [FLTZ1] and [FLTZ2] Fang, Liu, Treumann
and Zaslow prove the following theorem:

Theorem 5.1 (Equivariant CC-correspondence, [FLTZ2] Theorem 7.6). There is a quasi-

equivalence of dg categories κ̃ : PerfT (XΣ) → Shcc(M, Λ̃Σ).
4

The purpose of this Section is to extend work of Treumann [Tr] on the non-equivariant CC-
correspondence for toric varieties to the larger class of toric orbifolds. For the convenience
of the reader we give complete proofs of all the statements. We do not claim any originality
here as we will follow very closely the arguments in [Tr]. Let T be the torus obtained as

the quotient MR/M and let p be the quotient map, p : MR → T. Note that Λ̃Σ is invariant
under translation by elements in the integral latticeM . Denote ΛΣ its quotient under theM-
action: ΛΣ is a conical Lagrangian subset of T ∗T. We denote Forg both the forgetful functor
QCohT (XΣ) → QCoh(XΣ), and its restriction to perfect complexes PerfT (XΣ) → Perf(XΣ).
The following holds:

Theorem 5.2. There is a quasi fully-faithful functor of triangulated dg categories

κ : Perf(XΣ) → Shc(T,ΛΣ),

which makes the following diagram commute:

PerfT (XΣ)
κ̃ //

Forg

��

Shcc(MR, Λ̃Σ)

p!

��
Perf(XΣ) κ

// Shc(T,ΛΣ).

We prove Theorem 5.2 by constructing κ explicitly on a set of generators. Let us review
briefly the main steps of the Theorem 5.1. In [FLTZ2] the authors attach to all pairs (σ, χ),

4In fact the theorem proved in [FLTZ2] is more general as it applies as well to toric DM stacks with
non-trivial generic stabilizers.
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σ ∈ Σ and χ ∈ Mσ, a quasi-coherent sheaf Θ′
T (σ, χ) ∈ QCohT (XΣ) and a constructible sheaf

ΘT (σ, χ) ∈ Shc(MR) as follows:

ΘT (σ, χ) := ((σ∨
χ)

◦ →֒ MR)!or[dim(MR)],
Θ′
T (σ, χ) := (Xσ →֒ XΣ)∗OXσ

(χ),

where Xσ ⊂ XΣ is the open substack associated to the cone σ, and (σ∨
χ)

◦ ⊂ MR denotes
the interior of σ∨

χ . The functor κ̃ is first defined as a functor between the larger categories

QCoh(XΣ) → Shc(MR, Λ̃Σ): κ̃ sends Θ′
T (σ, χ) to ΘT (σ, χ) and this assignement determines

κ̃ uniquely. The key fact is that κ̃ restricts to the subcategories Perf(XΣ) and Shcc(MR, Λ̃Σ),
and defines a quasi-equivalence between them.

In the non-equivariant setting we consider the sheaves

Θ(σ, χ) := p!ΘT (σ, χ),
Θ′(σ, χ) := Forg(ΘT (σ, χ)).

We start showing that the prescrition κ(Θ′(σ, χ)) = Θ(σ, χ) defines a quasi fully-faithful
embedding of dg categories κ : QCoh(XΣ) → Shqc(T,ΛΣ). Note that we have a natural
action of M on Mσ: with slight abuse of notation, if m ∈ M and χ ∈ Mσ we write m + χ
for (m)|Nσ

+ χ. More generally, let τ and σ be two cones such that τ ⊂ σ, and thus also
σ∨ ⊂ τ∨. We have a canonical map Mσ → Mτ given by restriction to Nτ . As before, if
χ1 ∈Mσ and χ2 ∈Mτ we simply write χ1 + χ2 instead of (χ1)|Nτ

+ χ2. We remark that the
sheaves Θ(σ, χ) and Θ′(σ, χ) depend on χ only up to the action of M .

Lemma 5.3. Let σ and τ be cones in Σ. There is a ξ ∈ M such that σ∨
χ1

⊂ τ∨χ2+ξ
if and

only if τ ⊂ σ and ξ ∈ τ∨χ2−χ1
.

Proof. Let us assume first that τ ⊂ σ. The condition ξ ∈ τ∨χ2−χ1
implies that ξ−χ1+χ2 ∈ τ∨

and hence σ∨ − χ1 + χ2 + ξ ⊂ τ∨. That is, σ∨
χ1

⊂ τ∨χ2+ξ
. Conversely, if σ∨

χ1
⊂ τ∨χ2+ξ

, then
σ∨ − χ1 + χ2 + ξ ⊂ τ∨. It follows that σ∨ ⊂ τ∨, hence τ ⊂ σ and −χ1 + χ2 + ξ ∈ τ∨. The
second condition is equivalent to the fact that ξ ∈ τ∨χ2−χ1

. �

Proposition 5.4. We have

Exti(Θ(σ, χ1),Θ(τ, χ2)) ∼=

{

C[τ∨χ2−χ1
∩M ] if i = 0 and τ ⊂ σ,

0 otherwise

and

Exti(Θ′(σ, χ1),Θ
′(τ, χ2)) ∼=

{

C[τ∨χ2−χ1
∩M ] if i = 0 and τ ⊂ σ,

0 otherwise

Proof. By adjunction we can write

hom(Θ(σ, χ1),Θ(τ, χ2)) = hom(p!ΘT (σ, χ1),Θ(τ, χ2)) ∼= hom(ΘT (σ, χ1), p
!Θ(τ, χ2)).

