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THE NONCONFORMING VIRTUAL ELEMENT METHOD
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Abstract. We introduce the nonconforming Virtual Element Method (VEM) for the approximation
of second order elliptic problems. We present the construction of the new element in two and three
dimensions, highlighting the main differences with the conforming VEM and the classical noncon-
forming finite element methods. We provide the error analysis and establish the equivalence with a
family of mimetic finite difference methods. Numerical experiments verify the theory and validate the
performance of the proposed method.
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1. Introduction

Methods that can handle general meshes consisting of arbitrary polygons or polyhedra have received signifi-
cant attention over the last years. Among them the Mimetic Finite Difference (MFD) method [6] that has been
successfully applied to a wide range of scientific and engineering applications (see, for instance, [17,31,32,37] and
the references therein). However, the construction of high-order MFD schemes is still a challenging task even
for two- and three-dimensional second-order elliptic problems. For example, the two-dimensional MFD scheme
in [5] could be seen as the high-order extension of the lower-order scheme given in [15]. A straightworward
extension of [5] to three dimensions would lead to a clumsy discretization involving a huge number of degrees
of freedom that ensure conformity of the approximation. By relaxing the conformity condition, a simpler MFD
scheme has been proposed in [30] for three dimensional elliptic problems. Lately, there have been introduced
other relevant approaches for handling general meshes [22–24].

Very recently, in the pioneering work [7], the basic principles of the virtual element method (VEM) have
been introduced. The VEM allows one to recast the MFD schemes [5,15] as Galerkin formulations. The virtual
element methodology generalizes the “classical” finite element method to mesh partitions consisting of polygonal
and polyhedral elements of very general shapes including non-convex elements. In this respect, it shares with the
MFD method the flexibility of mesh handling. Unlike the MFD method, the VEM provides a sound mathematical
framework that allows to devise and analyze new schemes in a much simpler and elegant way. The name virtual
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comes from the fact that the local approximation space in each mesh polygon or polyhedron contains a space
of polynomials together with some other functions that are solutions of particular partial differential equations.
Such functions are never computed and similar to the MFD method, the VEM can be implemented using only the
degrees of freedom and the polynomial part of the approximation space. We refer to [9] for the implementation
details.

Despite of its infancy, the conforming VEM laid in [7] has been already extended to a variety of two di-
mensional problems: plate problems are studied in [13], linear elasticity in [8], mixed methods for H(div;Ω)-
approximations are introduced in [16], and very recently the VEM has been extended to simulations on discrete
fracture networks [10]. In [2], further tools are presented that allow us to construct and analyze the conforming
VEM for three dimensional elliptic problems. The definition of the three dimensional virtual element spaces
in [2], requires the use of the two dimensional ones.

In this paper, we develop and analyze the nonconforming VEM for the approximation of second order el-
liptic problems in two and three dimensions. We show that the proposed method contains the MFD schemes
from [30]. In contrast to the conforming VEM, our construction is done simultaneously for any dimension and
any approximation order. To put this work in perspective, we present below a brief (non exhaustive) overview
of nonconforming finite element methods.

1.1. Overview of nonconforming finite element methods

Nonconforming finite elements were first recognized as a variational crime; a term first coined by Strang
in [40,41]. In the case of second order elliptic problems, the approximation space has some continuity built in it,
but still discrete functions are not continuous. Still, that relaxed continuity (or crime) has proved its usefulness
in many applications, mostly related to continuum mechanics, in particular, for fluid flow problems [29,38] (for
moderate Reynolds numbers) and elasticity [25, 36].

The construction, analysis and understanding of nonconforming elements have received much attention since
their first introduction for second order elliptic problems. In two dimensions, the design of schemes of order
of accuracy k ≥ 1 was guided by the patch-test, which enforces continuity at k Gauss–Legendre points on
edge. Due to different behavior of odd and even polynomials, the construction of schemes for odd and even k
is different, with the latter case demanding much more elaborated arguments. Furthermore, the shape of the
elements (triangular or rectangular/quadrilateral) adds additional complexity to the construction of noncon-
forming elements [38] (the result of having an odd or even number of edges in the element leads to a different
construction). For the Stokes problem with the Dirichlet boundary conditions, Crouzeix and Raviart proposed
and analyzed the first order (k = 1) nonconforming finite element approximation of the velocity field in [20],
which is now know as the Crouziex-Raviart element. The extension to degree k = 3 was given in [21], while the
construction for degree k = 2 was introduced in [27]. In all cases, the inf-sup stable Stokes pair is formed by
considering discontinuous approximation for the pressure of one degree lower.

Already in the 80’s, an equivalence between mixed methods and a modified version of nonconforming elements
of odd degree has been established in [3, 33] and exploited in the analysis and implementation of the methods.
The author of [19], inspired by [3], has studied the hybridization of the mixed Hellan–Herrmann–Johnson
method (of any degree) for the approximation of a fourth order problem. As a byproduct of the analyzed
postprocessing technique (that uses the gradient of the displacement which would play the role of the velocity
field in the Stokes problem), a construction of nonconforming elements of any degree k is provided. Again, this
construction distinguishes between odd and even degrees. Although the details are for the fourth order problem,
the strategy can be adapted to other elliptic problems. For k = 1, 3, the nonconforming element coincides with
the construction given in [20,21] for the Stokes problem. For even k, in addition to the moments of order k − 1
on each edge, an extra degree of freedom is required to ensure unisolvence. In the case k = 2 the resulting
nonconforming local finite element space has the same dimension but is different to the one proposed in [27]
where it is constructed by adding a nonconforming bubble to the second order conforming space.

Over the last years, further generalizations of the nonconforming elements have been still considered by
several authors; always distinguishing between odd and even degrees. In [4,39] a construction similar to the one
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given in [19] is considered for the Stokes problem. A rather different approach is considered in [34]. Finally, while
the extension to three dimensions is simple for k = 1, already for k = 2, the construction of a nonconforming
element becomes cumbersome [26].

1.2. Main contributions

In this paper, we extend the virtual element methodology by developing in one-shot (no special cases) a
nonconforming approximation of any degree for any spatial dimension and any element shape. For triangular
meshes and k = 1, 2, the proposed nonconforming VEM has the same degrees of freedom as the related noncon-
forming finite element in [19]. For quadrilaterals and k = 1, the degrees of freedom are the same as that in [38].
The three main contributions of the present work are as follows.

(i) The nonconforming VEM is constructed for any order of accuracy and for arbitrarily-shaped polygonal
or/and polyhedral elements. It also provides a simpler construction on simplicial meshes and quadrilateral
meshes.

(ii) Unlike the conforming VEM [2], the nonconforming VEM is introduced and analyzed at once for two and
three dimensional problems. This simplifies substantially its analysis and practical implementation.

(iii) We prove optimal error estimates in the energy norm and (for k ≥ 2) in the L2-norm. The analysis of
the new method is carried out using techniques already introduced in [7,8] and extending the results well
known in the finite element method to the virtual approach. As the byproduct of our analysis, we provide
the theory for the MFD schemes in [30].

To convey the main idea of our work in a better way and to keep the presentation simple, we consider the
Poisson problem with a constant diffusion tensor. However, all results apply (with minor changes) to more
general second order problems with smoothly varying coefficients. This latter case will be addressed in the
section of numerical experiments.

The outline of the paper is as follows. In Section 2 we formulate the problem and introduce the basic setting. In
Section 3 we introduce the nonconforming VEM. Section 4 is devoted to the error analysis of the nonconforming
approximation. In Section 5 we establish the connection with the nonconforming MFD method proposed in [30].
In Section 6 we show the performance of the method in numerically solving the Poisson problem with constant
and variable diffusion coefficients. In Section 7 we offer some final remarks and discuss the perspectives for
future work and developments.

2. Continuous problem and basic setting

In this section we present the basic setting and describe the continuous problem.

