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Abstract

In this work, we mostly concentrate on the hidden shift problem for non-injective func-
tions. It is worthwhile to know that the query complexity of the non-injective hidden shift
problem is exponential in the worst case by the well known bounds on the unstructured
search problem. Hence, we can make this problem more tractable by imposing additional
constraints on the problem. Perhaps the first constraint that comes to mind is to ad-
dress the average case problem. In this work, we show that the average case non-injective
hidden shift problem can be reduced to the injective hidden shift problem by giving one
such reduction. The reduction is based on a tool we developed called injectivization. The
result is strong in the sense that the underlying group can be any finite group and that the
non-injective functions for which we have defined the hidden shift problem can have range
in an arbitrary finite set. Using this tool, we simplify the main result of a recent paper by
Gavinsky, Roetteler, and Roland [2011] about the hidden shift problem for Boolean-valued
functions by reducing that problem to Simon’s problem. They also posed an open ques-
tion which is subject to personal interpretation. We answer the seemingly most general
interpretation of the question. However, we use our own techniques in doing so (the au-
thors ask if their techniques can be used for addressing that problem). Another constraint
that one can consider is to have a promise on the structure of the functions. In this work
we consider the hidden shift problem for c-almost generalized bent functions. A class of
functions which we defined that includes the generalized bent functions. Then we turn our
attention toward the generalized hidden shift problem which is easier than injective hidden
shift problem and hence more tractable. We state some of our observations about this
problem. Finally we show that the average classical query complexity of the non-injective
hidden shift problem over groups of form Z

n
m when m is a constant is exponential, which

also immediately implies that the classical average query complexity of the non-injective
hidden shift problem is exponential. We also show that the worst-case classical query com-
plexity of the generalized injective hidden shift problem over the same group is high, which
implies that the classical query complexity of the hidden shift problem is high.
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Chapter 1

Introduction

1.1 Why the hidden shift problem?

The first formal evidence that a quantum computer might be stronger than a classical com-
puter was given in the work of Bernstein and Vazirani [1993]. In that paper, they defined
the complexity class BQP, the class of problems that can be solved efficiently on a quan-
tum computer. They showed that BQP contains BPP. They also introduced a problem
called Recursive Fourier Sampling to demonstrate a super-polynomial separation between
BQP and BPP in the relativized world. Subsequently, Simon came up with a black-box
problem which could be solved exponentially faster on a quantum computer [Simon, 1994].
Although the problem was of little practical interest, it was a milestone in the history of
quantum computing. Firstly, it was the first problem for which an exponential separa-
tion could be achieved, giving even stronger evidence for the superior power of quantum
computers. Secondly, the technique used in solving the problem paved the road for the
development of an efficient quantum algorithm for two long-standing open problems in the
history of mathematics; factoring and discrete log problems. Inspired by his work, Shor dis-
covered an efficient quantum algorithm for solving these problems on a quantum computer.
This brought in an era of excitement about the quantum computer. The research both
on the quantum algorithms and on practical realization of a quantum computer received
a major boost from this discovery [Shor, 1997]. It was later shown that Simon’s problem,
factoring and discrete log problem all can be cast as special cases of the abelian hidden
subgroup problem. Now, we know that hidden subgroup problem over abelian groups can
be solved efficiently on a quantum computer. In the light of these results, a whole body
of research is devoted to finding algorithms for the hidden subgroup problem over non-
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abelian groups. However, these efforts have met with only limited success. In particular,
we do not know yet of any quantum algorithm that efficiently solves the hidden subgroup
problem over the dihedral group and symmetric group. The hidden subgroup problem over
these groups is particularly interesting due to their connection to some lattice problems
and graph isomorphism.

The slow progress in finding new algorithms for the hidden subgroup problem has mo-
tivated researchers to think of new paradigmatic problems in which a quantum computer
can demonstrate a superior performance. One notable example is the hidden shift prob-
lem[van Dam et al., 2003][Friedl et al., 2003]. The study of the hidden shift problem has
helped us in giving insights into the hidden subgroup problem due to some connections
between the two. In particular, we know that the injective hidden shift problem with an
underlying abelian group is equivalent to an instance of the non-abelian hidden subgroup
problem. As one example, the hidden shift problem over the group ZN is equivalent to
the hidden subgroup problem over the dihedral group. Some problems of interest can be
cast both as a hidden shift problem and as a hidden subgroup problem. Most notably,
graph isomorphism is one such problem. It is even argued in [Childs and Wocjan, 2007]
that viewing graph isomorphism as a hidden shift problem is a more natural approach than
viewing it as a hidden subgroup problem. Beside all these, some instances of the hidden
shift problem are interesting on their own.

Usually in both the hidden shift problem and hidden subgroup problem we rely on
the ability of quantum computers in performing the quantum Fourier transform. Often,
the difference is that in the hidden shift problem we use the relation between the Fourier
transform of shifted functions whereas in the hidden subgroup problem, we rely on the
ability of the Fourier transform to extract the periodicity.

1.1.1 Connections to the hidden subgroup problem

There is a well-known connection between the hidden shift problem and the hidden sub-
group problem. More specifically, the hidden shift problem defined over an abelian group
G is equivalent to the hidden subgroup problem defined over the group of the semi-direct
product of G and Z2 where Z2 acts on G by inversion[Childs and Wocjan, 2007].

In addition to this direct connection, many times we see a problem that admits reduc-
tion both to a hidden shift problem and a hidden subgroup problem. This establishes an
indirect connection between the hidden shift problem and the hidden subgroup problem as
the tools enabling us to look at the same problem from different perspectives.
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Perhaps the most interesting problem in this category is graph isomorphism. Since
there is no known reduction from every NP problem to this problem, it is not known to
be an NP-complete problem together with factoring and discrete log problem. However,
this problem is in NP since the validity of an isomorphism can be quickly verified. Unlike
factoring and discrete log, no polynomial time quantum algorithm is known for solving
this problem. Graph isomorphism can be reduced to the hidden subgroup problem [Beals,
1997][Ettinger and Høyer, 1999a][Høyer, 1997][Boneh and Lipton, 1995] or to a hidden shift
problem both over the symmetric group. Considering the hidden subgroup problem over
S2n or Sn ≀Z2, there is a reduction from graph isomorphism to the first problem where the
hidden subgroups are formed by full support involutions and to the second one with the
hidden subgroups formed by involutive swaps.

One can also consider the hidden shift problem over Sn for studying the graph iso-
morphism. This problem can be reduced to both of the hidden subgroup problems above.
In other words, this problem might be easier than the problems above (when viewed as
black-box problems), but it is definitely no harder. Furthermore, when viewing graph iso-
morphism as a hidden shift problem, every possible shift corresponds to a possible isomor-
phism. However, not every possible hidden subgroup in the problems above corresponds
to a possible hidden shift [Childs and Wocjan, 2007].

1.2 Preliminaries

1.2.1 Notations and basic definitions

• We use G to refer to an arbitrary finite group and S to refer to an arbitrary finite
set. Since we are dealing with abelian groups in all of this thesis, except of chapter 3
where we address the general groups, with a slight abuse of notation, we denote the
groups additively. There is an arbitrary choice of left or right addition in the non-
abelian hidden shift problem. Without loss of generality, we choose right addition.
All groups in this thesis are additively denoted.

• For an m-tuple V ∈ Gm we denote its component k as vk.

• For any function f : Z
n
m → Zm, we show with capital letter, the corresponding

function F : Zn
m → {ωx

m|x ∈ Zm} defined by F (x) = ω
f(x)
m .

• For any discrete function, we denote the size of its domain with N .
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• For any function g : Zn
m → C we define its Fourier transform ĝ : Zn

m → C by

ĝ(s) =
1

N

∑

x∈Zn
m

ωx·s
m g(x)

where ωm is the m’th root of unity and x · s is the inner product of x and s modulo
m.

1.2.2 Highly non-linear functions

A function f : Zn
2 → {0, 1} is called bent if each of the Fourier coefficients of F is either

+1√
N

or
−1√
N
, i.e. for all z ∈ Z

n
2 :

|F̂ (z)|2 = 1

N
.

The notion of bent function is first defined in [Rothaus, 1976]. Bent functions are of
particular interest in cryptography. Their special properties make them resistant to specific
type of attacks. Bent functions are sometimes called maximum non-linear functions. This
terminology is motivated by the fact that by comparing the values that a bent function and
set of all linear functions take at each point, we see that their disagreement is maximal. This
rules out the possibility of successful attacks aimed at extracting dependencies between the
values the bent function takes and some linear subspace of the arguments [Rothaus, 1976].

It is not hard to prove that bent functions do not exist for values of n that are odd.
For large enough values of n that are even, bent functions are guaranteed to exist. In
particular, some classes of bent functions are well characterized. However, a complete
characterization of bent functions seems to be a subtle task. One of the biggest known
classes of bent functions are called Maiorana-Mcfarland bent functions. The number of
bent functions in this class is (2n/2)!× 22

n/2
. This number is asymptotically equivalent to

(

2n/2+1

e

)2n/2√
2π2n/2 which can be shown by using Stirling’s formula. However, still it

seems that the number of bent functions in this class is negligible compared to the total
number of bent functions. The exact count of the number of bent functions is not known.
By Rothaus inequality we know any bent function has a degree of at most n/2. The naive
bound that results from this constraint suggests that the total count of bent functions is at

most 2(2
n−1+1/2( n

n/2)) [Carlet and Gaborit, 2006]. A better bound was recently discovered
in [Carlet and Klapper, 2002], but it still seems to be far from being tight [Carlet and
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Gaborit, 2006]. For n = 6 we know the exact count of bent function which is almost equal
to 232 [Preneel, 1993].

