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The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related

NPR1-like proteins are a functionally similar, yet surprisingly diverse family of

transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive

regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later

shown to be negative SAR regulators. The mechanisms involved have been the subject

of extensive research and debate over the years, during which time a lot has been

uncovered. The known roles of this protein family have extended to include influences

over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER)

resident proteins and the development of lateral organs. Recently, important advances

have been made in understanding the regulatory relationship between members of the

NPR1-like protein family, providing new insight regarding their interactions, both with

each other and other defense-related proteins. Most importantly the influence of salicylic

acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4

being considered bone fide SA receptors. Additionally, post-translational modification

of NPR1 has garnered attention during the past years, adding to the growing regulatory

complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops

has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses

in several plant species. Given the wealth of information, this review aims to highlight and

consolidate the most relevant and influential research in the field to date. In so doing,

we attempt to provide insight into the mechanisms and interactions which underly the

roles of the NPR1-like proteins in plant disease responses.

Keywords: NPR1, NPR1-like, systemic acquired resistance, salicylic acid, plant disease, pathogenesis-related

INTRODUCTION

The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), as well as
PATHOGENESIS-RELATED (PR) genes, play a fundamental role in a plant’s response to pathogen
challenge. NPR1 plays a significant role in the establishment of systemic acquired resistance (SAR)
as well as induced systemic resistance (ISR) (Pieterse et al., 1998); it acts as the master key to the
plant defense signaling network, mediating cross-talk between the salicylic acid (SA) and jasmonic
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acid/ethylene (JA/ET) responses. Constitutive NPR1 expression
within wild-type Arabidopsis thaliana ensures a quick response
to SA (Cao et al., 1998). NPR1 is then translocated primarily
to the nucleus where it indirectly activates PR gene expression
by recruiting TGA transcription factors (Zhang et al., 1999;
Despres et al., 2000; Zhou et al., 2000; Kim and Delaney, 2002).
The exact mechanisms involved in NPR1 activation, as well
as NPR1-dependent/independent pathogenesis-related (PR) gene
expression and the overall role of NPR1 in pathogen defense are
important topics of study.

The mechanism by which SA activates NPR1 is not completely
understood, yet a lot has been uncovered in recent years. During
non-stress conditions, NPR1 can be found as a large cytoplasmic
oligomer (Mou et al., 2003). An oxidative burst observed
during SA-induced SAR results in a reducing environment as
the cell recovers (Mou et al., 2003). This redox state then
contributes toward NPR1 monomerization, nuclear localization
and PR gene expression. Activation of various TGA transcription
factors occurs under these conditions (Despres et al., 2000). SA
is believed to achieve reducing conditions in two stages: (1)
induction of oxidative stress reducing genes (2–3 h after SA
treatment) and, (2) NPR1 dependent PR gene expression (12–
16 h after SA treatment) (Horvath and Chua, 1996; Dong, 2004;
Uquillas et al., 2004). Expression of PR genes are essential for
the development of SAR, Arabidopsis mutants deficient in NPR1
show reduced PR gene expression and increased susceptibility to
pathogens (Cao et al., 1994; Roetschi et al., 2001). Hence NPR1
plays an integral part in the efficacy of plant immune responses.

In studied plant species, two to six NPR1-like genes have
been found. This family of proteins contain ankyrin repeats
and Broad Complex, Tramtrack and Bric a brac/Pox virus
and Zinc finger (BTB/POZ) domains, two well documented
protein–protein interaction domains (Bardwell and Treisman,
1994; Cao et al., 1997; Ryals et al., 1997; Aravind and Koonin,
1999; Hepworth et al., 2005; Li et al., 2006; Spoel et al., 2009).
Phylogenetic analysis separates the NPR1-like proteins into three
distinct clades, suggesting functional divergence (Hepworth et al.,
2005; Zhang et al., 2006). Yet, significant overlap in clade
function can be found within the first two clades involved in
positive and/or negative SAR regulation (Liu et al., 2005; Le
Henanff et al., 2009). The third clade seems to be involved in
the development of growing tissues (Hepworth et al., 2005).
The varied functional role of NPR1-like proteins suggests a
complex functionally important family involved in plant immune
responses and development. Thus, this review aims to examine
and consolidate these functions, providing mechanistic insights
regarding pathogen response.

OVERVIEW OF PLANTS RESPONSES TO
PATHOGENS

The interaction between plants and their pathogens has been
studied in some detail. Plant–pathogen interactions involve a
wide variety of systems on both sides, the balance of which
determines the success of either the host or the pathogen
(Lodha and Basak, 2012). Compatible interactions occur when

a plant is unable to coordinate effective defense responses,
enabling the pathogen to colonize and proliferate within the host
(Schenk et al., 2000). In contrast, an incompatible interaction
occurs when defense responses are sufficient at preventing
spread of the pathogen within host tissues (Hammond-Kosack
and Jones, 2000). Successful plant immunity relies on both
non-specific preformed and inducible defense mechanisms as
well as specific induced immune responses. The first line of
defense includes physical barriers such as waxy layers, rigid
cell walls, antimicrobial compounds and secondary metabolites
(Agrios, 2005; Reina-Pinto and Yephremov, 2009). Microbes
which overcome these preformed defenses trigger the next line of
immune responses. The first of these, pattern-triggered immunity
(PTI) is induced by the action of pathogen-recognition receptors
(PRRs) which recognize microbe-associated molecular patterns
(MAMPs) preventing further invasion of host tissues (Jones and
Dangl, 2006; Zipfel, 2009). Additionally, a subset of molecules
referred to as damage-associated molecular patterns (DAMPs),
are passively released from damaged native plant tissue and
capable of activating and perpetuating innate immune responses
(Choi and Klessig, 2016).

With the aim of overcoming PTI, pathogens secrete effector
molecules which target specific host proteins, manipulating host
processes with the purpose of enhancing virulence, a state
referred to as effector triggered susceptibility (ETS) (Jones and
Dangl, 2006). In response, intracellular resistance (R) proteins,
most of which are nucleotide-binding site leucine-rich repeat
(NBS-LRR) proteins, monitor the status of effector targeted plant
proteins or bind directly to them, initiating defense responses
in case of attack (Van der Biezen and Jones, 1998; Jia et al.,
2000; Dangl and Jones, 2001; Deslandes et al., 2003). These
processes initiate effector triggered immunity (ETI), most often
characterized by rapid localized programmed cell death (PCD)
also known as the hyper-sensitive response (HR), which prevents
further spread of the pathogen (Goodman and Novacky, 1994;
Van Loon, 1997; Jones and Dangl, 2006). Tissues distal to the
initial site of infection experience an increased accumulation
of several defense signals, including SA (An and Mou, 2011;
Fu and Dong, 2013). Subsequently, systemic production of a
collection of pathogen-induced antimicrobial proteins known
as PR proteins increase, which enhance resistance to a variety
of pathogens (Van Loon and Van Strien, 1999; Durrant and
Dong, 2004). This signifies the establishment of SAR, a long
lasting systemic broad spectrum resistance which is effective at
preventing infection by a wide variety of pathogenic bacteria,
fungi, oomycetes, viruses and nematodes (Ryals et al., 1996;
Sticher et al., 1997). These basic defenses are intricately
interwoven with numerous interactions both within and amongst
pathways, which through coordinated signaling events comprise
plant immunity.

SALICYLIC ACID AND PHYTOHORMONE
CROSS-TALK

Salicylic acid is a phenolic compound produced by various
prokaryotes and eukaryotes (An and Mou, 2011). In plants,
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its role is as a phytohormone essential to PTI, ETI, and
SAR induction (Pieterse et al., 1998; Durrant and Dong, 2004;
Tsuda et al., 2009). Whereas the JA/ET signaling pathway is
essential for defense against herbivores, insects, and necrotrophic
pathogens, the SA signaling pathway is crucial to immune
responses against biotrophic and hemibiotrophic pathogens
(Shah, 2003; Howe and Jander, 2008). Such pathogen challenge
induces the production of endogenous SA which is vital in
establishing SAR (Malamy et al., 1990; Metraux et al., 1991;
Rasmussen et al., 1991; Gaffney et al., 1993; Delaney et al.,
1994). Consequently, mutants deficient in the accumulation
of SA such as SA induction-deficient 2 (sid2) or enhanced
disease-susceptibility 5 (eds5) and plants expressing the salicylate
hydrolase nahG gene, display compromised SAR induction
(Nawrath and Métraux, 1999; Wildermuth et al., 2001; Nawrath
et al., 2002; van Wees and Glazebrook, 2003). Thus, an
inability to synthesize or accumulate SA is directly correlated
to increased susceptibility to certain pathogens (van Wees and
Glazebrook, 2003). Interestingly, SA influences various other
hormone signaling pathways including JA and ET as well as auxin
(Vlot et al., 2009). In general the balance between these hormones
governs the bulk of host defense signaling (Robert-Seilaniantz
et al., 2011). This is evident through heightened biotroph
resistance resulting in increased susceptibility to necrotrophs and
vice versa (Robert-Seilaniantz et al., 2011).

