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Abstract We use the energy method to obtain the non-linear stability threshold for

thermosolutal convection porous media of Brinkman type with reaction. The obtained

non-linear boundaries for different values of the reaction terms are compared with

the relevant linear instability boundaries obtained by Wang and Tan (Phys Lett A

373:776–780, 2009). Using the energy theory we obtain the non-linear stability thresh-

old below which the solution is globally stable. The compound matrix numerical

technique is implemented to solve the associated system of equations with the corre-

sponding boundary conditions. Two systems are investigated, the heated below salted

above case and the heated below salted below case. The effect of the reaction terms

and Brinkman term on the Rayleigh number is discussed and presented graphically.

Keywords Porous media · Brinkman model · Thermosolutal convection · Energy

method · Non-linear stability

Mathematics Subject Classification 76E06 · 76V05 · 35B35

1 Introduction

Convection in porous media has attracted the attention of many researchers and has

been an area of great interest in addition to its wide range of applications. Thermal

convection in porous media and stability analysis returns back to Horton and Rogers

[2], Lapwood [3] and Nield and Barletta [4]. The problem of double-diffusive convec-

tion in porous media is well investigated by Nield [5], Rudraiah et al. [6], Wollkind

and Frisch [7,8], Nield and Bejan [9], Ingham and Pop [10,11], Vafai [12,13] and
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Vadasz [14]. Bdzil and Frisch [15] performed a linear stability analysis where the

fluid catalysed at the lower boundary of the layer and they developed their work in

Bdzil and Frisch [16] and a similar work carried by Gutkowicz-Krusin and Ross [17].

Many recent studies in double and multi-component convection are accomplished by

Rionero [18–21]. The first study on the reactive convection in porous media was due

to Steinberg and Brand [22,23]. More studies were carried out by Gatica et al. [24,25],

Viljoen et al. [26] and Malashetty and Gaikwad [27]. Pritchard and Richardson [28]

figured out a model similar to that of Steinberg and Brand [22,23]. They considered

the Darcy model to study the onset of thermosolutal convection using linear instability

technique. Wang and Tan [1] extended the previous work of Pritchard and Richardson

[28] in which Wang and Tan [1] considered Darcy-Brinkman model and used normal

mode analysis to carry out a linear instability analysis.

We are studying nonlinear stability using an energy stability method. This method is

being used extensively by many leading mathematicians, see for example, Straughan

[29,30], Rionero [31], Capone et al. [32], Straughan [33], Capone and De Luca [34],

Rionero and Torcicollo [35], Capone et al. [36], Lombardo and Mulone [37], Rionero

[38], De Luca [39] and De Luca and Rionero [40]. The work in this paper may be

considered as an extension of Wang and Tan [1] and Pritchard and Richardson [28].

Al-Sulaimi [41] used the energy method to carry out a nonlinear stability analysis of

Darcy thermosolutal convection with reaction. In this article, the energy stability of

Brinkman thermosolutal convection with reaction is considered. The compound matrix

numerical technique is used to solve the associated system of equations with the cor-

responding boundary conditions. Two systems are investigated separately, the heated

below-salted above system and the heated below-salted below system. The energy

stability boundaries obtained for different values of the reaction rates are compared

with the relevant linear instability boundaries. Some linear instability boundaries are

obtained by Wang and Tan [1], but they do not correspond directly to what we require

and hence we recompute also the linear values using the D2 Chebyshev tau method.

The aim of the study is to obtain the nonlinear stability boundaries below which

the solution is globally stable by using the energy method and compare the nonlinear

boundaries with the relevant linear instability boundaries obtained by Wang and Tan

[1]. Considering a porous medium of Brinkman type occupying a bounded three-

dimensional domain, the variation of the onset of thermosolutal convection with the

reaction rate and Brinkman coefficient is discussed.