The most common generalization of bent functions can be seen in [Kumar et al., 1985].
The generalized bent function is defined on the set of n-tuples with each component being a
member of Zp. Here we consider the case where these n-tuples correspond to the members

of the group Z
n
p . Any function f : Zn

p → Zp is called bent, if
∣

∣

∣
F̂ (z)

∣

∣

∣
is constant over all

z ∈ Z
n
p [Kumar et al., 1985]. Interestingly, generalized bent functions and bent functions

share many properties that are useful in cryptography. Often, in applications, only the case
where p is a prime number is considered. It is noteworthy to mention that the quantum
algorithms we present in this thesis for solving the hidden shift problem for generalized
bent functions cover the case when p is a constant prime power. Hence, we have covered
the case that is of most practical interest (the case of prime p) in this thesis. Unlike the case
of bent functions which do not exist when n is an odd number, generalized bent functions
exist regardless of the parity of n when p is an odd prime number [Nyberg, 1991].

In addition to generalized bent functions, we define a set of functions which include the
generalized bent functions and for which we can solve the hidden shift problem using the
quantum algorithm presented in this thesis. We say a function f : Zn

p → Zp is a c-almost
generalized bent function if the absolute value of the ratio of the smallest Fourier coefficient
of F to its biggest Fourier coefficient is the non-zero constant c. More formally

minx

∣

∣

∣
F̂ (x)

∣

∣

∣

maxy

∣

∣

∣
F̂ (y)

∣

∣

∣

= c

where c > 0 is a constant.

1.3 Hidden Shift Problem

In the injective hidden shift problem, we are given two injective functions over some group
G that are simply a shifted version of each other. The task is to output such a shift. More
formally:

Definition (Hidden Shift Problem). Let f, g : G→ S be two injective functions given
by blackboxes such that, for some unique s ∈ G, f(x) = g(x + s) for all x ∈ G. The goal
is to find the hidden shift s.
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Since we deal with the general groups only in chapter 3 and except of that we work
only with abelian groups, with a slight abuse of notation, we denote the groups additively,
even when the groups are non-abelian.

Interesting problems can be stated as or reduced to a hidden shift problem. Most
notably, these include hidden subgroup problem over dihedral group which, as noted earlier,
is equivalent to the hidden shift problem over ZN [Ettinger and Høyer, 1999b][Kuperberg,
2005] and graph isomorphism, which can be reduced to the hidden shift problem over
Sn[Childs and Wocjan, 2007].

It is possible to define a variation of the hidden shift problem by relaxing the require-
ment for the functions to be injective. However, then a self-shift in the functions might
be possible which causes s to not be unique. We say there is a self-shift in the functions
if for some t ∈ G \ 0 we have f(x + t) = f(x) which also implies g(x + t) = g(x) for all
x). To make the problem well defined, we make a promise about the function f not to be
self-shift.

In this thesis, we are mostly interested in the non-injective hidden shift problem. This
relaxed version of the hidden shift problem has also attracted scholars in the field.

1.4 Previous work

1.4.1 Non-injective hidden shift problem

In addition to the injective hidden shift problem, the non-injective version of the hidden
shift problem where functions are not required to be injective has been studied. An effi-
cient quantum algorithm is given in [Rötteler, 2010] for solving the hidden shift problem
for several classes of the so-called bent functions. Gavinsky et al. [2011] gave an efficient
quantum algorithm for solving the hidden shift problem for average case Boolean functions
f : Zn

2 → {0, 1}. They could show that their algorithm addresses the hidden shift problem
for all bent functions as well. Ozols et al. [2011] gave another algorithm for the Boolean
hidden shift problem based on the Quantum reject sampling. An efficient quantum al-
gorithm for solving the hidden shift problem when f : Zp → {−1, 0, 1} is the Legendre
symbol is presented in the work by van Dam et al. [2003] who for the first time explicitly
defined the hidden shift problem. They also gave a reduction to the hidden shift problem
over Zp assuming a conjecture in [Boneh and Lipton, 1995] holds. The conjecture states
that any string formed by l subsequent values of f is unique where l > 2 log2 p.
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By lower bounds on the query complexity of the unstructured search problem[Bennett
et al., 1997], a worst case solution to the non-injective hidden shift problem cannot be
obtained. Imposing restrictions on the instances, makes the non-injective hidden shift
problem more tractable. Perhaps, one of the most common restriction in this situation is
to consider the average case problem.

Since we have devoted some pages in this thesis to simplifying the main result in
[Gavinsky et al., 2011] and to answering seemingly the most general interpretation of
the open question posed there, it is appropriate to explain their result and approach in
somewhat more detail. We devote the next subsection to this.

1.4.2 The hidden shift problem for Boolean functions

As mentioned in the previous subsection, Gavinsky, Roetteler, and Roland [2011] in a recent
paper defined a hidden shift problem for Boolean functions called the Boolean hidden shift
problem and could show an exponential separation for the average case of the problem. In
this subsection, we describe their work in some details.

In the Boolean hidden shift problem, we are given two functions f, g : Zn
2 → {0, 1} as

oracles. Firstly, it holds for some v ∈ Z
n
2 that f(x) = g(x + s) for all x in the domain.

Secondly, it holds that if f(x) = f(x + t) for all x in the domain, then t = 0. In other
words, the functions do not have a self-shift. The goal is to find v.

The familiar notion of influence of η over f is defined as

γf,η , Pr
x
{f(x) 6= f(x+ η)}

where x is chosen uniformly at random. In some sense, γf,η captures the extent to which
our function f is a self-shift function with respect to η. The minimum influence of f is
defined as the minimum of the above quantity over all η.

The idea for solving an average case of this problem is to prepare a set of n linearly
independent equations of components of s which uniquely determine s. The expected
number of queries and time steps are O(n) and O(poly(n)) as shown in [Gavinsky et al.,
2011]. This result is obtained by relating the amount of queries and time needed to solve
any instance of the Boolean hidden shift problem to the minimum influence of the function
f . While they show in [Gavinsky et al., 2011] that the average case query complexity of the
Boolean hidden shift problem is high, they give an efficient quantum algorithm to address
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the average case. In their sampling subroutine, they measure the states of form

∑

u∈Zn
2

F̂ (u)(1 + (−1)u.s)
2

|0〉|u〉+
∑

u∈Zn
2

F̂ (u)(1− (−1)u.s)
2

|1〉|u〉.

to obtain equations of form u · s = b for some known random value of u and some known
value for b consistent with s.

As an open question, they ask “whether these methods can be generalized and adapted
for the case of non-Boolean functions also”. It seems that the question they pose is subject
to personal interpretation. We explain how we approach this question in the next section.

1.5 Summary of results

In this thesis, we are mostly concerned with the average case non-injective hidden shift
problem. We introduce a framework that we call injectivization for reducing the average
case non-injective hidden shift problem to the injective hidden shift problem. This is a
strong tool, since, firstly, the underlying group can be an arbitrary group and we do not
impose any restriction on the structure of the group. Secondly, the functions involved can
have arbitrary range. As a specific application of this tool, we use it to reduce the average
case non-injective hidden shift problem when the underlying group is of form Z

n
q for q a

prime power to its injective counterpart. When q = 2, Using this framework, we simplify
the main results in [Gavinsky et al., 2011] by reducing the Boolean hidden shift problem
to the well known Simon’s problem. As an open question in [Gavinsky et al., 2011], they
ask if their methods in solving the Boolean hidden shift problem (over group Z

n
2 ) can be

generalized for solving the hidden shift problem for non-Boolean functions. Unfortunately,
this open question is subject to personal interpretation. We first make it clear that we
have not used the method in [Gavinsky et al., 2011] to answer their open question. One
way for generalizing the Boolean hidden shift problem is to keep the group unchanged but
let the functions in the Boolean hidden shift problem also take values other than {0, 1}.
We show that, by using our injectivization method, this problem can again be reduced to
Simon’s problem. Another generalization that one may consider is also to allow the group
to be a similar cyclic group such as Zn

q and allow the function to range in any arbitrary set.
We can address this problem too using injectivization when q is a constant prime power.
This is because the injective hidden shift problem over those groups can be reduced to
solving a set of polynomial equations, which is already addressed in [Friedl et al., 2003]
and [Ivanyos, 2008]. We give a short survey of those results in chapter 2. Unfortunately,
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when q is a non-prime power compostie number, no algorithm is known to solve the injective
hidden shift problem efficiently. This is our main motive for investigating the complexity
of this problem by defining an easier problem in chapter 5. In chapter 3, we present our
injectivization framework.

As mentioned, in chapter 3, we give a solution for the average case instances of the
non-injective hidden shift problem over groups of form Z

n
q when q is a constant prime

power. However, we do not know if this can be used to solve the hidden shift problem
for certain functions of interest. Among these functions, one can point out the generalized
bent functions. In chapter 4, we generalize the algorithm in [Gavinsky et al., 2011] and
then use the results in [Ivanyos, 2008] to give a solution for the hidden shift problem for the
class of c-almost generalized bent functions (which includes the generalized bent functions)
when the underlying group is Zn

q for q a constant prime power.

Childs and van Dam [2007] have defined the generalized hidden shift problem for the
group ZN in the spirit of finding a problem that is harder than abelian HSP and still
easier than the hidden shift problem for a quantum computer but intractable for classical
computers. Basically, in that problem, they allow the computers to access more information
by providing them with extra shifted oracles. In chapter 5, we extend this definition for
the hidden shift problem over cyclic groups of form Z

n
m. Our main motive is to determine

the minimum number of oracles we need to address the hidden shift problem when m is
a non-prime power composite number by using currently known methods. This is because
the hidden shift problem with m, being a non-prime power composite number, has been
open for almost a decade now.