The biosynthesis of SA relies on two pathways, (1) the
cinnamic acid pathway which requires PHENYLALANINE
AMMONIA LYASE (PAL) and (2) the isochorismate
pathway requiring ISOCHORISMATE SYNTHASE (ICS)
and ISOCHORISMATE PYRUVATE LYASE (IPL) (Verberne
et al., 2000; Wildermuth et al., 2001; Strawn et al., 2007;
Chen et al., 2009b; Vlot et al., 2009). The isochorismate
pathway is regarded as the predominant biosynthetic pathway
during pathogenic threat, evinced by Arabidopsis ics mutants
which accumulate significantly lower levels of SA following
pathogenic stress (Wildermuth et al., 2001; Garcion et al.,
2008), a statement also true in Nicotiana benthamiana and
Solanum lycopersicum (Uppalapati et al., 2007; Catinot
et al., 2008). Several derivatives of SA exist in planta such
as SA O-β-glucoside (SAG), salicyloyl glucose ester (SGE),
methyl salicylate (MeSA), methyl salicylate O-β-glucoside
(MeSAG) and 2,5 dihydroxybenzoic acid (gentisic acid)
(Shulaev et al., 1997; Lee and Raskin, 1998; Seskar et al., 1998;
Belles et al., 1999; Song, 2006; Park et al., 2007; Dean and
Delaney, 2008). Notably gentisic acid is essential to activating
a specific set of PR genes (Belles et al., 1999). In fact, many
of the aforementioned derivates perform specialized roles in
plant immune responses and are required for the complete
induction of SA-dependent defense responses, although
some are still subject to debate (Nobuta et al., 2007; Vlot
et al., 2009; Zheng et al., 2012; Fu and Dong, 2013). Most
notably, MeSA has been proven to act as a signal for SAR in
tobacco, Arabidopsis and potato (Park et al., 2007; Vlot et al.,
2008). However, in Arabidopsis extended exposure to light
following infection can negate the need for MeSA to signal
systemic SAR development (Liu et al., 2011). In addition,
MeSA might also serve as a volatile cautioning signal to

neighboring plants (Koo et al., 2007; Spoel and Dong, 2012).
Other compounds such as SAG and SGE ensure an ample
supply of SA during pathogen challenge as bioactive free SA is
readily hydrolyzed from inactive SAG stored within the vacuole
(Dean et al., 2005).

The role of SA in disease resistance is certainly significant
in all plant species (Malamy et al., 1990; Gaffney et al., 1993;
Delaney et al., 1994; Vernooij et al., 1994; Lawton et al.,
1995). Some pathogens even manipulate SA homeostasis
to promote host invasion (Feys et al., 1994; Zheng et al.,
2012). Several Pseudomonas syringae pathovars produce the
phytotoxin coronatine, which indirectly represses ICS1 and
activates BENZOIC ACID/SALICYLIC ACID CARBOXYL
METHYLTRANSFERASE 1 (BSMT1) expression, which
converts SA into MeSA, to suppress SA accumulation
(Feys et al., 1994; Zheng et al., 2012). Although not
directly responsible for all signal transduction, SA forms
an integral part of a complex network responsible for
signal transduction. Initially, global transcriptional profiling
discovered extensive crosstalk between SA-, JA-, and ET-
pathways in Arabidopsis (Glazebrook et al., 2003). Microarray
expression profiling in Arabidopsis also demonstrated the
true extent of cross-talk between various defense signaling
pathways (Schenk et al., 2003). This interconnected
signaling network serves to fine-tune defense responses
through both antagonistic and synergistic interactions
(Salzman et al., 2005).

Crosstalk between signaling networks is essential to spatial,
temporal and plant–pathogen interaction specificity which
informs trade-offs during challenge by multiple biotic and abiotic
stresses (Spoel and Dong, 2008). However, phytohormone
crosstalk can often be manipulated by pathogens to increase
virulence (Spoel and Dong, 2008). Coronatine produced by
virulent P. syringae for instance, which structurally mimics
jasmonyl-L-isoleucine (JA-Ile), stimulates JA responsive
pathways thereby suppressing SA signaling (Feys et al.,
1994; Bender et al., 1999; Koornneef and Pieterse, 2008).
Furthermore, coronatine accumulation is associated with
increased abscisic acid (ABA) biosynthesis which in turn
leads to reduced SA accumulation, basal defense gene
expression and ultimately heightened susceptibility (de
Torres-Zabala et al., 2007; Mohr and Cahill, 2007). It has
also been clearly demonstrated that auxin, a primary growth
hormone, antagonizes SA accumulation (Wang et al., 2007).
To this effect, the P. syringae effector AvrRpt2 manipulates
auxin homeostasis to promote virulence (Chen et al., 2007).
These examples highlight the extent of crosstalk between
phytohormone pathways which extends beyond SA and JA/ET
antagonism, providing insight into the mechanisms plants
use to overcome pathogenic threat (Spoel and Dong, 2008;
Robert-Seilaniantz et al., 2011). For instance, in wild-type
Arabidopsis infected with P. syringae the accumulation of SA
represses the JA mimicking effects of coronatine, while SA
indirectly prevents the degradation of the auxin repressor
AXR2 thereby avoiding the expression of auxin-responsive
genes (Spoel et al., 2003; Wang et al., 2007). Thus it is clear
that the fundamental link in phytohormone crosstalk is the
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regulation of SA synthesis (Fu and Dong, 2013). For an in-
depth review of the topic see (Robert-Seilaniantz et al., 2011;
Berens et al., 2017).

NONEXPRESSOR OF
PATHOGENESIS-RELATED GENES 1

An indispensable player in the SA-defense response pathway
is NPR1, a protein involved in fundamental responses to
pathogenic challenge. The search for a SA responsive protein led
to the discovery of NPR1, a positive regulator of SAR (Glazebrook
et al., 1996; Cao et al., 1997; Ryals et al., 1997; Shah et al., 1997).
Arabidopsis npr1mutants display increased disease susceptibility
and a decrease in SAR-triggered PR gene expression, specifically
PR1 and PR5 (Cao et al., 1994; Glazebrook et al., 1996). Whereas
complementing npr1 mutants with wild-type NPR1 restores
resistance and PR gene expression (Cao et al., 1997). Various plant
species overexpressing AtNPR1 or its orthologs display enhanced
disease resistance to a wide range of pathogens (Cao et al., 1998;
Chern et al., 2001, 2005b; Lin et al., 2004; Makandar et al., 2006;
Xujing et al., 2006; Malnoy et al., 2007; Potlakayala et al., 2007;
Yuan et al., 2007; Wally et al., 2009; Parkhi et al., 2010b; Le
Henanff et al., 2011; Kumar et al., 2013; Dutt et al., 2015; Molla
et al., 2016). Furthermore, compelling evidence identifies NPR1
as a key element in the crosstalk between the SA and JA/ET
responses (Spoel et al., 2003). Hence NPR1 plays a significant
role in a broad range of defense responses, acting as the master
regulator of plant defense signaling (Dong, 2004).

Specialized domains, specifically the ankyrin repeat and
the BTB/POZ domains, facilitate protein–protein interactions
(Bardwell and Treisman, 1994; Cao et al., 1997; Ryals et al.,
1997; Aravind and Koonin, 1999; Hepworth et al., 2005; Li et al.,
2006; Spoel et al., 2009). While a bipartite nuclear localization
sequence allows for nuclear localization of NPR1 following SA
induction (Kinkema et al., 2000). Consequently a subset of the
TGA family of basic domain/leucine zipper (bZIP) transcription
factors are activated by NPR1 leading to expression of PR genes
and SAR induction (Zhang et al., 1999; Kinkema et al., 2000;
Zhou et al., 2000; Despres et al., 2003). These data suggest
that NPR1 is a transcription cofactor responsible for effecting
SA-dependent signaling, a concept supported by genome-wide
expression analysis of npr1mutants (Wang et al., 2006). However,
recent advances provide a clearer, malleable and intricate picture
of NPR1-dependent defense responses.