2 Basic equations

Our model consists of the Brinkman equation with the density in the buoyancy term

depends linearly on the temperature T and salt concentration C , the continuity equa-

tion, the advection–diffusion equation for the transport of heat and the equation for

the transport of solute with reaction terms,

p,i = − μ

K
vi − ρ0[1 − αT (T − T0) + αC (C − C0)]gki + λ�vi ,

vi,i = 0,
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1

M
T,t + vi T,i = kT �T,

φ̂C,t + vi C,i = φ̂kC�C + k̂[ f1(T − T0) + f0 − C]. (1)

Here vi , p, T, C are the velocity, pressure, temperature and salt concentration. K is

the matrix permeability, μ is the fluid viscosity, ρ0 is the fluid density. kC , kT are the

molecular diffusivity of the solute through the fluid and the effective diffusivity of the

heat through the saturated medium. M is the ratio of the heat capacity of the fluid to

the heat capacity of the medium, φ̂ is the matrix porosity, k̂ is the reaction coefficient

and f0 + f1(T − T0) = Ceq(T ) in Pritchard and Richardson [28], where f0, f1 and T0

are constants. Moreover, g is the gravity, k = (0, 0, 1) and αT and αC are the thermal

and solutal expansion coefficients respectively. The symbol � is the Laplace operator.

The Eq. (1) are taken in the domain R
2 × (0, d) × {t > 0}. The boundary conditions

are

vi = 0 on z = 0, d,

T = TL on z = 0, T = TU on z = d,

C = CL on z = 0, C = CU on z = d, (2)

where TL , TU , CL , CU all constants, with TL > TU since our systems are heated

below. For the salted above porous medium CU > CL while for the salted below case

CL > CU . In the steady state, we look for

v̄i = 0,

T̄ = T̄ (z),

C̄ = C̄(z). (3)

Assuming Ceq(T̄ (z)) = C̄(z) (see Pritchard and Richardson [28] and Al-Sulaimi

[41]), we find the steady solution or the basic state to (1) which we are interested in

studying its stability and which satisfies (2) as

v̄i = 0,

T̄ (z) = −βT z + TL ,

C̄(z) = −βC z + CL , (4)

where βT = (TL − TU )/d and βC = (CL − CU )/d are the temperature and salt

gradients respectively.

To analyze the stability of the solutions (4) we define perturbations (ui , π, θ, φ)

such that

vi = v̄i + ui ,

p = p̄ + π,

T = T̄ + θ,

C = C̄ + φ (5)
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Using these perturbations in Eq. (1) we derive the equations governing (ui , π, θ, φ)

as

π,i = − μ

K
ui + ρ0gkiαT θ − ρ0gkiαCφ + λ�ui ,

ui,i = 0,

1

M
θt + uiθ,i = βT w + kT �θ,

φ̂φt + uiφ,i = βCw + φ̂kC�φ + k̂ f1θ − k̂φ, (6)

where w = u3. To non-dimensionalize the system (6), we define the length, time and

velocity scales, L , τ and U , by L = d, τ = d/MU and U = kT /d. We introduce

pressure, temperature and salt scales as

P = Udμ

K
, T ♯2 = μβT kT

αT ρ0gK
, C♯2 = μβC kT Le

αCρ0gK φ̂
,

where Le = kT /kC is the Lewis number. The temperature and salt Rayleigh numbers

are defined as

R =

√

βT d2 KαT ρ0g

kT μ
,

Rs =
√

βC d2 KαCρ0gLe

φ̂kT μ
when CL > CU or Rs =

√

|βC |d2 KαCρ0gLe

φ̂kT μ
when

CL < CU .

Then, the fully nonlinear, perturbed dimensionless form of (6) is

π,i = −ui + Rkiθ − Rskiφ + γ̃ �ui ,

ui,i = 0,

θ,t + uiθ,i = Rw + �θ,

εφ,t + Le

φ̂
uiφ,i = ∓Rsw + �φ + hθ − ηφ, (7)

where ε = M Le, γ̃ = λK/μd2 the Brinkman coefficient and h and η are the reaction

terms

h = k̂ f1d2T ♯

φ̂kC C♯
and η = k̂d2

φ̂kC

.