In chapter 6, we prove that, to classically solve the average case non-injective hidden
shift problem over groups Zn

m and with functions having range in arbitrary finite set, one
needs an exponential number of queries. Note that m is a constant number. We also
prove that in order for a classical computer to solve the worst case instance of the injective
generalized hidden shift problem, it will need an exponential number of queries, which
immediately implies that the injective hidden shift problem over Zn

m must also be hard.

In chapter 7, we describe some of the possible future research directions and offer some
remarks and open questions.
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Chapter 2

The hidden shift problem and the
sets of equations and inequations

2.1 Linearization

Friedl et al. [2003] gave an efficient algorithm for solving the hidden shift problem over Zn
p

when p is a constant prime number. In this section we sketch the main idea they used to
obtain this result. We also state the theorem that we will use from their work later.

They have a quantum sampling subroutine which at each iteration generates one in-
equation of form

u · s 6= 0

by measuring a state of form
∑

u∈Zn
p

ωu·x · (1− ωu·s
p ) |u〉

where s ∈ Z
n
p is the hidden shift and u ∈ Z

n
p is a random element that satisfies the above

property and is drawn with probability at least c/pn where c is some non-zero constant.

Then, using Fermat’s little theorem, they raise both sides of the inequality to the power
p− 1 to obtain a set of polynomial equations of form

(u · s)p−1 = 1

Unfortunately, the problem of solving polynomial equations over any finite field in
general is NP-complete. However, the bright side is that this is not necessarily true for an
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overdefined set of equations. Hence, they use the idea of linearization to obtain a linear
set of equations. This is done by thinking of each monomial in the above equation as
an independent unknown variable. Hence, this will make the total number of unknown
variables

(

n+p−1
p−1

)

which is still a polynomial in n since p is a constant.

It is shown in their work that as u sweeps all the possible elements in Z
n
p , the rank

of the equations becomes complete. Then they show that, given any set of equation that
does not have a full rank, with probability at least 1/2, their quantum sampling subroutine
outputs a linearly independent equation. Using these facts, they give an efficient quantum
algorithm which they call Translation Findingf

(

Z
n
p

)

for solving the hidden shift problem
over Zn

p whose complexity is stated in the theorem below.

Theorem 2.1. For all positive integers n and prime numbers p, being given any in-
stance of the hidden shift problem for functions f, g : Zn

p → S, the quantum algorithm

Translation Findingf
(

Z
n
p

)

outputs the hidden shift with probability at least 1/2. The query

and time complexity of the algorithm a O
(

p (n+ p)p−1) and (n+ p)O(p) respectively.

Using similar ideas, it is possible to give a quantum algorithm for solving the hidden
shift problem over Zn

pk
where pk is a constant prime power. This problem is addressed in

[Friedl et al., 2003] and [Ivanyos, 2008]. The idea is similar to above together with a usual
encoding of elements of Zn

pk
with elements in Z

kn
p by the expansion of each element in the

Zp-linear basis. The algorithm in [Ivanyos, 2008] is based on a reduction to solving a set
of random linear inequations. By measuring the states of form above, one can obtain a set
of random linear inequations.

2.2 Set of random linear inequations

As it was seen in the previous section, solving the hidden shift problem over the group Z
n
q

when q is a prime power was implicitly reduced to solving a set of polynomial equations
in [Friedl et al., 2003]. Observing the fact that a promising approach to the hidden shift
problem is solving a system of certain random inequations, Ivanyos [2008] formalizes such a
framework and gives a quantum reduction from the hidden shift problem over any abelian
group to solving a set of random linear inequations with special properties. He defines the
following problem:

Definition (RANDOM LINEAR INEQUATIONS(A, c) - search version). Sam-
ples of the characters of a finite abelian group A are given, which are drawn according to
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a distribution that is nearly uniform with tolerance c on characters not containing a fixed
element s in their kernels. The goal is to output the element s ∈ A.

A nearly uniform distribution with tolerance c is defined in the following way:

Definition 2.2. A distribution is said to be nearly uniform with a real tolerance c ≥ 1
over a finite set D if there exists some subset of D called C such that Pr(x) = 0 if and
only if x ∈ C and otherwise

1/c

|D \ C| ≤ Pr(x) ≤ c

|D \ C| .

There is a quantum reduction from the hidden shift problem defined by f, g : A → S
over abelian group A to the search version of RANDOM LINEAR INEQUATIONS(A, c).
The reduction is specified below according to [Ivanyos, 2008]:

• Prepare three registers in the following initial state

|0〉|0〉|0〉

• Apply the quantum Fourier transform over the first register and the Hadamard trans-
form on the second register and leave the third register unchanged. This gives the
state

1
√

2|A|
∑

x∈A
|x〉|0〉|0〉+ |x〉|1〉|0〉.

• Conditioning on the state in the second register, query functions f and g in the third
register if the second register has state |0〉 and |1〉 respectively. The following state
is obtained.

1
√

2|A|
∑

x∈A
|x〉|0〉|f(x)〉+ |x〉|1〉|g(x)〉.

• Measure the last register to get the following state for some uniformly random x ∈ A

1√
2
(|x〉|0〉+ |x+ s〉|1〉).

• Apply the quantum Fourier transform on the group A× Z2 to obtain the state

1
√

2|A|
∑

χ∈A∗

(χ(x) + χ(x+ s))|χ(x)〉|0〉+ (χ(x)− χ(x+ s))|χ(x)〉|1〉

where χ is a character of A.
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• Measure the state above. We are interested in getting only the outcome 1 in the sec-
ond register and it is not hard to show its occurrence probability is 1/2. Conditioning
on the outcome of the second register to be 1, by repeating the process above, we see
that the outcomes of measurement of the first register obey the promise on samples
in RANDOM LINEAR INEQUATIONS(A, c) - search version.

It is then shown in [Ivanyos, 2008] that there is a reduction from the search version
of RANDOM LINEAR INEQUATIONS(A, c) to its decision version defined below when
the underlying group A = Z

n
p . The set of characters of an abelian grou G, χu forms a

multiplicative abelian group called character group since (χuχu′)(x) = χu(x)χu′(x) for all
x ∈ G. In the following definition, A

′∗ is the character group of A′ and A′ is a subgroup of
A.

Definition (RANDOM LINEAR INEQUATIONS(A′, c′) - decision version). Given
samples of elements of A

′∗ from either

- a distribution that is c′-nearly uniform on characters not containing a fixed element
s in their kernels OR

- a distribution that is nearly uniform on the whole A.

The goal is to decide which is the case.

For the special case when A = Z
n
m, the reduction from the search version of RANDOM

LINEAR INEQUATIONS(A, c) to its decision version can be seen in the following way.
First, note that we are basically looking for some s ∈ Z

n
m which is the answer to the

instance of the search version of RANDOM LINEAR INEQUATION. The idea is to guess
the first component of s and observe if the new resulting set of equations has a solution
or not. This confirms whether we have guessed correctly or not. We keep guessing the
first component until we find the correct value for it. Then we fix this correct value in the
equations and start guessing the second component. We do this recursively until all the
components of s are revealed. It is noteworthy to say that since for each component, there
are only constant number of possibilities, we can afford to check all our guesses.

The algorithm for deciding whether a set of equations has a solution or not when m is
a prime number is basically the same as the one in [Friedl et al., 2003]. However, in [Friedl
et al., 2003] we are finding such a solution, but here we are deciding if a set of equations has
a solution or not. So the only thing we need to do is to compute the rank of equations left
after doing linearization. For the case that m is not a prime number but a prime power,

13



we use a mapping from the elements of Zn
pk

to the elements of Zkn
p . The mapping is simply

the linear p-base expansion. We show these new elements with an asterisk. Note that, for
the old samples before doing linearization, we had

u · s 6= 0.

According to the mapping above, for the new samples we cannot directly write

u∗ · s∗ 6= 0

since we are ignoring the carries introduced. It can be shown that a corrective polynomial
term c(s∗1, s

∗
2, . . . , s

∗
kn) can be added to u∗ · s∗ to take the carry into account. Denote

P (s∗1, s
∗
2, . . . , s

∗
kn) = c(s∗1, s

∗
2, . . . , s

∗
kn) + u∗ · s∗. Now we have a low degree polynomial

inequation such that
P (s∗1, s

∗
2, . . . , s

∗
kn) 6= 0.

The polynomial is low degree since the corrective term added for the carry has a constant
degree. Now one can use the Fermat’s little theorem again to obtain a polynomial equation

(P (s∗1, s
∗
2, . . . , s

∗
kn))

p−1 = 1.

Again, the idea is to linearize this new polynomial in terms of its monomials and decide
if the rank of equations is complete or not by looking at a sufficient number of equations
of the form above. In the work of Ivanyos [2008], having a constant c is crucial for having
an efficient algorithm.
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Chapter 3

Injectivization

In this chapter, we introduce a general purpose tool called injectivization for reducing the
average case non-injective hidden shift problem to an instance of the injective hidden shift
problem over the same group. More specifically, this process gets as input a non-injective
function defined over an arbitrary group and with high probability over the choice of the
function, outputs an injective function defined over the same group. For this tool to
be useful for solving the non-injective hidden shift problem–by reduction to the injective
hidden shift problem–we require that if two non-injective functions have some relative
shift, this shift be preserved in their corresponding injectivized functions which are output
by the injectivization process. Due to this constraint, simply concatenating values of f
at arbitrary places–which might yield an injective function–might not be useful since the
relative shift of the two functions injectivized in this way is not preserved. Hence, the main
concern is finding a process under which, the algebraic shift structure is preserved between
the two functions. The process described below offers a framework under which both goals
of injectivizing functions and preserving the relative shift are met.

