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ABSTRACT

We present simple inequalities for the Riemann problem for a Hamilton-Jacobi

equation in N space dimension when neither the initial data nor the Hamiltonian

need be convex (or concave). The initial data is globally continuous, affine in each

orthant, with a possible jump in normal derivative across each coordinate plane,

xi = 0. The inequalities become equalities wherever a "maxmin" equals a _'minmax"

and thus an exact closed form solution to this problem is then obtained.
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We shall be concerned with solutions to the following differential equation

(H-J) _, +/_'(D_) = 0 _ RN x (0,_)

where HsC(R N) and Dz_ = (_1,..-, q_.) is the spatial gradient of _.

We shall take special (Riemann) initial data.

define

Let u +, u_- be constants and

ui(z)=u + if zi>O

(1)
ui(z) = u 7 if zi<O

for i = 1,...,N. Then take:

N

(2) qa0(z) = A + E zi ui(x) = A + z . u(x)

We wish to solve H-J with initial data (2) in the class of viscosity solutions

as defined in [2]. The four properties of viscosity solutions that we shall need here

(apart from existence, uniqueness derived in [2]) are:

(P1) The solution T(z, t) is a non-decreasing function of the initial data.

(P2) The partial derivatives qa,, satisfy a maximum principle at points of continuity,

i.e. for i = 1,...,N:

min(u.,u +) < _., <_ max(uT, u+).

(P3) The speed of propagation is finite.

(P4) If ¢(z2,..., xg, t) is a viscosity solution of

Ct + H(vl,¢_2,...,¢_,) = 0
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for a constant Vl then

_(x,t) = VlZ_+ ¢(xz,...,zN,t)

is a viscosity solution to (H-J).

Let

where for i = 1,...,N:

=_ x_22X-..X_N

r_ = {v/ ,=in(,.,;,,,,+) < v < m=(,.,., u+)}

Finally we let, for i = 1,..., N:

Xi = sign (u + - u_')

For convenience only, we order the kidices so that

xi=l, i = 1,2,...,j

Xi = -1, i = j + I,...,N

(j might be 0 or N + 1).

We now state:

THEOREM 1. The viscosity solution to (H-J) with initial data (2) satisfies:

A + max max..- max rnln ... rain [x.v -- tH(v)]
vx_l'_x v2eil2 vjeilj vj+t_ilj+1 vNCNN

(3) < ¢2(x,t) <

A+ rain ... rain max.., max[x . v - tH(v)]

We note that if all the Xi = 1, then this solution is just max[x- v - tH(v)], if all
vef_

the Xi = -1 it is min[x • v - tH(v)]. Otherwise we have a pointwise inequality which
vcf_
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gives the exact solution whenever the first and last terms in (3) are equal. This

occurs e.g. if H(v) - Hl(Vl,...,vj) + H2(vj+l,..., VN), i.e., if the Hamiltonian

separates, and in many other cases.

The rest of this paper consists of the proof of this theorem, and some remarks

about both conservation laws and numerical approximations to H-J.

(4)

It is easy to See that the solution to the Cauchy problem satisfies

_(z, t) = tg(z) + A = tg(_) + A

where g satisfies:

(5) g = _-D_g- H(D_g) = -Hl(gi(¢),g2(¢),...,gN(¢))

where D_g is continuous.

In H-J, we let r = t, Vi = xi - ¢,t for ¢ fixed. H-J becomes

_ + H(Dy_) - _Dy_

= _ + H_(Dy_) = 0

with the same initial data (2).

Thus, by (5), to evaluate g(¢) we need only evaluate -Hl(Dyg) at y = 0, for

any t > 0. From (P1) above we know that (Dyg)y=o lles in _ for t > 0. Moreover,

if we integrate (H-J) 1 from t = 0 to t = At we have

_(O,At) = A - AtHl((D_g),=o)

(6)

Here:

(7)

= _o(0) - Atfll(D_.t_o(O),D[_9o(O); D_J_o(0), Di_cpo(0); "'"

• .. ;O_N_o(O),D[_9o(O))

D_:_po(0) = + (_o(+hei)- _o(0)) = u#
h
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whereei = {0,0,...,1,0,...,}, thei `h unit vector, and Hl(u +,u_-;u +,u_';...; u +,u_r)

is determined by (6).

This formula can be interpreted as a numerical algorithm. Suppose we are

given a grid

z i. = jib, i = 1, , N; ji = O, "4-1,
]i ......

and values of a discrete function Cj = Cj_j2...jN" Then for each j, we construct the

piecewise affine function which, in each of the 2 N orthants centered at j, interpolates

, _bj and its N nearest neighbors, Cj+,_ for i - 1,..., N. From (P3) above, if

(8) (CFL) A,-r max ]H_,I< 1
_,n(i) -- N'_

i_1,...,2_ r

where _(J) is the same as _ with each u i-, u + replaced by D_Zi C j, D+Z' C j, then the

solution to the initial value problem (H-J) 1 with the above affme initial data in the

diamond centered at j when evaluated at x - x i and t -- At is independent of the

values of the initial data outside of this diamond.

