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ABSTRACT
We run very large cosmological N-body hydrodynamical simulations in order to study statis-
tically the baryon fractions in early dark matter haloes. We critically examine how differences
in the initial conditions affect the gas fraction in the redshift range z = 11–21. We test three
different linear power spectra for the initial conditions. (1) A complete heating model, which
is our fiducial model; this model follows the evolution of overdensities correctly, according
to Naoz & Barkana (2005), in particular including the spatial variation of the speed of sound
of the gas due to Compton heating from the CMB. (2) An equal-δ model, which assumes that
the initial baryon fluctuations are equal to those of the dark matter, while conserving σ 8 of
the total matter. (3) A mean cs model, which assumes a uniform speed of sound of the gas.
The latter two models are often used in the literature. We calculate the baryon fractions for a
large sample of haloes in our simulations. Our fiducial model implies that before reionization
and significant stellar heating took place, the minimum mass needed for a minihalo to keep
most of its baryons throughout its formation was ∼3 × 104 M�. However, the alternative
models yield a wrong (higher by about 50 per cent) minimum mass, since the system retains
a memory of the initial conditions. We also demonstrate this using the ‘filtering mass’ from
linear theory, which accurately describes the evolution of the baryon fraction throughout the
simulated redshift range.
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1 IN T RO D U C T I O N

Recent measurements of anisotropies of the cosmic microwave
background (CMB) radiation have revealed the detailed distribu-
tion of matter in the Universe a few hundred thousand years after
the big bang (Spergel et al. 2003, 2007; Komatsu et al. 2009, 2011).
Observations utilizing large ground-based telescopes and space tele-
scopes have discovered galaxies and black holes that were in place
when the age of the Universe was less than a billion years. More-
over, many galaxies have been found at z > 7 (Bouwens et al. 2010;
McLure et al. 2010) in the Hubble Ultra Deep Field, whereas al-
ready a few γ -ray bursts at z > 6 have been detected by the Swift
satellite (Salvaterra et al. 2009; Tanvir et al. 2009; Lin, Liang &
Zhang 2010). These first objects are probably the building blocks
of the present day galaxies, thus, solving the puzzle behind their
formation will have a profound implication on our understanding
of the Universe (see for recent reviews Bromm et al. 2009; Yoshida
2010, and references therein).

�E-mail: snaoz@northwestern.edu

The formation of the first generation of galaxies in the Uni-
verse has been studied for many years. High-resolution cosmologi-
cal simulations can follow complex astrophysical processes, while
analytical calculations can provide an overall understanding, and
can be used to decouple different physical effects seen in simula-
tions. Analytic models are also useful for estimating the limitations
of numerical simulations such as insufficient resolution and small
boxsizes (Yoshida et al. 2003; Barkana & Loeb 2004; Naoz &
Barkana 2005). Combining the two approaches may offer many of
the advantages of both.

The initial conditions (hereafter ICs) in a cosmological simula-
tion can have a large effect on the formation of the first galaxies in
simulations, i.e. both on the formation time (or on the halo abun-
dance at a given time) and the halo properties at formation time
(such as the average gas fraction). Yoshida et al. (2003b) studied
high-redshift structure formation and reionization while testing two
different models for power spectra as their ICs. They found that
different models have a profound effect on the abundance of pri-
mordial star-forming gas clouds and thus on when the reionization
was initiated and its progress. In the analytical point of view, Naoz,
Noter & Barkana (2006) and Naoz & Barkana (2007) showed that
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the ICs at high redshift have a significant effect on the halo abun-
dance and the gas fraction at virialization. While these effects are
largest at the highest redshift, e.g. z ∼ 65 for the first star in the
Universe (Naoz et al. 2006), they are still significant for haloes
forming at z ∼ 10–30. The first gas rich haloes at these redshifts are
expected to host the first stars (z ∼ 65–30; Naoz, Noter & Barkana
2006; Yoshida 2006; Gao et al. 2007; Trenti, Stiavelli & Michael
Shull 2009a) and even the first γ -ray bursts (e.g. Bromm & Loeb
2006; Naoz & Bromberg 2007). Thus, investigating the formation
properties of these haloes is of prime importance.

Gas rich haloes in the early Universe may very well be a nurturing
ground for dwarf galaxies, which at high redshift can form stars (e.g.
Bromm, Coppi & Larson 2002, 1999; Abel, Bryan & Norman 2002;
Yoshida et al. 2006; Yoshida, Omukai & Hernquist 2008, and ref-
erences therein) perhaps even at a high star formation rate (Ricotti,
Gnedin & Shull 2002; Clark et al. 2011; Greif et al. 2010). Their
properties are very important as they are responsible for metal pol-
lution and the ionizing radiation at these early times (e.g. Shapiro,
Iliev & Raga 2004; Ciardi et al. 2006; Gnedin, Kravtsov & Chen
2008; Trenti & Stiavelli 2009). Moreover, haloes that are too small
for efficient cooling via atomic hydrogen, i.e. minihaloes, are most
susceptible to the effect of ICs. While they may not normally host
astrophysical sources, minihaloes may produce a 21-cm signature
(Kuhlen, Madau & Montgomery 2006; Shapiro et al. 2006; Naoz &
Barkana 2008 but see Furlanetto & Oh 2006), and they can block
ionizing radiation and produce an overall delay in the initial progress
of reionization (e.g. Barkana & Loeb 2002; Iliev et al. 2003; Iliev,
Scannapieco & Shapiro 2005; McQuinn et al. 2007). The evolution
of the halo gas fraction at various epochs of the Universe is of prime
importance, particularly in the early Universe.

In this paper, we examine the effect of using different initial con-
ditions in simulations on the resulting minimum gas-rich halo mass
in the redshift regime z = 11–21. We perform GADGET-2 (Springel,
Yoshida & White 2001; Springel 2005) simulations using a total
of 7683 × 2 particles. We compare the ICs presented in Naoz &
Barkana (2005), which describe the linear evolution of overdensities
in a fully consistent way, to two other alternative ICs, often used in
the literature. We also compare to the prediction of the gas-rich mass
from linear theory. We describe our different ICs and simulations in
Sections 2 and 3, respectively. Our simulation results are presented
in Section 4 where we divide our discussion to the evolution of the
non-linear power spectra (Section 4.1) and to the minimum gas-rich
halo mass resulting from either linear theory or from the simulations
(Section 4.2). Finally, we discuss our conclusions (Section 5).