Our result is quite strong since we do not use any special structure of the different
groups. In other words, functions can be defined over any groups. This is usually a
limiting factor of the quantum algorithms that their use is only limited to the abelian case
or the groups with certain structure. However, we do not require the groups to be abelian
and also do not expect any special structure in them.

Another strength of the result is that we do not put any limitation on the range of
the functions. Again this is a limiting factor for some quantum algorithm since they are
sensitive to the range set of the oracles and they expect them to fulfil some requirements
like being binary or etc. However, again, it is not the case here and our functions can have
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range in arbitrary sets.

Injectivization process:

Input: any function f : G→ S and an m-tuple V ∈ Gm.

Output: function fV : G→ Sm constructed in the following way:

fV (x) := (f(x+ v1), f(x+ v2), . . . , f(x+ vm))

We denote the output of the injectivization process with boldface letters. We say
that the injectivization succeeds if fV is injective; otherwise it fails.

To show that injectivization fails only with small probability, in lemma 3.1 we show that the
probability of a collision (i.e., fV (x) = fV (y) for any fixed x, y ∈ G) for a uniformly random
function f is small if V has distinct components. However, the proof is a bit complicated
since random variables fV (x) and fV (y) are not necessarily independent which can be
shown to result in a higher collision probability. Our original goal is to –by concatenating
polynomially many values that f takes at various places– make the probability of a collision
exponentially small. In other words, as stated in Corollary 3.4, a polynomially large m is
enough for achieving this goal. It is implicitly shown in lemma 3.1 that to fix the loss from
these interdependencies we need to concatenate twice as much evaluations of f at distinct
places as it was needed for the case that fV (x) and fV (y) were truly independent.

Lemma 3.1. For an arbitrary V ∈ Gm with distinct components and for a uniformly

random function f : G→ S, the probability that fV is not injective is at most
|G|2

|S|⌈m/2⌉ .

Proof. We will show that, for any distinct x and y in the domain, Pr[fV (x) = fV (y)] ≤
1/ |S|⌈m/2⌉ and then the result follows from the union bound.

Let x and y be any two points in the domain of the function. If all of the components
of (x + v1, x + v2, . . . , x + vm) and (y + v1, y + v2, . . . , y + vm) are distinct then it is clear
that equality in each component is independent, so Pr[fV (x) = fV (y)] = 1/ |S|m. However,
the components need not all be distinct in which case there can be dependencies among
components. To illustrate, consider the case where G = Z

n
2 , |S| = 2 and m = 2. If x = v1

and y = v2 then (x + v1, x + v2) = (0, v1 ⊕ v2) and (y + v1, y + v2) = (v1 ⊕ v2, 0), so a
collision in the first component implies a collision in the second component. Therefore, the
probability of the collision fV (x) = fV (y) is 1/2 rather than 1/4.
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x+ vj1

y + vj1

x+ vj2

y + vj2

x+ vj3

y + vj3

. . .

. . .

x+ vjr+1

y + vjr+1

Figure 3.1: Components are shown with vertices and equal components are connected with
an edge.

To address the general case, consider a maximal chain of dependencies (figure 3.1):

x+ vj1 = y + vj2
x+ vj2 = y + vj3

...
...

x+ vjr = y + vjr+1
.

This implies:

f(x+ vj1) = f(y + vj2)

f(x+ vj2) = f(y + vj3)
...

...

f(x+ vjr) = f(y + vjr+1
).

If jr+1 = j1 then we have an r-cycle (the above example is a 2-cycle). Collisions in com-
ponents j2, . . . , jr of fV (x) and fV (y) occur independently; however if all these components
collide, a collision in the component j1 is implied (figure 3.2).

Therefore, the probability of a collision among components j1, . . . , jr is 1/ |S|r−1. If, on
the other hand, the chain is not cyclic then the probability of a collision among components
j1, . . . , jr+1 is 1/ |S|r+1. Since all maximal chains of dependencies are disjoint, the proba-

bility of fV (x) = fV (y) is the highest when there are m/2 2-cycles, when it is 1/ |S|⌈m/2⌉

(figure 3.3). It is so because when m is an odd number, the worst case happens when we
have (m−1)/2 2-cycles and the last components be independent and involved in no chains

which gives a collision probability of 1/ |S|(m−1)/2 × 1/ |S| = 1/ |S|⌈m/2⌉ as stated.
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x+ vj1

y + vj1

x+ vj2

y + vj2

x+ vj3

y + vj3

. . .

. . .

x+ vjr+1

y + vjr+1

Figure 3.2: Components are shown with vertices and equal components are connected with
an edge. Dashed lines show the accidental collisions.

x+ vj1

y + vj1

x+ vj2

y + vj2

x+ vj3

y + vj3

x+ vj4

y + vj4

. . .

x+ vjr−1

y + vjr−1

x+ vjr

y + vjr

Figure 3.3: Components are shown with vertices and equal components are connected with
an edge. Dashed lines show the accidental collisions.

18



We need the following simple lemma which demonstrates that our construction pre-
serves the shift between the injectivized functions.

Lemma 3.2. Given functions f, g : G → S, for arbitrary V and all x ∈ G, it holds that
f(x) = g(x+ s) for some s ∈ G if and only if fV (x) = gV (x+ s).

Proof. Intuitively the lemma must hold since fV just consists of shifts of f and gV has the
corresponding shifts of g.

More formally, it is easy to see that if f(x) = g(x + s) for all x and some s in G,
then fV (x) = gV (x + s). To prove the other direction, let x′ = x + v1. We know that
fV (x) = gV (x + s) for all x ∈ G. Hence this also needs to hold for the first component of
fV (x) and gV (x + s). Therefore f(x + v1) = g(x + v1 + s). Replacing x + v1 with x′, we
have f(x′) = g(x′ + s) for all x′ ∈ G.

Now we have all the tools we need to show a reduction from the non-injective hidden
shift problem to the injective hidden shift problem. The reduction is classical.

Theorem 3.3. Injectivization, when it succeeds, reduces a uniformly and randomly chosen
instance of the non-injective hidden shift problem f, g : G→ S to an instance of the hidden
shift problem with functions fV ,gV : G → Sm where m is the number of V ’s components.

Injectivization fails with probability at most
|G|2

|S|⌈m/2⌉ over the choice of f .

Proof. For a classical computer, it is clear how to simulate a query to any of fV or gV by
making m queries to f or g respectively. To simulate the query fV (x), we query f(x +
v1), f(x+ v2), . . . , f(x+ vm) and form the m-tuple

fV (x) = (f(x+ v1), f(x+ v2), . . . , f(x+ vm)) .

Queries to gV can be simulated similarly.

For a quantum computer, to make a query to fV at place x, we prepare the state

|x〉 |x+ v1, . . . , x+ vm〉

and make m queries to f to prepare the state

|x〉 |x+ v1, . . . , x+ vm〉
⊗

|f(x+ v1), . . . , f(x+ vm)〉 .
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Then, by efficiently uncomputing the second register, we obtain the state

|x〉 |f(x+ v1), . . . , f(x+ vm)〉 .

Queries to gV can be simulated similarly. This makes the number of queries m times more.

Based on the lemma 3.2 stating that the relative shift of f and g is the same as the
relative shift of fV and gV , this instance of the injective hidden shift problem has the same
solution as the instance of the non-injective hidden shift problem. The failure rate of the

injectivization is upper bounded by
|G|2

|S|⌈m/2⌉ when f is chosen uniformly at random as it

is shown in lemma 3.1. However, here we have the promise on f and g to have a unique
shift. This is equivalent to saying that f is not periodic. However, note that when f
is periodic, the injectivization fails to output an injective function. This can be seen by
applying lemma 3.2 to functions f, g where g is defined to be g(x) = f(x+v) where v 6= 0 is
the period of f . Hence, given the promise on f , the injectivization has even a lower chance
of failure when it is fed a uniform instance of the non-injective hidden shift problem than
the bound that is obtained in lemma 3.1.

Using theorem 3.3, the following corollary is trivial for polynomially large m:

Corollary 3.4. Let V ∈ Gm be composed of m distinct components. Having m ≥ (4 +
ǫ) log|S| |G| for an arbitrary constant ǫ > 0, an instance of the non-injective hidden shift
problem with f, g : G→ S is efficiently reduced to an instance of the hidden shift problem
fV ,gV : G → Sm with exponentially small failure probability over the uniform random
choice of f .

Theorem 2 in [Gavinsky et al., 2011] states that by the algorithms in that paper,
for solving an average case instance of the Boolean hidden shift problem, an exponential
separation can be achieved. Here, we simplify this result in the theorem 3.5 by reducing
the Boolean hidden shift problem to the Simon’s problem. First, we state the Simon’s
problem here[Simon, 1994]:

Definition (Simon’s problem). We are given oracle access to a function h : {0, 1}n → S.
Also, we have a promise on the function to have the following property: For any distinct
x, y in the domain of the function

h(x) = h(y)⇐⇒ x⊕ y = s

where s ∈ {0, 1}n is some fixed non-zero binary string. The goal of the problem is to find
s.
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Simon’s problem is one of the very first problems discovered for which an efficient
quantum algorithm exists while no efficient classical algorithm can solve the problem.

Theorem 3.5. There is an efficient reduction from the Boolean hidden shift problem for
random functions to the Simon’s problem.