Also, p!Θ(τ, χ2) decomposes as the direct sum
⊕

ξ∈M ΘT (τ, χ2 + ξ). Thus we have that

hom(Θ(σ, χ1),Θ(τ, χ2)) ∼=
⊕

ξ∈M

hom(ΘT (σ, χ1),ΘT (τ, χ2 + ξ)).

Then the first equality is a consequence of [FLTZ2] Proposition 5.5 and Lemma 5.3. The
second equality follows in a similar way. �
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Let 〈ΘT 〉 ⊂ Shc(MR) and 〈Θ′
T 〉 ⊂ QCohT (XΣ) denote the full triangulated dg subcate-

gories generated respectively by the objects ΘT (σ, χ) and Θ′
T (σ, χ). In the non-equivariant

setting, we write 〈Θ〉 ⊂ Shqc(T) for the full triangulated dg subcategory generated by the
objects Θ(σ, χ), and 〈Θ′〉 ⊂ QCoh(XΣ) the one generated by the objects Θ′(σ, χ). The
assignment Θ′(σ, χ) 7→ Θ(σ, χ) determines uniquely a functor κ : 〈Θ′〉 → 〈Θ〉.

Theorem 5.5. The functor κ : 〈Θ′〉 → 〈Θ〉 is a quasi-equivalence, and fits in the following
commutative diagram of dg categories

〈Θ′
T 〉

κ̃ //

Forg

��

〈ΘT 〉

p!

��
〈Θ′〉

κ
// 〈Θ〉.

Proof. The functor κ is a quasi-equivalence by Proposition 5.4. The commutativity of the
diagram follows from the definition of κ. �

Proposition 5.6. The dg category Perf(XΣ) is contained in 〈Θ′〉.

Proof. The equivariant CC-correspondence implies that PerfT (XΣ) ⊂ 〈Θ′
T 〉. The image of

PerfT (XΣ) under the functor Forg is by definition the set ET of perfect complexes on X
admitting an equivariant structure. It follows that ET ⊂ 〈Θ′〉. Since 〈Θ′〉 is triangulated
it must contain also the triangulated hull of ET , 〈ET 〉. By Corollary 3.8 〈ET 〉 = Perf(XΣ),
and therefore Perf(XΣ) is contained in 〈Θ′〉: this concludes the proof. �

In view of the previous proposition we can restrict κ to Perf(XΣ). In order to prove
Theorem 5.2 it remains only to show that κ sends Perf(XΣ) to Shc(T,ΛΣ): this is the
analogue of Theorem 7.1 of [FLTZ2] in the non-equivariant setting.

The proof of Theorem 5.2. Corollary 3.8 shows that Perf(XΣ) = 〈L〉 where L is the set of
line bundles on XΣ. It follows that the image of Perf(XΣ) under κ is equal to 〈κ(L)〉,
where κ(L) := {κ(L),L ∈ L}. By Proposition 3.7 if L is in L we can choose an equivariant

representative L̃ ∈ PerfT (XΣ) such that L ∼= Forg(L̃). Also, using Theorem 5.5 we can
write κ(L) ∼= p!(κ̃(L̃)). One consequence of Theorem 7.1 of [FLTZ2] is that κ(L̃) belongs to

Shcc(MR, Λ̃Σ). This implies that p!(κ̃(L̃)) is a constructible sheaf and also that its singular
support is contained in p(Λ̃): p!(κ̃(L̃)) ∈ Shc(T,ΛΣ). Since Shc(T,ΛΣ) is triangulated we
conclude that

κ(Perf(XΣ)) ⊂ 〈κ(L)〉 ⊂ Shc(T,ΛΣ)

as we wanted to prove. �

Remark 5.7. We believe that there is an inclusion Shc(T,ΛΣ) ⊂ 〈Θ〉 but we do not know
how to prove this in full generality. Indeed, this statement is equivalent to the fact that the
quasi-fully faithful embedding κ : Perf(XΣ) → Shc(T,ΛΣ) is also essentially surjective. In
the next Section we give a proof of the essential surjectivity of κ but only under additional
assumptions on the combinatorics of Σ.
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5.1. Functoriality of κ and tensor products. For completeness we prove that κ is func-
torial with respect to maps of stacky fans, and that κ intertwines the ordinary tensor product
on Perf(XΣ) and the convolution tensor product on Shc(T,ΛΣ). This is the analogue in the
non-equivariant setting of Theorem 5.16 and Corollary 5.18 of [FLTZ2]. We remark that
these results will not be used in the rest of the paper.