NPR1-LIKE FAMILY

Numerous NPR1-like proteins, both putative and confirmed,
have been identified in various plant species (Table 1). All
described NPR1-like proteins contain an ankyrin repeat domain
and BTB/POZ domain indicating high levels of functional
conservation in the NPR1-like family (Bardwell and Treisman,
1994; Cao et al., 1997; Ryals et al., 1997; Aravind and
Koonin, 1999; Hepworth et al., 2005; Li et al., 2006; Spoel
et al., 2009). However, as the list of NPR1-like proteins in

TABLE 1 | NPR1-like proteins.

Common name Latin name Reference

Arabidopsis Arabidopsis thaliana Cao et al., 1997; Hepworth

et al., 2005; Liu et al., 2005

Apple Malus pumila Malnoy et al., 2007

Apple Malus hupehensis Zhang et al., 2012

Rice Oryza sativa Goff et al., 2002

Poplar Populus trichocarpa Tuskan et al., 2006

Tobacco Nicotiana tabacum Liu et al., 2002

Tobacco Nicotiana glutinosa Zhang et al., 2010c

Grapevine Vitis vinifera Le Henanff et al., 2009

Norton grapevine Vitis aestivalis cv.

Norton

Zhang et al., 2013

Cotton Gossypium hirsutum Zhang et al., 2008

Asian pear Pyrus pyrifolia Faize et al., 2009

Sweet potato Ipomoea batatas Chen et al., 2009a

Papaya Carica papaya Zhu et al., 2003;

Peraza-Echeverria et al.,

2012

Banana Musa acuminata Endah et al., 2008

Banana Musa spp. ABB Zhao et al., 2009

Tomato Solanum lycopersicum The Tomato Genome, 2012

Mustard greens Brassica juncea Meur et al., 2006

Soybean Glycine max Sandhu et al., 2009

Cacao tree Theobroma cacao Shi et al., 2010

Sugar cane Saccharum spp. Chen et al., 2012a

Coffee Coffea arabica Barsalobres Cavallari et al.,

2013

Orchid Phalaenopsis aphrodite Chen et al., 2013

Wheat Triticum aestivum L. Diethelm et al., 2014

Beet Beta vulgaris Kuykendall et al., 2007

Avocado Persea americana Backer et al., 2015

Coconut palm Cocos nucifera L. Nic-Matos et al., 2017

Gladiolus Gladiolus hybridus Zhong et al., 2015

Canola Brassica napus Potlakayala et al., 2007

Peanut Arachis hypogaea Wu et al., 2014

Oriental lily Lilium ’Sorbonne’ Wang et al., 2017

Eucalyptus Eucalyptus grandis Naidoo et al., 2013

List of plant species which either code for putative or confirmed NPR1-like proteins.

different plant species increases, so does the complexity and
variability in function. In Arabidopsis alone, five additional
NPR1-like genes have been described: AtNPR2, AtNPR3,
AtNPR4, AtNPR5/AtBOP1 and AtNPR6/AtBOP2 (Ha et al., 2004;
Hepworth et al., 2005; Liu et al., 2005; Zhang et al., 2006).

Phylogenetic analysis reveals that the NPR1-like family
classifies into three clades (Figure 1) (Hepworth et al., 2005;
Zhang et al., 2006). Each clade seems to fall into a distinct
functional niche. Clade 1 (AtNPR1 and AtNPR2) is involved
with positive SAR regulation, clade 2 (AtNPR3 and AtNPR4)
with negative SAR regulation and clade 3 (AtBOP1 and AtBOP2)
with growth and development of leaves and flowers (Cao et al.,
1998; Hepworth et al., 2005; Zhang et al., 2006). These clades are
not always functionally robust and as such phylogenetic analyses
alone are insufficient for functional annotation (Liu et al.,
2005; Zhang et al., 2006; Le Henanff et al., 2009). Nonetheless
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FIGURE 1 | NPR1-like protein family. Three clades of the NPR1-like family of proteins from both vascular and non-vascular plant species. Clade I (AtNPR1 and

AtNPR2) contains known positive regulators of SAR while clade II (AtNPR3 and AtNPR4) contains known negative regulators of SAR and clade III contains NPR1-like

proteins involved in the development of lateral organs. Adapted from Backer et al. (2015).

phylogenetic grouping provides a foundation for understanding
functional variability among NPR1-like proteins.

NPR1 IN CROSSTALK

Effective defense responses rely on correct activation of
either the SA- and JA-defense response pathways (Glazebrook,
2005). Although known to interact synergistically, the SA-
and JA-defense response pathways are commonly regarded as
antagonistic (Felton and Korth, 2000; van Wees et al., 2000;
Glazebrook, 2005; El Oirdi et al., 2011). In so doing, plants ensure
minimal fitness loss whilst safeguarding disease resistance (Mur
et al., 2006; Koornneef and Pieterse, 2008). Research by Spoel
et al. (2003) clearly demonstrates antagonistic crosstalk between
the SA and JA pathways. In wild-type Arabidopsis the combined
exogenous application of SA and MeJA favors activation of
the SA-defense response pathway, evident through increased

PR1 expression and simultaneous suppression of JA-responsive
defense gene expression (Spoel et al., 2003). Furthermore, the
simultaneous infection of Arabidopsis with both biotrophic and
necrotrophic pathogens results in an increased susceptibility to
the latter, indicating JA defense suppression via the SA pathway
(Spoel et al., 2003, 2007). However, crosstalk seems to be limited
to local tissues, thereby preventing necrotrophic pathogens from
capitalizing on the suppressed JA response pathway in systemic
tissue (Spoel et al., 2007). Suppression also appears to be
mediated by cytoplasmic NPR1 which upon SA induction limits
JA dependent signaling (Spoel et al., 2003; Ndamukong et al.,
2007; Yuan et al., 2007).

Interestingly some pathogens can manipulate this cross talk
to promote disease. A necrotrophic fungus, Botrytis cinerea,
expresses an exopolysaccharide which induces the SA pathway
thereby preventing JA dependent gene expression (El Oirdi et al.,
2011). El Oirdi et al. (2011) demonstrated the role of NPR1
in B. cinerea pathogenesis by infecting tomato plants in which
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NPR1 had been silenced. Such NPR1 deficient lines showed
significantly reduced disease symptoms. Additionally, transgenic
Arabidopsis overexpressing NPR1 show enhanced B. cinerea
susceptibility (El Oirdi et al., 2011). This concept is supported
by the observation that NPR1 may play a role in preventing the
accumulation of SA during herbivory (Rayapuram and Baldwin,
2007). In NPR1-silenced Nicotiana attenuata, SA accumulation
was accompanied by an increased susceptibility to herbivores,
suggesting that NPR1 might suppress SA production allowing
JA-mediated defense responses to dominate (Rayapuram and
Baldwin, 2007). Indeed, NPR1 has been shown to prevent the
accumulation of SA by negatively regulating ICS1 upon entry
into the nucleus (Zhang et al., 2010a). Additionally, Arabidopsis
npr1mutants are deficient in mounting ISR (Pieterse et al., 1998).
The Cauliflower mosaic virus (CaMV) protein P6 is associated
with repressing the SA- and enhancing the JA-defense response
pathways (Love et al., 2012). Interestingly, P6 is implicated in
the accumulation of inactive NPR1 within the nucleus, an avenue
which likely enforces its’ effect (Love et al., 2012). Thus, NPR1
is essential in both the SA and JA/ET pathways, regulating the
accumulation of SA to activate the appropriate defense signal.

MONOMERIZATION OF NPR1

Although NPR1 is involved in hormone cross talk, its’ main
purpose is establishing SAR through PR gene expression (Cao
et al., 1994; Delaney et al., 1995; Glazebrook et al., 1996; Shah
et al., 1997). Achieving this requires the nuclear localization
of monomeric NPR1 which interacts with TGA transcription
factors to form a transcriptional complex (Zhang et al., 1999;
Despres et al., 2000; Zhou et al., 2000; Kim and Delaney,
2002). This complex then associates with an activation sequence-
1 (as-1)-like motif within the PR promoter (Lebel et al., 1998;
Strompen et al., 1998; Jakoby et al., 2002). Factors such as NIM-
INTERACTING2 (NIMIN-2), SNI1, NPR3, and NPR4 seem to
be negative regulators which fine-tune NPR1-dependent gene
expression (Li et al., 1999; Weigel et al., 2001; Chern et al., 2005a;
Zhang et al., 2006; Zwicker et al., 2007).

