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Abstract. It is proved that for two-particle phenomena the 0>((p)2 quantum field
theories with speed of light c converge to non-relativistic quantum mechanics
with a 8 function potential in the limit c->oo.

I. Introduction

In this paper we are concerned with the general question of how relativistic
quantum mechanics with speed of light c is approximated by non-relativistic
quantum mechanics in the limit c-*oo. Only a few rigorous results of this nature
exist. For example, for a single particle in an external field, the relation between the
Dirac equation and the Schrodinger equation is understood. ([12], and earlier
references.)

Specifically we consider £?((p)2 quantum field theory models with speed of light
c, denoted @>{<p)2 c. According to the folklore the c->oo limit should produce a
multiparticle Schrodinger theory with (5-function potentials. For (<p4)2>c the
argument goes as follows. Set

coc(p) = (p2c2 + m2c4)1/2 pelR1

cpc(x) = (2ny^2 J e-^c(2cDc(pV1/2(a*(pna(-p))dp ,

where m is the single particle mass and a*, a are the usual creation and annihilation
operators. The Hamiltonian for the theory has the form

Hc= J a*(p)coc(p)aip)dp + X j :cpt(x):dx .

As c-^oo all creation and annihilation processes are somehow kinematically
suppressed. If we also ignore the "zitterbewegung" term me2 in coc(p) = mc2

+ (9(c~2\ then in some vague sense we have

HO0=$a*(p)(2rn)-1p2a(p)dp

J a*(x)a*iy)&(x-y)a(x)aiy)dxdy .
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This corresponds to non-relativistic bosons interacting with a two body potential
V(x) = 3Xm-25(x).

In trying to establish precise results one must decide for which objects in the

theory the limit c-> oo should exist. It is evident that lim Hr = H^ is too much to ask

for. On the other hand, at least the physically measurable quantities should have the
correct non-relativistic limit. This is essentially what we show, but restricted to two
particle interactions.

The main result is the following. Let ^>±((p) = X(^((p)±(p4') where M is an even
polynomial with no second or fourth order terms.

Theorem. The two particle scattering amplitude and the two particle binding energies

for the 0>±{cp)2 C quantum field theory converge to the corresponding objects for a

±31/m2S(x) potential as c->oo.

The proof of these results depends on the fact that for c large the dimensionless
coupling constant Xjm2c is small, and so we are in the weak coupling regime which is
relatively well understood [9, 2, 6]. In particular one has the Bethe-Salpeter
equation at one's disposal [16, 8, 17, 4]. The results essentially follow by showing
that the Bethe-Salpeter equation (one might better say Bethe-Salpeter identity)
converges to the resolvent identity. To obtain this one must shift energies by me1

and restrict to wave functions independent of relative energy (i.e. depending only on
relative momentum).

The plan of attack is the following. In Section II we define the non-relativistic
model. In Section III we develop the weakly coupled 0>{cp)2 model with c = 1. The
results here are the basis for the study of the large c 0>((p)2>c models in Section IV.

II. The Non-relativistic Model

In this section we define non-relativistic quantum mechanics for a d function
potential. To describe two spinless bosons of mass m in a world with one space
dimension we take for the Hilbert space L2 (R1), where R1 corresponds to relative
momentum and L2 means even functions in L2 corresponding to Bose statistics.
The Hamiltonian has the form H = H0 + V where Ho is multiplication by p2/m (the
reduced mass is m/2) and V denotes a potential function V(p) and also the bilinear
form with kernel (2n~1/2V(p + q)1. We are concerned with the case of constant K
and take V= Va with VJp) = (2n)~ 1/2a, aeIR1. This corresponds to multiplication by
ocd(x) in configuration space.