Moreover, +Rs is taken for the salted below system and −Rs is taken for the salted

above system. The corresponding boundary conditions are

Dw = w = θ = φ = 0 on z = 0 and z = 1. (8)
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3 Linear instability theory

To study the linear instability, we drop the nonlinear terms of (7) and take the double

curl of equation (7)1 and retaining only the third component of the resulting equation

to reduce (7) to studying the system

�w − R�∗θ + Rs�
∗φ − γ̃ �2w = 0,

θ,t = Rw + �θ,

εφ,t = ∓Rsw + �φ + hθ − ηφ,

(9)

where �∗ is the horizontal Laplacian. Assuming a normal mode representation for w,

θ and φ of the form w = W (z) f (x, y) , θ = Θ(z) f (x, y) and φ = Φ(z) f (x, y)

where f (x, y) is a plan tiling function satisfying

�∗ f = −a2 f ; (10)

(see Straughan [29]) and a is a wave number. Using (10) and applying the normal

mode representations to (9), we find

(D2 − a2)W + Ra2Θ − Rsa2Φ − γ̃ (D2 − a2)2W = 0,

σΘ = RW + (D2 − a2)Θ,

εσΦ = ∓Rs W + (D2 − a2)Φ + hΘ − ηΦ,

(11)

where D = d/dz. This is an eigenvalue problem for σ to be solved subject to the

boundary conditions

DW = W = Θ = Φ = 0 , on z = 0, 1. (12)

System (11) with the corresponding boundary conditions (12) is solved using the D2

Clebyshev tau method. Detailed numerical results for the heated below-salted above

and heated below-salted below are reported separately in the subsections (6.1) and

(6.2). We determine the critical Rayleigh number given by Ra2
L = mina2 R2(a2)

where for all R2 > Ra2
L the system is unstable.

4 Nonlinear energy stability theory

In order to study the nonlinear stability of the Brinkman model for the double diffusive

convection, we consider the nonlinear system of equations in the dimensionless form

(7) and the corresponding boundary conditions (8). Taking into consideration the

periodicity of the system and the smoothness of the boundary to allow the application of

the Divergence Theorem. Multiply Eq. (7)1 by ui and integrate over V using integration

by parts. Similarly, multiply Eq. (7)3 by θ and Eq. (7)4 byφ and integrate. The following
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system of energy equations is obtained

0 = −‖u‖2 + R(θ, w) − Rs(φ,w) − γ̃ ‖∇u‖2,

d

dt

1

2
‖θ‖2 = R(θ, w) − ‖∇θ‖2,

d

dt

ε

2
‖φ‖2 = ∓Rs(φ,w) − ‖∇φ‖2 + h(θ, φ) − η‖φ‖2. (13)

Then we form the combination of the equations in system (13) as

(13)1 + (13)2 + λ(13)3,

where λ a coupling parameter. This leads to the energy identity

d E

dt
= I − D = −D

(

1 − I

D

)

, (14)

where

E = 1

2
‖θ‖2 + ελ

2
‖φ‖2,

I = 2R(θ, w) + λh(θ, φ) − (1 ± λ)Rs(φ,w),

D = ‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃ ‖∇u‖2. (15)

Then
d E

dt
≤ −D

(

1 − max
H

I

D

)

= −D

(

1 − 1

RE

)

(16)

is an energy inequality which follows from the energy identity, where H is the space

of admissible solutions. Namely

H =
{

ui , θ, φ ∈ H1(V ) : ui = θ = φ = 0 on z = 0, 1
}

,

and
1

RE

= max
H

I

D
. (17)

The nonlinear stability ensues when RE > 1 which implies that 1 − 1/RE > 0.

By using the Poincaré inequality we can show

D ≥ 2kπ2

(‖θ‖2 + λε‖φ‖2

2

)

= 2kπ2 E, (18)

where k = min
{

1
M Le

, 1
}

. Then from (16) we may derive the inequality

d E

dt
≤ −2a1kπ2 E(t),
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where the coefficient a1 is defined by

a1 = RE − 1

RE

.

Upon integration we obtain

E(t) ≤ E(0)e−2a1kπ2t . (19)

Inequality (19) shows that under the condition RE > 1, E(t) → 0 as t → ∞. This

result according to Eq. (15)1, proves that ‖θ‖2 → 0 and ‖φ‖2 → 0 as t → ∞.