The nuclear localization of NPR1 is essential for the expression
of PR genes (Despres et al., 2000; Kinkema et al., 2000; Mou
et al., 2003). Preceding cellular oxidative stress NPR1 is primarily
found within the cytoplasm in an oligomeric form, though some
notable exceptions exist (Kinkema et al., 2000; Mou et al., 2003;
Le Henanff et al., 2009; Zhang et al., 2010c; Maier et al., 2011;
Peraza-Echeverria et al., 2012; Shao et al., 2013). The production
of SA and subsequent oxidative stress decreases cellular reduction
potential enforcing an increased production of reducing agents
(Mou et al., 2003). Thioredoxins, in particular thioredoxin
H-type 3 (TRX-h3) and thioredoxin H-type 5 (TRX-h5), lead to
the reduction of Cys156 and disassembly of the NPR1 oligomer
(Mou et al., 2003; Tada et al., 2008). Monomeric NPR1 is then
translocated to the nucleus via a bipartite nuclear localization
signal (NLS) where it induces the expression of PR1 (Kinkema
et al., 2000; Maier et al., 2011). Consequently, inhibiting the
formation or nuclear localization of NPR1 monomers decreases
PR1 expression while constitutive monomerization, as in the case

of C82A and C216A point mutants, leads to increased PR1 gene
expression (Kinkema et al., 2000; Mou et al., 2003; Tada et al.,
2008). Hence NPR1 is required as a monomer within the nucleus
to induce SAR-related defense genes.

Remarkably NPR1 can be constitutively localized within the
nucleus of tobacco and grapevine (Le Henanff et al., 2009;
Maier et al., 2011). In spite of this, NPR1 within these species
still seems to be dependent on SA (Le Henanff et al., 2009;
Maier et al., 2011). Moreover, C82A and C216A mutants display
even higher expression of PR genes following SAR induction
(Mou et al., 2003). Confirmation of the SA-dependent nature
of NPR1 came from Kinkema et al. (2000), proving that
NPR1 nuclear localization was insufficient at inducing SAR in
the absence of inducers such as INA (2,6-dichloroisonicotinic
acid) or SA. Hence, mechanisms other than simple nuclear
localization must play a role in controlling NPR1-dependent
transcriptional processes.

TGA TRANSCRIPTION FACTORS AND
NPR1

Although the N-terminal half of AtNPR1 exhibits low levels of
transcriptional activity it is not likely to induce expression of PR1
sufficiently (Zhang et al., 1999; Rochon et al., 2006). However,
tobacco NPR1 harbors a stronger transactivation domain which
is sensitive to SA (Maier et al., 2011). In yeast-1-hybrid screens,
a section of NtNPR1 (1–315) exhibits transcriptional activity
superior to the VP16 viral transactivation domain (Maier
et al., 2011). Yeast cells expressing the Gal4 BD:NtNPR1 fusion
protein in SA containing medium had much higher reporter
gene activities than cells in media lacking SA (Maier et al.,
2011). Hence the extent and way NPR1 is regulated differs
between species reflecting their individual evolutionary histories
and environments.

Expression of PR1 in tobacco is highly dependent on as-1-
like promoter elements known to be responsive to SA (Strompen
et al., 1998). Several members of the TGA family of basic leucine
zipper protein (bZIP) transcription factors associate with the as-
1-like promoter element (Strompen et al., 1998; Zhang et al.,
1999). Interestingly NPR1 has the ability to strongly interact
with several of these transcription factors, namely; TGA1, TGA2,
TGA3, TGA4, TGA5, TGA6, and TGA7 (Despres et al., 2000;
Zhou et al., 2000; Johnson et al., 2003; Rochon et al., 2006).
Interaction occurs predominantly within the nucleus where
NPR1 activates TGA transcription factors by increasing their
DNA binding affinity, evident through improved TGA2-as-1-
like complex formation in the presence of wild-type NPR1
(Despres et al., 2000; Subramaniam et al., 2001; Fan and
Dong, 2002). Two as-1-like cis elements can be found within
the PR1 promoter, a positive regulating element, LS7, and a
negative regulating element, LS5 (Lebel et al., 1998). Certain
TGA transcription factors are able to associate with either of
these elements, an association which is significantly enhanced
by the presence of NPR1 (Despres et al., 2000). This suggests
that NPR1 may not only serve to activate gene transcription
but also suppress it in order to establish SAR (Despres et al.,
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2000). Further corroboration for the fundamental role of TGA
transcription factors in regulation of defense gene expression
was found in the promoters for SA-induced genes which
showed an overrepresentation of the TGA2 binding sequence
TGACTT (Ding et al., 2018).

In rice, Arabidopsis NPR1 binds to several bZIP transcription
factors: rTGA2.1, rTGA2.2, rTGA2.3, rLG2 (Chern et al., 2001).
Correspondingly, rTGA2.1 associates with the Arabidopsis as-
1-like promoter element as well as the rice RCH10 proximal
promoter element (Chern et al., 2001). Tobacco contains several
TGA transcription factors which are also capable of interacting
with Arabidopsis NPR1, TGA2.1 and TGA2.2 (Niggeweg et al.,
2000b). In addition both of these transcription factors are
capable of binding to as-1-like elements (Niggeweg et al.,
2000a,b). Tomato NPR1 was also found to associate with bZIP
transcription factors which show high sequence similarity to the
Arabidopsis TGA family of bZIP transcription factors (Zhang
et al., 1999). Thus, a collectively conserved evolutionary role for
NPR1 and TGA transcription factors is believed to exist in most
if not all plant species.

Several studies have tried to address the in vivo role of
TGA transcription factors (Pontier et al., 2001; Fan and Dong,
2002; Johnson et al., 2003; Zhang et al., 2003). In tobacco a
TGA2 dominant-negative mutant resulted in increased PR1,
PR2 and PR3 induction after SA treatment and enhanced
disease resistance (Pontier et al., 2001). Contrastingly, a different
dominant-negative TGA2 mutant led to decreased PR gene
induction and enhanced disease susceptibility in both tobacco
and Arabidopsis (Niggeweg et al., 2000b; Fan and Dong,
2002). These seemingly contrasting results are most likely due
to the unknown interactions of dominant-negative mutants
with other TGA transcription factors (Zhang et al., 2003). It
seems that TGA2, TGA5, and TGA6 serve redundant roles in
NPR1-dependent gene expression (Zhang et al., 2003). Either
transcription factor is able to restore wild-type PR gene induction
or basal expression levels in the tga6-1tga2-1tga5-1 triple mutant
(Zhang et al., 2003).

While tga6-1tga2-1tga5-1 triple knockout mutants had
reduced PR gene induction, basal levels of these genes were up
to 50-fold higher (Zhang et al., 2003). This would suggest a
negative role of TGA factors in basal PR expression yet a positive
requirement for induction following SA perception. Yet, another
study provides evidence that TGA2 is unable to bind to the PR1
promoter in the absence of SA (Johnson et al., 2003). However,
an elegant study by Rochon et al. (2006) clarified the conflicting
evidence, showing that TGA2 andNPR1 are able to associate with
the PR1 promoter independently of each other in the absence
of SA. Interestingly, NPR1 is capable of associating with TGA2
after SA treatment leading to PR1 expression. The authors suggest
that while TGA2 is a transcriptional repressor, NPR1 becomes
a TGA2 transcriptional co-activator after perception of SA
(Rochon et al., 2006). Indeed, Boyle et al. (2009) demonstrate that
the N-terminal region of TGA2 is a non-autonomous repression
domain required for association with PR1 cis-elements.

Interaction between TGAs and NPR1 is dependent on a
functional ankyrin repeat domain within NPR1 (Zhang et al.,
1999; Zhou et al., 2000; Despres et al., 2003). Although not

essential to the interaction, the N-terminal domain of NPR1
also appears to be responsible for strengthening the interaction
between NPR1 and certain TGAs (Zhou et al., 2000). Several
npr1mutants deficient inmounting an effective SAR response are
unable to interact with Arabidopsis TGA2, TGA3 as well as rice
TGAs (Zhang et al., 1999; Despres et al., 2000; Zhou et al., 2000;
Chern et al., 2001). These mutants, specifically npr1-1, npr1-2,
nim1-2 and npr1-5, have point mutations in the ankyrin repeat
domain (Cao et al., 1994, 1997; Delaney et al., 1995; Glazebrook
et al., 1996; Ryals et al., 1997; Shah et al., 1997).