Throughout this paper, we adopt the following cosmological pa-
rameters: (��, �M, �b, n, σ8, H0) = (0.72, 0.28, 0.046, 1, 0.82,
70 km s−1 Mpc−1) (Komatsu et al. 2009).

2 D IFFER ENT INITIAL C ONDITION MODELS
– BASIC EQUATIONS

2.1 The fiducial ICs – ‘fid’

We follow Naoz & Barkana (2005), who studied the linear evolution
of both dark matter (DM) and baryon overdensities. The fluctua-
tions of the temperature of the baryons (δT) cannot be described as
a simple function of a spatially uniform baryonic sound speed cs(t),
as was previously assumed (e.g. Ma & Bertschinger 1995). Fur-
thermore, at high redshifts, the baryon density fluctuations (δb) are
not equal to those of DM (δdm) (contrary to a common assumption
in simulations; four redshift examples are shown in fig. 1 of Naoz
& Barkana 2005). We label the power spectrum model as the ‘fid’

Figure 1. The relative difference (specifically, δmodel/δch − 1) between
the fiducial linear initial conditions and the alternative models at z = 99.
We consider the relative difference between the fid ICs and the mean cs

ICs for both the baryons and dark matter (solid and short-dashed curves,
respectively), and the relative difference between the fid ICs and the E-δ
ICs for both the baryons and dark matter (dotted and long-dashed curves,
respectively). Note that we have plotted here the absolute value; the mean
cs model gave a negative value (i.e. an underestimate compared to the fid
model) while the E-δ model gave a positive value (i.e. an overestimate).

(fiducial) ICs since it follows the evolution of linear overdensities
in a complete and consistent way.

Following Naoz & Barkana (2005) we write the basic equations
that describe the evolution of the DM, baryon density and temper-
ature fluctuations:

δ̈dm + 2Hδ̇dm = 3

2
H 2

0

�m

a3
(fbδb + fdmδdm) , (1)

where f dm and f b are the mean cosmic DM and baryonic fraction,
respectively. Here we follow the standard notations for cosmolog-
ical parameters such as �m,H0. The baryons are also subject to a
pressure term:

δ̈b + 2Hδ̇b = 3

2
H 2

0

�m

a3
(fbδb + fdmδdm) − k2

a2

kBT̄

μ
(δb + δT) , (2)

where μ is the mean molecular weight, kB is the Boltzmann constant
and k is the wavenumber. Using the first law of thermodynamics,
Naoz & Barkana (2005) derived the equations for the evolution of
the baryon average temperature and temperature fluctuations:

dT̄

dt
= −2HT̄ + xe(t)

tγ
(T̄γ − T̄ ) a−4, (3)

where T̄γ = [2.725 K]/a is the mean CMB temperature, and the
first-order equation for the perturbation:

dδT

dt
= 2

3

dδb

dt
+ xe(t)

tγ
a−4

{
δγ

(
T̄γ

T̄
− 1

)
+ T̄γ

T̄

(
δTγ − δT

)}
, (4)

with the second term on the right-hand side accounting for the
Compton scattering of the CMB photons on the residual electrons
from recombination, where xe(t) is the electron fraction out of the
total number density of gas particles at time t, and
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t−1
γ ≡ 8

3
ρ̄0

γ

σT c

me
= 8.55 × 10−13 yr−1, (5)

where σ T is the Thomson scattering cross-section and ργ is the
photon energy density. The first term on the right-hand side of each
of these two equations (3) and (4) accounts for adiabatic expansion
of the gas, and the remaining terms capture the effect of the thermal
exchange with the CMB. Following Naoz & Barkana (2005) we
have numerically calculated the evolution of the perturbations by
modifying the CMBFAST code (Seljak & Zaldarriaga 1996) according
to these equations. Note that similar physics was also explored by
Yamamoto, Sugiyama & Sato (1997, 1998).

We solve the complete set of equations to obtain the power spec-
trum at different redshifts which can be used as initial conditions for
our simulations. Fig. 1 shows the ratio between this initial condition
to the two alternative models tested in this paper.

2.2 Alternative model I – equal δ – ‘E-δ’

In many cosmological ICs for N-body simulations and semi-
analytical calculations, the fluctuations of the baryons are assumed
to be equal to the fluctuations of the DM. We construct a model that
includes this incorrect assumption while maintaining the correct
overall δtot (i.e. conserving σ 8 at z = 0, see Appendix A for more
details). Thus, in our ‘E-δ’ model we calculate the correct δtot as a
combination of δb and δdm from the fiducial calculation in Section
(2.1), but then take the baryon perturbation to be the same as for the
DM, namely

δEδ
b = δEδ

dm = δch
tot = fbδ

ch
b + fdmδch

dm, (6)

where δch
b,dm (δEδ

b,dm) is the resulting linear overdensity from the fidu-
cial calculation (E-δ model) for the baryons and DM, respectively.
We then compare the equal δ model to our fiducial calculation.
Fig. 1 shows the ratio between the fid ICs and the E-δ model for
both the baryons and DM. We find that the E-δ model overestimates
the baryon fluctuations by �30 per cent on large scales (k−1 �
10 kpc) while the overestimate grows to a much larger factor on
small scales.

Before recombination the baryons were tightly coupled to the
radiation, resulting in suppression of the growth of their overdensity.
However, the DM component, which is not affected by the photons,
could basically grow once the fluctuation wavelength entered the
Hubble horizon (in the linear regime, before equality, the dark mater
fluctuations grew logarithmically with the scale factor, where after
equality they grew linearly with the scale factor). Therefore, this
resulted in a suppression of the baryonic overdensity by about three
orders of magnitude compared to the DM at recombination (e.g.
fig. 1 in Naoz & Barkana 2005). While the baryons subsequently
fall into the potential wells of the DM, it takes them some time to
catch up, and the baryon fluctuations are still suppressed even at
lower redshifts. This point is often overlooked in simulations and
analytical calculations.