As is well known Ha = H0 + Va defines a self-adjoint operator on L^R1) (e.g.
[7,15]). This can be approached as follows. Consider the Hilbert spaces

1 A tempered distribution &(p, q)e ^"(JR2) is said to be the kernel of the continuous bilinear form (9 on
R1) x ^(IR1) given by

By the nuclear theorem any such bilinear form has a unique kernel
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which are dual with the pairing given by the Lebesgue inner product. Then both Ho

and Va define bounded symmetric bilinear forms in Jf * x ffl* and hence operators
in i f p f *, 2/e\ Thus Ha = H0 + Va is well defined in jSf(^*, ^f). Furthermore Fa is a
small form perturbation of Ho, and so Ha restricted to {xpe^f* \Ha\peL\{lS})} is a
self-adjoint operator.

The binding energies E <0 are the eigenvalues of Ha on Lj(1R1). These coincide
with the eigenvalues of Ha on ffl* and hence with the solutions of the implicit
eigenvalue problem on ffl

Va(H0-E)-1xp=-xp.

The operator Va(H0 — E)~xe <£{$?) is compact; in fact it is rank one with range
equal to the constant functions. For \p = constant we have

Thus E is an eigenvalue if and only if Ka(E)= — 1. If a is positive there are no
solutions, while if a is negative there is the unique solution

We now note the resolvent identity in

valid in the cut plane {E e C: £<£1R+, £ * £B(a) if a < 0} (Fredholm theorem). We also
define the T operator TTa(E)e&(£!?*, Jtf) in the same region by

Actually we have Ta(£) = ( l+X a(£))"1 l^ and so Ta(£) can be analytically
continued across the cut onto a two sheeted manifold. For a > 0 there is a pole on the
second sheet at E = EB(a). The kernel Ta(£, p, q) has the same analyticity in E, and is
constant in p, q:

Finally we consider the scattering operator § a on L^QR1, dp). According to the
Lipmann-Schwinger equation the kernel of Sa is given by

«(p,q) = S(p-q)-2ni\(^ + iO+,p,,jS(^ - Q .

The verification of this equation as an identity in ^'(IR2) away from p = 0 for a class
of potentials including the 5 function will be presented elsewhere (for similar results
see [13,19]). For the present we take this as the definition of Sa. We further define

For even test functions 5{p — q) = S(p + q) and so
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Thus away from p = 0 we have

Scattering consists of a phase shift.

III. Weakly Coupled 0>(<p)2 Models

III.l. The Models

A &((p)2 model for a self-interacting boson field may be defined in terms of its
Schwinger functions S = ®A m a which are formally given by

- J :0>(q(x)):dxW(q)

where qe6^f(JR.2), d\i — d\xm is the Gaussian measure with mean zero and covariance
( — zl+m 2 )" 1 and ^ = ^* f f is an even polynomial of the form

+ (J q (3.2)

With + f̂4 we also allow $ — 0. We do not consider polynomials lacking a quartic
term (which are trivial for our purposes).

The Schwinger functions S x , m , a e ^ ' ( ^ 2 " ) m a v be constructed using the cluster
expansion of Glimm et al. [9] provided Xjm1 and ojm are sufficiently small. By
analytic continuation one obtains a family of Wightman distributions i^x,m,a

satisfying the Wightman axioms and by reconstruction a quantum field theory
[18,14]. The energy-momentum spectrum has isolated single particle states of mass
yn^, = m^(X, m, a). We make a finite mass renormalization, taking a ̂ oJ^X) so
m = m^{X,m,oJ^X)) [6]. Then (m,a) are supressed, writing ®A = ®A>m>(T w etc. The
truncated Schwinger function has a Fourier transform of the form

where if A is a bounded real analytic function in <̂  pe IR2": £ Pi = 0 >. (Here and in the

following, "o" means "Euclidean".)

J//.2. The Bethe-Salpeter Equation

We now discuss the (Wick-rotated) Bethe-Salpeter equation, mostly following
Spencer and Zirilli [17]. We define Sx(p) = Hx(p, -p) and

^ ^ ^ (3.4)

, P,«) = 6 # , P,«) + ^ ( * , P, q) •



The Non-relativistic Limit 55

Then Rx is the four point function truncated only in the (1,2), (3,4) channel, k is a
center of mass variable for this channel, and (p,q) are relative variables. By Qx(k\
Hx{k\ Rx{k) we denote bilinear forms with kernels Qx(k, p, q\ etc. We are mainly
concerned with Qx(x) = Qx((ix,0)l Hx{x) = Hx{(ix,0)\ Rx{x) = Rx({ix,0)l defined
initially for x imaginary.