Redox seems to play yet another essential role in the activity
of both TGA transcription factors and NPR1. The C-terminal
section of interacting TGA transcription factors is required for
NPR1-TGA formation in vitro and in vivo (Zhang et al., 1999;
Zhou et al., 2000; Fan and Dong, 2002). While TGA1 and TGA4
were initially considered unable to interact with NPR1, Despres
et al. (2003) determined that following SA treatment these
transcription factors were able to interact with NPR1 in planta.
Specifically, residues unique to TGA1 and TGA4, Cys260 and
Cys266, mediate the interaction (Despres et al., 2003). During
non-induced conditions these residues form an intramolecular
disulphide bridge which prevents TGA1 from interacting with
NPR1, yet after SA treatment Cys260 and Cys266 are reduced and
TGA1-NPR1 interaction occurs (Despres et al., 2003). Similarly,
exchanging Cys260 and Cys266 for Asn and Ser, respectively,
allows constitutive interaction with NPR1 in the absence of
SA (Despres et al., 2003).

NIM INTERACTING PROTEINS

An additional group of NPR1-interacting proteins are NIMINs
(NIM INTERACTING) proteins (Weigel et al., 2005; Maier
et al., 2011). These proteins are induced by SA or its
functional analogs followed by nuclear localization where
they interact directly with NPR1 forming a ternary complex
with TGA factors (Weigel et al., 2001; Glocova et al., 2005;
Weigel et al., 2005). In Arabidopsis, 35S:NIMIN1 overexpression
abolishes the establishment of SAR and reduced PR expression
(Weigel et al., 2005). However, overexpression of NIMIN1-
2, which encodes for a mutant protein unable to bind to
NPR1, results in near wild-type SAR induction and PR
expression (Weigel et al., 2005). Moreover, knockout nimin1-
1 mutants showed increased PR expression after SA induction
(Weigel et al., 2005). Similar results were obtained through
overexpression of riceNRR, an ortholog ofNIMIN-2 and tobacco
NIMIN-2a (Chern et al., 2005a). In addition, application of
SA/INA to tobacco or Arabidopsis substantially reduces the
NPR1 interaction potential of NIMIN proteins, specifically
NIMIN-1/2 in Arabidopsis and NIMIN-2a/2b/2c in tobacco
(Maier et al., 2011).

The aforementioned interaction is likely to be affected
due to a conformational change which obscures the NIMIN
binding motif in the C-terminal end of NPR1 (Maier et al.,
2011). A single amino acid change in the C-terminal of the
nim1-4 mutant (Arg432Lys) severely impairs its potential to
establish SAR (Ryals et al., 1997). Maier et al. (2011) concluded
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that this mutation rendered the interaction between NIMIN-
1 and NIMIN-2 to NIM1-4 non-responsive to SA in both
Arabidopsis and tobacco. Therefore, NIMIN is clearly involved
in regulating PR expression through modulating NPR1 activity
in response to SA.

In Arabidopsis NIMIN-1, NIMIN-2, and NIMIN-3 prevent
each other from binding to NPR1, this interaction is dependent
on the concentration of each protein and supports a theory
whereby NIMIN proteins differentially interact with NPR1
(Hermann et al., 2013). In unchallenged Arabidopsis plants
NIMIN-3 binds to NPR1 to prevent expression of PR genes
(Hermann et al., 2013). Upon SA detection NIMIN-2 is
quickly induced and although it is not involved in suppressing
PR gene expression it seems to play an unknown role in
immediate/early SA responses (Hermann et al., 2013). NIMIN-1
on the other hand delays the expression of PR genes, preventing
premature activation (Hermann et al., 2013). Similarly, in
challenged tobacco plants overexpression of NIMIN-2a does
not prevent PR expression but rather delays its expression
(Zwicker et al., 2007). Correspondingly, down-regulation of
NIMIN-2a leads to earlier PR gene expression (Zwicker et al.,
2007). Additionally these data suggest that NIMIN-2a may
be involved in priming tissue distal from the primary site
of infection, allowing a quicker response during secondary
infection (Zwicker et al., 2007).

STRUCTURE AND FUNCTION OF NPR1

Two domains are essential for the co-activator function
of NPR1, the BTB/POZ domain in the N-terminal
region as well as a cryptic transactivation domain in
the C-terminal region (Rochon et al., 2006; Boyle et al.,
2009). Exchanging the α2 and α3 helix residues, which
constitute the core of the BTB/POZ domain, with Ala (A-
Sub) or removing the first 110 amino acids (1110NPR1)
of the domain abolishes PR1 expression (Rochon et al.,
2006). However, these mutations do not substantially
reduce TGA2-NPR1 binding, providing evidence that
the BTB/POZ domain is responsible for co-activation
of TGA2 (Rochon et al., 2006). Boyle et al. (2009)
were able to confirm this observation by restoring the
inducible nature of PR1 in Arabidopsis lines containing
A-Sub or 1110NPR1 in which a truncated TGA2, which
lacks the N-terminal repression domain 143:TGA2,
was coexpressed. The authors were able to demonstrate
that the BTB/POZ domain physically interacts with the
N-terminal repression domain of TGA2, negating its
effect (Boyle et al., 2009).

Furthermore, transcriptional activation via the TGA2-NPR1
complex after treatment with SA requires the C-terminal
transactivation domain and two essential cysteine residues,
Cys521 and Cys529, in an oxidized state within this domain
(Rochon et al., 2006). Surprisingly, while full length NPR1
tethered to a Gal4 DNA-binding domain lacks the ability
to activate transcription in the absence of SA, the truncated
1513:NPR1 C-terminal region containing the transactivation

domain can (Rochon et al., 2006). A subsequent study
showed that the N-terminal BTB/POZ domain inhibits
the C-terminal transactivation domain in SA naïve cells
through physical interaction, yet binding of SA to NPR1
disrupts this interaction through a conformational change
(Wu et al., 2012b).

It was not until recently that two independent studies
provided evidence that NPR1 and its paralogs directly interact
with SA, providing invaluable insight into our understanding
of SA perception (Fu et al., 2012; Wu et al., 2012b). In
the first study, using conventional non-equilibrium ligand
binding assays, NPR3 and NPR4 were shown to bind to
SA with low and high affinity, respectively (Fu et al., 2012).
Subsequently, a different approach utilizing equilibrium dialysis
found that NPR1 too can bind to SA with an affinity similar
to that of other known hormone-receptor interactions (Wu
et al., 2012b). This interaction has been confirmed using
three additional methods of detection, irrefutably setting the
role of NPR1 as a bone fide SA receptor (Manohar et al.,
2015). Binding to SA specifically requires Cys521 and Cys529
and the presence of a transition metal, preferably copper,
to facilitate it (Wu et al., 2012b). Although orthologs of
Arabidopsis NPR1 don’t harbor the same cysteine residues, the
presence of similar residues with electronegative side-chains
at comparable positions suggest some likelihood of parallel
transition metal associations in other plant species (Wu et al.,
2012b). This interaction enforces a conformational change in
the C-terminal transactivation domain which reduces its affinity
for the N-terminal BTB/POZ domain (Wu et al., 2012b). The
authors further demonstrated that reducing conditions alone are
not enough for disassembly of the NPR1 oligomer and suggested
that the SA-induced conformational change was required for full
disassembly (Wu et al., 2012b). Thus, the function of NPR1 is
enforced through a conformational changes which rely on direct
interaction with SA.

PARALOGS OF NPR1

Paralogs of NPR1, namely NPR3 and NPR4, appear to be
negative regulators of PR expression (Zhang et al., 2006).
Similar structure in these proteins seems to extend to functional
similarities, from perception of SA to binding of TGAs
(Despres et al., 2000; Kinkema et al., 2000; Subramaniam
et al., 2001; Fan and Dong, 2002; Mou et al., 2003; Rochon
et al., 2006; Zhang et al., 2006; Shi et al., 2013). Initial
research suggested that NPR4 could be a positive regulator of
disease resistance as PR expression priming was compromised
in npr4-2 mutants (Liu et al., 2005). However, npr3 npr4
double mutants displayed increased PR gene expression and
increased disease resistance indicating that npr4-2 contributes
to increased PR expression in npr3 npr4 double mutants
(Zhang et al., 2006). The redundancy of these proteins was
also demonstrated through complementation with NPR3 or
NPR4 (Zhang et al., 2006). Interestingly, NPR3 and NPR4 have
also been shown to increase JA-dependent gene transcription
and de novo JA synthesis following the accumulation of SA
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likely by promoting the degradation of JA repressing JAZ
(JASMONATE ZIM DOMAIN) proteins (Liu et al., 2016). This
suggests that NPR3 and NPR4 are essential in preventing disease
caused by necrotrophic pathogens on tissues affected by ETI-
triggered PCD (Liu et al., 2016). Several studies stimulated
substantial debate regarding the exact role of NPR3/NPR4 in
defense responses (Fu et al., 2012; Wu et al., 2012b; Kuai
et al., 2015). However, their role as co-repressors of SA-
inducible defense gene expression is clearly demonstrated by
Ding et al. (2018).