2.3 Alternative model II – the mean sound speed
approximation – ‘mean cs’

Naoz & Barkana (2005) showed that the presence of spatial fluctu-
ations in the sound speed modifies the calculation of perturbation
growth significantly. Nevertheless, for completeness and as a case
of comparison with previous results, we compare the simulation
results with the results obtained using this approximation. Thus, we
proceed by presenting the basic equations of the growth of den-
sity fluctuations, in this approximation of a uniform sound speed

(hereafter ‘mean cs’). The evolution of the density fluctuations is
described by a different set of coupled second order differential
equations:

δ̈dm + 2Hδ̇dm = 3

2
H 2

0

�m

a3
(fbδb + fdmδdm) ,

δ̈b + 2Hδ̇b = 3

2
H 2

0

�m

a3
(fbδb + fdmδdm) − k2

a2
c2

s δb, (7)

where c2
s = dp/dρ is assumed to be spatially uniform (i.e. inde-

pendent of k) and is thus calculated from the thermal evolution of
a uniform gas undergoing Hubble expansion. With this assump-
tion, the temperature fluctuations (as a function of k) are simply
proportional at any given time to the gas density fluctuations:

δT

δb
= c2

s

kBT̄ /μ
− 1. (8)

Naoz & Barkana (2005) showed that this approximation leads to an
underestimation of the baryon density fluctuations by up to 30 per
cent at z = 100 and 10 per cent at z = 20 for large wavenumbers.
Fig. 1 shows the ratio between the mean cs initial conditions and
the fiducial ones for both the baryons and DM. It agrees with our
previous results, showing that the underestimate by the mean cs

model is greatest at k−1 ∼ 1 kpc. The non-linear evolution resulting
from these initial conditions will result in shallower potential wells
compared to the fiducial calculation.

Even though it is clear that the precise baryon temperature fluc-
tuations at high redshift are very significant, still many simulations
use initial conditions that assume a uniform speed of sound in the
Universe. As shown below this leads to significantly different esti-
mates for the gas content of the early haloes.

3 THE SI MULATI ON

3.1 Basic parameters

We run a GADGET-2 simulation (Springel et al. 2001; Springel 2005)
starting from redshift 99, for a total of 2 × 7683 particles (7683

particles each for the DM and baryon components) and our box size
is 2 Mpc. We choose this box size so that a halo mass of 105 M�
would have ∼500 particles. This way according to Naoz, Barkana
& Mesinger (2009) we are able to estimate the gas fraction in
∼105 M� haloes correctly (see below for the halo definition). Our
softening length is 0.2 comoving kpc.

For all runs, glass-like cosmological ICs were generated using the
Zel’dovich approximation. The transfer functions were generated
using the various models described above. We have used a glass file
which was randomly displaced thus removing the coupling between
nearby DM and gas particles. Using this randomization procedure
we achieve essentially the same effect to that shown in Yoshida,
Sugiyama & Hernquist (2003c). In generating the ICs, a convolution
between the glass file and the transfer function from the different
models was done, thus taking into account the different velocities
of the DM and baryons (for the fiducial and mean cs models). We
note that we have used the same phases for the DM and baryons, in
all of the simulations.

We set the initial temperature to be 164.11 K (as derived from
linear theory), and thus Gadget assumes neutral and monoatomic
gas, and converts to thermal energy (i.e. adiabatic initial conditions).
Although this work emphasizes the need for a precise calculation
of the baryon overdensities resulting from temperature fluctuations,
we actually neglect the temperature fluctuations in the initial con-
ditions. This may not be a bad approximation since the haloes we
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Figure 2. Comparison of the linear and non-linear power spectra. The
linear power spectra (generated according to Naoz & Barkana 2005) are
shown for the dark matter and baryon components (solid and dashed curves,
respectively), while the corresponding non-linear spectra (as measured in
the simulations) are shown as triangles and squares, respectively. We show
results for the fid model at redshifts z = 99, 21 and 11.

study are already somewhat non-linear at our initial redshift, and the
Compton heating is quite small compared to the adiabatic heating
during non-linear gravitational collapse (see Appendix C). A more
complete treatment would be to include in the simulation the precise
temperature fluctuations, which we leave for future work. Neverthe-
less, even with the current treatment our results show consistency
with linear theory.

3.2 Halo definition

We locate DM haloes by running a FOF group-finder algorithm with
a linking parameter of 0.2. We then find the centre of mass of each
halo and calculate the density profile of the DM and baryons, sep-
arately. In order to derive the density profile we assume a spherical
halo, and divide it to 2000 shells. Combining these density profiles,
we find the virial radius rvir at which the overdensity is 200 times
the background density, and the gas fraction of each halo.

Recently, Trenti et al. (2010) performed a resolution analysis in
order to study the mass definition of haloes in simulations. Their
conclusion (their fig. 2 ) is that using the FOF algorithm and as-
suming about 500 particles per spherical halo introduces an error of
∼15 per cent in the mass definition. In our gas fraction analysis we
have chosen only haloes with a number of particles larger or equal
to 500, i.e. we limit our errors in halo mass definition to below
∼15 per cent. Also, according to Naoz et al. (2009), this way we
can estimate the gas fraction inside a halo accurately.

4 R E S U LT S A N D C O M PA R I S O N A M O N G
T H E MO D E L S

4.1 Non-linear power spectrum evolution

One way to probe cosmic structure particularly on small scales is
through the non-linear power spectrum. We begin our simulation

Figure 3. The ratio of the non-linear power spectra (specifically, Pmodel/Pfid

− 1) at z = 21, 15 and 12 (from bottom to top); curves are denoted as in
Fig. 1. Note that we have plotted here the absolute value; the mean cs

model underestimates and the E-δ model overestimates the power spectrum
compared to the fid model.

at z = 99 with linear initial conditions.1 The main disagreement
between the three models lies in the baryonic component (although
the E-δ calculation also underestimates the DM overdensities by
∼10 per cent). This input difference is then modified by the non-
linear evolution.