Consider the Hilbert spaces

Jf = L+
2(JR2,{p2 + iy2dp)

(3 5)
jf* = L+(IR2,(p2 + l)2dp).

For X sufficiently small the Lehman spectral formula for the two point function
takes the form [9]

00

Sx(p) = Z2
x(p

2 + rn2r1+ J {p2 + a2yHQx{a) (3.6)
(3m-8)2

and it follows that Qx(x) defines a bounded bilinear form on JT x 3t] even for
|Rex| < 2m. By integration by parts in the functional integral (3.1) [8], one may also
show that for KQX = 0, Hx(x) defines a bilinear form on C/f x jf̂  and hence so does
Rx(x). Corresponding to the forms we have operators Qx{x\ Hx{x\ Rx(x) in

It is straightforward that 2A(x)"1 exists and is in J ^ ( J T * , J T ) . We also have

A(x)|| i*&(X) and so R^x)'1 exists for X sufficiently small. Thus we may define

K^R^xy'-Q^x)-1 (3.7)

and then we have the Bethe-Salpeter equation

RxM = QxM ~ Rx(x)Kx(x)Qx(x) . (3.8)

Spencer [16] shows that for X sufficiently small, the kernel Kx(x, p, q) ofKx(x) is

analytic and bounded in

|Rex|<3m — s

|Impo |, |Imqo| < \m - e = So (3.9)

e>0

(Note: our (p,q) variables are half those of [16].)
Furthermore in the same domain, Kx(x, p, q) is C00 in X ̂  0 and the coefficients of

the asymptotic series in X are the usual two particle irreducible diagrams [4]. In first
order there is one diagram, and for ^ = «^± we have

31
Kx(x,p,q)=± — +®(X2). (3.10)

n

As a consequence of the analyticity, the operator Kx(x) has an analytic
continuation to |Re^|<2m. Furthermore (KQ)x(x) = Kx(x)Qx(x) is compact and
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analytic in this region. Therefore the implicit eigenvalue problem (KQ)x(x)\p = — \p
has solutions at only a discrete set of points, and the identity

RM) = QM)^HKQ)x{x))~1 (3.H)

provides a meromorphic continuation of Rx(x) to |Rex| <2m (Fredholm theorem).
The poles of Rx{x) (= implicit eigenvalues) contain all two particle bound state
masses [17].

At this point we remark that it is not necessary to stick with the Hilbert space
X = L2OR2,(p2 +1)~ 2dp). Instead we could take, for example, the smaller spaces

jfa = L+(IR2,(p2 + i r a dp) l < a < 2 . (3.12)

One easily shows that with new X] Qx(x) restricts to an element of if (X, Jf*) that
Kx(x) extends to an element of i?(X~*, X') (since the kernel is bounded), that
(KQ)x(x)e^(X) is compact with the same eigenvalues, and that Rx(x) restricted to
if (Jf, J f *) is given by (3.11). [However we do not have Q~ x e <£(X*, X).~] Another
possible choice we will use is

X = L+
2(^\n-1(P

2
o + (p2

1 + l)2y1dp) (3.13)

One can also take X* = L^ (IR2, dp), however Kx(x) is no longer a bounded operator
(as was erroneously stated in [3]).

We also consider the Sobolev-Hardy space A [17], consisting of even functions
on IR2 which have analytic continuations to the tube IR2 + £J where
/ = ( - (5 0 , 5 0 )x ( -^ i r^ i ) and satisfying

2/3

We have the topological inclusions ZcAcX4/3C^' [where Z = C^(IR2f] and
hence £f C X^j3 CA*C Zf. Using the boundedness and analyticity of Kx(x, p9 q) one
can show that Kx(x) extends to <£(A*,A). Furthermore QA(x)eif(^,^*),
(KQ)X(X)E^(A) is compact with the same eigenvalues, and Rx{x)eS£(A,A*) and is
given by (3.11).