Proof. We use injectivization over f, g : Z
n
2 → {0, 1} and then construct the oracle of

the Simon’s problem h : Zn+1
2 → {0, 1}m where h(0xnxn−1 . . . x1) = fV (xnxn−1 . . . x1) and

h(1xnxn−1 . . . x1) = gV (xnxn−1 . . . x1).

Injectivization succeeds in outputting an injective function in the average case. How-
ever, in the Boolean hidden shift problem, functions are not average case since there is a
promise on them that they do not have a self-shift. But this does not have any effect on
our argument since injectivization always fails to output an injective function if the input
function has a self-shift as described in more detail in the proof of theorem 3.3. Hence, by
excluding those functions, injectivization even succeeds with a higher chance of success.

Gavinsky et al. [2011] posed an open question whether the methods they have used
for solving the hidden shift over Z

n
2 for the Boolean functions can be generalized and

adapted for the case of the non-Boolean functions. This question may be interpreted in
different ways. We have not used the method in [Gavinsky et al., 2011]. But we answer
the question using our own method and having the following interpretations. The most
basic generalization is to keep the group unchanged but let the functions in the hidden
shift problem take also values other than {0, 1}. We already showed in our theorem 3.5
how to reduce such a problem to the Simon’s problem. The most general format of the
open question we could imagine is to consider the function over the other similar groups
like the groups Zn

q for q ≥ 3. Fortunately, as noted in chapter 2, the injective hidden shift
problem over those groups when q is a constant prime power is already addressed in [Friedl
et al., 2003] and [Ivanyos, 2008]. Hence, we can use injectivization to reduce the problem
to the already solved injective case.
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Chapter 4

The hidden shift problem for
c-almost generalized bent functions

In this chapter, we give a quantum algorithm which uses a radically different approach than
injectivization and is based on the Fourier analysis. This algorithm can be understood as
a generalization of the algorithm in [Gavinsky et al., 2011] for addressing the average case
hidden shift problem. However, in this section, we do not address the average case hidden
shift problem but rather the problem when the underlying function is from the class of
c-almost generalized bent functions (which includes the generalized bent functions) instead
of a uniformly random function.

The hidden shift problem for bent functions is already addressed in the [Gavinsky et al.,
2011]. The first partial progress with the hidden shift problem for bent functions appeared
in [Rötteler, 2010] where some classes of bent functions were addressed.

Note that it is presumably not easy to say if a generalized bent function or more
generally a c-almost generalized bent function can be injectivized. Hence, it is not clear
whether the injectivization method can be used for solving the hidden shift problem for
these functions. In general, it seems to be a very hard problem to fully characterize the
set of functions which can be injectivized unless there exists some uniformity condition on
the functions. One example of such condition is the function to be drawn uniformly at
random.

Since in most applications, we are concerned about generalized bent functions over
Z
n
p only when p is a prime number, we illustrate the algorithm solving generalized bent

functions only in that case. Our algorithm is efficient only if the prime number is constant.
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Let f, g : Zn
p → Zp define an instance of the non-injective hidden shift problem and

be generalized bent functions or any functions from the superset c-almost generalized
bent functions. Then the following sampling subroutine can be used to efficiently obtain
polynomially many random linear inequations. Without loss of generality, we assume s 6= 0.
We can easily check if s = 0 in which case we are done if it happens that s = 0.

Quantum sampling(f, g)

Step 1: Prepare the initial state in |0〉|0〉. Apply the quantum Fourier transform
over Zn

p × Z2 to obtain the state

1√
2N

∑

x∈Zn
p

(|x〉|0〉+ |x〉|1〉) .

Step 2: Using this state, query (in phase) oracles f if the state of the second register
is |0〉 and g if it is |1〉. This transforms the state into

1√
2N

∑

x∈Zn
p

(F (x) |x〉|0〉+G(x) |x〉|1〉) =

1√
2N

∑

x∈Zn
p

(F (x) |x〉|0〉+ F (x− s) |x〉|1〉) .

Step 3: Apply quantum Fourier transform over Zn
p × Z2 again.

1√
2

∑

u∈Zn
p

(

F̂ (u)
(

1 + ω−u·s
p

)

|u〉|0〉+ F̂ (u)
(

1− ω−u·s
p

)

|u〉|1〉
)

.

Step 4: Measure the state. Output nothing if the outcome in the second register is
0. Otherwise output the outcome of the first register. This will always output some
u ∈ Z

n
p such that

u · s 6= 0.

It is not hard to prove that the quantum sampling subroutine outputs 1 as the outcome
of its second register with constant probability:

Theorem 4.1. Quantum sampling(f, g) outputs 1 with constant probability in its second
register upon measurement, if function f : Zn

p is a c-almost generalized bent function.
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Proof. First consider the case of generalized bent functions. The probability of the outcome
1 in the second register is

1

N

∑

u∈Zn
p

∣

∣1− ωu·s
p

∣

∣

2

∣

∣1 + ωu·s
p

∣

∣

2
+
∣

∣1− ωu·s
p

∣

∣

2 =
1

N

∑

u∈Zn
p

2− ωu·s
p − (ωu·s

p )∗

4
=

1

2
.

Hence, for generalized bent functions, the desired outcome happens with probability 1/2
which is a constant. This result can be extended to the case of c-almost generalized bent
functions in the following way: Since we hope to get outcome 1 in the second register, the
worst case happens when the following condition is met: If for any u the absolute value
of the amplitude of |u, 1〉 is greater than that of |u, 0〉, then |F̂ (u)| be the minimum and
otherwise |F̂ (u)| be the maximum.

However, this only changes the probability of getting outcome 1 by a constant factor
due to the condition that we have that

minx

∣

∣

∣
F̂ (x)

∣

∣

∣

maxy

∣

∣

∣
F̂ (y)

∣

∣

∣

= c.

Now similar to [Friedl et al., 2003], we can use the idea of linearization to find the
hidden shift. To do so, we first raise both sides of each inequality obtained in step 4, to
the power p− 1. This gives a set of polynomial equations of form

(u1 · s)p−1 = 1

(u2 · s)p−1 = 1
...

...

(uk · s)p−1 = 1

where the right side of each equality is 1 due to Fermat’s little theorem. Then we use
the well-known linearization technique which, in short, involves giving each monomial in
the polynomial equations above a new variable name (and hence disregard the dependence
between different monomials) and solving the resulting set of linear equations using the
Gaussian elimination.

We show in the following theorem that for the case of generalized bent functions there
exists an efficient process for getting a full rank set of linear equations and hence it is
possible to find the unknown s using the Gaussian elimination algorithm.
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Theorem 4.2. When f is a generalized bent function, there is an efficient quantum algo-
rithm for finding a full rank set of linear equations in s.

Proof. In their sampling subroutine, the state before final observation in [Friedl et al.,
2003] is

1√
2N

∑

u∈Zn
p

ωu·x · (1− ωu·s
p ) |u〉 .

The state that we have before the final observation in our quantum sampling subroutine
is

1√
2

∑

u∈Zn
p

F̂ (u) · (1− ωu·s
p ) |u〉 .

It is not hard to see that measuring in the computational basis produces the same
statistics for both states if F̂ (u) has a constant absolute value or in other words f is a
generalized bent function. Hence, by the result in [Friedl et al., 2003], the rank of the linear
equations will be complete after getting polynomially many samples since the probability
of the outcomes upon measurement on our quantum state is equal to that of [Friedl et al.,
2003]. Hence, this proves that, when our functions are generalized bent functions, we can
efficiently find the hidden shift.

We also show that, if f is a c-almost generalized bent function, then one can find the
hidden shift by a probabilistic argument. In the following theorem, we show that, due to
the nice properties of c-almost generalized bent functions, one can essentially use the same
algorithm for c-almost generalized bent functions as the one for generalized bent functions
and this will introduce only constant overhead.

Theorem 4.3. When f is a c-almost generalized bent function, there is an efficient quan-
tum algorithm for finding a full rank set of linear equations in s.

Proof. To see this, consider the worst case where we already havem−1 linearly independent
equations after doing linearization on the existing equations and we need only one more
sample u ∈ Z

n
p from our sampling subroutine such that it makes the rank of the linear

equations complete (after doing linearization on the resulting polynomial equation from
that sample). First imagine that we did not have the factor F̂ (u) (i.e. our quantum state
before the final observation was exactly the one in [Friedl et al., 2003]). We are looking
for some u from the set of all good outcomes U ⊂ Z

n
p which makes the rank of equations

25



complete. This must happen with probability polynomially small in n in the worst case
since it is proved in [Friedl et al., 2003] that their quantum algorithm is efficient. However,
this image is not quite correct since the existence of F̂ (u) changes the probability of getting
an outcome from U . Hence we need to justify that in the general case things are not very
different. To see this, note that the existence of F̂ (u) changes the probability of a desired
outcome only by a constant factor since the ratio between the smallest to biggest absolute
value of F̂ (u) over all u is some constant c > 0. Hence, if in the first case, one needs to
get p(n) samples to have a high chance of obtaining the desirable outcome (i.e. some u
from U) , in the second case one will need to get p(n)/c samples to have at least the same
chance of obtaining an outcome from U . Since this is only a constant factor, the query
and time complexity of the original algorithm will change only by a constant factor which
is not important from a complexity theoretical perspective.
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Chapter 5

Generalized hidden shift problem

The generalized hidden shift problem is defined in [Childs and van Dam, 2007] in the spirit
of finding a problem which is easier than the hidden shift problem for quantum computers
but still classically hard as it is shown in the next chapter. The generalized hidden shift
problem is the task of finding the hidden shift s ∈ ZN by extracting information from an
oracle f : {0, 1, . . . ,M − 1} × ZN → S where S is a finite set when it holds that (a) for
any fixed b, the function f(b, x) is injective and (b) f(b, x) = f(b + 1, x + s) for all b and
x in the domain. In [Childs and van Dam, 2007], this problem is originally defined over
the group ZN to interpolate between the dihedral HSP which is equivalent to the hidden
shift problem over ZN (i.e. when we are given only two oracles M = 2 [Ettinger and
Høyer, 1999b][Kuperberg, 2005]) and abelian HSP. The main motive was to understand
the difficulty of the dihedral HSP better.