Following Yoshida et al. (2003c) we compared the linear power
spectrum for the fid model, as computed from Naoz & Barkana
(2005), for the DM and baryon components, with the non-linear
power spectra from the simulation (see Fig. 2). The two power
spectra agree well as expected in the linear regime. We note that
the other two models approach the fid model at low redshifts (see
Appendix A Fig. A1).

Fig 3 shows the differences among the fid, E-δ and mean cs

ICs, in terms of the non-linear power spectra at the later redshifts
at which haloes were formed in our simulation. The mean cs model
maintains over time roughly the same level of discrepancy with
the fid model, while in the E-δ model both the baryonic and DM
differences decline slightly slower than with the inverse scale factor.
As clearly can be seen from Fig. 3, the non-linear evolution of
haloes is still strongly affected by the choice of initial conditions
even at redshift 12. The fid ICs (Naoz & Barkana 2005) describe the
linear evolution consistently and thus represent the best available
prescription for the initial conditions.

4.2 The minimum gas rich mass

Studying the galaxy evolution and reionization either by using simu-
lations [both adaptive mesh refinement (AMR) and smoothed parti-
cle hydrodynamics (SPH)] or by using analytical calculations relies
on knowing the amount of gas within the DM haloes. The simplest
assumption, often used in the literature, is that a DM halo has the
mean cosmic fraction. This can lead to incorrect results, especially

1 This is, of course, an approximation, since as shown in Naoz et al. (2006) at
z = 99 overdensities are already slightly non-linear. The effect of starting the
simulation at high redshifts is studied elsewhere (Naoz et. al, in preparation).
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when one tries to study star formation, galaxy mergers, and related
phenomena.

Consider the various scales involved in the formation of non-
linear objects containing DM and gas. On large scales (small
wavenumbers) gravity dominates halo formation and gas pressure
can be neglected. On small scales, on the other hand, the pressure
dominates gravity and prevents baryon density fluctuations from
growing together with the DM fluctuations. The relative force bal-
ance at a given time can be characterized by the Jeans (1928) scale,
which is the minimum scale on which a small gas perturbation will
grow due to gravity overcoming the pressure gradient. As long as
the Compton scattering of the CMB on the residual free electrons
after cosmic recombination kept the gas temperature coupled to that
of the CMB, the Jeans mass was constant in time. However, at z ∼
200 the gas temperature decoupled from the CMB temperature and
the Jeans mass began to decrease with time as the gas cooled adia-
batically. Any overdensity on a scale more massive than the Jeans
mass at a given time can begin to collapse, due to a lack of sufficient
pressure. However, the Jeans mass is related only to the evolution
of perturbations at a given time. When the Jeans mass itself varies
with time, the overall suppression of the growth of perturbations
depends on a time-averaged Jeans mass.

Gnedin & Hui (1998) defined a ‘filtering mass’ that describes the
highest mass scale on which the baryonic pressure still manages
to suppress the linear baryonic fluctuations significantly. Gnedin
(2000) suggested, based on a simulation, that the filtering mass also
describes the largest halo mass whose gas content is significantly
suppressed compared to the cosmic baryon fraction. The latter mass
scale, in general termed the ‘characteristic mass’, is defined as the
halo mass for which the enclosed baryon fraction equals half the
mean cosmic fraction. Thus, the characteristic mass distinguishes
between gas-rich and gas-poor haloes. Many semi-analytical mod-
els of dwarfs galaxies often use the characteristic mass scale in
order to estimate the gas fraction in haloes (e.g. Bullock, Kravtsov
& Weinberg 2000; Benson et al. 2002b,a; Somerville 2002). Theo-
retically this sets an approximate minimum value on the mass that
can still form stars.

4.2.1 Prediction from linear theory

In linear theory the filtering mass, first defined by Gnedin & Hui
(1998), describes the highest mass scale on which the baryon density
fluctuations are suppressed significantly compared to the DM fluc-
tuations. Naoz & Barkana (2007) included the fact that the baryons
have smoother ICs than the DM (see Naoz & Barkana 2005) and
found a lower value of the filtering mass (by a factor of 3–10, de-
pending on the redshift). Following Naoz & Barkana (2007), the
filtering scale (specifically, the filtering wavenumber kF) is defined
by expanding the ratio of baryonic to total density fluctuations to
first order in k2:
δb

δtot
= 1 − k2

k2
F

+ rLSS, (9)

where k is the wavenumber, and δb and δtot are the baryonic and
total (i.e. including both baryons and DM) density fluctuations,
respectively. The parameter rLSS (a negative quantity) describes the
relative difference between δb and δtot on large scales (Naoz &
Barkana 2007), i.e.

rLSS ≡ 	

δtot
, (10)

where 	 = δb − δtot, (see also Barkana & Loeb 2005). The ratio
rLSS is independent of k, and its magnitude decreases with time ap-

Figure 4. The parameters of the best fits in the form of equation 12; different
panels show Mc, α and f b,0. We consider the fiducial calculation, mean cs

approximation and the E-δ model (boxes, triangles and circles, respectively),
where we fit equation (12) to all data points from haloes with at least
500 particles. In the bottom panel we also show the analytical calculation
following Naoz & Barkana (2007), for all the models, assuming the same
ICs as in the simulations (solid, dashed and dotted curves for fid, mean cs

and E-δ, respectively). We note that at 1 + z = 13 the mean cs and the
E-δ models have the same value of Mc, and that the fid model and the E-δ
overlap at 1 + z = 17. We also note that the data for 1 + z = 14 were
unavailable due to a computer failure.

proximately ∝1/a, since 	 is roughly constant and δtot is dominated
by the growing mode ∝a (see fig. 1 top panel in Naoz & Barkana
2007).

The filtering mass is defined from kF simply as

MF = 4π

3
ρ̄0

(
1

2

2π

kF

)3

, (11)

where ρ̄0 is the mean matter density today. This relation is one
eighth of the definition in Gnedin (2000; who also used a non-
standard definition of the Jeans mass). In Fig. 4 (bottom panel) we
show the filtering mass (solid curve) resulting from equation (11),
as calculated in Naoz & Barkana (2007) Naoz & Barkana (2007,
see also their fig. 3).