Notation: Throughout the paper, we use the standard notation of Sobolev spaces, cf. [1]. Moreover, for any
integer ℓ ≥ 0 and a domain D ∈ Rm with m ≤ d, d = 2, 3, Pℓ(D) is the space of polynomials of degree at most
ℓ defined on D. We also adopt the convention that P−1(D) = {0}.

2.1. Continuous problem

Let the domain Ω in Rd with d = 2, 3 be a bounded open polytope with boundary ∂Ω, e.g., a polygonal
domain with straight boundary edges for d = 2 or a polyhedral domain with flat boundary faces for d = 3. Let
f be in L2(Ω) and consider the model problem:

−∆u = f in Ω, (2.1)

u = g on ∂Ω. (2.2)

Let Vg = {v ∈ H1(Ω) : v|∂Ω = g} and V = H1
0 (Ω). The variational formulation of problem (2.1) and (2.2)

reads as:
Find u ∈ Vg such that: a (u, v) = 〈f, v〉 ∀v ∈ V, (2.3)
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where the bilinear form a : V × V → R is given by

a (u, v) =

∫

Ω

∇u · ∇v dx ∀u, v ∈ V, (2.4)

and 〈·, ·〉 denotes the duality product between the functional spaces V ′ and V . The bilinear form in (2.4) is
continuous and coercive with respect to the H1

0 -seminorm (which is a norm in V by Poincaré inequality);
therefore, the Lax–Milgram theorem ensures the well posedness of the variational problem and the existence of
a unique solution u ∈ V to (2.3).

2.2. Basic setting

We describe now the basic assumptions of the mesh partitioning and introduce some further functional spaces.

Let {Th}h be a family of decompositions of Ω into elements K and let Eh denote the skeleton of the partition,
i.e., the set of edges/faces of Th. By Eo

h and E∂
h we will refer to the set of interior and boundary edges/faces,

respectively. Following [2, 7] we make the following assumptions on the family of partitions:

(A0) Assumptions on the family of partitions {Th}h: we assume that there exists a positive ̺ > 0 such
that

• for every element K and for every edge/face e ⊂ ∂K, we have: he ≥ ̺hK ,
• every element K is star-shaped with respect to all the points of a sphere of radius ≥ ̺hK ;
• for d = 3, every face e ∈ Eh is star-shaped with respect to all the points of a disk having radius ≥ ̺he.

The maximum of the diameters of the elements K ∈ Th will be denoted by h. For every h > 0, the partition Th

is made of a finite number of polygons or polyhedra.

We introduce the broken Sobolev space for any s > 0

Hs(Th) =
∏

K∈Th

Hs(K) =
{

v ∈ L2(Ω) : v|K ∈ Hs(K)
}
,

and define the broken Hs-norm

‖v‖2
s,Th

=
∑

K∈Th

‖v‖2
s,K ∀ v ∈ Hs(Th), (2.5)

and for s = 1 the broken H1-seminorm

|v|21,h =
∑

K∈Th

‖∇v‖2
0,K ∀ v ∈ H1(Th). (2.6)

When s = 0 we will prefer the notation ‖v‖0,Ω instead of ‖v‖s,Th
. Let e ⊂ ∂K+ ∩ ∂K− be an edge/face in Eo

h.
For v ∈ H1(Th), by v± we denote the trace of v|K± on e taken from within the element K± and by n±

e we
denote the unit normal on e in the outward direction with respect to K±. We then define the jump operator as:

[[ v ]] = v+n+
e + v−n−

e on e ∈ Eo
h and [[ v ]] = vne on e ∈ E∂

h , (2.7)

where on boundary edges/faces we have defined it as the normal component of the trace of v.

It is convenient to introduce a subspace of H1(Th) with some continuity built in. For any integer k ≥ 1, we
define

H1,nc(Th; k) =

{
v ∈ H1(Th) :

∫

e

[[ v ]] · ne q ds = 0 ∀ q ∈ Pk−1(e), ∀e ∈ Eh

}
. (2.8)
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Although for discontinuous functions | · |1,h is only a semi-norm, for v ∈ V and v ∈ H1,nc(Th) it is indeed a
norm. In fact, a standard application of the results in [11] shows that a Poincaré inequality holds for functions
in H1,nc(Th) (already with k = 1), i.e., there exists a constant CP > 0 independent of h such that

‖v‖2
0,Ω ≤ CP |v|

2
1,h ∀ v ∈ H1,nc(Th). (2.9)

Therefore, with a small abuse of notation we will refer to the broken semi-norm as a norm.

Remark 2.1. The space H1,nc(Th; 1) (i.e., k = 1), is the space with minimal required continuity to ensure that
the analysis can be carried out.

Finally, the bilinear form a(·, ·) can be split as:

a (u, v) =
∑

K∈Th

aK(u, v) where aK(u, v) =

∫

K

∇u · ∇v dx ∀u, v ∈ V. (2.10)

3. Nonconforming virtual element method

In this section we introduce the nonconforming virtual element method for the model problems (2.1) and (2.2),
which we write as the Galerkin approximation:

Find uh ∈ V k
h,g such that: ah (uh, vh) = 〈fh, vh〉 ∀vh ∈ V k

h , (3.1)

where V k
h ⊂ H1,nc(Th; k) is the global nonconforming virtual element space; V k

h,g is the affine space required
by the numerical treatment of the Dirichlet boundary conditions; ah(·, ·) and 〈fh, ·〉 are the nonconforming
approximation to the bilinear form a(·, ·) and the linear functional 〈f, ·〉, respectively.

We start by describing the local and global nonconforming virtual element spaces, denoted by V k
h (K) and V k

h ,
respectively. We then construct the discrete bilinear form ah(·, ·) and the forcing term fh, discussing also their
main properties for the analysis of the resulting approximation. Through the whole section, we follow the basic
ideas given in [2, 7], trying to highlight the main differences with the present case.

3.1. The local nonconforming virtual element space V k

h
(K)

We need to introduce some further notation. For a polygon or polyhedron K with n edges/faces we denote
by xK its center of gravity, by |K| its d-dimensional measure (area for d = 2, volume for d = 3) and by hK its
diameter. Similarly, for each edge/face e ⊂ ∂K, we denote by xe its midpoint/barycenter, by |e| its measure
and by he its diameter. As before, nK denotes the outward unit normal on ∂K and ne refers to the unit vector
normal to e, whose orientation is fixed once and for all.

For k ≥ 1, we define the local non-conforming virtual element space of order k associated with the poly-
gon/polyhedron K as the finite dimensional space

V k
h (K) =

{
v ∈ H1(K) :

∂v

∂n
∈ Pk−1(e) ∀e ⊂ ∂K, ∆v ∈ Pk−2(K)

}
, (3.2)

with the usual convention that P−1(K) = {0}.

For k = 1, the local virtual element space V 1
h (K) consists of functions v for which the normal derivative ∂v

∂n
is

constant (and possibly different) on each e ⊂ ∂K and that are harmonic inside K, i.e., ∆v = 0. The dimension
of V 1

h (K) is equal to n, the number of edges/faces of K.
For k = 2, the space V 2

h (K) consists of functions v for which the normal derivative along the edges/faces
e ∈ ∂K is a linear polynomial and, inside K, are such that ∆v is constant. A simple counting reveals that the
dimension of V 2

h is dn + 1.
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k = 1 k = 2 k = 3 k = 4

Figure 1. Degrees of freedom of a triangular cell for k = 1, 2, 3, 4; edge moments are marked
by a circle; cell moments are marked by a square.

k = 1 k = 2 k = 3 k = 4

Figure 2. Degrees of freedom of a quadrilateral cell for k = 1, 2, 3, 4; edge moments are marked
by a circle; cell moments are marked by a square.