The next Definition is due to Borisov, Chen and Smith, see [BCS] Remark 4.5.

Definition 5.8. A map of stacky fans between Σ1 = (N1,Σ1, β1) and Σ2 = (N2,Σ2, β2) is
a group homomorphism f : N1 → N2 with the following properties:

(1) Denote fR : (N1)R → (N2)R the homomorphism obtained by extension of scalars.
Then fR maps cones in Σ1 to cones in Σ2: that is, if σ1 ∈ Σ1, there is σ2 ∈ Σ2 such
that fR(σ1) ⊂ σ2.

(2) If σ1 ∈ Σ1 and σ2 ∈ Σ2 are as in (1), then f(Nσ1) ⊂ Nσ2 .

To a map of stacky fans f we can attach (see [FLTZ2] Section 5.6 for additional details):

• A map of vector spaces ṽf : M2,R → M1,R. As ṽf
−1(M1,Z) is contained in M2,Z, ṽf

descends to a map vf : T1 :=M1,R/M1,Z → T2 :=M2,R/M2,Z.
• A map of stacks uf : XΣ1

→ XΣ2
which is equivariant with respect to the torus

actions: that is, uf fits in the commutative diagram

T1 × XΣ1

uf |T1×uf//

m1

��

T2 × XΣ2

m2

��
XΣ1 uf

// XΣ2
,

where T1 ⊂ XΣ1
and T2 ⊂ XΣ2

are the open torus orbits, and m1 and m2 denote the
respective actions on XΣ1

and XΣ2
.

Theorem 5.9. Let f : Σ1 → Σ2 be a map of stacky fans. Assume that the underlying
homomorphism f : N1 → N2 is injective. Then we have a commutative diagram of dg
categories:

〈Θ′
Σ2
〉

κ2 //

u∗

��

〈ΘΣ2
〉

v!

��
〈Θ′

Σ1
〉

κ1
// 〈ΘΣ1

〉.

Proof. We define a natural transformation ι : v! ◦ κ2 → κ1 ◦ u
∗ on the generators Θ′(σ, χ).

Note that there are natural quasi-isomorphisms

• v! ◦ κ2(Θ
′
Σ2
(σ, χ)) ∼= v!ΘΣ2

(σ, χ) = v!p2!ΘT2,Σ2
(σ, χ) ∼= p1!ṽ!ΘT2,Σ2

(σ, χ) ∼=
∼= p1!(ṽ!κ̃2(Θ

′
Σ2
(σ, χ))),

• κ1 ◦ u
∗(Θ′

Σ2
(σ, χ)) ∼= κ1 ◦ Forg(u

∗Θ′
T2,Σ2

(σ, χ)) ∼= p1!(κ̃1u
∗Θ′

T2,Σ2
(σ, χ)).

The natural transformation ι can therefore be defined by applying p1! to the natural trans-
formation ι̃ : v! ◦ κ̃2 → κ̃1 ◦ u∗ which is defined in [FLTZ2] Theorem 5.16. As ι̃ is a
quasi-isomorphism, ι is as well, and this concludes the proof. �
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Corollary 5.10. The functor κ : Perf(XΣ) → Shc(T,ΛΣ) is monoidal with respect to
the usual tensor product of perfect complexes, and the convolution product on constructible
sheaves.

Proof. Let Σ×Σ be the stacky fan of the product XΣ ×XΣ. The diagonal ∆ : N → N ×N
defines a injective morphism of stacky fans between Σ andΣ×Σ. Note that uf is the diagonal
embedding XΣ → XΣ × XΣ, while vf is the addition map: vf : T× T → T, vf(a, b) = a + b.
Let F ,G be objects in 〈Θ′〉Σ (resp., in 〈Θ〉Σ): the box product of F and G is defined by
the formula F ⊠ G := p∗1F ⊗ p∗2G ∈ 〈Θ′〉Σ×Σ (resp. F ⊠ G ∈ 〈Θ〉Σ×Σ), where p1, p2 are the
projections, p1, p2 : XΣ × XΣ → XΣ (resp. p1, p2 : T × T → T). It follows immediately
from the definition of κ that there are natural isomorphisms κ(Θ′(σ1, χ1) ⊠ Θ′(σ2, χ2)) ∼=
κ(Θ′(σ1, χ1))⊠ κ(Θ′(σ2, χ2)).

Denote ⊗o the ordinary tensor product on 〈Θ′〉, and ⊗c the convolution tensor product
on 〈Θ〉. Applying Theorem 5.9 to ∆ we obtain natural isomorphisms

κ(Θ′(σ1, χ1)⊗
o Θ′(σ2, χ2)) ∼= κ(u∗f(Θ

′(σ1, χ1)⊠Θ′(σ2, χ2))) ∼=

vf !κ(Θ
′(σ1, χ1)⊠Θ′(σ2, χ2)) = vf !(Θ(σ1, χ1)⊠Θ(σ2, χ2)) ∼= Θ(σ1, χ1)⊗

c Θ(σ2, χ2).