For X sufficiently small, the eigenvalue problem (KQ)x(x)\p = — xp on A has been
solved by the author and Eckmann [4]. For 0> = 0)Jr there are no solutions, while
for 0> = 0>~ there is one solution x = mB(X) which is C00 in A^O and has the
expansion

mB(X) = 2m-9-^+G^). (3.15)

Correspondingly the ̂ + field theories have no bound states and the ̂ " field
theories have one bound state of mass mB(X).
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III.3. The T-Operator

We now define an operator which will turn out to play a role analagous to the non-
relativistic Ta. Let H'k be the amputated Euclidean n-point function

jHx(pv...,pn) (3.16)
j

and

mp,q)=-(2n)H>x(p+^-p+^-q-±q-^. (3.17)

By integration by parts fx(k, p, q) is a bounded function and we let fx(k) be the
associated form on Jf * x JT* [ j f given by (3.5)]. For x imaginary we set Tx(x)

Lemma 3.1. Tx(x)e$£{c/f*, Jf) is meromorphic in |Rex|<2m and is given by

Proof. It suffices to prove the identity for Rex = 0, then the right side provides the
continuation with poles at implicit eigenvalues of (KQ)x(x). We note that Q0(k) is
multiplication by QQ{k,p) where

Hence we have fx(k)= -4(Q~'HXQ~x)(k) and hence T » = -MQo *HxQo x)(x).
However since Hx(x) = Rx(x) — Qx(x) we have

= -Qx(x)(lHKQUx)r\KQUx) Q.E.D.

Lemma 3.2. (a) (QQ X Q^)(x)e i f (JT) is multiplication by a function (QQ
 1

 2A)(%, p) which
is analytic and bounded in |Rex|<3m —e, |Impo |< Jm —8, |Imp1 |<^m —e.

(b) lim(<2Q 1Qx)(x,p) = l uniformly in this region.

Proof. We have

where

I (p2 + a2)-1^A(a). (3.20)
3 m —£

( IX

Po±y5

and bounded in the stated region since the denominator is bounded away from zero.
The convergence follows from ZA-»1, QX~>0. Q.E.D.
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Corollary 3.3. Lemma 3.1 holds for any of the spaces ctf.A given by (3.12), (3.13),
(3.14).

Proof Lemma 3.2a shows that (Q^QJM restricts to jSf(jf) or se(A). The other
operators are treated similarly. Q.E.D.

In the next lemma we explore the analytic structure of the kernel TA(x, p, q) near
the threshold (2m, 0,0) and find that it is meromorphic in x on a two sheeted domain
with branch point at x = 2m.

Lemma 3.4. Tx{x, p, q) has the form Tx{x, p9 q) = fA{(4m2 - x2)1'2, p, q) where tA(C, p, q)

is meromorphic in ICI<-TT and analytic in \p\,\q\<m/&. Furthermore, let £B(X)

= (4m - mB(X)2)^2. Then we have fx&, p, q) = [/,(£ p, q) + VX(C, p, q) where !/,(£ p, 4)
tfwd (£ + CBW) Vkg, p, ̂ ) (/or ^ = ^ ± ) ar^ analytic and bounded in |£|, |p|, |^| < m/8 w /̂z
constants which are respectively (9(X\ (9(X2).