For each polygon/polyhedron K, the dimension of V k
h (K) is given by

NK =

{
nk + (k − 1)k/2 for d = 2,

nk(k + 1)/2 + (k − 1)k(k + 1)/6 for d = 3.
(3.3)

Let s = (s1, . . . , sd) be a d-dimensional multi-index with the usual notation that |s| =
∑d

i=1 si and xs =∏d
i=1 xsi

i where x = (x1, . . . , xd) ∈ Rd. For ℓ ≥ 0, the symbols Mℓ(e) and Mℓ(K) denote the set of scaled
monomials on e and K:

Mℓ(e) =

{(
x− xe

he

)s

, |s| ≤ ℓ

}
and Mℓ(K) =

{(
x − xK

hK

)s

, |s| ≤ ℓ

}
. (3.4)

In V k
h (K) we can choose the following degrees of freedom:

(i) all the moments of vh of order up to k − 1 on each edge/face e ∈ ∂K:

µk−1
e (vh) =

{
1

|e|

∫

e

vh m ds, ∀m ∈ Mk−1(e)

}
∀e ⊂ ∂K; (3.5)

(ii) all the moments of vh of order up to k − 2 on K:

µk−2
K (vh) =

{
1

|K|

∫

K

vh m dx, ∀m ∈ Mk−2(K)

}
. (3.6)

For k = 1, 2, 3, 4, the degrees of freedom are shown for a triangular, a quadrilateral and an hexagonal element
in Figures 1–3, and for a tetrahedral and a cubic element in Figures 4 and 5.
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k = 1 k = 2 k = 3 k = 4

Figure 3. Degrees of freedom of a hexagonal cell for k = 1, 2, 3, 4; edge moments are marked
by a circle; cell moments are marked by a square.
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k = 1 k = 2 k = 3 k = 4

Figure 4. Degrees of freedom of a tetrahedral cell for k = 1, 2, 3, 4; face moments are marked
by a circle; cell moments are marked by a square. The numbers indicates the number of degrees
of freedom (1 is not marked in the plot for k = 1).
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Figure 5. Degrees of freedom of a cubic cell for k = 1, 2, 3, 4; face moments are marked by a
circle; cell moments are marked by a square. The numbers indicate the number of degrees of
freedom (1 is not marked in the plot for k = 1).

Observe that the dimension NK given by (3.3) coincides with the total number of degrees of freedom defined
in (3.5) and (3.6). They are indeed unisolvent for the local space V k

h (K) as we show next:

Lemma 3.1. Let K be a simple polygon/polyhedron with n edges/faces, and let V k
h (K) be the space defined

in (3.2) for any integer k ≥ 1. The degrees of freedom (3.5) and (3.6) are unisolvent for V k
h (K).
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Proof. Notice, that we cannot proceed as for the unisolvence proofs in finite elements, since V k
h (K) would

typically contain functions that are not polynomial. Still, we need to show that for any vh ∈ V k
h (K) such that

µk−1
e (vh) = 0 ∀ e ⊂ ∂K and µk−2

K (vh) = 0 (3.7)

then vh = 0. To do so, we use the Divergence Theorem (with vh ∈ V k
h (K) and so ∂vh

∂n
∈ Pk−1(e) on each

e ⊂ ∂K and ∆v ∈ Pk−2(K)) to get

∫

K

|∇vh|
2dx = −

∫

K

vh ∆vh dx +
∑

e∈∂K

∫

e

vh
∂vh

∂n
ds = 0, (3.8)

where we have set the right hand side equal to zero using the fact that the degrees of freedom of vh vanish
from (3.7). Hence ∇vh = 0 in K and so vh = constant in K. But, since µ0

e(vh) = 0 (the zero-order moment on
each e ⊂ ∂K vanishes), we deduce that vh = 0 in K. �

Remark 3.2. The degrees of freedom of the method (3.5) and (3.6) are defined by using the monomials in
Mk−1(e) and Mk−2(K) as basis functions for the polynomial spaces Pk−1(e) and Pk−2(K). This special choice
of the basis functions gives the method an inherent hierarchical structure with respect to k, which may be useful
for an efficient implementation. However, the construction of the element is independent of such choice and, in
principle, any other basis (properly defined and scaled) could be used to define the degrees of freedom.

3.2. The global nonconforming virtual element space Vk

h

We now introduce the nonconforming (global) virtual element space V k
h of order k. For every decomposition

Th into elements K (polygons or polyhedra) and for every K ∈ Th, we consider the local space V k
h (K) with

k ≥ 1 as defined in (3.2). Then, the global nonconforming virtual element space V k
h of order k is given by

V k
h =

{
vh ∈ H1,nc(Th; k) : vh|K ∈ V k

h (K) ∀K ∈ Th

}
. (3.9)

Arguing then as for a single element, we can compute the degrees of freedom of the global space:

NTh
=

{
Nedges k + Nelements (k − 1)k/2 for d = 2,

Nfaces k(k + 1)/2 + Nelements (k − 1)k(k + 1)/6 for d = 3,
(3.10)

where Nelements denotes the total number of elements K of the partition Th and Nedges and Nfaces refer to the
total number of edges (in d = 2) and faces (in d = 3), respectively; they are the cardinality of the set Eh.

Arguing again as for a single element, as degrees of freedom for the global space V k
h we can take:

(i) the moments of vh of order up to k−1 on each (d−1)-dimensional edge/face e ∈ Eh:

µk−1
e (vh) =

{
1

|e|

∫

e

vh m ds, ∀m ∈ Mk−1(e), ∀e ∈ Eh

}
; (3.11)

(ii) the moments of vh of order up to k−2 on each d-dimensional element K ∈ Th:

µk−2
K (vh) =

{
1

|K|

∫

K

vh m dx, ∀m ∈ Mk−2(K), ∀K ∈ Th

}
. (3.12)

As it happens for the local space V k
h (K), the dimension N tot given in (3.10) coincides with the total number of

degrees of freedom (3.11) and (3.12). The unisolvence for the local space V k
h (K) given in Lemma 3.1, implies

the unisolvence for the global space V k
h . Since the proof is essentially the same, we omit it for conciseness.
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3.3. Approximation properties

Following [7], we now revise the local approximation properties by polynomial functions and functions in
the virtual nonconforming space. In the former case, the approximation is the same as for the finite elements.
In the latter case, the discussion is similar as for conforming VEM. We briefly recall both for completeness of
exposition and future reference in the paper.

Local approximation

In view of the mesh regularity assumptions (A0), there exists a local polynomial approximation wπ ∈ Pk(K)
for every smooth function w defined on K. According to [12] for star-shaped elements and the generalization to
the general shaped elements satisfying (A0) found in ([6], Sect. 1.6), the polynomial wπ has optimal approxi-
mation properties. Thus, for every w ∈ Hs(K) with 2 ≤ s ≤ k + 1 there exists a polynomial wπ in Pk(K) such
that

‖w − wπ‖0,K + hK |w − wπ|1,K ≤ Chs
K |w|s,K , (3.13)

where C is a positive constant that only depends on the polynomial degree k and the mesh regularity constant ̺.
The proof of the above approximation result can be done by proceeding as for classical finite elements (see,
for instance, [42], which can be used taking into account (2.9)). Following always [42] one can trace how the
constant C depends on the constants appearing in hypothesis (A0) ρ, ρe and the ratio between the maximum
and minimum diameter of the star-shaped element. We refer to [42] for the explicit expressions.