Originally, NPR3 and NPR4 were proposed to primarily
function as E3 ligases in a model by Fu et al. (2012). The
authors demonstrated that NPR3 and NPR4 possess differing
affinities for SA, thus allowing them to effectively regulate NPR1-
dependent gene expression through CUL3-mediated proteasome
degradation of NPR1 (Fu et al., 2012). In naïve cells with
low SA concentrations, NPR4 which possess the highest
affinity binds to NPR1 preventing ill-timed PR expression
(Fu et al., 2012). Else, in SAR induced cells higher SA
concentrations prevent NPR4-NPR1 association whereas NPR3
gains the ability to interact with NPR1, preventing NPR1-
mediated suppression of the HR (Rate and Greenberg, 2001;
Fu et al., 2012). Thus, NPR1 turnover rate and ultimately the
induction of SAR is determined by the concentration gradient
of SA from the initial site of pathogen infiltration to distal
tissues. However, the model proposed by Fu et al. (2012) is
inconsistent with the ostensible genetic redundancies between
NPR3 and NPR4 (Kuai et al., 2015). Thus suggesting that
NPR3 and NPR4 rather serve redundant roles, in contrast to
independently functioning as SA receptors (Kuai et al., 2015).
Additionally, no observable interaction occurs between NPR1
and NPR3/NPR4 in yeast-2-hybrid assays or NPR3/NPR4 and
Cul3A in co-immunoprecipitation assays (Ding et al., 2018). This
suggests, at least, that determining whether NPR3 and NPR4
participate in post-translational modification of NPR1 requires
further study.

Instead, Ding et al. (2018) demonstrated that NPR3 and
NPR4 are transcriptional co-repressors of SA-induced defense
gene expression which function in parallel and independently
of NPR1. The authors identified npr4-4D (Arg419Gln), a
gain-of-function mutation which renders the mutant protein
insensitive to SA and constitutively represses SA-inducible
defense genes (Ding et al., 2018). Interestingly, mutation of
the equivalent amino acid in NPR1 renders it insensitive
to SA and is arguably the reason why NIM1-4 does not
dissociate from NIMIN1 and NIMIN2 in the presence of
SA (Ryals et al., 1997; Maier et al., 2011). An equivalent
mutation introduced into NPR3 (Arg428Gln) similarly enables
it to suppress defense signaling in the presence of SA,
confirming the redundant roles of NPR3/NPR4 (Ding et al.,
2018). Transcriptional repression of SA-inducible defense genes
was shown to rely on a conserved motif (VDLNETP) within
the C-terminal domain of NPR3 and NPR4 with similarity
to the ethylene responsive element binding factor associated
amphipathic repression motif (EAR; L/FDLNL/F(x)P) (Ohta
et al., 2001; Ding et al., 2018). Furthermore, NPR3/NPR4 work
together with TGA2/TGA5/TGA6 to suppress the expression

of SA-inducible defense genes in SA naïve cells (Ding et al.,
2018). The authors also confirmed that NPR3 and NPR4 bind
to SA with high affinity. Meanwhile NPR4-4D, while still able
to bind to TGA2 and form homodimers, showed a significantly
lower (250-fold) binding affinity, demonstrating that R419 is
essential in the binding of SA (Ding et al., 2018). Similarly,
the NPR1R432Q mutant displays significantly lower SA binding
affinity compared to wild-type NPR1 with no apparent effects
on interactions with TGA2 or NIMIN1 in yeast-2-hybrid assays
(Ding et al., 2018). Thus, both NPR3 and NPR4 are bone
fide SA receptors with highly similar functionality to that
of NPR1, albeit in opposition regarding SA-inducible defense
gene expression.

The BLADE-ON-PETIOLE 1 (BOP1) and BOP2 genes encode
proteins with structure similar to other NPR1-like proteins,
containing both N-terminal BTB/POZ and C-terminal ankyrin
repeat domains (Ha et al., 2003; Ha et al., 2004). However,
the C-terminal of several BOP-like proteins in several plant
species lack essential features characteristic of defense-related
NPR1-like proteins such as a clear bipartite NLS, NIMIN1/2
binding region and the highly conserved NPR1 Arg432 residue
(Backer et al., 2015). These differences seemingly translate
into functional variation as bop1 bop2 double mutants display
an unaltered wild-type response to Pseudomonas infection as
well as SA application (Hepworth et al., 2005; Canet et al.,
2010a). However, some evidence of defense-related functions
exist with BOP1 and BOP2 being implicated in the resistance-
inducing activity of MeJA (Canet et al., 2012). Nonetheless, BOP1
and BOP2 are considered transcriptional co-activators which
function redundantly and share similar transcriptional patterns,
being expressed primarily at the base of lateral organs (Ha et al.,
2004; Hepworth et al., 2005; Norberg et al., 2005; Ha et al.,
2007; McKim et al., 2008; Jun et al., 2010). Correspondingly,
the overwhelming majority of evidence indicates that BOPs
are vital to the growth and development of lateral organs (Ha
et al., 2004, 2007; Hepworth et al., 2005; Norberg et al., 2005;
McKim et al., 2008). Even though they lack a defined NLS, BOPs
can be found within the cytoplasm and nucleus of Arabidopsis
(Ha et al., 2004; Hepworth et al., 2005). Thus unsurprisingly,
BOPs influence transcriptional processes through interaction
with TGA transcription factors (Hepworth et al., 2005; Wu
et al., 2012a). Of relevance is PERIANTHIA (PAN), a TGA
transcription factor with known significance to developmental
processes in Arabidopsis (Chuang et al., 1999; Hepworth et al.,
2005). Interestingly, BOPs have also been implicated in the lignin
biosynthesis pathway (Khan et al., 2012). Hence, members of the
NPR1-like family together make up one of the most important
groups of proteins to study in the field of molecular biology of
plant health and development.

WRKY TRANSCRIPTION FACTORS AND
NPR1

Microarray of the Arabidopsis transcriptome during SAR
revealed that not all genes co-regulated with PR1 contain
the expected TGA binding site in their promoters (Maleck
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et al., 2000). Instead, W-box cis-elements which specifically
bind WRKY transcription factors are more common suggesting
that WRKY transcription factors might repress a subset of SA-
inducible genes, which is alleviated during SAR (Maleck et al.,
2000). Indeed, wrky38 and wry62 single mutants and to a greater
extent wrky38wrky62 double mutants display enhanced disease
resistance and PR1 expression while overexpression has the
opposite outcome (Kim et al., 2008). However, many WRKY
transcription factors are positively associated with defense
signaling, thus the role of this family in defense is complex
(Wang et al., 2006; Zheng et al., 2006; Lai et al., 2008). These
transcription factors are involved in defense against a wide
range of pathogens, with 43 out of 74 WRKY transcription
factors in Arabidopsis being linked to pathogenic stress and
response to SA (Dong et al., 2003; Ulker and Somssich, 2004;
Pandey and Somssich, 2009).

Accordingly, W-box cis-elements are found in several
indispensable SA-inducible defense response gene promoters
including that of ICS1, TL1-binding transcription factor (TBF1)
and PR1 (Eulgem et al., 2000; Wildermuth et al., 2001; Turck
et al., 2004; Pajerowska-Mukhtar et al., 2012). Furthermore,
the presence of multiple W-boxes within the NPR1 promoter
suggest that NPR1 may be transcriptionally regulated in this
manner (Yu et al., 2001). Yu et al. (2001) demonstrated that
WRKYs are likely involved in positively regulating the expression
of NPR1, although the exact WRKY is yet to be identified.
Nonetheless, WRKY transcription factors are regulated in both
NPR1-dependant and independent manners (Yu et al., 2001;
Dong et al., 2003; Wang et al., 2006; Mao et al., 2007;
Spoel et al., 2009).