Proof. Consider all operators relative to the A, A* pairing. For fe A, and peJR2 + il

define <ep,/> =/(p). Then sp eA*, sp is analytic in R2 + il and for ge £f C ̂ 4* we have
J d(p)<\G

p^f}dp = <#,/>.Now we claim that for |Re%| <2m (except a discrete set) and
2

Tx(x9 p , q) = p ^

• ( G O ' G A ) ^ , ? ) . (3.21)

This is true because it holds in the sense of distributions by Lemma 3.1. This
equation provides a continuation of Tx(x,p,q) to \RQx\<2m,p,qeJR2 + il. In fact
every factor except (1 + (KQ)x(x))~1 also continues to |Rex| <3m — s and hence in

terms of £ = (4m2 — x2)112 is analytic in |C|<—. Furthermore these terms are
o

bounded in |£|, |p|9 |̂ f| <m/8 (||ep|| is bounded on compact sets) and we have a factor
of X from | |K>) | | ^ 0 ( 4

It remains to consider the factor ( l + O K Q ^ O r ^ J S f ^ ) where (KQ);{Q

= (KQU(4m2-C2)1/2). In [4] it is shown that ( K 0 ; ( O = T1)A(C) + T2 ? , (O where
T I ,A(0 is a rank one operator with a pole at £ = 0 and satisfies ||CT1JA(OII = ^W while
T2 A(Q is analytic near zero and satisfies ||T2 A(Q|| ̂ (9(X). Thus in

we may focus attention on the first factor. Since (1 + T 2 ) ~ 1 T 1 is rank one we have

and this defines the division into Ux, Vx. We have immediately | l/A(C, p, g)| ̂  <
For the second term multiply the numerator and denominator by (. Then the
numerator £(1 + T2)~ 1 T 1 is holomorphic and bounded by (9(X) for a second factor of
X. The denominator £(1 +Tr((l + T 2 ) ~ 1T1) is the function //(/1,0 of [4] which has a
simple zero at £= +CBW a n d satisfies |(f+ CB(A))H(A,C)"1|^©(1). Thus we have

A)\^(9{X2\ Q.E.D.
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111 A. The S-Operator

We now consider the real time aspects of 0>(q>)2 theories. It is known that time
ordered products i:x(pl9...,pJe&"(R2n) and retarded products exist for these
models, and hence so does the momentum analytic function Hx(kl9..., fcj, defined
on the "axiomatic domain" in ^ ^ . = 0, whose boundary values are locally the
Tx(pv...,pn). At Euclidean points these are the Schwinger functions [6] :

© " " ^ ( P i — P » ) = HA(PI—P») > (3.22)

where for p = (po,pi)elR2 we denote p = (ipo,p1). We also consider the amputated
functions %\ which are the boundary values of

kj-ni2)HA(k1,...,kn) (3-23)

(here k-k = kl~k\\ Then H\ and H\ are also related by an equation like (3.22).

The LSZ formula [10] gives the scattering operator (^-matrix) in terms of the
restriction of x\ to the mass shell. This formula has been used by Eckmann et al.[6]
to show that the scattering operator is a C00 function of X^O and hence that
standard perturbation theory is asymptotic. We remark that in general for the LSZ
formula one must require all velocities to be non-overlapping. However for two
particle scattering it is sufficient to require that the initial and final velocities be
separately non-overlapping [1]. This is fortunate since, as noted in the non-
relativistic case, we are kinematically constrained to forward scattering on one
spatial dimension.

In detail, let \p± be the canonical injections of the Fock space

(note: Lesbesgue measure) into the physical Hilbert Space as given by the Haag-
Ruelle scattering theory. Let 77 be the projection of L2(JR2,dp) onto

2

L2{JR1,dp)<g>8L2(JR1
9dp)C&r. We define the kernel of the S-matrix 52e^(IR4) by

(v^nglxp_(nf)) = $g(p1,p2)Sx(pup2,p3,pA)f(p3,pJdp1,...,dp4. (3.24)

Then the LSZ formula says that away from px =p2 and p3
=p4 we have [with co(p)

2 2 1 / 2

,..., -a)(p4), - p 4 )

] • (3.25)

We now restrict to small momenta in this formula. For the time ordered product
this means we are interested in a center of mass energy x in an interval (2m, 2m + e)

and all other momenta in a neighborhood of zero. In such a region it follows from
Lemma 3.4 that the distribution x'x is actually an analytic function. To see
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k
- ,

k

/ k \
this consider TA(fc, p, q) == x'A p + - , . . . I, the boundary value of H'x(k, p, q)