Thus (6) (with _0(0) replaced by ¢3 and _(0, at) by ¢_+1), gives us a mono-

tone finite difference scheme approximating (H-J) 1 which is in differenced form with

numerical Hamiltonian _1. These concepts were introduced in [3]. The scheme is

monotone, which means that the right side of (6) is an increasing function of all the

_j±e_, because of property (P1). The function _1 is called Godunov's Hamiltonian

by analogy with the definition of Godunov's scheme for conservation laws in one

space dimension [5]. The scheme is consistent, which means

_l(ul,u,; u=,u=;...; u_¢,_)= Hl(u_, u2,..., _¢)

Monotonicity implies that

_rl(_+, u_; u_+,u;;,... ;_,, _)

5



is a nonincreasing function of all the u + and a non-decreasing function of all the

u,. In particular, for N -" 1, this means for any Vlef_ = f_:

(9) sgn (u + - u_')[H1 (u +, uT)- Hl(vl)]

= ss_ (4+ - Vl)[_ql(u+, _-) - P'(v,, u_-)]

+ ss_ (_ - u;)[P'(.,, _i-) - P'(,,, v,)]

<0

But, by (P2), fll(u+,u_) - Hi(ill) for some fil in fL Thus we have

(10) _rl(u+,Ul) = X1 rn]n x1HI(vl)
vtcnt

(This formula was obtained earlier in [6]).

forN<M-l, wehave

(11)

Now we proceed inductively. Suppose,

max • • • max
vj+xei_j+l vNef_N

< _ql(_t, ui-;u_+,_;;...; u_, u_)

where

rain --. _n Hl(vl, v2,..., vN)
vxef_l vief_ j

< rain.., rain max ... max
vxeNt vjei2j vi+leflj+ 1 vNef_N

Xi = 1, i = 1,...,j

;_ = -1, i = j + 1,...,N

Next we have, N = M and for any Vl ef_l:

H'(_I,,2,...,.N)

(12) x, [_qi(_+, ,;; _+, u;;... ;u_,, ,_,)

- _q'(.,,.,; ,_+,u;;... ; ,_,, _,)]

<0

using the same argument as in (9).

6



Now, for any fixed v,, I?'II(vl, vl ;u+2 u2,... ;U+M, UM) is Godunov's Hamiltonian

when the initial data for (H-J) 1 has a constant zl derivative,

Then it follows from (P4) that

=--Vl+ , _,... )

(where _ also depends on vl ).

By the induction hypothesis, this means we have

(13) x,_q' (_,+,_?; u_+,_;;... ;_, _)

= -Xl_(0,0,... ,0)

= X1X2 I_n X2""XM
v2eS'22

mill XM /'/I(vl,V2...VM)
VM $f_ M

= )_lHl(vl, _2,. • • , VM)

where the extrema is taken on at v2,.--, VM, which depends on v 1. The vector

(vl, v2,..., 5N)Z_I where v1_1 is arbitrary. We next take rain of the expression

in (13); If all the Xi - 1 or all the Xi - -1 we have equality by (P2). Otherwise

Xi =- 1, 1 < i < j, Xi -- -1, j + 1 < i < M and we have the right hand inequality

in (11). Next we have, for any Vi+lef_j+l, following the argument above:

(14)

jql(_+, Ul;u_+,_;... ;u+_,_)

/'_1 (?_1+, _? ; • • • ; Vj+I, "j+l ; • • • ; U_M, U_,/)

> Xj+2 rain X/+2"''XM rain XMX1 rain X_'"Xj rain Xj Hl(vl,v2, ...vM)
-- vi +2efli+2 VM eflM vx ell _ v i e_ i

We next take the max of the expression in (P4) which gives us the left hand in-
vi +1

equality in (11).
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We have now obtained formula (11) for any N; using (4) and (5) give us

Theorem 1.

We note that (11) validates the conjecture about Godunov's Hamiltonian in [7]

when the inequalities in (13) and 14) become equalities. That paper also discusses

the high-order accurate non-oscillatory numerical solution of (H-J) in some detail.

If we take the space gradient of (H-J) and call ul - _zt, u2 = qaz2, etc., we

arrive at the system of conservation laws

(14) (u_)t + O0-_-H(u_,...,uN)= O, i-- 1,...,N

with intial data:

ui(z, O) = u + if zi > 0

=u_-ifzi<0

i= l,...,n

Then taking the space gradient of (3) gives us information abotit the solution to

this special Riemann problem for a special system of conservation laws.

We finally remark that if the initial data is convex (concave) or if H(ul,..., UN)

is convex (concave) then the Hopf formulas [1] for this problem apply. In the case

N = 1 it was shown in [1] that these formulas give the solution (3) originally derived

in [6]. (In the one dimensional case the RJem_ initial data is automatically convex

or concave). The same must be true in the multi-dimensional convex or concave

case. Our general, nonconvex results presumably follow from the rather complicated

formulas in [4], although the connection seems to be unclear. P. Sougandis has

verified for us (private communication) that the left and right sides of (3) are always

viscosity sub and super solutions for (H-J).
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