Interestingly, the CmYLCV promoter from Cestrum yellow
leaf curling virus contains both the as-1 and W-box cis-
elements in close proximity which associate with both TGA3
and WRKY53 (Sarkar et al., 2018). These elements are
essential to the SA-inducibility of the promoter, suggesting
that in certain instances both TGA and WRKY transcription
factors may work together to regulate transcription (Sarkar
et al., 2018). Surprisingly, not only do these transcription
factors interact, they require functional NPR1 to induce
expression of Gus under control of the CmYLCV promoter
after treatment with SA (Sarkar et al., 2018). Given the
complexity of the interactions described here the possibility
exists that NPR1 is both positively and negatively regulated
by various WRKY transcription factors, although this requires
further investigation.

ER RESIDENT PROTEINS AND NPR1

Several genes involved in the secretory pathway are upregulated
by NPR1, the most notable are LUMINAL BINDING PROTEIN
2 (BiP2), Sec61α, DEFENDER AGAINST APOPTOTIC DEATH
1 (DAD1), and CALRETICULIN 3 (CRT3) (Wang et al., 2005;
Pajerowska-Mukhtar et al., 2012). These secretion-related genes
all have a common promoter cis-element (TL1) which is
bound by TBF1 a heat shock factor-like transcription factor
instrumental in the growth-defense transition (Wang et al.,

2005; Pajerowska-Mukhtar et al., 2012). Increased expression of
secretory pathway genes most likely accommodates increased
PR protein production during SAR, ensuring proper protein
folding (Wang et al., 2005). Support for this conclusion came
from mutants of BiP2, Sec61α, and DAD1 which all had reduced
PR1 secretion after BTH treatment and compromised defense
against P. syringae (Wang et al., 2005). Similarly, tbf1 mutants
have unaltered PR1 transcript and protein levels yet significantly
less protein is secreted into the apoplast (Pajerowska-Mukhtar
et al., 2012). Furthermore, the link between TBF1 and NPR1
is evident from tbf1 and npr1-1 mutants which are both
similarly compromised in the expression of BiP2 and CRT3
(Pajerowska-Mukhtar et al., 2012). Thus, the expression of
NPR1 and TBF1 are likely co-dependent with the authors
suggesting that TBF1 might control NPR1 directly through TL1
elements in the promoter, or indirectly through WRKYs, while
NPR1 may control TBF1 through TGAs directly or WRKYs
indirectly as both contain the appropriate elements in their
promoters, respectively.

NPR1 IN PRIMING

Priming is a process which enhances plant defense responses,
enabling earlier and stronger induction of defense genes
and enhanced pathogen resistance (Prime et al., 2006).
In fact, SAR prepares a plant to defend against future
pathogenic stress through priming (Conrath et al., 2002;
Prime et al., 2006). Thus unsurprisingly, NPR1 is essential
in SA-induced priming in Arabidopsis (Kohler et al., 2002;
Jung et al., 2009). Of note are pathogen-responsive mitogen-
activated protein kinase 3 (MPK3) and MPK6 which are
essential to SAR and SA-mediated priming of defense
responses (Beckers et al., 2009). Following application of
BTH, MPK3/MPK6 mRNA and inactive unphosphorylated
proteins accumulate (Beckers et al., 2009). Interestingly, the
authors demonstrated that priming of MPK3/MPK6 is NPR1-
dependant as npr1 mutant Arabidopsis plants fail to display
the same response. Yi and Kwon (2014) and Yi et al. (2015)
demonstrated the importance of this finding as NPR1-dependant
priming affects early signaling events, such as flg22-triggered
MAPK activation.

Furthermore, priming has been shown to affect the progeny of
primed Arabidopsis as descendants display enhanced resistance
against biotic stresses without additional treatment (Luna et al.,
2012; Rasmann et al., 2012; Slaughter et al., 2012). This
transgenerational immune memory requires functional NPR1
(Luna et al., 2012). Transgenerational immune memory relies,
at least in part, on increased H3K9 acetylation of the PR1,
WRKY6 and WRKY53 promoters (Luna et al., 2012). Quite
surprisingly, the histone deacetylase HDAC19 was shown to be
both SA- and NPR1-dependant (Choi et al., 2012). Meanwhile,
NPR1 is involved in BTH and Psm induced increases in H3K4
trimethylation and subsequent gene activation of the WRKY6,
WRKY29 and WRKY53 promoters (Jaskiewicz et al., 2011).
Together these studies suggest a role for NPR1 in histone
modification to enforce priming of SA-induced defense genes,
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however, understanding the exact part that NPR1 plays in these
processes requires further investigation.

POST-TRANSLATIONAL MODIFICATION
OF NPR1

An important topic which adds to the complexity of NPR1-
dependant transcriptional regulation is that of post-translation
modification. The importance of NPR1 post-translational
modification is exemplified by regulation of the oligomer-
monomer transition in which NPR1 Cys156 is S-nitrosylated
by S-nitrosoglutathione (GSNO) promoting the existence of
NPR1 in its oligomeric form, opposing the action of SA-induced
thioredoxins (Tada et al., 2008).

Additionally, proteasome-mediated turnover of NPR1 within
the nucleus is a requirement for the complete induction of
SAR (Spoel et al., 2009). While the antagonistic effects of
ABA and SA, which promote and protect against proteasome-
mediated degradation, respectively, maintain homeostasis and
ensure appropriate defense-related gene expression (Ding et al.,
2016). Cullin 3 (CUL3) E3 ligase-facilitated ubiquitinylation
and subsequent proteasome degradation is initiated within
the N-terminal IκB-like phosphodegron motif of NPR1 (Spoel
et al., 2009). Phosphorylation of Ser11/15 present in the
phosphodegron motif signals proteasome-mediated degradation
(Spoel et al., 2009). Yet, even though degradation of NPR1 is
reduced and basal resistance is elevated in npr1S11A/S15A, high
levels of accumulated NPR1 within the cell prevent HR and
the establishment of SAR (Spoel et al., 2009). Compromised
induction of SAR is also observed inmutants of NPR1-dependent
genes wrky18 and wrky38 wrky62, and similarly in cul3a cul3b
mutants in which NPR1 is not degraded (Spoel et al., 2009).
Hence, turnover seems to be necessary for effective activity
of NPR1 (Spoel et al., 2009). This is somewhat expected as
inherent instability of transcription factors necessitates turnover
in order to preserve peak expression of target genes and is thus
conceivably so for co-activators (Salghetti et al., 2000; Collins and
Tansey, 2006; Spoel et al., 2009). However, NPR1 does not interact
directly with CUL3 and E3 ligases, likely requiring substrate
adapters to facilitate degradation, however, attempts to uncover
such adapters have not been conclusive (Dieterle et al., 2005;
Spoel et al., 2009; Fu et al., 2012).

Interestingly, small ubiquitin-like modifier 3 (SUMO3),
which is positively involved in SA-induced defense gene
expression, interacts with and sumoylates NPR1 following SA
treatment (Wang et al., 2006; van den Burg et al., 2010; Saleh
et al., 2015). This interaction requires a SUMO-interaction
motif (VIL)-(VIL)-x-(VIL) found within the ankyrin repeat
domain of NPR1 (Saleh et al., 2015). Sumoylation alters the
association of NPR1 with WRKY and TGA transcription factors,
decreasing and increasing association, respectively (Saleh et al.,
2015). In addition to the IκB-like phosphodegron motif at
Ser11/15, another exists at Ser55/59 and their phosphorylation
status influences the ability of SUMO3 to sumoylate NPR1
(Saleh et al., 2015). Phospho-mimic npr1S55D/S59D prevents
NPR1 sumoylation while npr1S11D/S15D enhances interaction

with SUMO3 and leads to further sumoylation (Saleh et al.,
2015). Additionally, SUMO3 is required for phosphorylation
of Ser11/15 forming a signal amplification loop which
activates more NPR1 increasing defense gene activation
and simultaneously targeting NPR1 for ubiquitinylation and
degradation by the 26S proteasome (Spoel et al., 2009; Saleh et al.,
2015). Together with the results obtained by Spoel et al. (2009),
this work emphasizes the importance of NPR1 stability, through
post-translational modification, to fine-tune NPR1-dependant
defense responses.

Thus unsurprisingly, several kinases have been implicated in
the phosphorylation of NPR1 (Xie et al., 2010; Lee et al., 2015).
A pathogen-responsive member of the sucrose non-fermenting 1
(SNF1)-related kinase 3 (SnRK3) subgroup, PROTEIN KINASE
SOS2-LIKE5 (PKS5) physically interacts with NPR1 (Xie et al.,
2010). The authors demonstrate that PKS5 phosphorylates
the C-terminal region of NPR1, which contains the Cys-
oxidized transactivation domain as well as the bipartite NLS.
The Arabidopsis pks5 mutant as is with the npr1S11A/S15A

mutant displays reduced expression of WRKY38 and WRKY62
(Spoel et al., 2009; Xie et al., 2010). Thus it seems that
through phosphorylation of NPR1, PKS5 positively regulates the
expression ofWRKY38 andWRKY62 (Xie et al., 2010).