I k \
= H'Ap + - , . . . I, and note that by Lorentz invariance it suffices to consider

T\((X, 0), p, q). Then by analytically continuing (3.17) we have

(ipo,Pl\(iqo,q1)) . (3.26)

To compare the scattering amplitude with the non-relativistic formula, we shift
to center of mass and relative variables in SA, defining Sx(k, p; k\ q) by Sx(k, p; k\ q)

I k k'\
= SAp+-,...9-q+ — . Then Sx(k,p;k',q) = Sx{k,p,q)5(k-kf) and we consider2 ' " " ^ ' 2,

the center of mass at rest defining Sx(p,q)e^'{^2) by Sx(p, q) = 5A(0, p, q). Then by
(3.25), (3.26), for (p, q) small and away from zero

• TX(2CD(P) + i0+, (0, p\ (0, q))S(2co{p) - 2co(q)) .

IV. £P(q>)lc Models as c-^oo

IV.L The Models

We define the ^(<p)2>c models in terms of their Schwinger functions ®A m a c. These
are given by a functional integral like (3.1) except that now dfi = dflmc is the
Gaussian measure on ^'(IR2) with covariance

and 0> = 0i\a c is the polynomial

N V

n=3

With this choice we have the scaling relation (at least formally)

/,3;ma//i2j(7a//;V/(/a(af1)JSx1)...). (4.3)

In particular with a = c2,j? = cwe have

f1 ,cx1 , . . .). (4.4)
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For arbitrary (A, m), c sufficiently large, and o sufficiently small we take this as the
definition of ®AjOTfff>c. We further define S A c = SA m ^(A/c) c and then

^(t^x^^^x^c^^ich^cx,,...). (4.5)

We also define distributions ifx c by

iTXfC(tvx1,...,tn,xn) = c^2irx/c(c
2tvcx1,...). (4.6)

Then the Wx>c are the analytic continuations of 6A c and satisfy the Wightman
axioms for a two-dimensional Minkowski space with quadratic form

By reconstruction we obtain a 0>((p)2 c quantum field theory. We still have single
particles of mass ra, i.e. the spectral measure dE^^p^p^) has support on the
hyperbolas p\jc2 — p\ = me2.

The momentum analytic function HXtC(kl9...9kn) and the amputated function
H ^ ^ , . . . , ^ ) are given by

^ ^ , , . . , ^ ) , (4.7)

where for k = (k°,ki) we define

fcc = (fc°/c2,fc7c). (4-8)

If we define Qx C,RX c, fx c in terms of HXc,H'Xc as before, then

QXtC{k, p, q) = C-1QX/C(kc, pc9 qc)

RXtC(K P, q) = C nRklXK Po «c)

rAiC(fc,P,«) = cf^(kc,pc,4c). (4.9)

These are the kernels of operators Qx>c(k), etc. in jSfpf, Jf *), and we define QA>c(x)
= <2A c((zX 0)), etc. If we further define

Kx,c(x, p, q) = cKx/c(x/c2, v* qc) (4.10)

and let KXtC(x)eJZ'(Jf*9 Jf) be the operator with this kernel, then we have the Bethe-
Salpeter equation

IV.2. The c-^oo Limit

Now we are ready to discuss the non-relativistic limit. The following four theorems
all say that some object for the 0>±((p)2,c field theory converges to a corresponding

2,c
object for the a5(x) model, a = ±3A/m2, as defined in Section II.

Theorem 4.1. Let c be sufficiently large.

a) (KQ)Xc(x)eJ£(Jf) is compact and analytic in \RQx\<2mc2.

b) For & = 0>± the eigenvalue equation (KQ)Xc(x)\p= —\p has respectively no

solutions or one solution at x = mB(X/c)c2.
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c) The corresponding masses (0 or {mB{X/c)}) coincide with the two particle

bound state masses for the 0>± field theory.

d) Let EB c(X) — mB(X/c)c2 — 2mc2 be the binding energy for the 0>~ bound state.