For each of the models we calculate the filtering mass as described
here, assuming the model’s initial conditions. Since the simulation
is limited in box size, all of the perturbations on large scales are
effectively frozen in the simulation. Therefore, we do not extract
rLSS directly from the simulations, but instead calculate it based on
the initial conditions as rLSS = 	in/(δtot,ina), where the subscript ‘in’
refers to initial. Thus, for example, for the E-δ case, rLSS = 0. Fig. 4
(bottom panel) shows the analytical results of the filtering mass
for the fid calculation, the mean cs approximation and E-δ (solid,
dashed and dotted curves, respectively). Since the fid calculation is
the most consistent calculation, we compare the two other models
to it.

The filtering mass represents the competition between gravity
and pressure, as it measures the largest scale at which pressure has
had a significant overall effect on halo formation. Since it mea-
sures an integrated effect over the formation, this mass scale is
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also very sensitive to the evolution history and the initial conditions
(as shown in Naoz & Barkana 2007). In the mean cs model, the
temperature fluctuations are greatly overestimated on all relevant
scales (see Naoz & Barkana 2005), while in reality the coupling
to the CMB (in the fid model) keeps the temperature fluctuations
highly suppressed for some time after recombination. Moreover, as
mentioned in Section 3.1 (and see also Appendix C), we do not
include explicitly the effect of initial temperature fluctuations in
the simulations. However, the temperature fluctuations from higher
redshifts influence the baryon density at the initial redshift (see
Fig. 1) and suppress the baryon density on small scales. As demon-
strated in Naoz & Barkana (2007) the system remembers the initial
conditions. In other words, the initially enhanced filtering mass
(compared to the fid model) helps maintain a higher filtering mass
even at moderately low redshift.

In the E-δ model, the baryon perturbations start out much higher
than in the other models, so one might expect that the final baryon
fraction in haloes would tend to be higher as well; here, however, it
is important to separate two issues. The high initial baryon pertur-
bations in the E-δ model are present at all scales, so they affect even
high-mass haloes that are unaffected by pressure. This can explain
why the simulation with the E-δ ICs produced the highest baryon
fraction in high-mass haloes (see the top panel of Fig. 4). However,
when we consider the differences between large and small scales,
the high baryon perturbations produce a large pressure term, in-
creasing the effect of pressure relative to gravity and producing a
higher filtering mass in the E-δ model than in the fid model. Note
that the filtering mass is particularly sensitive to the importance of
pressure at the very highest redshifts (above 100), since at lower
redshifts the gas cools and the Jeans mass decreases, reducing the
contribution of these redshifts to the final filtering mass.

We note that in Naoz & Barkana (2007) the calculation of the
filtering mass in the fiducial model was compared to the time in-
tegrated filtering mass in a model that assumes the mean speed of
sound model, neglects the rLSS factor, and starts out with initial con-
ditions as in the E-δ model. Here, we have separated our discussion
into several different cases.

4.2.2 The non-linear characteristic mass

There is no a priori reason to think that the filtering mass can
also accurately describe properties of highly non-linear, virialized
objects. For haloes, Gnedin (2000) defined a characteristic mass
Mc for which a halo contains half the mean cosmic baryon fraction
fb. In his simulation he found the mean gas fraction in haloes of a
given total mass M, and fitted the simulation results to the following
formula:

fg,calc = fb,0

[
1 + (

2α/3 − 1
) (

Mc

M

)α
]−3/α

, (12)

where f b,0 is the gas fraction in the high-mass limit. In this function, a
higher α causes a sharper transition between the high-mass (constant
fg) limit and the low-mass limit (assumed to be fg ∝ M3). Gnedin
(2000) found a good fit for α = 1, with a characteristic mass that in
fact equaled the filtering mass by his definition. By our definition,
the claim from Gnedin (2000) is that Mc = 8 × MF.

Naoz et al. (2009) found that, given their errors, the filtering mass
from linear theory is consistent with the characteristic mass fitted
from the simulations, for two (pre-reionization) scenarios that they
tested: the NoUV case (i.e. no stellar heating) and the Flash case (i.e.
after a sudden flash of stellar heating). For clarity, we emphasize

that this statement (Mc = MF) refers to our definition of MF in
equation (11).

The characteristic mass is essentially a non-linear version of
the filtering mass, and so it also measures the competition between
gravity and pressure. At high masses, where pressure is unimportant,
fg → fb,0, while the low mass tail is determined by the suppression
of gas accretion caused by high baryonic pressure.

4.2.3 Comparison between the simulation and the theoretical
predictions

A major conclusion of the simulation results is that different ICs
result in different gas fractions in the final haloes. Specifically, we
measure these differences through the characteristic mass at various
redshifts. varies for different ICs. We determine for each simula-
tion output the characteristic mass and the parameter α using a
two-dimensional fit to equation (12), with fb,0 separately fixed to
equal the average of the highest few mass bins (see Appendix B
for a complete description of the fitting process, together with the
1σ errors). In Fig. 4 we show fb,0, α and Mc, for all the simulated
cases. The characteristic mass clearly depends on the initial con-
ditions, with the mean cs model and E-δ model both yielding gas
suppression at systematically higher halo masses then for the fid
model. The parameter α shows a less clear pattern with redshift, but
it is generally lowest for the fid model. Overall, the most important
implication is that the gas fraction in haloes is highly sensitive to
the assumed initial conditions.

Comparing to linear theory allows us to understand some of these
results. As noted in section 4.2.1, we calculated the filtering mass
from linear theory for each of the ICs, and the linear calculation
allows us to understand the relative importance of pressure in the
various IC models, at least during the linear evolution. Although
the simulation results come from non-linear, viralized haloes, we
find an approximate agreement (typically to within ∼20 per cent)
between the filtering mass, as defined here and in our previous work
(Naoz & Barkana 2007; Naoz et al. 2009), and the characteristic
mass as measured in the simulation, for all the models. In particular,
the relative sizes of Mc among the various models, and the slow
decline of all the characteristic masses with time, are well matched
by the corresponding MF values predicted from linear theory. This
close match can be understood from the fact that while both gravity
and pressure increase during the non-linear evolution, their relative
strength only changes by a relatively small factor as a halo undergoes
non-linear collapse and virialization. Haloes in which pressure had
a large effect during the early, linear evolution stage, keep sufficient
pressure to maintain the suppressed baryon content all through the
final collapse. On the other hand, in more massive haloes in which
gravity overcame pressure early on, the baryons keep up with the
collapse of the DM and the pressure never has a major role.