This implies that κ : 〈Θ′〉 → 〈Θ〉 intertwines ⊗o and ⊗c. As these tensor structures restrict
to the subcategories Perf(XΣ) and Shc(T,ΛΣ) this proves the statement. �

6. Cragged stacky fans and the non equivariant cc-correspondence

In this Section we prove that the quasi fully-faithful functor κ : Perf(XΣ) → Shc(T,ΛΣ)
is essentially surjective provided Σ satisfies some special properties, that is, it is cragged in
the sense of Definition 6.3.

Remark 6.1. The essential surjectivity of κ is equivalent to the statement that the image
of p! generates Shc(T,ΛΣ). Indeed Corollary 3.8 shows that the image of Forg generates
Perf(XΣ), and κ̃ is an equivalence by the equivariant CC-correspondence of [FLTZ2].

Lemma 6.2. Let X a toric DM stack, consider the point 1 ∈ T ⊂ X , and let k(1) be the
skyscraper sheaf at 1. Then, κ(k(1)) ∼= CT.

Proof. Denote j : T →֒ X the inclusion of the open torus orbit. Computing the Koszul
resolution of k(1) gives a complex

(1) (j∗OT )
(nn) → · · · → (j∗OT )

(n2) → (j∗OT )
n → j∗OT ,

which is isomorphic to k(1) in the derived category of quasi-coherent sheaves on X . Recall
that κ is defined precisely by assigning quasi-constructible sheaves to quasi-coherent sheaves
obtained as push-forward of structure sheaves on torus invariant open subsets. Thus, we can
evaluate κ on the complex (1).

The functor κ admits a simple geometric interpretation on complexes of j∗OT -modules.
Indeed, we can regard a complex of j∗OT -modules as a complex of modules over the group
algebra C[π1(T)] = C[T1, T

−1
1 , . . . , Tm, T

−1
m ]. Further, the abelian category of modules over

C[π1(T)] is naturally equivalent to the category of locally constant quasi-constructible sheaves
on T: κ maps a complex of j∗OT -modules to the corresponding complex of locally constant
quasi-constructible sheaves on T.
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As a complex of C[π1(T)]-modules, (1) is the Koszul resolution of the trivial representation
of C[π1(T)],

(2) (C[π1(T)])(
n

n) → · · · → (C[π1(T)])(
n

2) → (C[π1(T)])
n → C[π1(T)].

Thus κ(k(1)) is the locally constant sheaf given by the trivial C[π1(T)]-module, i.e. the
constant sheaf CT. This concludes the proof. �

Let Σ = (N,Σ, β) be a stacky fan. Let β be of the form β : Zr = ⊕i=r
i=1Zei → N . As in

Section 5 we denote bi = β(ei) and B = {b1, . . . , br}.

Definition 6.3. We say that Σ is cragged if the following two conditions are satisfied:

(1) (exhaustiveness) Let S be a subset of Σ. Denote 〈S〉 ⊂ NR the smallest convex cone
containing all cones σ in S. Then there is a subset T ⊂ Σ such that 〈S〉 =

⋃

τ∈T τ .
(2) (unimodularity) Let b1, . . . , bl be a set of linearly independent vectors in B, and let

ρi = R≥0bi. Exhaustiveness implies that 〈ρ1, . . . , ρl〉 =
⋃

τ∈T τ . Let NT ⊂ N be the
sublattice generated by B ∩

⋃

τ∈T τ . Then b1, . . . , bl form a Z-basis for NT .

Proposition 6.4. A stacky fan Σ is cragged if and only if Λ̃Σ is a cragged Lagrangian.

Proof. We start by proving that if Σ is cragged then ΛΣ is a cragged Lagrangian. Note that
for all stacky fans Σ, Λ̃Σ satisfies the assumptions of Lemma 4.10. Thus it is sufficient to
prove that if Σ is exhaustive and unimodular then Λ̃Σ is pre-additive. We have to show that
for all φ ∈ MR, (Λ̃Σ)φ is a convex cone. Denote Sφ the subset of Σ consisting of all cones τ
such that φ(Nτ ) takes integral values, that is such that φ ∈Mτ .

By exhaustiveness, there is a Tφ ⊂ Σ such that 〈Sφ〉 =
⋃

τ∈Tφ
τ . Using unimodularity we

can find a subset Bφ ⊂ B with the following properties:

(1) the vectors in Bφ form a basis of the sublattice generated by B ∩ Tφ,
(2) for each b ∈ Bφ there is a σ ∈ Sφ such that b belongs to σ.