To show the decay of ‖u‖, we have to use the Poincaré inequality, the Arithmetic–

Geometric Mean inequality and the fact ‖w‖2 ≤ ‖u‖2 in the energy equation (13)1 to

obtain

(1 + γ̃ π2)‖u‖2 ≤
(

Rα

2
+ Rsβ

2

)

‖u‖2 + R

2α
‖θ‖2 + Rs

2β
‖φ‖2, (20)

where α and β are constants to be chosen such that Rα + Rsβ = 1, which gives

α = 1/2R and β = 1/2Rs . This leads to

(

1

2
+ γ̃ π2

)

‖u‖2 ≤ R2‖θ‖2 + R2
s ‖φ‖2. (21)

Inequality (21) shows that R−1
E guarantees in addition to the decay of ‖θ‖ and ‖φ‖,

also decay of ‖u‖.

Turning our attention to the maximization problem (17). We have to solve it by

deriving the Euler–Lagrange equations. The maximum problem is

1

RE

= max
H

2R(θ, w) + λh(θ, φ) − Rs(1 ± λ)(φ,w)

‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃ ‖∇u‖2
. (22)

Rescaling φ by putting φ̃ =
√

λφ. Equation (22) will be

1

RE

= max
H

2R(θ, w) +
√

λh(θ, φ̃) − Rs f (λ)(φ̃, w)

‖u‖2 + ‖∇θ‖2 + ‖∇φ̃‖2 + η‖φ̃‖2 + γ̃ ‖∇u‖2
, (23)

where

f (λ) = 1 ± λ√
λ

.

The Euler–Lagrange equations for this maximum are

2ui − 2R RE kiθ + Rs RE f ki φ̃ − 2γ̃ �ui = −RE P,i

− 2�θ − 2RE Rw −
√

λRE hφ̃ = 0

− 2�φ̃ + 2ηφ̃ + RE Rs f w −
√

λRE hθ = 0,

(24)
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where P is a Lagrange multiplier. To remove the Lagrange multiplier, we take the

double Curl of equation (24)1 and retaining only the third component of the resulting

equation to reduce (24) to

�w − R RE�∗θ +
(

1 ± λ

2

)

Rs RE�∗φ − γ̃ �2w = 0 ,

�θ + RE Rw + RE

λh

2
φ = 0 ,

(� − η)φ − RE Rs

(

1 ± λ

2λ

)

w + RE

h

2
θ = 0,

(25)

where �∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian. Introducing the normal

mode representation as presented in Sect. 3, system (25) becomes

(D2 − a2)W − γ̃ (D2 − a2)2W + a2 RE RΘ − a2 RE Rs

(

1 ± λ

2

)

Φ = 0,

RE RW + (D2 − a2)Θ +
(

hλ

2

)

REΦ = 0,

RE Rs

(

1 ± λ

2λ

)

W − h

2
REΘ + ηΦ − (D2 − a2)Φ = 0.

(26)

The Laplace operator is equivalent to � = D2 − a2, where D = ∂/∂z. The corre-

sponding boundary conditions are

DW = W = Θ = Φ = 0 , on z = 0, 1. (27)

We can determine the critical Rayleigh number given by Ra2
E =maxλ mina2 R2(a2, λ),

where for all R2 < Ra2
E the system is stable.

5 Numerical method

We have used the D2 Chebyshev tau method (Dongarra et al. [42]) to find the bound for

the linear instability theory, system (11) and the corresponding boundary conditions

(12). For the energy theory we have used the compound matrix technique (Lindsay

and Straughan [43]).

5.1 The D
2 Chebyshev tau method for the linear theory

Using the D2 Chebyshev to solve (11) subject to (12), we have to introduce a variable

χ such that χ = �w. Then, Eq. (11) will be
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(D2 − a2)W − χ = 0,

γ̃ (D2 − a2)χ − χ − a2 RΘ + a2 RsΦ = 0,

(D2 − a2)Θ + RW = σΘ,

(D2 − a2)Φ − ηΦ + hΘ ∓ Rs W = εσΦ.

(28)

The functions W, χ,Θ and Φ are expanded in terms of Chebyshev polynomials

W (z) = Σ N
n=1wnTn(z), χ(z) = Σ N

n=1χnTn(z), Θ(z) = Σ N
n=1θnTn(z),

Φ(z) = Σ N
n=1φnTn(z).