For the E-δ alternative model, we find that the resulting charac-
teristic mass is higher than the result in the fid model. Specifically,
at z = 20 we find Mc ∼ 5 × 104 M� and α ∼ 1). This can be un-
derstood since setting the gas fluctuations to be equal to the DM’s
means that the pressure of the gas is higher compared to the fid
model. As can also be seen from comparison to linear theory, the
system retains the memory of the pressure, due to the time inte-
grated nature of the filtering mass. Therefore, the higher pressure
translates to a higher filtering/characteristic mass.

The mean cs approximation starts with effectively smoother ICs
than in the fid model (∼20 per cent underestimate of the small-scale
baryon overdensity). Thus, the baryonic components lag behind
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the DM collapse, and the pressure is always overestimated for a
given baryon overdensity (due to the overestimated temperature
fluctuations), resulting in a lower gas fraction for any given halo
mass, i.e. the characteristic mass is higher than in the fid model.
Specifically, at z = 20 we find Mc ∼ 7 × 104 M� and α ∼ 1. This
can be compared with Mc ∼ 3 × 104 M� and α ∼ 0.6 for the fid
ICs.

Recently, Hoeft et al. (2006) and Okamoto, Gao & Theuns
(2008) showed that the characteristic mass scale does not agree
with the Gnedin & Hui (1998) filtering mass in the low-redshift,
post-reionization regime. However, it is important to note that at
these low redshifts, the heating/cooling and other feedback mecha-
nisms are complex and highly inhomogeneous, so that the ‘filtering
mass’ calculated from linear theory is not really precisely defined,
and the comparison of the linear and non-linear results cannot re-
ally be considered a direct and precise test. In contrast, Naoz et al.
(2009) found that the filtering mass gives a good approximation to
the characteristic mass, even in the presence of a ‘flash’ heating
event (see also Mesinger, Bryan & Haiman 2006) that is physically
somewhat contrived but allows for a clear comparison of the linear
and non-linear results.

Summarizing our results, we find a good agreement between the
characteristic mass and the filtering mass in all the models. Fig. 4
shows the best fitted parameters at various redshifts for Mc and α,
and our value for f b,0, for all models [the 1σ (68 per cent) confidence
regions are listed in table B1]. It is important to emphasize that in
this statement we are referring to our definition in equation (11),
which is one eighth of the original definition which Gnedin (2000)
claimed was a good fit to the characteristic mass. While we have
been careful to select haloes with at least 500 particles, based on
the results of Naoz et al. (2009), we do not have the even higher
mass resolution needed to perform a resolution convergence test as
they did. Our main conclusion is that at least in the redshift range
z = 11–21 the filtering mass provides a fairly good estimate for the
characteristic mass. This extends the redshift range of the agreement
between the filtering mass and the characteristic mass found in Naoz
et al. (2009)Naoz et al. (2009, z = 20–25). Another significant re-
sult from this agreement is that previous work (either analytical,
semi-analytical or using simulations) that used the filtering or char-
acteristic mass without accounting for the correct initial conditions
resulted in inaccurate results. This is due to the significant (factor of
2–3) variation among the predictions of the filtering/characteristic
mass in the various models. Since this mass scale is of prime im-
portance in early structure formation it is imperative to calculate it
accurately.

5 D ISCUSSION

We have used three-dimensional hydrodynamical simulations to in-
vestigate the effect of different initial conditions on the gas fraction
in haloes in the early Universe. Specifically, we studied the mini-
mum ‘gas-rich’ mass defined to have half of the mean cosmic baryon
fraction. We tested three different models for the initial conditions
(see text for more details).

(i) ‘fid’ ICs: this model is based on the linear evolution from
Naoz & Barkana (2005), which allows the baryonic speed of sound
to spatially vary as a result of the Compton scattering with the CMB.

(ii) ‘E-δ’ ICs: in this model, the linear evolution from Naoz &
Barkana (2005) is modified to match a common assumption in the
literature, where the linear initial overdensity of the baryons is taken

to be equal to that of the DM, i.e. δb = δdm = δtot, while conserving
σ 8 from the fid model.

(iii) ‘mean cs ICs’: this model assumes that the baryonic speed
of sound is spatially uniform. Although Naoz & Barkana (2005)
showed that this assumption yields an inaccurate evolution of the
baryon density and temperature perturbations, it is still often used
in codes that generate initial conditions for simulations.

For all of the tests we used a total of 2 × 7683 particles of DM
and baryons with a box size of 2 Mpc, starting at z = 99.

There are two major findings from the analysis we present here.
The first, shown throughout the paper, is the importance of assuming
the correct initial conditions, both for analytical calculations and
numerical simulations. Structure formation (both in the linear and
non-linear regime) and halo gas fractions are very sensitive to the
initial conditions even at relatively low redshifts (∼10). The second
major finding is the apparent agreement between the filtering mass
and the characteristic mass (to within ∼20 per cent). This suggests,
as a broader implication, that one can use linear theory in order to
predict the overall trend of highly non-linear behaviour (at least in
the case of determining the gas fraction of haloes).

The the fiducial calculation, which was presented in Naoz &
Barkana (2005), follows the time evolution of the linear overdensi-
ties correctly. However, the other ICs produce different results for
the baryonic structure formation. For instance, the non-linear power
spectrum (Fig. 3) shows that the system still remembers its initial
condition differences even at redshift 15. In particular, the cs model
underestimates the non-linear baryonic fluctuations by about 10 per
cent while the E-δ model overestimates them by 40 per cent on
small scales.