Interpolation error

Following essentially [2, 7] we can define an interpolation operator in V k
h having optimal approximation

properties. The idea is to use the degrees of freedom without requiring an explicit construction of the basis
functions associated with them, since, unlike the finite element method, they are not needed for implementing
or constructing the method. We assume that we have numbered the degrees of freedom (3.11) and (3.12) from
i = 1, . . .NTh

, and that we have the canonical basis associated or induced by them (even if we do not compute
such basis!). Let χi(·) denote the operator that associates the ith degree of freedom χi(v) with each smooth
enough function v:

v → χi(v) = ith degree of freedom of v ∀i = 1, . . . , NTh
, (3.14)

and {ψi} denote the set of the “canonical” shape functions of V k
h satisfying the condition χi(ψj) = δij for

i, j = 1, . . . , NTh
. Then, from the previous construction of the space, it follows easily that for any v ∈ H1,nc(Th; k)

there exists a function vI ∈ V k
h such that

χi(v − vI) = 0 ∀ i = 1, . . .NTh
. (3.15)

This is enough to guarantee that we can apply the classical results of approximation. In particular, there exists
a constant C > 0 independent of h and such that for every h > 0, every K ∈ Th, every s with 2 ≤ s ≤ k + 1,
and every v ∈ Hs(K) the “interpolant” vI ∈ V k

h given through (3.15) satisfies:

‖v − vI‖0,K + hK |v − vI |1,K ≤ Chs
K |v|s,K . (3.16)

The proof of the above approximation result can be done by proceeding as in ([35], Prop. 4.2) together with
estimate (3.13) and classical results from finite elements.
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3.4. Construction of the virtual bilinear form ah

We now tackle the second part of the definition of the nonconforming virtual discretization (3.1). The goal is
to define a suitable symmetric bilinear form ah : V k

h × V k
h −→ R that enjoys good stability and approximation

properties and is computable over all the functions in V k
h . To this end, we first split ah(·, ·) as we did for a(·, ·)

in (2.10):

ah (uh, vh) =
∑

K∈Th

aK
h (uh, vh) ∀uh, vh ∈ V k

h ,

with aK
h : V k

h (K)×V k
h (K) −→ R denoting the restriction of ah(·, ·) to the local space V k

h (K). Then, we look at
the local construction of aK

h (·, ·).
We start by noticing that on each element K, for p ∈ Pk(K) and vh ∈ V k

h (K) we can compute exactly
aK(p, vh) by using only the local degrees of freedom given in (3.5) and (3.6). In fact, since

aK(p, vh) =

∫

K

∇p · ∇vh dx = −

∫

K

vh ∆p dx +

∫

∂K

vh
∂p

∂n
dx, (3.17)

we only needs to observe that the two integrals on the right hand side are determined exactly by the degrees of
freedom (3.5) and (3.6), without requiring any further explicit knowledge of the function vh in K.

Now, to construct ah(·, ·), always following [2], we first define a projection operator that can be thought of
as the Ritz-Galerkin projection in finite elements. Let Π∇

K : H1(K) → Pk(K) be defined by
∫

K

∇(Π∇
K (vh) − vh) · ∇q dx = 0 ∀q ∈ Pk(K), ∀vh ∈ V k

h (K) (3.18)

together with the condition
∫

∂K

(Π∇
K (vh) − vh)ds = 0 if k = 1, (3.19)

∫

K

(Π∇
K (vh) − vh) dx = 0 if k ≥ 2. (3.20)

Note that Π∇
K (v) is indeed computable for any v ∈ V k

h from the degrees of freedom (3.5) and (3.6) in view
of (3.17) and the symmetry of the bilinear form. Also, Π∇

K is the identity operator on Pk(K), i.e., Π∇
K

(
Pk(K)

)
=

Pk(K).
We then define for every uh, vh ∈ V k

h (K) the bilinear form

aK
h (uh, vh) = aK(Π∇

K (uh), Π∇
K (vh)) + SK(uh − Π∇

K (uh), vh − Π∇
K (vh)), (3.21)

where the term SK(·, ·) is a symmetric bilinear form whose matrix representation in the canonical basis functions
{ψi} of V k

h (K) is spectrally equivalent to the identity matrix scaled by the factor γK defined as:

γK = hd−2. (3.22)

Thus, for every function vh in V k
h (K), it holds that

SK(vh, vh) ≃ hd−2vt
hvh (3.23)

where vh is the vector collecting the degrees of freedom of vh. The scaling of SK guarantees that

c∗a
K(vh, vh) ≤ SK(vh, vh) ≤ c∗aK(vh, vh) ∀vh ∈ ker(Π∇

K ), (3.24)

for two positive constants c∗ and c∗ independent of h.
We now show that the construction of aK

h (·, ·) guarantees the usual consistency and stability properties in
VEM.
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Lemma 3.3. For all h > 0 and for all K ∈ Th, the bilinear form aK
h (·, ·) defined in (3.21) satisfies the following

consistency and stability properties:

• k-Consistency:

aK
h (p, vh) = aK(p, vh) ∀p ∈ Pk(K), ∀vh ∈ V k

h (K). (3.25)

• Stability: there exists two positive constants α∗ and α∗ independent of mesh size h but depending on the
shape regularity of the partition such that

α∗a
K(vh, vh) ≤ aK

h (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V k
h (K). (3.26)

Proof. The k-consistency property in (3.25) follows immediately from definition (3.21) and the fact that Π∇
K is

the identity operator on Pk(K). Since Π∇
K Pk(K) = Pk(K), it follows that SK(p−Π∇

K (p), vh −Π∇
K (vh)) = 0 for

every p ∈ Pk(K) and every vh ∈ V k
h (K). So, using the definition of Π∇

K and the definition (3.21) we have

aK
h (p, vh) = aK(Π∇

K (p), Π∇
K (vh)) = aK(p, Π∇

K (vh)) = aK(p, vh),

which gives (3.25) and proves the k-consistency property.

To show (3.26), from the definition of aK
h (·, ·) given in (3.21), the symmetry of the bilinear form and (3.24),

we have

aK
h (vh, vh) ≤ aK(Π∇

K (vh), Π∇
K (vh)) + c∗aK(vh − Π∇

K (vh), vh − Π∇
K (vh))

≤ max(1, c∗)
(
aK(Π∇

K (vh), Π∇
K (vh)) + aK(vh − Π∇

K (vh), vh − Π∇
K (vh))

)

= α∗aK(vh, vh),

and

aK
h (vh, vh) ≥ aK(Π∇

K (vh), Π∇
K (vh)) + c∗a

K(vh − Π∇
K (vh), vh − Π∇

K (vh))

≥ min(1, c∗)
(
aK(Π∇

K (vh), Π∇
K (vh)) + aK(vh − Π∇

K (vh), vh − Π∇
K (vh))

)

= α∗a
K(vh, vh),

which shows (3.26) with α∗ = min(1, c∗) and α∗ = max(1, c∗) and concludes the proof. �

Cauchy–Schwarz inequality, together with (3.26) and the boundedness of the local continuous bilinear form
give

aK
h (uh, vh) ≤ (aK

h (uh, uh))1/2(aK
h (vh, vh))1/2 ≤ α∗(aK(uh, uh))1/2(aK(vh, vh))1/2

= α∗‖∇uh‖0,K‖∇vh‖0,K (3.27)

which establishes the continuity of aK
h .

3.5. Construction of the right-hand side term 〈fh, ·〉

The forcing term is constructed in the same way as it is done for the conforming VEM. The idea is to use
whenever possible the degrees of freedom (3.12) to compute fh exactly. Denoting by Pℓ

K : L2(K) −→ Pℓ(K) the
L2-orthogonal projection onto the space Pℓ(K) for ℓ ≥ 0, we define fh at the elemental level by:

fh|K =

{
P0

K(f) for k = 1,

Pk−2
K (f) for k ≥ 2.

∀K ∈ Th. (3.28)



890 B. AYUSO DE DIOS ET AL.

In the definition above for k ≥ 2, the right hand side 〈fh, vh〉 is fully computable for the functions in V k
h since:

〈fh, vh〉 =
∑

K∈Th

∫

K

Pk−2
K (f)vh dx =

∑

K∈Th

∫

K

fPk−2
K (vh) dx,

which is readily available from (3.12).
For k = 1 and each K ∈ Th we first define:

ṽh|K =
1

n

∑

e∈∂K

1

|e|

∫

e

vhds ≈ P0
K(vh), (3.29)

and notice that ṽh|K is a first-order approximation to P0
K(vh) = 1

|K|

∫
K

vhdx, i.e., we have that
∣∣ṽh|K−P0

K(vh)
∣∣ ≤

Ch|v|1,K . Then, the idea is to use ṽh to compute the approximation to the right hand side of (3.1):

〈fh, vh〉 =
∑

K∈Th

∫

K

P0
K(f)ṽh dx ≈

∑

K∈Th

|K|P0
K(f)P0

K(vh).