Since Tn(±1) = (±1)n and T ′
n(±1) = (±1)n−1n2 , implies that the boundary condi-

tions (12) become
w2 + w4 + w6 + · · · + wN = 0,

w1 + w3 + w5 + · · · + wN−1 = 0
(29)

with similar representations for θn and φn

θ2 + θ4 + θ6 + · · · + θN = 0,

θ1 + θ3 + θ5 + · · · + θN−1 = 0,
(30)

φ2 + φ4 + φ6 + · · · + φN = 0,

φ1 + φ3 + φ5 + · · · + φN−1 = 0,
(31)

while the boundary condition Dw = 0 becomes

22w2 + 42w4 + 62w6 + · · · + N 2wN = 0,

w1 + 32w3 + 52w5 + · · · + (N − 1)2wN−1 = 0
(32)

Therefore, the Chebyshev tau method reduces to solving the matrix system Ax =
σ Bx, where x = (w1, w2, . . . , wN , χ1, χ2, . . . , χN , θ1, . . . , θN , φ1, . . . , φN ) and the

matrices A and B are given by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4D2 − a2 I −I 0 0

BC1 0 · · · 0 0 · · · 0 0 · · · 0

BC2 0 · · · 0 0 · · · 0 0 · · · 0

0 4D2 − a2 I − I
γ̃

−a2 R I
γ̃

a2 Rs
I
γ̃

BC7 0 · · · 0 0 · · · 0 0 · · · 0

BC8 0 · · · 0 0 · · · 0 0 · · · 0

RI 0 4D2 − a2 I 0

0 · · · 0 0 · · · 0 BC3 0 · · · 0

0 · · · 0 0 · · · 0 BC4 0 · · · 0

∓Rs I 0 hI 4D2 − (a2 + η)I

0 · · · 0 0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 0 · · · 0 BC6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 I 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 ε I

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where in the matrix A the notations BC1, BC2 refer to the boundary conditions (29),

BC3, BC4 refer to (30) , BC5, BC6 refer to (31) and BC7, BC8 refer to the boundary

conditions (32). We solved the matrix system by the Q Z algorithm (Dongarra et al.

[42]).

5.2 The compound matrix technique for the energy theory

To employ the compound matrix method (Lindsay and Straughan [43]), we have to

write system (26) as

D4W = −a4W + 2a2 D2W − a2

γ̃
W + 1

γ̃
D2W +RE R

a2

γ̃
Θ − a2

γ̃

(

1 ± λ

2

)

RE RsΦ,

D2Θ = a2Θ − RE RW −
(

hλ

2

)

REΦ,

D2Φ =
(

a2 + η

)

Φ − h

2
REΘ +

(

1 ± λ

2λ

)

RE Rs W. (33)

The compound matrix for (33) works with the 4 × 4 minors of the 8 × 4 solution

matrix formed from

U1 =
(

W1, W ′
1, W ′′

1 , W ′′′
1 ,Θ1,Θ

′
1, Φ1, Φ

′
1

)

,

U2 =
(

W2, W ′
2, W ′′

2 , W ′′′
2 ,Θ2,Θ

′
2, Φ2, Φ

′
2

)

,

U3 =
(

W3, W ′
3, W ′′

3 , W ′′′
3 ,Θ3,Θ

′
3, Φ3, Φ

′
3

)

,

U4 =
(

W4, W ′
4, W ′′

4 , W ′′′
4 ,Θ4,Θ

′
4, Φ4, Φ

′
4

)

.

(34)

The solutions Ui for i = 1, 2, 3, 4 are independent solutions to (33) for different initial

values, Ui ’s correspond to solutions for starting values

(0, 0, 1, 0, 0, 0, 0, 0)T , (0, 0, 0, 1, 0, 0, 0, 0)T ,

(0, 0, 0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 0, 0, 0, 1)T ,
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respectively. We define C8
4 = 70 new variables y1, . . . , y70 as the 4 × 4 minors. For

example

y1 =

∣

∣

∣

∣

∣

∣

∣

∣

W1 W2 W3 W4

W ′
1 W ′

2 W ′
3 W ′

4

W ′′
1 W ′′

2 W ′′
3 W ′′

4

W ′′′
1 W ′′′

2 W ′′′
3 W ′′′

4

∣

∣

∣

∣

∣

∣

∣

∣

implies that y1 = W1W ′
2W ′′

3 W ′′′
4 + · · · , which gives 24 terms for y1. So, the idea is

to derive y2, . . . , y70 similarly and then obtain differential equations for the yi ’s by

differentiation. There is no need to write out the whole determinant each time. The

first term, y1, suffices. By differentiating each yi and substituting from Eq. (33) we

obtain differential equations for the yi , cf. Lindsay and Straughan [43] and chapter 19

of Straughan [29]. These equations are integrated numerically from 0 to 1. We keep

the boundary conditions (27) at z = 0 and replace the ones at z = 1 by

W ′′
1 (0) = W ′′′

2 (0) = Θ ′
3(0) = Φ ′

4(0) = 1, (35)

which using the yi ’s yields the initial condition for the y′
i ’s as

y60(0) = 1. (36)