The mean cs approximation and the E-δ model are often used
to set the initial conditions in simulations, e.g. the CMBFAST code
(Seljak & Zaldarriaga 1996) assumes the mean cs approximation
while Eisenstein & Hu (1999) is used with the E-δ assumption. We
have shown that the non-linear evolution is very sensitive to the
initial conditions (Fig. 3) and they affect the gas fraction in small
haloes down to redshift ∼10 (Fig. 4). Our results emphasize the
importance of the differences between the DM and baryons and of
the spatial sound speed fluctuations, in both the linear calculation
and the initial conditions of the simulations.

It is important to emphasize that although Compton heating is not
included in the GADGET code that we used in this analysis (GADGET-2),
the fiducial calculation still describes fairly well the non-linear be-
haviour. Actually, the Compton heating contribution to the heating
of the gas in non-linear objects is negligible compared to the adi-
abatic heating due to the gravitational collapse (see Appendix C).
Also, as noted above, much of the contribution to the filtering mass
comes from the highest redshifts, above our simulation starting red-
shift of 99, since the Jeans mass is highest then and so the pressure
has the greatest impact at that early time.

In each simulation, we calculated the characteristic mass for
which a halo keeps most of its baryons (equation 12). We found that
the fid calculation gives the lowest value, which suggests that with
these correct ICs, pressure plays only a moderate role in galaxy
formation. In particular, the characteristic mass of ∼3 × 104 M�
is significantly below the minimum mass for molecular hydrogen
cooling, so the gas content is not strongly suppressed even in the
smallest star-forming haloes. In other words we find that before
significant heating took place the baryon fraction in haloes is (equa-
tion 12 with Mc ∼ 3 × 104 M� and α ∼ 0.64)
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Mb ∼ Mtotfb,0

[
1 + 0.16

(
3 × 104M�

M

)16/25
]−75/16

. (13)

The other alternative models give incorrect higher value for the
characteristic mass, closer to the minimum mass for forming stars.
Even with the fid ICs, pressure does strongly limit the amount of
gas in minihaloes below the molecular hydrogen cooling mass. We
note that this value of 3 × 104 M� assumes adiabatic evolution, in
particular with no stellar heating. This value is consistent with the
results of Naoz et al. (2009) for a somewhat higher redshift range.

We find that the theoretical linear filtering mass (as defined in
Section 4.2.1) is in fairly good agreement with the characteristic
mass. This finding is true for all the models tested here, throughout
a significant redshift range, so this may imply more generally a
close relation between linear theory and non-linear halo formation.
In addition, this is consistent with the findings by Naoz et al. (2009)
from AMR simulations, where the filtering mass and the character-
istic mass agreed in the ‘E-δ’ model, even when a sudden heating
was introduced.

Finally, we emphasize that our results are valid only in the pre-
reionization era. At the end of the reionization, Mesinger & Dijkstra
(2008) concluded that the characteristic mass is likely to be close
to the atomic-cooling threshold of ∼108 M�, which is also close to
the values found by Hoeft et al. (2006) and Okamoto et al. (2008).

Recently Tseliakhovich & Hirata (2010) argued that the initial
velocity difference between the baryons and DM after recombina-
tion has not been fully accounted for, because of a higher order
contribution that is not included in the linear theory approach. They
estimated this higher order effect within the mean cs approximation
and found that it causes an additional suppression of the small-scale
power spectrum, in turn affecting the formation of the first struc-
tures. This effect should be further investigated as in our detailed
approach here, although this would be more difficult (analytically,
it is a higher order and anisotropic term, and to simulate it directly
would require starting at quite high redshifts).
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APPEN D IX A : σ 8 CONSERVATION

We have defined the two different models such that they conserve
σ 8(z = 0). From linear theory we do not expect the evolution of
the mean cs model to be significantly different from that of the fid
model (in terms of halo abundance and total power spectrum). This
is indeed the case for the evolution in time of the total fluctuations
of the mean cs model compared to the fid model on large scales
(small k), as shown in Fig. A1 (lower set of thin curves).

A more delicate treatment is needed for the E-δ model (see Sec-
tion 2.2). In this case, at high redshift (such as the initial z = 99),
the baryons are in the process of falling into the DM potential. This
results in a faster growth of the total fluctuations compared to the
case in which there is a relative velocity between the DM and the
baryons (such as in the case of the mean cs and fid models, where
the relative velocity for the E-δ model are negligible); see Fig. A1
dotted thick curve. At later times, the baryon fluctuations approach
the DM fluctuations, and the large scale behaviour (i.e. on linear
scales) deviates from the fid model by less then 0.7 per cent (see
the solid curve in Fig. A1).

We also note that we have checked the overall effect of σ 8(z = 0)
on the main results. We have performed two additional simulations
for the E-δ model, where we increased or decreased σ 8 by 5 per
cent. We found that the calculated Mc is within the fit errors (see
Appendix B and Table B1) at z > 12. At z ≤ 12, the difference in
the best fitted value is below 0.5 per cent.

APPENDIX B: FIT PROPERTIES

For each redshift snapshot for each run we find the characteristic
mass and α using a two dimensional fit. In Fig. B1 we consider two
example redshifts (high, z = 19 and low, z = 12) for which we show
the binned data points and the resulting fit. In table B1 we show
our best fit parameters. We note that we have checked that the fits
give consistent results if we lower the condition on the minimum

Figure A1. Demonstration of σ 8 conservation. The ratio of the total non-
linear fluctuation for different redshifts (specifically δtot,model/δtot,fid − 1).
We show the E-δ (upper set of four curves) and the mean cs model (lower
set of four thin curves). We consider redshift z = 99, 21, 16 and 11; dotted,
short-dashed, long-dashed and solid curves, respectively (labelled for the
E-δ model).

number of particles per halo to 300 (instead of 500). We also note
that our determination of Mc relies on an extrapolation (via the fit)
below our simulations’ resolution limit

The parameter fb,0 in equation (12) is an average of the gas
fraction values in the few highest mass bins. In our simulation the
high-end tail of the masses has large scatter in the estimated gas
fraction because of the low number of haloes (each bin among the
last 3 or 4 in Fig. B1 represents just 1 or 2 haloes), thus we have
to average over this scatter to get a reasonable result. This scatter
is in part a result of assuming that the haloes are spherical, and
thus haloes that are undergoing a major merger deviate greatly from
a spherical shape and are treated inaccurately in our analysis. We
have tested the resulting fb,0 when taking a linking parameter of
0.1, which indeed resulted in more high-mass haloes, but in any
case was consistent with the value of fb,0 we found with the 0.2
linking parameter. Thus, in this paper, we use the standard value of
0.2.