This implies that Tφ ⊂ Sφ. Indeed, let τ ∈ Tφ and set Bτ = B ∩ τ . The cone τ lies in
Sφ if and only if φ takes integral values on the elements of Bτ . Since Bτ is contained in
the sublattice generated by B ∩

⋃

τ∈Tφ
τ , all its elements can be written as integral linear

combinations of vectors in Bφ. By definition φ takes integral values on Bφ, therefore the
same is true for Bτ as well. These considerations give us an inclusion

−〈Sφ〉 =
⋃

τ∈Tφ

−τ ⊆
⋃

σ∈Sφ

−σ = (Λ̃Σ)φ,

and the reverse inclusion is clear. Thus (Λ̃Σ)φ = −〈Sφ〉, and therefore (Λ̃Σ)φ is a convex
cone as we needed to show.

Let us prove the other implication: if Λ̃Σ is pre-additive then Σ is exhaustive and unimod-
ular. Let S be a subset of Σ, denote NS the sublattice of N generated by 〈S〉∩B and denote
MS the dual lattice. Pick a minimal set of generators φS1 , · · · , φ

S
l of MS. Choose preimages

φ1, · · · , φl in MR such that φi is sent to φSi under the quotient map MR → MS ⊗Z R. The
fibers of Λ̃Σ are naturally subsets of NR. Thus it makes sense to consider the intersection of
the fibers (Λ̃Σ)φi as a subset of NR. It is immediate to see that ∩i(Λ̃Σ)φi =

⋃

σ⊂〈S〉 −σ. Since

Λ̃Σ is pre-additive, (Λ̃Σ)φi is a convex cone for all i, and therefore ∩i(Λ̃Σ)φi =
⋃

σ⊂〈S〉 −σ is
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a convex cone as well. There is an inclusion
⋃

σ⊂〈S〉 σ ⊂ 〈S〉. The reverse inclusion holds as

well since
⋃

σ∈S σ ⊂
⋃

σ⊂〈S〉 σ, and by definition 〈S〉 is the smallest convex cone containing
⋃

σ∈S σ. Thus 〈S〉 =
⋃

σ⊂〈S〉 σ: this proves that Σ is exhaustive.
Next we show that unimodularity holds as well. Suppose to the contrary that unimodu-

larity fails: in the notation of the statement this means that there are one dimensional cones
ρ1, . . . , ρm such that 〈ρ1, . . . , ρm〉 =

⋃

τ∈T τ but {b1, . . . , bm} is not a basis of the sublattice
NT generated by B ∩

⋃

τ∈T τ . We define a homomorphism φ : N → R having the following
two properties:

(1) φ takes integer values on {b1, . . . , bm},
(2) there is an element b0 ∈ B ∩

⋃

τ∈T τ such that φ(b0) is not an integer.

Denote ρ0 the one dimensional cone such that b0 ∈ ρ0. The conditions on φ imply that −ρi
is contained in (Λ̃Σ)φ for all ρ ∈ {1, . . . , n}, while −ρ0 is not: −ρ0 * (Λ̃Σ)φ. Since ΛΣ is pre-

additive (Λ̃Σ)φ is a convex cone and therefore contains −〈ρ1, . . . , ρm〉 as a convex sub-cone.

This gives a contradiction because then we would have −ρ0 ⊂ −〈ρ1, . . . , ρm〉 ⊂ (Λ̃Σ)φ. �

We give below two examples of fans where either unimodularity or exhaustiveness fails.

Example 6.5. • Consider the fan Σ in R3 given by 〈0〉, the one-dimensional cones
ρi, the four faces 〈ρ1, ρ2〉, 〈ρ1, ρ3〉, 〈ρ2, ρ4〉, 〈ρ3, ρ4〉 and the cone spanned by all the
one-dimensional cones 〈ρ1, ρ2, ρ3, ρ4〉.

• •

• •

•

ρ1
✁✁✁✁✁✁✁✁

✁✁✁✁✁✁✁✁ ρ2✉✉✉✉✉✉✉✉✉✉✉

✉✉✉✉✉✉✉✉✉✉✉

ρ3♣♣♣♣♣♣

♣♣♣♣♣♣ ρ4❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥

Then Σ is not exhaustive: indeed the cone 〈ρ1, ρ2, ρ3〉 cannot be written as a union
of cones of Σ.

• All complete fans in R2 are exhaustive, but they might fail to be unimodular: in
fact unimodularity is a more restrictive condition than smoothness. Consider the
smooth complete fan Σ in R2 spanned by the one-dimensional cones ρ1 := R>0(1, 0),
ρ2 := R>0(1, 1), ρ3 := R>0(1,−1) and ρ4 := R>0(−1, 0):

•

• ρ4 •

ρ1
⑦⑦⑦

⑦⑦⑦

ρ2

ρ3
❅❅

❅

❅❅
❅

•

•

If i, j are in {1, . . . , 4} denote σij the two dimensional cone of Σ given by σij = 〈ρi, ρj〉.
Then 〈ρ1, ρ3〉 = σ12 ∪ σ23 but the Z-lattice spanned by N ∩ (σ12 ∪ σ23) is generated
by (1, 1), (1,−1) and (1, 0). Hence Σ is not unimodular.