Using yi ’s, the final condition which satisfies (27) is seen to be

y11(1) = 0. (37)

The eigenvalue R is varied until (37) is satisfied to some pre-assigned tolerance.

6 Numerical results and conclusion

6.1 Heated below salted above system

The numerical integration is carried out for different values of the reaction rates,

h and η and different values of the Brinkman coefficient γ̃ . We found that when the

layer is heated below and salted above in the case of no reaction i.e. h = η = 0 and

when Brinkman coefficient γ̃ = 1 that the numerical methods used give exactly the

same values for RaL and RaE . The graphical representation of these values shows that

the linear instability threshold coincide with the energy stability threshold as it is clear

in Fig. 1a and that there is no region of subcritical instability. As we increase the values

of the reaction rates h and η, the linear instability boundary starts to diverge from the

energy stability boundary. Figure 1 shows the effect of increasing the values of the

reaction rates, as we increase the values of h and η, the gap between the boundaries

increases. Any point (Rs2, Ra2) in the space above the linear instability boundary,

the solid line Ra2
L , represents a region where the system is unstable because the

linear instability boundary guarantees instability. On the other hand, if (Rs2, Ra2)

lies below the energy stability boundary, the dashed line Ra2
E , represents the space

where the system is definitely stable. Note that as the reaction rates increase, the peak
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Fig. 1 Linear instability and energy stability boundaries for the salted above Brinkman convection problem

for different values of the reaction rates h and η. a h = η = 0. b h = 5, η = 3

Table 1 Some numerical values obtained for the linear boundary RaL and energy boundary RaE tem-

perature Rayleigh number with corresponding salt Rayleigh number Rs and the the corresponding critical

wave numbers aL and aE when γ̃ = 1, h = 9 and η = 6 in the case of heated below salted above system

R2
s aL Ra2

L
aE Ra2

E
λ

1 3.13 1766.156 3.12 1752.197 0.055

3 3.13 1775.442 3.12 1752.187 0.099

5 3.14 1781.378 3.12 1752.179 0.132

6 3.14 1783.775 3.12 1752.175 0.146

12 3.15 1794.255 3.12 1752.157 0.220

20 3.15 1803.123 3.12 1752.137 0.304

of the linear instability curve moves to a higher position resulting in a wider region

of possible subcritical instability between the energy stability threshold and the linear

instability threshold. Moreover, there is a slight noticeable decrease in the energy

stability threshold as the values of Rs → +∞. Table 1 represents some numerical

values obtained.

To study the effect of each one of h and η on the stability of the system, a bigger

difference between their values is considered. It has been noticed that when h is bigger

compared to η, the region of possible subcritical instability is wider and increasing the

value of h implies more divergence of the linear instability boundary from the energy

stability boundary and a movement of the peak value of the linear instability threshold

to a higher position, as Fig. 2a shows. Compared to the case when η has a bigger value

than h, the linear and energy boundaries coincide as shown in Fig. 2b and the linear

boundary covers the content of stability. This is expected, as system (7) shows that

hΘ is a destabilizing term while −ηΦ is a stabilizing term.

Examining the effect of different values of the Brinkman coefficient (effective

viscosity term) on the stability boundaries, reveals that increasing the value of γ̃

results in a wider space of global stability below the energy stability threshold and

a wider region of potential subcritical instability. The effect of different values of

γ̃ (= 0.5, 2) are presented graphically in Fig. 3.
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Fig. 2 Linear instability and energy stability boundaries for the salted above Brinkman convection problem.