As expected at high redshift, where we have fewer haloes, the
errors become quite large. We also tried, following Naoz et al.

Table B1. The best-fitting parameters from equation (12).

Redshift Mc (104 M�) α

Fiducial
calculation

21 5.7+9.9
−5.3 0.7+0.45

−0.45

20 3.2+5.6
−1.9 0.61+0.39

−0.39

19 2.6+5.4
−2.1 0.77+0.39

−0.5

18 2.8+2.3
−2.4 0.77+0.03

−0.23

17 3.7+1.6
−1.6 0.84+0.02

−0.24

16 4.4+2.4
−2.2 0.77+0.21

−0.14

15 3.2+1.3
−1.3 0.7+0.1

−0.24

14 3.4+0.4
−1.2 0.75+0.12

−0.09

12 2.9+0.2
−0.2 0.69+0.1

−0.15

11 3.2+0.1
−0.1 0.78+0.1

−0.14

Mean cs

21 13.4+10.7
−7.5 1.23+0.52

−0.72

20 7.2+5
−5.5 1.18+0.06

−0.92

19 9.4+5.5
−4.9 1.07+0.32

−0.9

18 8.9+5.5
−6 0.98+0.62

−0.31

17 8+3.4
−3.3 0.92+0.3

−0.2

16 6.6+3
−2.6 0.69+0.26

−0.53

15 5.9+2.1
−2 0.69+0.1

−0.26

14 7.3+1.6
−1.6 0.94+0.12

−0.09

12 4.9+0.8
−0.1 0.74+0.06

−0.04

11 5.7+0.7
−0.7 0.86+0.06

−0.03

E-δ

21 6.3+12.2
−4.8 1.04+1.5

−0.56

20 5+9.6
−4.8 1.03+1.4

−0.51

19 6.2+5
−4.8 1.08+1.2

−0.45

18 5.5+4.5
−4.8 1.01+1

−0.3

17 4.9+3.2
−3.1 0.92+0.42

−0.21

16 4.4+2.5
−2.4 0.93+0.31

−0.18

15 4.2+1.7
−1.7 0.89+0.19

−0.12

14 5.4+1.5
−1.7 1.11+0.13

−0.19

12 4.9+0.8
−0.7 1.06+0.06

−0.06

11 5.3+2.2
−0.8 1.11+0.05

−0.05
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Figure B1. Two redshift examples of fitting the characteristic mass (z =
19 and 12). We consider the fiducial calculation, mean cs approximation
and the E-δ model (boxes, triangles and circles, respectively), where we fit
equation 12 to all data points from haloes with at least 500 particles. We
also show the fits from table B1 (dotted curves).

(2009), to bin the data and to perform the fit for the binned data
with the 1σ weight for each bin. For the redshifts for which we
had more than ∼1000 haloes we got that the binned analysis gave
results within the non-binned fit errors,and with comparable errors.

We also tried the approach of taking f b,0 to be a free parameter,
but this produced very problematic fits.2 This is mainly because
of the large scatter at the high mass end, so that a three-parameter
fit could not strongly constrain the parameter values. We also note
the fact that fb,0 is lower than the mean cosmic fraction f̄b, by
about 20 per cent – 12 per cent for the fid and mean cs models, and
∼5 per cent for the E-δ model (see Fig. 4 top panel). The result in
the fid and mean cs models may reflect the real suppression of the
large-scale baryon fluctuations in these models; the difference in
linear theory is ∼6 per cent at z = 20 (Naoz & Barkana 2007), but
the non-linear evolution may increase this effect. The discrepancy
in the E-δ model may reflect a limitation of the simulation; we note

2 Naoz et al. (2009) also found that treating f b,0 as a free parameter was
unproductive.

that in Naoz et al. (2009) fb,0 was also lower than f̄b and even lower
by 10 per cent from our results at the overlapping redshifts (where
we compare the E-δ model in both cases). This might be due to the
fact that gas shocks in AMR are sharper than in Gadget simulations,
and thus AMR may produce a more realistic gas profile, although
the result is still below the universal cosmic baryon fraction (Lin
et al. 2006). In our simulation, going to a larger radii can result in
a more realistic value, but we used R200 for consistency with the
common definition.

APPENDI X C : H EATI NG O F N ON-LI NEAR
H A L O E S

The fiducial model follows correctly the baryon density and tem-
perature perturbations due to Compton scattering on the residual
free electrons after recombination. While this is fully incorporated
in our fid ICs, our simulation does not take into account Comp-
ton heating. Below we show that for non-linear objects the heating
is actually negligible compared to the adiabatic heating due to the
gravitational collapse of baryons into the DM potential wells. There-
fore, it is sufficient to include Compton heating in the linear stage
only.

The heating of the gas Qcomp due to Compton heating from the
CMB (Naoz & Barkana 2005) during the free-fall time 1/

√
Gρ of

gravitational collapse is

Qcomp ∝ 4
σT c

me
kB(Tγ − T )ργ xe(t)

1√
Gρ

, (C1)

where σT is the Thomson scattering cross-section, ργ is the photon
energy density, Tγ and T are the CMB and gas temperature and
xe(t) is the electron fraction out of the total number density of gas
particles at time t.

The virial theorem gives a relation in collapsed objects between
the thermal energy Eth and the gravitational energy Egr, i.e. Eth =
−Egr/2. Thus, for a halo mass M with virial radius rvir the thermal
energy can be expressed as

Eth ∼ 1

2

GM2

rvir
. (C2)

For all relevant redshifts and mass scales we find that Qcomp/Eth 

1. Therefore, neglecting the contribution of the Compton heating
during the non-linear evolution is justified. However, as we have
shown, neglecting the Compton heating in the linear evolution and
in the initial conditions leads to inaccurate values for the gas fraction
in haloes.
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