Corollary 6.6. Σ is cragged if and only if ΛΣ is a cragged Lagrangian.



18 SARAH SCHEROTZKE AND NICOLÒ SIBILLA

Proof. For Lagrangians being cragged is a local condition, thus ΛΣ is cragged if and only if
Λ̃Σ is cragged. This together with Proposition 6.4 proves the statement. �

The conditions of Definitions 6.3 are quite restrictive but they are verified in a number of
interesting examples. For instance, all toric Fano surfaces have cragged fans. Also Proposi-
tions 6.9 and 6.10 below imply, in particular, that in all dimensions there are infinitely many
examples of toric orbifolds with cragged fans.

Definition 6.7. Let Σ = (N,Σ, β) be a stacky fan such that N has rank n and Σ contains
n+ 1 one dimensional cones. We say that XΣ is a fake weighted projective space.

Remark 6.8. Equivalently, fake weighted projective spaces are toric orbifolds with Picard
number 1. Fake weighted projective spaces contain ordinary weighted projective spaces but
form a strictly larger class, see [Bu] for several concrete examples.

Proposition 6.9. If Σ = (N,Σ, β) is the stacky fan of a fake weighted projective space then
Σ is cragged.

Proof. Let N = Zn. Then Σ is fully determined by the assignment of a set of n + 1 vectors
B = {b1 . . . bn+1} in N = Zn: they satisfy an equation of the form m1b1+ · · ·+mn+1bn+1 = 0
where all the coefficients are strictly positive integers. The one dimensional cones of Σ are
given by ρi = R≥0bi, β :

⊕i=n+1
i=1 Zei → N maps ei to bi, and the fan Σ is the collection of

all the cones spanned by proper subsets of {ρ1 . . . ρn+1}. This implies in particular that Σ
is exhaustive. Now let bi1 . . . bil be a set of linearly independent vectors in B. By definition
〈ρi1 . . . ρil〉 is a cone in Σ. Thus the fact that bi1 . . . bil are a Z-basis of the sublattice generated
by B ∩ 〈ρi1 . . . ρil〉 = {bi1 . . . bil} is tautological: Σ is therefore unimodular as well. �

Proposition 6.10. Let XΣ be a toric orbifold with cragged stacky fan Σ = (N,Σ, β), and
let G be a finite group acting on X in a way that is compatible with the torus action. Then
the stacky fan of the quotient [XΣ/G] is cragged as well.

Proof. Note that G can be embedded as a finite subgroup of the torus T = N ⊗Z C∗ in
such a way that the action of G on XΣ is induced from the action of T by restriction. The
subgroup G determines an overlattice M ′ ofM = Hom(N,Z): M ′ is the lattice of characters
of T which restrict to the trivial representation of G. By dualizing we get a surjective map
q : N → N ′. The stacky fan of [XΣ/G] is given by Σ′ = (N ′,Σ′, q ◦ β), where Σ′ is the set of
cones {q(σ)|σ ∈ Σ}. Exhaustiveness and unimodularity of Σ′ follow immediately from the
same properties of Σ. �

The next Theorem is one of our main results.

Theorem 6.11. If XΣ is a smooth toric orbifold such that Σ is cragged, then

κ : Perf(XΣ) → Shc(T,ΛΣ)

is an equivalence of categories.

Proof. As explained in Remark 6.1 it is sufficient to prove that the image of

p! : Shc(M, Λ̃Σ) → Shc(T,ΛΣ)
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generates Shc(T,ΛΣ). Informally, our argument depends on the availability of a kind of
categorification of partitions of unity: we explain briefly this analogy before proceeding with
the proof. The role of the unit function is played by the constant sheaf CT ∈ Shc(T,ΛΣ),
which is the unit for the tensor product5 in Shc(T,ΛΣ). We regard the image under κ of a
line bundle L as corresponding to a bump function (or rather, to the indicator function of

an open subset): as a justification recall that if L̃ is an equivariant ample line bundle then
κ̃(L) = i!C∆◦

L
, where C∆◦

L
is the constant sheaf on the interior of the lattice polytope ∆L

(see [FLTZ2]). When Σ is cragged we can construct a complex X• in Shc(T,ΛΣ) with the
property that X i are direct sums of objects of the form κ(L) and CT is a left convolution of
X•: this is the key step in our argument, and we think of this as an analogue of a partition
of unity.

Lemma 6.2 implies that there is a resolution

P• = (Pm → Pm−1 → · · · → P0) → k(1)

of the skyscraper sheaf k(1) such that P i is a direct sum of line bundles for all i. We regard
P• as a complex of objects in Perf(XΣ) and k(1) as the left convolution of P•. Evaluating
κ on P• we obtain a complex in Shc(T,ΛΣ), κ(P

•) = (κ(Pm) → · · · → κ(P0)) such that
κ(k(1)) ∼= CT is its left convolution. We can use this to realize all objects of Shc(T,ΛΣ) as
iterated cones of objects lying in the image of p! in the following manner.