When M = N , this problem is basically equivalent to the HSP over the abelian group
ZN × ZN which we know how to solve efficiently by abelian Fourier sampling [Childs and
van Dam, 2010]. When M = 2, the generalized hidden shift problem is the same as the
hidden shift problem over ZN which is equivalent to HSP over dihedral group. In [Childs
and van Dam, 2007], it is shown that the generalized hidden shift problem can be solved
efficiently provided M = N ǫ where 0 < ǫ < 1 is a constant.

Not every instance of the generalized hidden shift problem defined in the sense above
is hard for a classical computer. In particular it can be seen that for the case that N is a
power of 2 (i.e. N = 2k for some k), a classical computer can efficiently solve this problem
if it is given M = N oracles. This can be seen by running the following classical algorithm
(we use the binary expansion of b and s):

Step 1. Set bnbn−1 . . . b1 ← 10 . . . 0 and snsn−1 . . . s1 ← 00 . . . 0 and i← n
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Step 2. Make a classical query to find

q1 ← f(00 . . . 0, 00 . . . 0)

Step 3. Make a classical query to find

q2 ← f(bnbn−1 . . . b1, snsn−1 . . . s1)

Step 4. If q1 = q2 then s(n+1)−i ← 0 otherwise s(n+1)−i ← 1.

Step 5. if i = 1 then output snsn−1 . . . s1 and we are done, otherwise i← i− 1

Step 6. Set bj ← 0 for all j 6= i and bi ← 1. Go to step 3.

An algorithm with the same essence is pointed out in [Niel de Beaudrap et al., 2002].

Similarly, we define a generalized hidden shift problem over groups of form Z
n
q especially

since no method is known to solve the hidden shift problem when q is a composite number
that is not a prime power. Even in the smallest case, q = 6, the problem is still open.

It is interesting to point out that unlike the original generalized hidden shift problem
that is easy in some cases such as when N = 2n (as it can be seen by the efficiency of the
algorithm above), as we show in chapter 6, the generalized hidden shift problem for groups
of form Z

n
q when q is a constant number is always classically hard.

So far, we know how to solve the hidden shift problem when q is a constant prime power
based on the works of [Friedl et al., 2003] and [Ivanyos, 2008]. We can use the following
method to solve the generalized hidden shift problem over the group Z

n
q for any constant

composite number q. Given q = pk11 × pk22 × · · · × pktt is a factorization of q into its prime
components p1 < p2 < · · · < pt, we give a quantum algorithm that only needs oracles
f(b, x) for which b ∈ {0} ∪ {q/pk11 , q/pk22 , . . . , q/pktt }. Calling each of the oracles obtained
by fixing b, a shifted oracle, t + 1 shifted oracles are used due to this algorithm where
t is the number of distinct prime divisors of q. It is interesting as an open question to
know whether one can solve this problem using fewer oracles. We use these oracles in the
following way in the following theorem.

Theorem 5.1. There is an efficient quantum algorithm which solves the generalized hidden
shift problem with an underlying group Z

n
q where q is a constant number using only the

oracles obtained by the fixed values of b ∈ {0} ∪ {q/pk11 , q/pk22 , . . . , q/pktt }.
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Proof. The algorithm is as follows. Using algorithms in [Friedl et al., 2003] and [Ivanyos,
2008], we first solve the instance of the hidden shift problem defined by g1, g2 : Zn

p
k1
1

→ S

where g1(x) = f(0, y(x)) and y : Zn

p
k1
1

→ Z
n
q maps x to the unique element of Zn

q for which

each component has remainder 0 to p
kj
j for 2 ≤ j ≤ t and component yi has remainder xi

to pk11 . In other words, y(x) is (by Chinese remainder theorem) the unique element which
satisfies



















y(x) = x mod pk11
y(x) = 0 mod pk22

...

y(x) = 0 mod pktt

where mod is understood component-wise.

We define g2 in a similar way, only replacing f(0, y) with f(q/pk11 , y) in its definition:
g2(x) = f(q/pk11 , y(x)). It is not hard to see that g1(x) = g2(x+ s′) for all x in the domain
where for s′ ∈ Z

n

p
k1
1

we have

s′ = s mod pk11 .

By solving the hidden shift problem defined similarly using oracles f(0, y) and f(q/pkii , y)
for all 1 ≤ i ≤ t, one can find (s mod pk22 ), . . . , (s mod pktt ). Hence we have the following
set of equations

s = c1 mod pk11
s = c2 mod pk22
...

...

s = ct mod pktt .

Since pk11 , pk22 , . . . , pktt are all mutually coprime, for each component, by Chinese remain-
der theorem, we are guaranteed that there exists a unique solution to this set of equations
and indeed an efficient algorithm exists that gives that solution.

As shown above, for a constant composite number we only need as many extra shifted
oracles (other than f(0, x)) as the number of distinct prime divisors of q. As a toy example,
for the case that q = 6, we will only need the shifted oracles for which b = 0, b = 2 and
b = 3. We can use the functions with b = 0 and b = 2 to find (s mod 3). Then to uniquely
determine s, we can use the functions with b = 0 and b = 3 to find s mod 2. Applying
Chinese remainder theorem for each component of s, guarantees finding s mod 6 uniquely.
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As another example, for finding s for the case that q = 12, we use the oracles for which
b = 0, b = 3 and b = 4. Then, we solve the hidden shift problem defined in the above sense
using functions with fixed b = 0 and b = 3 to find (s mod 4). We also use the functions
with b = 0 and b = 4 to find (s mod 3). By applying Chinese remainder theorem to each
components of s, we can find the unique solution to s.

The above procedure gives improvement over the following simpler procedure which
requires all the possible shifted oracles to be provided:

Quantum sampling

Step 1: Prepare the initial state in |0, 0〉|0〉.

Step 2: Apply the quantum Fourier transform over Zq × Z
n
q on the first register.

This gives the state

1
√

qn+1

∑

x∈Zn
q

(|0, x〉 |0〉+ |1, x〉 |0〉+ · · ·+ |q − 1, x〉 |0〉) .

Step 3: Query the oracle f . Denote f ′(x) = f(0, x). This transforms the state into

1
√

qn+1

∑

x∈Zn
q

|0, x〉 |f ′(x)〉+ |1, x〉 |f ′(x+ s)〉+ · · ·+ |q − 1, x〉 |f ′(x+ (q − 1)s)〉.

Step 4: Measure the last register. For some random x, this transforms the state
into

1√
q
(|0, x〉+ |1, x+ s〉+ · · ·+ |q − 1, x+ (q − 1)s〉).

Step 5: Apply the quantum Fourier transform over Zq × Z
n
q . This gives the state

1
√

qn+2

∑

u∈Zn
q ,k∈Zq

ωu·x
q

(

1 + ωk+u·s
q + · · ·+ ω(q−1)(k+u·s)

q

)

|k, u〉

Step 6: Measure the state. This always gives some u and k for which it holds that

u · s = −k
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Being given enough equations from step 6 above, one can solve the set of equations. Note
that the Gaussian elimination algorithm cannot be used since Zq is not a field. Instead,
we can convert the matrix of coefficients in the equations to the Smith normal form since
Zq is a principal ideal domain. The resulting diagonal matrix is surely invertible (each of
its element on the diagonal is invertible) since we have a unique solution. To show that
the above procedure is efficient, we need to show that the set of samples u drawn in step
6 span the whole space with high probability after polynomially many iterations.

Theorem 5.2. The set of u1, u2, . . . , ut ∈ Z
n
q drawn from the quantum sampling subroutine

above, span Z
n
q with high probability if t ≥ n2.

Proof. First observe that the state of the system after the step 5 (i.e. the state before the
final observation) is:

1
√

qn+2

∑

u∈Zn
q ,k∈Zq

ωu·x
q

(

1 + ωk+u·s
q + · · ·+ ω(q−1)(k+u·s)

q

)

|k, u〉 =

1√
qn

∑

u∈Zn
q

ωu·x
q |−u · s, u〉 .

It is clear that all u ∈ Z
n
q are equally likely to occur. The worst case is when we

already have n − 1 linearly independent vectors and we are trying to find the last vector
with the property that it be linearly independent from the previous vectors. Assuming v
is the vector orthogonal to the space spanned by the n − 1 linearly independent vectors
u1, u2, . . . , un−1 that we already have; we want our last vector un to have non-zero inner
product with v. We claim that this happens with probability at least 1/q: v has at least
one non-zero component which we denote with v′. We denote with v′′ the vector that is
obtained by omitting this component. The inner product between a vector u that is drawn
uniformly at random and v is obtained by the following:

u · v = u′ · v′ + u′′v′′

For any fixed u′ and v′, as u′′ ranges over Zq, u·v takes at least two distinct values (obviously
at least one of them is non-zero). This is due to the facts that firstly, the first term above
(i.e. u′ · v′) is independent from u′′ and v′′ and secondly, u′′v′′ = 0 if u′′ = 0 and u′′v′′ = v′′

if u′′ = 1.