Notice that the computation of the right-most term above would require the knowledge of the average value of
vh on each element K and such information is, in principle, not available. Therefore, we approximate P0

K(vh)
by using the numerical quadrature rule defined by ṽh that only uses the moments µ0

e(vh) in (3.5).
Furthermore, in both cases k ≥ 2 and k = 1, an estimate for the error in the approximation is already available

by using the definition of the L2-projection, Cauchy–Schwarz and standard approximation estimates [18]. For
k ≥ 2 and s ≥ 1 one easily has

|〈f, vh〉 − 〈fh, vh〉| =

∣∣∣∣∣
∑

K∈Th

∫

K

(f − Pk−2
K (f))vh dx

∣∣∣∣∣

=

∣∣∣∣∣
∑

K∈Th

∫

K

(f − Pk−2
K (f)) (vh − P0

K(vh)) dx

∣∣∣∣∣

≤
∥∥ f − Pk−2

K (f)
∥∥

0,Ω

∥∥ vh − P0
K(vh)

∥∥
0,Ω

≤ Chmin (k,s) |f |s−1,Th
|vh|1,h.

For k = 1, the definition of fh together with using repeteadly the definition of the L2-projection,
Cauchy–Schwarz inequality and standard approximation estimates, give

|〈f, vh〉 − 〈fh, ṽh〉| =

∣∣∣∣∣
∑

K∈Th

∫

K

(
f vh − P0

K(f)ṽh

)
dx

∣∣∣∣∣

≤

∣∣∣∣∣
∑

K∈Th

∫

K

(
f − P0

K(f))vh

)
dx

∣∣∣∣∣ +

∣∣∣∣∣
∑

K∈Th

∫

K

P0
K(f) (vh − ṽh) dx

∣∣∣∣∣

≤

∣∣∣∣∣
∑

K∈Th

∫

K

(
f − P0

K(f)
) (

vh − P0
K(vh)

)
dx

∣∣∣∣∣ + ‖P0
K(f)‖0,Ω‖vh − ṽh‖0,Ω

≤
∥∥P0

K(f) − f
∥∥

0,Ω
‖P0

K(vh) − vh ‖0,Ω + Ch‖f‖0,Ω|vh|1,h

≤ Ch (‖f‖0,Ω + |f |s−1,Th
)|vh|1,h.

We finally mention that the estimate

‖vh − ṽh‖ ≤ Ch‖v‖1,h

was already indicated in [30]. We collect the results for k = 1 and k > 1 in the following lemma.
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Lemma 3.4. Let k, s ≥ 1, V k
h the virtual element space defined by (3.9), f ∈ Hs−1(Ω), fh ∈ (V k

h )
′

defined as
in (3.28). For any vh ∈ V k

h it holds:

|〈f, vh〉 − 〈fh, vh〉| ≤

{
Ch (‖f‖0,Ω + |f |s−1,Th

)|vh|1,h for k = 1,

Chmin (k,s) |f |s−1,Th
|vh|1,h for k > 1.

(3.30)

3.6. Construction of the boundary term

In the case of non-homogenous Dirichlet boundary conditions, we need to construct the corresponding bound-
ary term. We define gh = Pk−1

e (g) and observe that in view of the degrees of freedom (3.11), with such definition
the boundary term will be fully computable. Indeed,

∫

E∂

h

ghvh ds =
∑

e∈E∂

h

∫

e

Pk−1
e (g)vh ds =

∑

e∈E∂

h

∫

e

gPk−1
e (vh) ds ∀ vh ∈ V k

h . (3.31)

4. Error analysis

In this section we present the error analysis in the energy- and L2-norm for the nonconforming virtual element
approximation (3.1) to the model problem (2.3).

We start by noticing that the nonconformity of our discrete approximation space V k
h ⊂ H1,nc(Th; k) � H1(Ω)

introduces a kind of consistency error in the approximation to the solution u ∈ V . In fact it should be noticed
that using (2.10) together with standard integration by parts give

a(u, v) =
∑

K∈Th

∫

K

−(∆u)vdx +
∑

K∈Th

∫

∂K

∂u

∂nK
v ds

= (f, v) + Nh(u, v) ∀ v ∈ H1,nc(Th; 1). (4.1)

For u ∈ Hs(Ω), s ≥ 3/2, the term Nh can be rewritten using (2.7) as:

Nh(u, v) =
∑

K∈Th

∫

∂K

∂u

∂nK
v ds =

∑

e∈Eh

∫

e

∇u · [[ v ]] ds. (4.2)

The term Nh measures the extent to which the continuous solution u fails to satisfy the virtual element
formulation (3.1). In that respect, it could be regarded as a consistency error although it should be noted
that such inconsistency here (as for the nonconforming finite element method) is due to the fact that the test
functions vh ∈ Vh � V , and therefore an error arises when using the variational formulation of the continuous
solution (2.3).

We now provide an estimate for the term measuring the nonconformity. We have the following result

Lemma 4.1. Assume (A0) is satisfied. Let k ≥ 1 and let u ∈ Hs+1(Ω) with s ≥ 1 be the solution of (2.3).
Let v ∈ H1,nc(Th; 1) as defined in (2.8). Then, there exists a constant C > 0 depending only on the polynomial
degree and the mesh regularity such that

|Nh(u, v)| ≤ Chmin(s,k)‖u‖s+1,Ω|v|1,h (4.3)

where Nh(u, v) is defined in (4.2).

Proof. The proof follows along the same line as the one for the classical nonconforming methods. We briefly
report it here for the sake of completeness. From the definition of the space H1,nc(Th; k) with k = 1, the definition
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of the L2(e)-projection and Cauchy–Schwarz we find

|Nh(u, vh)| =

∣∣∣∣∣
∑

e∈Eh

∫

e

(
∇u − Pk−1

e (∇u)
)
· [[ vh ]] ds

∣∣∣∣∣

=

∣∣∣∣∣
∑

e∈Eh

∫

e

(
∇u − Pk−1

e (∇u)
)
·
(
[[ vh ]] − P0

e ([[ vh ]])
)

ds

∣∣∣∣∣

≤
∑

e∈Eh

∥∥∇u − Pk−1
e (∇u)

∥∥
0,e

∥∥[[ vh ]] − P0
e ([[ vh ]])

∥∥
0,e

, (4.4)

where Pℓ
e : L2(e) −→ Pℓ(e) is the L2-orthogonal projection onto the space Pℓ(e) for ℓ ≥ 0.

Using now standard approximation estimates (see [18]) we have for each e = ∂K+ ∩ ∂K−,

∥∥∇u − Pk−1
e (∇u)

∥∥
0,e

≤ Chmin(s,k)−1/2‖u‖s+1,K+∪K− ,
∥∥[[ vh ]] − P0

e ([[ vh ]])
∥∥

0,e
≤ Ch1/2‖∇vh‖0,K+∪K− .

Hence, substituting the above estimates into (4.4) and summing over all elements, the proof is concluded. �

Remark 4.2. To obtain at least an estimate of first order of the term Nh(u, v), notice that the proof of
Lemma 4.1 requires further regularity (at least u ∈ H2(Ω)) than the one that problem (2.1) and (2.2) might
have (as for instance in the case f ∈ H−1(Ω) or even f ∈ L2(Ω) and the domain not convex or with a second
order problem with a jumping coefficient K). We have followed the classical line for the error analysis to keep the
presentation of the method simpler. Of course one might consider the extension of the results in [28] to estimate
the nonconformity error arising in the nonconforming virtual approximation. We wish to note though, that such
extension will require to have laid for virtual elements, some results on a-posteriori error estimation. While that
would be surely possible and it might merit further investigation, it is out of the scope of this paper and we feel
that by sticking to the present proof, we are able to convey in a better way (and with a neat presentation) the
novelty and new idea of the paper.