Let F ∈ Sh(T,ΛΣ). We tensor κ(P •) with F and we get a complex

κ(Pm)⊗F → · · · → κ(P0)⊗ F ,

such that F = CT ⊗F is its left convolution. This implies that F lies in the subcategory

〈κ(Pm)⊗F , . . . , κ(P0)⊗ F〉 ⊂ Shc(T).

Note that κ(P i) ⊗ F is an object of Shc(T,ΛΣ) for all i: in fact, since ΛΣ is cragged,
Shc(T,ΛΣ) is closed under tensor product by Corollary 4.12. We prove next that κ(P i) ⊗
F lies in the image of p!. Write P i =

⊕

j∈J Lj where Lj are line bundles, and choose

equivariant representatives L̃j ∈ PerfT (XΣ). There are natural isomorphisms κ(
⊕

j∈J Lj)
∼=

⊕

j∈J κ(Lj)
∼=

⊕

j∈J p!(κ̃(L̃j)). Thus we have that

P i ⊗F ∼=
⊕

j∈J

(p!(κ̃(L̃j))⊗ F) ∼=
⊕

j∈J

p!(κ̃(L̃j)⊗ p!F),

where the last isomorphism is given by the projection formula.6 This completes the proof. �

7. Tilting complexes

As an application of Theorem 6.11 we prove that if Σ is a cragged stacky fan, then
Perf(XΣ) has a tilting complex. Let A be a finite-dimensional algebra over C. 7 Let us
recall some notations: modA is the abelian category of finite dimensional A-modules, Db

dg(A)

5We stress that here we are working with the ordinary tensor product of constructible sheaves, as opposed
to the convolution product which was discussed in Section 5.1.

6Note that p!F ∈ Shc(M, Λ̃Σ) is not compactly supported: however the tensor product κ̃(L̃j) ⊗ p!F is,

and therefore lies in Shcc(M, Λ̃Σ) as required.
7All algebras appearing in this paper are always assumed to be associative and unital.
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is the triangulated dg category of finite dimensional A-modules, and Db(A) the homotopy
category Db(A) = D(Db

dg(A)). Db
dg(A) has a tautological t-structure with heart equal to

modA.

Theorem 7.1. Let A be a finite dimensional algebra of finite global dimension. Let C be
a triangulated dg category. Assume that there is a quasi fully-faithful embedding of C into
Db
dg(A) that satisfies the following conditions:

(1) The restriction of the tautological t-structure of Db
dg(A) is a well defined t-structure

on C.
(2) The embedding C → Db

dg(A) admits a left adjoint.

Then there exists a finite-dimensional algebra B having global dimension smaller or equal
than the global dimension of A, and a quasi-equivalence C ∼= Db

dg(B).

Let A and C be as in the statement of the theorem. We denote C0 = C ∩modA: C0 is the
heart of the induced t-structure on C. The homotopy category D(C) is a thick subcategory
of Db(A), and the inclusion C → Db

dg(A) admits a left adjoint which we denote L.

Lemma 7.2. An object X ∈ Db
dg(A) belongs to C if and only if H i(X) ∈ C0 for all i ∈ Z.

Proof. Clearly if X ∈ C then H i(X) ∈ C0. We prove the other implication by induction
on the number of indexes i for which H i(X) is different from zero. Suppose that H i(X)
vanishes for all but one i. Then X ∼= H i(X) and as the objects of C0 are contained in C we
have that X ∈ C. Suppose now that the set of indices i such that H i(X) 6= 0 has cardinality
n. Take j to be the maximal index such that Hj(X) 6= 0. In Db

dg(A) we have a cofiber

sequence Y → X → Hj(X), where Y has non-vanishing cohomology in a strictly smaller set
of degrees than X . By the inductive hypothesis Y ∈ C. As C is triangulated, X belongs to
C as well. �

Let A and B be two abelian categories. We say that an exact functor F : B → A is
degree-wise fully faithful if ExtiB(A,B) ∼= ExtiA(FA, FB) for all i ∈ N.

Lemma 7.3. Let A and B be finite-dimensional algebras. Suppose that A has finite global
dimension. If F : modB → modA is a degree-wise fully faithful functor, then its extension
to the dg enhancements F : Db

dg(B) → Db
dg(A) is also quasi fully faithful. Further the global

dimension of B is smaller or equal than the global dimension of A.