Given n random samples drawn from the quantum sampling subroutine for the purpose
of finding the last linearly independent vector, the probability of failure in finding a vector
with non-zero inner product with v is at most (1− 1/q)n.
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Now, looking at the whole process of finding n linearly independent vectors, finding
the first linearly independent vector is trivial. Any non-zero vector from the quantum
sampling subroutine will fit. Using only one sample, the probability of a failure is 1/qn.
For finding the next n − 1 linearly independent vectors, we know from the calculations
above and union bound that the probability of a failure is at most (n−1)(1−1/q)n+1/qn

which is exponentially small in n.

In the original generalized hidden shift problem in [Childs and van Dam, 2007], as
mentioned above, when M = N , we have an instance of the abelian hidden subgroup
problem which we know how to solve efficiently. It can be shown that a similar result
holds for the generalized hidden shift problem over group Z

n
q . When we are given all the

q shifted oracles, we are basically given an instance of the hidden subgroup problem over
group Z

n+1
q . To show this, first, we formally define the abelian hidden subgroup problem

and then show in theorem 5.3 that the generalized hidden shift problem over Z
n
q is an

instance of this problem.

The abelian hidden subgroup problem can be solved efficiently using abelian Fourier
sampling [Childs and van Dam, 2010]. The above algorithm which is presented in a simpler
form, follows the same steps as this standard procedure for solving the generalized hidden
shift problem with all possible shifted oracles. In the next chapter we prove that even this
problem is still hard for a classical computer.

Definition (Abelian hidden subgroup problem). Given a black box for function
f : A → S where A is any abelian group additively denoted and S is an arbitrary finite
set, and given the promise that the following holds for the function f and some subgroup
H ≤ A, find a generating set for the subgroup H by making queries to f :

f(x) = f(y)⇐⇒ x− y ∈ H.

It is not hard to see that the following result holds:

Theorem 5.3. The generalized hidden shift problem over Z
n
q with M = q is an instance

of the abelian hidden subgroup problem over Zq × Z
n
q = Z

n+1
q .

Proof. The function f : Zq × Z
n
q → S defined in the generalized hidden shift problem is

injective when its first argument b ∈ Zq is fixed. It is easy to see that if x− y ∈ H where
H is the subgroup generated by

(1, s) ∈ Zq × Z
n
q = Z

n+1
q

32



and s is the solution to the instance of the generalized hidden shift problem, then f(x) =
f(y). In the other direction, we need to show that if for any distinct x, y it holds that
f(x) = f(y) then x− y ∈ H or equivalently if x− y /∈ H, then f(x) 6= f(y). Assume that
x = (k1, k1s+ r1) and y = (k2, k2s+ r2). Hence, f(0, r1) = f(x) and f(0, r2) = f(y). Note
that, r1 cannot equal r2, otherwise the assumption x − y /∈ H is violated. Since for any
fixed b, the function f(b, t) on t is injective, f(x) 6= f(y).
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Chapter 6

Classical complexity

In this chapter, we show that, the classical query complexity of the non-injective hidden
shift problem when the underlying group is Z

n
m is high in the average case. For proving

this bound, we are benefited from some of the ideas in [Gavinsky et al., 2011].

Also, we prove the injective hidden shift problem and its generalized counterpart are
hard classically. Interestingly, unlike the original generalized hidden shift problem with the
underlying group ZN which is not hard for certain values of N as shown in the previous
chapter (although the corresponding hidden shift problem is still hard), the generalized
hidden shift problem over the group Z

n
q with constant q is always hard classically.

First, we define an artificial version of the non-injective hidden shift problem. This
problem will help us in proving the classical lower bounds for non-injective hidden shift
problem.

Definition (No-promise non-injective random Hidden Shift Problem). Pick s ∈ G
and oracle f : G → S uniformly at random. Construct oracle g : G → S according to
g(x) = f(x− s) for all x ∈ G. The goal of the problem is to find the hidden shift s given
oracles f and g.

It can be easily seen from the definition above that when f and g happen to be periodic
functions, information theoretically it is not possible to uniquely output s. Hence, all the
algorithms, no matter how many queries they make are in disadvantage for finding s in
those cases and all shifts consistent with the structure of f and g are equally likely to be
the correct one.

Theorem 6.1. In order to achieve a success probability of at least 1/2 in finding the
solution to the no-promise non-injective hidden shift problem defined with a solution s ∈ Z

n
q
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and functions f, g : Zn
q → S, at least Ω

(

p
n/2
1

)

queries are needed when q is a constant

number and p1 is the smallest prime divisor of q.

Proof. First we assume that q is a prime number, then we address the general case. Without
loss of generality, in this case, we assume s to be non-zero. We assume that queries are
made in the form (f(x), g(x)).

We assume that the classical computer is given a magical bell which works as follows:
whenever queries are made in the places X1 and X2, the magical bell rings if for any
non-zero d ∈ Zq it holds that s = d(X2 −X1) .

Let S ′
1, S

′
2, . . . , S

′
m be an enumeration of all 1-dimensional subspaces of Zn

q . It is not

hard to verify that the number of such sets is m =
qn − 1

q − 1
: Since q is a prime number

and so every non-zero element in Zq has an inverse, if any two 1-dimensional subspaces
have one non-zero common element, then they are identical. Each of the sets above have q
elements and the only common element between each two sets is zero. Since each non-zero
element in Z

n
q is contained in only one of the sets above and there are qn−1 such elements,

it follows that there are
qn − 1

q − 1
such sets. Given the argument above, it is not hard to see

that the sets S1, S2, . . . , Sm obtained by removing 0 from the sets above are disjoint and
each have q − 1 elements. In other words, each Si is of the form

{d · a|d ∈ Zq \ {0}}

for some non-zero element a ∈ Z
n
q .

We set our goal to be finding the set Si corresponding to the hidden shift s. Since there
is an obvious reduction from finding s to identifying the corresponding set, if the latter
problem is hard, so is the former.

We explain the motivation behind working with the sets above. To do so, for a moment,
assume there is no magical bell. The motivation is that in the case that q = 2, by querying
at places X1 and X2, we reveal the values f(X1), f(X2), g(X1), g(X2). If we see the pair
f(X1) and g(X2) are equal, then it is possible that s = X2 − X1 be the hidden shift.
However, we can also check if the pair f(X2) and g(X1) are equal in which case it is
possible that s = X1 − X2 be the hidden shift. By making polynomially many more
queries, we can verify with high probability if any of these two is the case. However, note
that since q = 2, X2 −X1 = X1 −X2 holds. But this is not the case if we look at the case
when q = 3. In that case, if we query at places X1 and X2, we are effectively guessing if
s = X1 − X2 or s = X2 − X1 = 2(X1 − X2). In other words, we are guessing if s is any
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non-zero multiple of X1 −X2. Hence, considering finding the set of non-zero multiples of
s rather than s itself, gives us a handle to prove the result for all prime numbers q with
one shot, instead of considering them on a case by case basis.

Since the sets S1, . . . , Sm are disjoint, an important observation is that knowing to
which sets s does not belong, does not give any information about to which other set s
might belong . Formally, let Qk := {X1, X2, . . . , Xk} be the places in which the queries are
made after k queries. Also, let D be the set of all i’s for which we know s does not belong
to Si according to our queries and the magical bell. Then

Pr [s ∈ Si|i /∈ D] =
1

m− |D| <
1

qn − 1

q − 1
− k2

Since conditioning on the queries does not provide any information, the best algorithm
is to just random guess the set to which s belongs. As used in the above inequality, the
best a classical computer is able to do is to eliminate

(

k
2

)

< k2 possible sets after k queries.
Hence, to be able to find the set which corresponds to s with probability at least 1/2, it
needs to make at least Ω

(

qn/2
)

queries.

Now, we turn to the case of composite numbers, where q = pk11 × pk22 · · · × pktt denotes
the prime factorization of q where p1 < p2 < · · · < pt holds.

Let the disjoint sets T1, T2, . . . , Tl be an enumeration of the elements of Zn
q which yield

the same element if we apply the operator ( mod p1) to them component-wise. It is not
hard to see that l = pn1 . In other words, each Ti is of the form

Ti :=
{

x|x = a mod p1, x ∈ Z
n
q

}

.

for some a ∈ Z
n
p1
. We define S1, S2, . . . , Sm in an analogous way to their definition in the

case of a prime q. We let them be the union of the sets Ti above in a way that each set Sj

is consisting of only those sets Ti for which their corresponding element ai are multiples of
each other in Z

n
p1
. In other words, each set Sj is of form

{

x|x = a mod p1, x ∈ Z
n
q

}

∪ · · · ∪
{

x|x = (p− 1)a mod p1, x ∈ Z
n
q

}

for some non-zero element a ∈ Z
n
p1
. Again, it can be seen that m =

pn1 − 1

p1 − 1
. Without loss

of generality, we assume
s /∈

{

x|x = 0 mod p1, x ∈ Z
n
q

}

since it happens with exponentially small probability.
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Again, we have the magical bell which let the classical computer know if s belongs to
Si if it makes the queries X1 and X2 such that X1 −X2 ∈ Si.

We update the definition of D with the new sets Si and let it be the set of all i’s for
which we know s does not belong to Si. As above, knowing to which sets s does not belong,
does not give any extra information about the set to which s might belong. We formally
have

Pr [s ∈ Si|i /∈ D] =
1

m− |D| <
1

pn1 − 1

p1 − 1
− k2

Hence, to be able to find the set Si ∋ s with probability at least 1/2, one needs to make

at least Ω
(

p
n/2
1

)

queries.