We have the following result.

Theorem 4.3. Let (A0) be satisfied and let u be the solution of (2.3). Consider the nonconforming virtual
element method in (3.1), with V k

h given in (3.9) and with ah(·, ·) and fh ∈ (V k
h )

′

defined as in Section 3. Then,
problem (3.1) has a unique solution uh ∈ V k

h . Moreover, for every approximation uI ∈ V k
h of u and for every

piecewise polynomial approximation uπ ∈ Pk(Th) of u, there exists a constant C > 0 depending only on α∗ and
α∗ in (3.26) such that the following estimate holds

|u − uh|1,h ≤ C

(
|u − uI |1,h + |u − uπ|1,h + sup

vh∈V k

h

|〈f − fh, vh〉|

|vh|1,h
+ sup

vh∈V k

h

Nh(u, vh)

|vh|1,h

)
. (4.5)

Furthermore, if f ∈ Hs−1(Ω) with s ≥ 1, then we also have

|u − uh|1,h ≤ Chmin (k,s)(‖u‖1+s,Ω + ‖f‖s−1,Ω). (4.6)

Proof. We first establish the existence and uniqueness of the solution to (3.1). From (3.27), (3.26) and (2.6) we
easily have coercivity and continuity of the global discrete bilinear form in H1,nc(Th; k) (and in particular in
V k

h ⊂ H1,nc(Th; k)),

ah(v, v) ≥ α∗a(v, v) ≥ Csα∗|v|
2
1,h ∀ v ∈ H1,nc(Th; k),

|ah(u, v)| ≤ α∗|u|1,h|v|1,h ∀u, v ∈ H1,nc(Th; k).
(4.7)
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With fh ∈ (V k
h )

′

and the Poincaré inequality (2.9), a direct application of Lax-Milgram theorem guarantees
existence and uniqueness of the solution uh ∈ V k

h of (3.1).

We now prove the error estimate. We first write u− uh = (u− uI) + (uI − uh) and use triangle inequality to
bound

|u − uh|1,h ≤ |u − uI |1,h + |uh − uI |1,h. (4.8)

The first term can be estimated using the standard approximation (3.16) and so it is enough to estimate
the second term on the right hand side above. Let δh = uh − uI ∈ V k

h . Using the continuity (3.27) and the
k-consistency several times

α∗|δh|
2
1,h = α∗a(δh, δh) ≤ ah(δh, δh)

= ah(uh, δh) − ah(uI , δh)

= (fh, δh) −
∑

K∈Th

aK
h (uI − uπ, δh) −

∑

K∈Th

aK
h (uπ, δh)

= (fh, δh) −
∑

K∈Th

aK
h (uI − uπ, δh) −

∑

K∈Th

aK(uπ, δh)

= (fh, δh) −
∑

K∈Th

aK
h (uI − uπ, δh) +

∑

K∈Th

aK(u − uπ, δh) − a(u, δh)

= (fh, δh) − a(u, δh) −
∑

K∈Th

aK
h (uI − uπ, δh) +

∑

K∈Th

aK(u − uπ, δh)

= (fh, δh) − (f, δh) −Nh(u, δh) −
∑

K∈Th

aK
h (uI − uπ, δh)

+
∑

K∈Th

aK(u − uπ, δh) (4.9)

where in the last step we have used (4.1) to introduce the consistency error. The proof is then concluded by
estimating each of the terms in the right hand side above and substituting in (4.8). Last part of the theorem,
follows by using Lemmas 3.4 and 4.1 to bound the terms on the right hand side of (4.5). �

Remark 4.4. Theorem 4.3 is the corresponding abstract result to ([7], Thm. 3.1). As commented before, the
term Nh measures the extent to which the continuous solution u fails to satisfy the virtual element formula-
tion (3.1); measures the non-conformity of the approximation. In this respect, this result could be regarded as
the analog for the VEM of the Strang Lemma for the finite element method.

4.1. L2(Ω)-error analysis

We now report the L2 error analysis of the proposed nonconforming VEM. It follows closely the L2-error
analysis for classical nonconforming methods.

Theorem 4.5. Let Ω be a convex domain and let Th be a family of partitions of Ω satisfying (A0). Let k ≥ 1
and let u ∈ Hs+1(Ω), s ≥ 1 be the solution of (2.3) and let uh ∈ V k

h be its nonconforming virtual element
approximation solving (3.1). Then, there exists a positive constant C depending on k, the regularity of the mesh
and the shape of the domain such that

‖u − uh‖0,Ω ≤ Ch(|u − uh|1,h + |u − uπ|1,h) + C(h2 + hmin (2,k̄+1))‖f − fh‖0,Ω

+ Chmin (k,s)+1‖u‖s+1,Ω. (4.10)

where k̄ = max{k − 2, 0}.
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Proof. We consider the dual problem: find ψ ∈ H2(Ω) ∩ H1
0 (Ω) solution of

−∆ψ = u − uh in Ω, ψ = 0 on ∂Ω.

From the assumptions on the domain, the elliptic regularity theory gives the inequality ‖ψ‖2,Ω ≤ C‖u− uh‖0,Ω

where C depends on the domain only through the domain’s shape. Let ψI ∈ V k
h and ψπ ∈ Pk(Th) be the

approximations to ψ satisfying (3.16) and (3.13).Then, integrating by parts we find

‖u − uh‖
2
0,Ω =

∫

Ω

−∆ψ(u − uh) dx

=
∑

K∈Th

∫

K

∇ψ · ∇(u − uh) dx +
∑

K∈Th

∫

∂K

∂ψ

∂n
(u − uh) ds

= a(ψ − ψI , (u − uh)) + a(ψI , (u − uh)) + Nh(ψ, u − uh). (4.11)

We now estimate the three terms above. The estimate for the first one follows from the continuity of a(·, ·)
together with the approximation properties (3.16) of ψI and the a priori estimate of ψ

|a(ψ − ψI , u − uh)| ≤ C|ψ − ψI |1,h|u − uh|1,h ≤ Ch‖u − uh‖0,Ω|u − uh|1,h.

Last term is readily estimated by means of Lemma 4.1 with k = s = 1 (since obviously u − uh ∈ H1,nc(Th; 1)),
giving

|Nh(ψ, u − uh)| ≤ Ch‖ψ‖2,Ω|u − uh|1,h ≤ Ch‖u − uh‖0,Ω|u − uh|1,h.

To estimate the second term in (4.11) we use the symmetry of the problem together with (3.1) and (4.1) to
write

a(ψI , u − uh) = a(u, ψI) − a(uh, ψI)

= Nh(u, ψI) + 〈f, ψi〉 − a(uh, ψI) + ah(uh, ψI) − ah(uh, ψI)

= Nh(u, ψI) + 〈f − fh, ψI〉 +
(
ah(uh, ψI) − a(uh, ψI)

)

= T0 + T1 + T2 (4.12)

To conclude we need to estimate each of the above terms. For the first one, we first notice that from the
definition (4.2) and the regularity of ψ, one obviously has Nh(u, ψ) = 0. Hence, a standard application of
Lemma 4.1 together with the approximation properties (3.16) of ψI and the a priori estimate of ψ, gives

|T0| = |Nh(u, ψI)| = |Nh(u, ψI − ψ)| ≤ Chmin (k,s)‖u‖s+1,Ω|ψ
I − ψ|1,h

≤ Chmin (k,s)+1‖u‖s+1,Ω‖u − uh‖0,Ω. (4.13)

The last two terms in (4.12) can be bounded as in [8]. Here, we report the proof for the sake of completeness.
For T1, using the L2-orthogonal projection, and denoting again k̄ = max{k − 2, 0}, we find

T1 =
∑

K∈Th

(∫

K

(f − fh)(ψI − ψ)dx +

∫

K

(f − fh)(ψ − P k̄
K(ψ))dx

)

≤ ‖f − fh‖0,Ω(‖ψI − ψ‖0,Ω + ‖ψ − P k̄
K(ψ)‖0,Ω)

≤ C(h2 + hmin (2,k̄+1))‖f − fh‖0,Ω‖u − uh‖0,Ω. (4.14)
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As regards T2, we use the symmetry together with the k-consistency property twice, and the definition of the
norm (2.6)

T2 = ah(uh, ψI) − a(uh, ψI) =
∑

K∈Th

(
aK

h (uh − uπ, ψI) − aK(uh − uπ, ψI)
)

=
∑

K∈Th

(
aK

h (uh − uπ, ψI − ψπ) − aK(uh − uπ, ψI − ψπ)
)

≤ |uh − uπ|1,h|ψh − ψπ|1,h.