Then with oc=-3X/m2

Proof. Define aceJ^(Jf) by

This operator has a bounded inverse, namely ((TC)~ 1 = (TC-1. Since

(KQ)^c(x, p, q) = c-*(KQ)xlc(x/c2, pc, qc)

we have

{KQ)Kc(x) = ac(KQ),/c(x/c2)a;1 . (4.11)

Now a) follows immediately. Furthermore {KQ)X c(x) has eigenvalue — 1 if and only
if (KQ)A/c(x/c2) has eigenvalue — 1, and so b) follows from the results quoted in § II.2.
Part c) also follows from the same result for c = 1. For Part d) we use (3.15) to obtain

limEB,c(X)=-9-^=EB(a) Q.E.D.

We can rephrase d) by saying that the implicit eigenvalues oi(KQ)kc(E+2mc2)
converge to those of Va(H0 — E)~x. The next theorem indicates why this should be
true: the operators themselves converge. However, since they act on different
Hilbert spaces, we must clarify what this statement means.

Until now the space Jf could be any of (3.5), (3.12), (3.13); now we only consider
the last, namely X = L\ (R2, n~1{p2

0 + (p\ +1) 2 ) ' 1 dp). The advantage of this choice
is that with Jt? = L^(JR.\{p2 + l)~1dp1) the map Zeifpf, Jf) defined by

is an isometry. (Thus one could regard Jf as a subspace of Jf.) The adjoint
z'*eJ2?(jf*, Jf7*) is a partial isometry onto Jf* and is given by

Theorem 4.2. Let a = ±3X/m2 and E<0. Then in the sense of strong operator

convergence:

a) \\rni*QxXE + 2mc2)i = {2rn2)-\H0-E)-1 in

b) limK,c(E + 2mc2) = i(2m2Va)i* in

c) \im(KQ)^c(E + 2mc2)i = iVa(H0-E)-1 in

d) \\Y&i*RKXE + 2mc2)i = {2m2)-\Ha-EY1 in

e) climTAc(£ + 2mc2) = /(8m2Ta(E))z* in

For d), e) we exclude E = EB(OL) if 0> = 0>~.
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Proof.

a) We have

1+ J ((PA + pl + a2c2) dQl c(a).

However ZA c = ZA/c->l and QAC = Qyc-+0 and

and so

lim QX(E + 2mc2, p, q) = QJE, p, q)

Now Q^E.p.q) is the kernel of a bilinear form on JT x JT and defines an operator
Qao(E)e&{X',X'*). Then QxJE + 2mc2)^Q^{E) strongly since this holds a dense
set [say ^(R 2 ) ] and \\QX)C(E + 2mc2)\\ is bounded. Finally we note that as bilinear
forms on 2tf x 2tf

z*eoo(£)z = (2rn2)-1(H0-£;)-1 . (4.14)

b) Using (3.10) we have

:A>C(£ + 2mc2, p,«)

n
IfKXfO0e i f (X*, j f ) is the operator with this kernel then Kx C(E + 2mc2)-+KXaD. The
result now follows from

KXfOO = i(2m
2Va)i* . (4.15)

c) It suffices to note

K^QJEi^iVJLHo-E)-1 . (4.16)

d) \imi*Rlc{E + 2mc2)i

c
2
))"= lim i*QxJE + 2mc2)(l + (XQ)A>C(£ + 2mc2))"1
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Note that RXfC(E + 2mc2) has a pole at E + 2mc2 = mB(/l/c)c2 which we avoid for c
large by the assumption E^=EB(a).

e) We have the identity

T^^^^Q-^AMll+lX^^^-^^^ie.e-1)^) (4.17)

which follows by applying o"c[-]°f to Lemma 3.1. Here (QQ 1Qx)c(x)e£?(Jf) is
interpreted as multiplication by (QQ 1QA/c)(x/c2,pc) as given by Lemma 3.2a. Then
(Qo1Qx)c(E + 2mc2) is multiplication by (QQ 1Qx/c)(E/c2 + 2m,pc) and hence con-
verges to the identity by Lemma 3.2b. Thus we have

= im2il[J* . Q.E.D.