The difference between the values of the reaction rates h and η is large. a h = 10, η = 0. b h = 0, η = 10
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Fig. 3 Linear instability and energy stability boundaries for the salted above Brinkman convection problem

for different values of the Brinkman constant when h = 9 and η = 6. a γ̃ = 0.5. b γ̃ = 2

6.2 Heated and salted Below system

It is instructive to write system (7) and the boundary conditions (8) for the salted below

case as an abstract equation of form

Aut = L(u) + N (u),

where u = (u1, u2, u3, θ, φ), N (u) represents the nonlinear terms in (7) so

N (u) =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

0

−uiθ,i

− Le

φ̂
uiφ,i

⎞

⎟

⎟

⎟

⎟

⎠

,
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and L is the linear operator. In fact, the linear operator for (7) is

L =

⎛

⎜

⎜

⎜

⎜

⎝

−1 + γ̃ � 0 0 0 0

0 −1 + γ̃ � 0 0 0

0 0 −1 + γ̃ � R −Rs

0 0 R � 0

0 0 Rs h � − ηI

⎞

⎟

⎟

⎟

⎟

⎠

.

We may split L into a symmetric plus skew-symmetric part as follows

L = Ls + L A ,

where

Ls =

⎛

⎜

⎜

⎜

⎜

⎝

−1 + γ̃ � 0 0 0 0

0 −1 + γ̃ � 0 0 0

0 0 −1 + γ̃ � R 0

0 0 R � h
2

0 0 0 h
2

� − ηI

⎞

⎟

⎟

⎟

⎟

⎠

,

and

L A =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Rs

0 0 0 0 − h
2

0 0 Rs
h
2

0

⎞

⎟

⎟

⎟

⎟

⎠

.

For the salted above case, the previous subsection, L A would be zero and the analogous

linear operator L would be symmetric. Even when h = 0 in the salted below case, we

expect some problem with nonlinear energy stability theory since

(u, L(u)) = (u, Ls(u))

where (·, ·) is the inner product on (H1(V ))5 with V being a period cell for the solution.

For the problem of this subsection, governed by Eqs. (7) and (8) for the salted below

case, we have two sources of anti-symmetry, the Rs term and the h term.

The numerical values are presented graphically for different values of the reaction

rates h and η in Fig. 4. It has been noticed that as the reaction rate increases, the

gap between the linear instability and energy stability boundaries increases due to

the divergence of the linear threshold yielding a wider region of potential subcritical

instability. Whereas, the energy stability threshold is approximately constant or more

precisely it is decreasing unnoticeably as shown in Figs. 4 and 5. As expected from

system (7) one sees that hΘ will destabilize the system while −ηΦ will stabilize the

system which is clear and shown in Fig. 5 i.e, when the value of h is smaller compared

to η the space of possible subcritical instability is less compared to the case when h

is larger than η. The effect of changing the value of γ̃ can be noticed in Fig. 6 for

γ̃ = 0.5, 2. The gap between the boundaries increases and the space of global stability

is wider as γ̃ increases.

123



The non-linear energy stability of Brinkman thermosolutal... 395

0 20 40 60 80 100

1
7
6
0

1
7
8
0

1
8
0
0

1
8
2
0

1
8
4
0

Rs
2

R
^
2

R
L

2

R
E

2

0 20 40 60 80 100

1
7
5
0

1
8
0
0

1
8
5
0

1
9
0
0

1
9
5
0

Rs
2

R
^
2

R
L

2

R
E

2

(a) (b)

Fig. 4 Linear instability and energy stability boundaries for the salted below Brinkman convection problem

for different values of the reaction rates h and η. a h = η = 0. b h = 9, η = 6
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Fig. 5 Linear instability and energy stability boundaries for the salted below Brinkman convection problem.

The difference between the values of the reaction rates h and η is large. a h = 20, η = 1. b h = 1, η = 20
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Fig. 6 Linear instability and energy stability boundaries for the salted below Brinkman convection problem

for different values of the Brinkman coefficient when h = 10 and η = 0. a γ̃ = 0.5. b γ̃ = 2

The numerical values and their graphical representations show that the linear insta-

bility theory does not necessarily represent accurately the onset of convection and we

may explain that this is due to the two sources of anti-symmetry the Rs term and the h

term. By this we mean that the linear instability boundary is definitely a threshold for

instability, but in this case, it may be possible for instability to arise with a Rayleigh

number below the linear instability boundary.
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