Each of the above terms can be readily estimated by adding and subtracting u and ψ:

|uh − uπ|
2
1,h ≤

∑

K∈Th

(
‖∇(uh − u)‖2

0,K + ‖∇(u − uπ)|20,K

)

|ψh − ψπ|
2
1,h ≤

∑

K∈Th

(
‖∇(ψh − ψ)‖2

0,K + ‖∇(ψ − ψπ)|20,K

)
≤ Ch2‖u − uh‖

2
0,Ω,

where in the last step we have also used the standard approximation properties (3.13) and (3.16). With the
above estimates, the bound for the term T2 finally reads

T2 ≤ Ch‖u − uh‖0,Ω(|u − uh|1,h + |u − uπ|1,h)

Plugging now the estimates for T0, T1 and T2 into (4.12) we finally get:

‖u − uh‖0,Ω ≤ Ch(hmin (k,s)+1‖u‖s+1,Ω + |u − uh|1,h + |u − uπ|1,h) + C(h2

+ hmin (2,k̄+1))‖f − fh‖0,Ω,

which concludes the proof. �

5. Connection with the nonconforming MFD method [30]

In this section, we discuss the relationship between the proposed nonconforming VEM and the nonconforming
MFD method in [30]. Throughout this section we will use the notation of [9]. Also, we will omit the element
index K from all the matrix symbols.

The stiffness matrix M
VEM of the nonconforming VEM is formally defined as

aK
h (uh, vh) = vT

h M
VEMuh,

where vh and uh are algebraic vectors collecting the degrees of freedom of functions vh and uh, respectively.
We enumerate the whole set of nK,k scaled monomials used in (3.5) and (3.6) to define the degrees of freedom
by local indices i and j (resp., mi and mj) ranging from 1 to nK,k.

To compute the stiffness matrix, we need two auxiliary matrices B and D. The jth column of matrix B, for
j = 1, . . . , nK , is defined by

B1j =

⎧
⎪⎪⎨
⎪⎪⎩

∫

∂K

ψj ds = 0 if k = 1,

∫

K

ψj dx = 0 if k ≥ 2,

(5.1)

Bij =

∫

K

∇mi · ∇ψj dx, i = 2, . . . , nK,k. (5.2)



896 B. AYUSO DE DIOS ET AL.

The jth column of matrix D, for j = 1, . . . , NK , collects the degrees of freedom of the jth monomials and is
defined by:

Dij = χi(mj), i = 1, . . . , nK . (5.3)

Now, we consider the matrices G = BD, Π
∇ = DG−1B and G̃, which is obtained from matrix G by setting

its first row to zero. The VEM stiffness matrix is the sum of two matrices, MVEM = MVEM
0 + MVEM

1 , which are
defined by the following formula:

M
VEM = (G−1

B)T
G̃(G−1

B) + (I − Π∇)T
S(I − Π∇), (5.4)

where I is the identity matrix and S is the matrix representation of the bilinear form SK . The first matrix term
corresponds to the consistency property and the second term ensures stability. According to (3.22), we can set

S = hd−2
I. (5.5)

Since the choice of SK is not unique, so is the choice of S; therefore, we have a family of virtual element schemes
that differ by matrix S.

The mimetic stiffness matrix considered in [30] has the same structure, MMFD = MMFD
0 + MMFD

1 , and the
two matrices MMFD

0 and MMFD
1 are also related to the consistency and stability properties. In particular, matrix

MMFD
1 is given by:

M
MFD
1 =

(
I − Π⊥

)
U

(
I − Π⊥

)
, (5.6)

where Π⊥ = D(DT D)−1DT is the orthogonal projector on the linear space spanned by the columns of matrix D

and U is a symmetric and positive definite matrix of parameters.
Since both the VEM and the MFD method use the same degrees of freedom, they must satisfy the same

conditions of consistency and stability. Moreover, the matrices MMFD
0 and MVEM

0 are uniquely determined by
the consistency condition (the exactness property on the same set of polynomials of degree k); thus, they
must coincide. Consequently, the virtual and mimetic stiffness matrices may differ only for the stabilization
terms MVEM

1 and MMFD
1 . The relation between MVEM

1 and MMFD
1 is established by the following lemma.

Lemma 5.1.

(i) For any mimetic stabilization matrix of the form (5.6), we can find a matrix S such that MVEM
1 and MMFD

1

coincide.
(ii) For any virtual element stabilization matrix as the second term in the right-hand-side of (5.4), we can find

a matrix U such that MMFD
1 and MVEM

1 coincide.

Proof.

(i) A straightforward calculation shows that

Π∇Π⊥ = Π⊥,
(
Π∇

)T
Π⊥ =

(
Π∇

)T
, Π⊥Π∇ = Π∇. (5.7)

We take S = MMFD
1 . Using (5.7) yields:

M
VEM
1 =

(
I − Π

∇
)T (

I − Π
⊥

)
U

(
I − Π

⊥
)
(I − Π

∇) = M
MFD
1 .

(ii) The relations in (5.7) imply that
(
I − Π

⊥
) (

I − Π
∇

)T
=

(
I − Π

∇
)T

. The assertion of the lemma follows
by taking

U = (I − Π
∇)T

S(I − Π
∇) = M

VEM
1 .

This proves the assertion of the lemma. �

Remark 5.2. An effective and practical choice in the mimetic technology (see [30]) is provided by taking U = ρI

where ρ is a scaling factor defined as the mean trace of MMFD
0 . This implies that MMFD

1 = ρ
(
I − Π

⊥
)
.
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6. Numerical experiments

The numerical experiments presented in this section are devoted to verify the theory presented in the previous
sections.

To study the accuracy of the method we solve the diffusion equation on the domain Ω =]0, 1[×]0, 1[ using
both constant and variable diffusion coefficients. For the constant coefficient case we consider problem (2.1)–
(2.2), while for the variable coefficient case, the Laplace operator “∆u” in equation (2.1) is substituted by the
more general elliptic operator “div(Λ∇u)”, where Λ is the full diffusion tensor given by

Λ(x, y) =

(
1 + y2 −xy
−xy 1 + x2

)
.

The forcing term f in (2.1) and the boundary function g in (2.2) are set so that the exact solution of the problem
is given by:

u(x, y) = sin(2πx) sin(2πy) + x6 + y6.

We consider four different sequences of five meshes, labeled by {Th}
(1)
h , {Th}

(2)
h , {Th}

(3)
h , and {Th}

(4)
h , respec-

tively. Figures 6a–6d show the first and second mesh of each sequence (left and right plot, respectively). The

meshes in {Th}
(1)
h are built as follows. First, we determine a primal mesh by remapping the position (x̂, ŷ) of

the nodes of a uniform square partition of Ω by the smooth coordinate transformation (see [14]):

x = x̂ + 0.1 sin(2πx̂) sin(2πŷ),

y = ŷ + 0.1 sin(2πx̂) sin(2πŷ).

The corresponding mesh of {Th}
(1)
h is built from the primal mesh by splitting each quadrilateral cell into

two triangles and connecting the barycenters of adjacent triangular cells by a straight segment. The mesh
construction is completed at the boundary by connecting the barycenters of the triangular cells close to the
boundary to the midpoints of the boundary edges and these latters to the boundary vertices of the primal mesh.