Next we study the convergence of the kernel of Tx c(E + 2mc2) and enlarge the
domain in E to include positive values. Let 3) be the two sheeted domain for (— E)1/2

with EB(a) deleted.

T h e o r e m 4 . 3 . For c sufficiently large, Tx C(E + 2 m c 2 , p9 q) is analytic in any compact set

in { E e @ \ p , q e < £ 2 } and is bounded there uniformly in c. Furthermore for p ^ 2

2 ( p P ) (q q ) ) = 8 m 2
lim TXc{E + 2mc2, (p0, Pl), (q0, qx)) = 8m2Ta(£, pl9q±)

uniformly on compact sets in Q).

Proof. By (4.9) we have

TXtC(E + 2mc2, p, q) = cTA/c(E/c2 + 2m, Pe9 qc)

= ctA/c((4m2 - (E/c2 + 2m)2)1/2, pcAc) .

The analyticity follows by Lemma 3.4 since

and the pole is avoided for c sufficiently large.
For the uniform bound we also use Lemma 3.4. The U term in immediately 0(1),

and for the V term we must bound

c{X/c)2\(4m2 - (E/c2 + 2m)2)1/2 ± (4m2 - mB(X/c)2)112 \~1 .

Rationalizing this expression, the numerator is (9(c~ l \ and so this is bounded by a
constant times

For the convergence we note that by Vitali's theorem it is sufficient to prove
convergence for p, qeJR2 and R e £ < 0 (first sheet). However we have convergence
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here in the sense of distributions in (p,q) by Theorem 4.2e, and for uniformly
bounded analytic functions this implies pointwise convergence. Q.E.D.

Theorem 4.4. Let SXc{p,q)e^'{K2) be the two body scattering amplitude for

0>±((p)2,C' Then away from p,q = 0 with a = ±3X/m2

Proof Here SXc(p, q) is the amplitude for relative momentum q to scatter to relative
momentum p, defined from the full kernel SA>c(plJ...,p4) as in §111.4. We have
SXc(p,q) = c~1Sx/c(p/c,q/c) and (3.27) scales to become

Then using coc(p) = mc2 + p2/2m + (9(c~2)) and Theorem 4.3 we have

Jim SXc(p, q) = dip -q)- 2niT[a(p
2/m + iO+, p, q)5(p2/m - q2/m)

= Sa(p,«) , Q.E.D.

V. Concluding Remarks

1. We have not dealt specifically with the question of asymptotics. However by
combining the methods of the present paper with those of [4] one can show that
RXfC(E + 2mc2\ for example, is a C00 function of 1/c ^ 0. Thus RXc(E + 2mc2) has an
asymptotic expansion in powers of 1/c with leading term (Ha — E)~1. There seems to
be no obstacle to extending this type of result to the S-matrix.

2. We conjecture that the 2n-point function:

^A,C(PI + (mc2> °)> • • • > Vn + (mc2
?°)>P«+ I - (mc2

? °)? • • • >P2«- (^2 ,0))

has a non trivial limit as c->oo. (Theorem 4.3 establishes this for the 4-point
function.) The limit should be the 2n- point function for a non-relativistic multi-
particle system with 8-function potentials.

3. The methods of this paper should work for other models once one has
control over the Bethe-Salpeter kernel. For Yukawa models we still expect to get a
(5-function potential in the limit. This is consistent with a Yukawa potential of the
form c2(p2 + me2)"1 which also converges to a constant. It is not clear whether the
Yukawa potential plays any more fundamental role. For models with a massless
particle exchange one presumably gets the Coulomb potential in the limit.

4. A related question to the present investigation is to reinstate h as a parameter
and ask for the limit ft-»0. One expects the quantum field theory to converge to a
classical field theory. Some results in this direction for &(q>)2 have been obtained by
Hepp [11] and Eckmann [5].
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