Theorem 6.2. To solve the non-injective hidden shift problem for functions f, g : Zn
q → S

classically, Ω
(

p
n/2
1

)

queries are needed in the average case.

Proof. The probability of f being periodic is very small. More formally, for any fixed
0 6= r ∈ Z

n
q and for all x ∈ Z

n
q , it holds that

Pr[f(x+ r) = f(x)] ≤ 1

2qn/2

where the probability of the event is the highest when the order of r is 2. Hence, by

the union bound, the probability of having a periodic function is at most
qn

2qn/2
which is

double exponentially small and hence does not change the bound obtained above. Since the
number of periodic functions is o(1), the result of the theorem 6.1 also holds for the average
case non-injective hidden shift problem for which we have the promise on the functions not
to be periodic.

So far in this chapter, we have dealt with the query complexity of the non-injective
hidden shift problem. Now, we turn our attention toward the complexity of generalized
injective hidden shift problem. We prove that this problem has a high classical query
complexity and from that we deduce that the injective hidden shift problem must be hard
too.

As it was proved in theorem 5.3, the generalized injective hidden shift problem is an
instance of the abelian hidden subgroup problem with some promise on the hidden subgroup
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H ≤ Zq × Z
n
q = Z

n+1
q to be mentioned in theorem 6.4. We use the following theorem from

the literature without mentioning its proof, which states the classical query complexity of
the abelian hidden subgroup problem has a lower bound that depends on the number of
only trivially intersecting subgroups [Childs and van Dam, 2010][Niel de Beaudrap et al.,
2002].

Theorem 6.3. If there exist k subgroups of G with only trivial pairwise intersections, then
a classical computer has to make Ω(

√
k) queries to solve the hidden subgroup problem when

the underlying group is G.

Now we show that for the generalized hidden shift problem expressed in terms of the
abelian hidden subgroup problem, there are exponentially many non-trivially intersecting
subgroups and hence by the previous theorem, its classical query complexity is exponential.

Theorem 6.4. Let f : Zq × Z
n
q → S define an instance of the generalized hidden shift

problem over Z
n
q where q is a constant number. Then the classical query complexity of the

generalized hidden shift problem is exponential in log |G| where G = Z
n
q .

Proof. First, observe that by the theorem 5.3, the generalized hidden shift problem is
equivalent to the hidden subgroup problem when the underlying group is Zq ×Z

n
q and the

hidden subgroup is of form

H = {(0, 0), (1, s), (2, 2s), . . . , (q − 1, (q − 1)s)} (6.1)

where s ∈ Z
n
q .

For any two distinct binary strings s1, s2 ∈ Z
n
q , H(s1) has only trivial intersection with

H(s2). There are 2n such binary strings. Now we use the Theorem 6.2 to establish the
Ω(2n/2) = Ω(20.5 log

−1 q·log |G|) query complexity.

The high classical query complexity of the generalized injective hidden shift problem
over group Z

n
m implies the high classical query complexity of the injective hidden shift

problem over Zn
m:

Theorem 6.5. The injective hidden shift problem with an underlying group of form Z
n
m

has an exponential query complexity.

Proof. Assuming we are given the generalized hidden shift problem, we can always ignore
using the extra shifted oracles. So the query complexity of the hidden shift problem
is at least equal to that of generalized hidden shift problem which by theorem 6.4 is
exponential.
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Chapter 7

Concluding remarks and open
problems

We offer some interesting questions and describe some of the future research directions in
this chapter.

1. In chapter 3, we gave an efficient reduction from the non-injective hidden shift prob-
lem over any group to the injective hidden shift problem over the same group. One
case of interest is when the underlying group is Zn

q . For the case when q is a constant
prime power, efficient quantum algorithms are known to solve the injective hidden
shift problem [Friedl et al., 2003][Ivanyos, 2008]. One interesting question which has
been open for almost a decade now is whether an efficient quantum algorithm exists
that can solve the injective hidden shift problem over Z

n
m when m is a composite

number. Even for the smallest case (m = 6) this problem is still open. We know that
the injective hidden shift problem over any abelian group A (like Z

n
m) is equivalent

to the non-abelian hidden subgroup problem when the underlying group is A ⋊ Z2

[Childs and van Dam, 2010]. On the other hand, we know that the quantum query
complexity of the hidden subgroup problem is polynomial; and hence the query com-
plexity of the hidden shift problem over Zn

q is polynomial. However, we do not know
of any time efficient quantum algorithm that solves this problem. The only partial
progress is that we know how to solve this problem using subexponential amount of
time, query and space based on the algorithm of [Kuperberg, 2005]. Subsequent im-
provements by [Regev, 2004] and [Childs et al., 2010] decreases the space complexity
to polynomial.
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2. Considering the hidden shift problem over G = Z
n
m, we have an efficient quan-

tum algorithm when m is a constant prime power. The algorithms are efficient
in the sense that their query complexity and run-time complexity are polynomial in
log(|G|) = n log(m). Another extreme problem is when we keep n = 1 which is a
small constant and let m grow. This problem is the hidden shift problem over Zm

which is equivalent to the dihedral hidden subgroup problem. As mentioned above,
we have a subexponential time quantum algorithm for this problem. As it can be
seen, there is quite a large gap between the run-time of the best known algorithms
addressing these two extreme problems. We are interested in the complexity of the
intermediate problems for which we let both m and n grow. It is interesting to know
how the complexity of the intermediate problems between these two extremes evolve.
This problem is also stated in [Ivanyos, 2008] and we believe that knowing how the
complexity evolves can shed light on both the extreme cases as well.

3. In chapter 3, we gave a probabilistic lower bound on the probability that a random
function can be injectivized successfully. It seems an interesting direction for the
future research to characterize the set of functions that can be injectivized. This will
be fruitful since the injectivization method seems to be a powerful tool since it does
not put any restriction on the range of the functions and also the groups over which
the functions are defined.

4. We showed in chapter 3 that the average case non-injective hidden shift problem is
reducible to the injective hidden shift problem. It is interesting to know if the injective
hidden shift problem can also be reduced to a class of the non-injective hidden shift
problem which satisfy some plausible property that makes them tractable query-wise.
This is a reasonable goal since we already know that because of the equivalence of
the injective hidden shift problem to an instance of the non-abelian hidden subgroup
problem, it can be solved using polynomial amount of queries.

5. In chapter 4, we gave a specific quantum algorithm for solving the hidden shift
problem for c-almost generalized bent functions (which include the generalized bent
functions). By the lower bounds on the query complexity of the unstructured search,
it is well-known that an efficient algorithm for solving the worst case of the non-
injective hidden shift problem is not feasible. However, by putting some constraint
on the structure of the functions, the non-injective hidden shift problem can be
made more tractable. As a future research direction, perhaps, there are many well-
motivated functions for which it will be interesting to study the hidden shift problem.
Two specific examples are the shifted Legendre symbols studied in [van Dam et al.,
2003] and bent functions in [Rötteler, 2010] and [Gavinsky et al., 2011].
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6. In the scheme we showed for solving the generalized hidden shift problem in chapter
5, at each step, our quantum algorithm is only using two shifted oracles and ignoring
the rest. Does there exist an algorithm that uses fewer shifted oracles in total by
using more than two shifted oracles at each step?

7. As it was discussed in chapter 2, in [Friedl et al., 2003], authors turn a set of linear
inequations in Zp into a set of polynomial equations. It is well known that solving
a set of polynomial equations over any finite field is an NP-hard problem. However,
this is not the case provided we are given a sufficiently overdefined set of equations.
In fact, the authors in [Friedl et al., 2003] use the well-known classical technique
of solving polynomial equations using the idea of linearization. It is crucial in their
method to have an overdefined set of polynomial equation since by linearization, they
form a set of linear equations but with more unknown variables as the overhead. Re-
cently, there have been even more techniques discovered to cope with a polynomial
set of equations. In this regard, there is a paper by Kipnis and Shamir [1999] in
which they introduced a classical algorithm which is called relinearization. Unfor-
tunately the time complexity of relinearization is not known. However, the belief
is that its time complexity is just polynomial if we are given a set of polynomial
equations which is overdefined to some small extent. There is an improved algorithm
called XL introduced by Courtois, Klimov, Patarin, and Shamir [2000]. It is a sim-
pler framework yet stronger than relinearization. As it is stated in [Courtois et al.,
2000], they expect that upon being given m ≥ ǫn2 polynomial equations where n is
the number of unknown variables and ǫ is any positive constant number less than
1/2, both of XL and relinearization have time complexity of approximately nO(1/

√
ǫ)

which is just polynomial. Furthermore, they give strong evidence that both of these
algorithms have subexponential time complexity when m only slightly exceeds n by
a slowly growing number with n. Both of the papers [Kipnis and Shamir, 1999] and
[Courtois et al., 2000] are highly cited in their respected field and have brought much
excitement to the cryptography community. An improved algorithm over XL is called
XSL and is suggested in [Courtois and Pieprzyk, 2002]. An interesting question is
whether these methods can be used to solve the set of polynomial equations derived
in [Friedl et al., 2003] and possibly to address the case of the hidden shift problem
over Zn

p when p is slowly growing with n by slightly modifying the methods. Recall
that we only know how to solve the hidden shift problem when p is a constant and
a prime power. An interesting and challenging direction for future research devel-
oping similar algorithms which can solve a set of linear inequations provided we are
given sufficiently more linear inequations than the number of unknowns since this is
usually the case with the sampling subroutines in the quantum algorithms that they
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can produce an overdefined set of equations or inequations.
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