The meshes in {Th}
(2)
h are built by partitioning the domain Ω into square cells and relocating each interior node

to a random position inside a square box centered at that node. The sides of this square box are aligned with
the coordinate axis and their length is equal to 0.8 times the minimum distance between two adjacent nodes

of the initial square mesh. The meshes in {Th}
(3)
h are obtained by filling the unit square with a suitably scaled

non-convex octagonal cell, which is cut at the domain boundaries to fit into the unit square domain. The meshes

in {Th}
(4)
h are obtained by partitioning Ω by squares, each one divided into two triangles. All the meshes are

parametrized by the number of partitions in each direction. The starting mesh of every sequence is built from
a 5 × 5 regular grid, and the refined meshes are obtained by doubling this resolution.

For k ≥ 1, we measure the relative errors

EL2 =

(∑
K∈Th

‖u − Π∇
Kuh‖2

0,K

)1/2

‖u‖0,Ω

and

EH1 =

(∑
K∈Th

|u − Π∇
Kuh|21,K

)1/2

|u|1,Ω
·

Thus, on every element K ∈ Th, error EL2 compares the exact solution u of problem (2.1) and (2.2), and Π∇
Kuh,

the projection of the virtual element solution uh of the discrete problem (3.1) onto Pk(K). Similarly, on every
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(a) Meshes of smoothly remapped hexagons Th}{ (1)
h

(b) Meshes of randomized quadrilaterals

(c) Meshes of regular non-convex octagons

(d) Meshes of regular triangular cells

Th}{ (2)
h

Th}{ (3)
h

Th}{ (4)
h

Figure 6. The first two meshes of each mesh sequence that are used in the convergence and
comparison tests of the numerical experiment section.

element K ∈ Th, error EH1 compares ∇u and ∇Π∇
Kuh. These relative errors are used to depict the convergence

diagrams (error versus mesh size parameter h) in Figures 7–11. In Figure 12 is depicted the convergence diagram
of the error versus the number of degrees of freedom. In each figure, the EL2 convergence diagram is given on the
left, and on the right the corresponding EH1 -convergence diagram. From the a priori analysis of Section 4, errors
EL2 and EH1 must decrease proportionally to hk+1 and hk, respectively, when we apply the VEM of order k,
i.e., the VEM using the virtual element space V h

k . Accordingly, the experimental slopes for EL2 and EH1 must
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Figure 7. Relative error curves with respect to the mesh size h for the numerical solution of
the Poisson problem with constant diffusion coefficients on a sequence of meshes of smoothly
remapped hexagons (see Fig. 6a). The VEM is based on the polynomials of degree k = 1
(circles), k = 2 (squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 8. Relative error curves with respect to the mesh size h for the numerical solution of
the Poisson problem with constant diffusion coefficients on a sequence of meshes of randomized
quadrilateral cells (see Fig. 6b). The VEM is based on the polynomials of degree k = 1 (circles),
k = 2 (squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).

be closed to k + 1 and k when we plot the error curves versus the mesh size parameter h. Instead, these slopes
must be closed to (k + 1)/2 and k/2 when we plot the error curves versus the number of degrees of freedom (as
is done in Fig. 12) because this latter is roughly proportional to h−1/2. As can be observed from the graphics,
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Figure 9. Relative error curves with respect to the mesh size h for the numerical solution
of the Poisson problem with constant diffusion coefficients on a sequence of meshes of regular
non-convex octagons (see Fig. 6c). The VEM is based on the polynomials of degree k = 1
(circles), k = 2 (squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 10. Relative error curves with respect to the mesh size h for the numerical solution
of the Poisson problem with variable diffusion coefficients on a sequence of meshes of smoothy
remapped hexagons (see Fig. 6a). The VEM is based on the polynomials of degree k = 1
(circles), k = 2 (squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).

for the different values of the polynomial degree k, the method converges as predicted by the theory. To ease
the verification, the theoretical convergence rates are indicated by a number shown near the triangle depicted
for each curve.

Figures 7, 8, and 9 show the error curves when we solve (2.1) and (2.2), i.e., the Poisson problem with

constant coefficients, on the mesh families {Th}
(1)
h , {Th}

(2)
h and {Th}

(3)
h , respectively. Figures 10 shows the error
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Figure 11. Relative error curves for VEM (solid) and non-conforming FEM (dashed) with
respect to the mesh size h for the numerical solution of the Poisson problem with constant
diffusion coefficients on a sequence of regular meshes of triangles (see Fig. 6d). The schemes
use polynomials of degree k = 1 (circles), k = 2 (squares), k = 3 (diamonds), k = 4 (triangles),
k = 5 (stars).
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Figure 12. Relative error curves for VEM (solid) and non-conforming FEM (dashed) with
respect to the number of degrees of freedom for the numerical solution of the Poisson problem
with constant diffusion coefficients on a sequence of regular meshes of triangles (see Fig. 6d).
The schemes use polynomials of degree k = 1 (circles), k = 2 (squares), k = 3 (diamonds),
k = 4 (triangles), k = 5 (stars).

curves when we solve the Poisson problem with the variable diffusion tensor Λ using mesh family {Th}
(1)
h . The

experimental convergence rates are in good agreement with the theoretical ones for all such calculations.
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Figures 11 and 12 compare the accuracy of the non-conforming VEM with different non-conforming finite
element implementations with respect to h and the number of degrees of freedom (notice the fractional con-
vergence rates in this latter figure for the reason that we explained above). For comparison’s sake, we solved

problem (2.1) and (2.2) on the sequence of triangular meshes {Th}
(4)
h . The errors curves of the non-conforming

VEM are displayed by solid lines, while those of the non-conforming FEM by dashed lines. For the comparison
test, we implemented the Crouziex-Raviart FEM [20] for k = 1, the Fortin-Soulie FEM [27] for k = 2, the
Crouzeix-Falk [21] for k = 3, and the non-conforming finite element methods introduced by Baran-Stoyan [4]
for k = 4 and 5. As in almost all the cases the error curves for the non-conforming VEM and FEM are indis-
tinguishable, we conclude that the performance of the non-conforming VEM is almost always comparable to
the performance of the non-conforming FEM that has the same order of accuracy. The only case where the
performance of the non-conforming VEM seems to be inferior to that of the corresponding FEM is for k = 1.
Notice that in such a case, the VEM is penalized by the fact that it requires one more internal degrees of
freedom in each triangle as is shown in Figure 1.

Finally, it is worth mentioning that in a preliminary stage of this work, the consistency of the nonconform-
ing VEM of order k, i.e., the exactness of the method for polynomial solutions of degree k, has been tested
numerically by solving problem (2.1) and (2.2) with boundary and source data determined by u(x, y) = xk +yk.
To this purpose, we considered a wider set of polygonal meshes (including the four considered above) and values
of k from 1 to 5. In all the cases, the magnitude of the errors Ek

L2 and Ek
H1 was comparable to the arithmetic

precision, thus confirming the k-consistency property stated in (3.25). These results are not reported here.

7. Conclusions

In this work, we introduced the non-conforming virtual element method (VEM) for an elliptic equation.
The VEM allows us to built arbitrary order schemes on shape-regular polygonal and polyhedral meshes that
may include non-convex and degenerate elements. In contrast to the non-conforming finite element method, the
construction of the VEM is done at once for any degree k ≥ 1 and any element shape. Another advantage of the
virtual element framework is ability to carry out theoretical analysis for complex meshes reusing many existing
functional analysis tools. We have shown the optimal convergence estimates in the energy and L2 norms. We also
established an algebraic equivalence of the VEM and the mimetic finite difference method from [30]. Numerous
numerical results presented here verify our theoretical conclusions and show that the new method is competitive
with “classical” nonconforming finite element schemes with the same accuracy.
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[10] F.M. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations.
Comput. Methods Appl. Mech. Engrg. 280 (2014) 135–156.
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