Proof. Since F is degree-wise fully faithful, the A-module F (B) satisfies ExtiA(F (B), F (B)) =
0 for all i 6= 0. It follows from [Ri] Theorem 2.12 and Propositions 3.1 and 3.2 that F
induces a fully faithful embedding into Db(A) of the triangulated category of perfect B-
modules, Perf(modB). Note that the maximum range of non vanishing Ext-groups be-
tween B-modules is bounded by that of A-modules. That is, the global dimension of B
is bounded by the global dimension of A, and Perf(modB) ∼= Db(B). Thus, there is a
fully faithful embedding Db(B) → Db(A). By the uniqueness of cg enhancements (see
[LO][Proposition 2.6]) for Db(B) and Db(A), the embedding lifts to a quasi fully faithful
embedding F : Db

dg(B) → Db
dg(A). This completes the proof. �

Let (D≤0, D>0) be the aisles of the tautological t-structure on Db(A), and τ≤0 : D
b(A) →

D≤0 and τ>0 : D
b(A) → D>0 be the truncation functors.
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Proposition 7.4. Let D(C) and Db(A) be as in the statement of Theorem 7.1. Suppose
now that M ∼= τ≤0M for some M ∈ C, that is M has zero homology only in positive degree.
Then the left adjoint L(M) has zero homology in positive degree, that is L(M) ∼= τ≤0L(M).

Proof. If M is an object in Db(A) there is a unique object M⊥ ∈ D(C)⊥ such that M⊥ →
M → L(M) → M⊥[1] is a distinguished triangle. We have the following commutative
diagram whose middle row and columns are distinguished triangles:

τ≤0M
⊥ //

��

τ≤0M //

��

τ≤0L(M)

��
M⊥ //

��

M //

��

L(M)

��
τ>0M

⊥ // τ>0M // τ>0L(M).

Suppose now that M ∼= τ≤0M . Then τ>0M vanishes and HomDb(A)(M,X)=0 for all X in
D>0. As τ>0L(M) lies in C, it follows that

HomDb(A)(M, τ>0L(M)) ∼= HomDb(A)(L(M), τ>0L(M)) = 0.

Thus τ>0L(M) = 0, and we have that L(M) ∼= τ≤0L(M). �

We can now proceed with the proof the main theorem of this section.

The proof of Theorem 7.1. Denote by j the embedding of modA into Db(A) as the heart of
the tautological t-structure. Consider the following commutative diagram:

D(C)
i

//

H0

��

Db(A)
Lrr

H0

��
C0

i0

// modA .

j

TT

We denote L0 : modA → C0 the composition L0 = H0Lj. We prove first that L0 is a left
adjoint of i0. Let N ∈ modA and M ∈ C0. We have that H0L(N) = τ>−1τ≤0L(N). Since N
is concentrated in degree zero by Remark 7.4, τ≤0L(N) ∼= L(N). Thus

HomC0(L0N,M) ∼= HomDb
dg

(A)(τ>−1L(N),M).

We apply Hom(−,M) to the distinguished triangle

τ≤−1L(N) → L(N) → τ>−1L(N) → τ≤−1L(N)[1].

As M is concentrated in degree zero, we deduce that

HomDb(A)(τ>−1LN,M) ∼= Hom(LN,M) ∼= Hom(N,M),

that is, L0 is a left adjoint of i0.
Left adjoints of exact functors preserve projective generators. Thus L0(A) is a projective

generator of C0, and C0 is equivalent to modB where B is equal to EndmodA(L
0(A)). The

equivalence modB −→ C0 is given by the functor − ⊗B L
0(A). Consider the composition
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F := i0(− ⊗B L
0(A)), F is a degree-wise fully faithful functor from modB to modA. By

Lemma 7.3, F extends to a fully faithful embedding F : Db
dg(B) → Db

dg(A) whose image

consists of complexes with cohomology in C0. By Lemma 7.2, the image of F lies in C.
Conversely D(C) is generated by C0 as a triangulated category. This shows that there is an
equivalence C ∼= Db

dg(B). �

Theorem 7.5. Let XΣ be a smooth toric orbifold such that Σ is cragged. Then there is a
finite-dimensional algebra B of finite global dimension such that Perf(XΣ) is quasi-equivalent
to Db

dg(B). In particular Perf(XΣ) contains a tilting complex.

Proof. Since ΛΣ is cragged, the tautological t-structure of Shc(T) restricts to Shc(T,ΛΣ).
Let S be an acyclic Whitney stratification of T such that all complexes in Shc(T,ΛΣ) have
cohomology that is constructible with respect to S: this gives an embedding Shc(T,ΛΣ) ⊂
Shc(T,S). By Theorem 4.17 there is a quasi-equivalence Shc(T,S) ∼= Db

dg(AS) that preserves
the t-structures. Thus we obtain a quasi fully-faithful functor

J : Shc(T,ΛΣ) → Db
dg(AS),

that is compatible with the t-structures. Also, J has a left adjoint. Indeed, since XΣ is a
smooth and proper DM stack, Perf(XΣ) is a saturated dg category in the sense of [To]. In
particular, all quasi fully-faithful functors with source Perf(XΣ) admit both a left and a right
adjoint, and the same holds for the quasi-equivalent category Shc(T,ΛΣ). This completes
the proof, as we can apply Theorem 7.1 and obtain a chain of quasi-equivalences

Perf(XΣ) ∼= Shc(T,ΛΣ) ∼= Db
dg(B).

�
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