Similarly, SNF-1 RELATEDPROTEINKINASE 2.8 (SnRK2.8)
interacts with and phosphorylates NPR1, specifically Ser589
and likely also Thr373, which are required for nuclear import
of NPR1 and subsequent PR1 gene expression (Lee et al.,
2015). Interestingly, SnRK2.8 is produced in response to SA-
independent systemic signals and has been implicated in the
induction of systemic immunity (Lee et al., 2015). It is possible
that, similar to SnRK2.6, nitric oxide (NO) might play a role in
SnRK2.8 activation as it plays a proven role in the import of
NPR1 monomers into the nucleus of cells in distal tissues during
SAR (Lindermayr et al., 2010; Lee et al., 2015). Furthermore,
Ser589 resides within the second NLS found in NPR1 (NLS2)
(Kinkema et al., 2000). The authors suggest a model by which
SA-dependent NPR1 nuclear import, for which NLS1 is required,
is predominant close to the site of infection, while distal tissues
with only slightly elevated levels of SA, rely on phosphorylation
of NLS2 by SnRK2.8 (Kinkema et al., 2000; Lee et al., 2015).
Therefore, multisite phosphorylation is clearly a defining feature
of NPR1 function and warrants further investigation.

CIRCADIAN RHYTHM AND NPR1

In plants the circadian clock is crucial for synchronizing immune
strategies, while redox signaling plays an important role in its
implementation (Karapetyan and Dong, 2018). SA levels oscillate
throughout the day in a circadian rhythm (Goodspeed et al.,
2012). This oscillation is involved in establishing the redox
rhythm and influencing the expression of circadian clock genes
(Zhou et al., 2015). Captivatingly, the expression of TIMING
OF CAB2 EXPRESSION 1 (TOC1), an evening circadian clock
gene, is upregulated by the application of SA. However, the
timing of its expression does not change irrespective of whether
SA is applied at dawn or dusk (Zhou et al., 2015). Due to the
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FIGURE 2 | A working model of NPR1, NPR3, and NPR4. The left side of the diagram, partially separated by a dashed line, depicts the regulation of

NPR1-dependant defense genes in SA naïve cells. At low SA concentrations, S-nitrosylation of NPR1Cys156 by GSNO encourages the existence of NPR1 in its

oligomeric form. The oligomeric form of NPR1 is predominantly found within the cytoplasm. To prevent the uninduced expression of SAR-related genes, several

mechanisms are in place to suppress NPR1-dependant defense gene expression. Phosphorylation of NPR1Ser55/59 suppresses defense gene expression and

prevents sumoylation of NPR1 by SUMO3, an important aspect of NPR1 activation. The N-terminal BTB/POZ domain of NPR1 interacts with and suppresses the

function of the C-terminal transactivation domain of NPR1. Additionally, NIMIN proteins interact with NPR1 to suppress gene expression. Paralogs of NPR1, NPR3,

and NPR4, interact with TGA2/TGA5/TGA6 to further suppress transcription. Certain WRKY transcription factors act as transcriptional repressors of a subset of

(Continued)
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FIGURE 2 | Continued

SAR-related genes. Finally, NPR1 is degraded by the 26S proteasome following CUL3-mediated ubiquitinylation. However, NPR1 is unable to directly interact with

CUL3 and E3 ligases, likely requiring a substrate adapter. The right side of the diagram depicts NPR1 regulation in SAR-induced cells where SA concentration is

elevated either due to exogenous application of SA/one of its functional analogs or during biotrophic/hemibiotrophic pathogen challenge. Increased oxidative stress

and subsequent increases in antioxidant production leads to the reduction of NPR1Cys156, specifically by thioredoxins, leading to the disassembly of the NPR1

oligomer. Within the cytoplasm, NPR1 antagonizes the JA-defense response pathway. Monomeric NPR1 is then translocated to the nucleus via the action of a

bipartite nuclear localization signal. Within the nucleus, NPR1 suppresses the expression of ICS1 which is essential to SA synthesis in response to pathogenic stress,

forming a negative feedback loop. Phosphorylation of NPR1Ser11/15 within the N-terminal IκB-like phosphodegron motif both enhances interaction with SUMO3 and

targets NPR1 for ubiquitinylation and degradation by the 26S proteasome. Sumoylation of NPR1 by SUMO3 also increases and decreases association of NPR1 with

TGA and WRKY transcription factors, respectively. SUMO3 is also required for phosphorylation of NPR1Ser11/15, creating an amplification loop which leads to the

activation of more NPR1, increasing SAR-related gene expression. Interaction of SA and NPR1 requires a transition metal. Following binding of SA to NPR1 a

conformational change of C-terminal transactivation domain of NPR1 decreases its affinity for the inhibitory N-terminal BTB/POZ domain. In turn, the BTB/POZ

domain of NPR1 interacts with the N-terminal repression domain of TGA transcription factors, thereby activating transcription. Furthermore, binding of SA to NPR1

alters its interaction with NIMINs, relieving repression. Moreover, binding of SA to NPR3/NPR4 diminishes their ability to suppress SAR-related gene expression.

Turnover of NPR1 through degradation by the 26S proteasome is essential to preserving peak gene expression and is required for the complete induction of SAR.

redox sensitivity of NPR1, Zhou et al. (2015) hypothesized that
NPR1 might play a role in the expression of TOC1. Indeed,
they demonstrated that basal and SA-induced expression of
TOC1 was reduced and abolished, respectively, in npr1 mutants
(Zhou et al., 2015). This concept was further supported as NPR1
displayed increased association with TGA-binding sites of the
TOC1 promoter in a SA-dependent manner (Zhou et al., 2015).
The NPR1 monomer also shows a circadian oscillation, peaking
at night (Zhou et al., 2015). The influence that NPR1 has on
TOC1 is reliant on its translocation into the nucleus as trx-
h3 trx-h5 mutants showed decreased basal TOC1 expression
and decreased responsiveness to SA (Zhou et al., 2015). Thus,
oscillation in SA and subsequent redox changes drive the nuclear
translocation of NPR1, which is required for the regulation
of TOC1 (Zhou et al., 2015). However, these findings do not
fully explain why SA-application at dawn showed a delayed
induction of TOC1 until dusk. Through mathematical modeling
and in planta confirmation it was shown that NPR1 regulates the
morning clock gene LATE ELONGATED HYPOCOTYL (LHY),
a known antagonist of TOC1 (Zhou et al., 2015). This study
underpins the importance of NPR1 in defense responses as well
as the circadian clock, by interlacing these processes the plant
can prioritize growth over increased immunity at night while
increasing immunity at dawn when the threat from pathogens is
highest (Nozue et al., 2007; Bhardwaj et al., 2011; Korneli et al.,
2014; Zhou et al., 2015).

NPR1 IN TRANSGENIC CROPS

Arabidopsis NPR1 has been overexpressed in a multitude of
agricultural crops and can enhance resistance to a variety of
biotrophic and necrotrophic pathogens (Cao et al., 1998; Chern
et al., 2001, 2005b; Lin et al., 2004; Makandar et al., 2006;
Xujing et al., 2006; Malnoy et al., 2007; Potlakayala et al., 2007;
Yuan et al., 2007; Wally et al., 2009; Parkhi et al., 2010b;
Le Henanff et al., 2011; Kumar et al., 2013; Dutt et al.,
2015; Molla et al., 2016). This indicates that a high level of
functional conservation likely exists in all plant species. However,
overexpression studies in rice and strawberry also demonstrated
the negative influences constitutive overexpression of AtNPR1
can have on certain crops (Fitzgerald et al., 2004; Quilis et al.,

2008; Silva et al., 2015). Though, specifically expressing AtNPR1
in only the green tissues of rice, using the PD54O−544 promoter,
conferred resistance to sheath blight disease caused by the fungus
Rhizoctonia solani without any detrimental phenotypic effects
(Molla et al., 2016). This would suggest that more targeted
expression of AtNPR1 might benefit strawberry as well as any
other crops which exhibit sensitivity to global overexpression.

Nevertheless, AtNPR1 overexpression in crops such as wheat,
tomato, carrot, soybean, canola, citrus, tobacco, and cotton
display significantly improved disease resistance and even crop
yield without any negative phenotypic effects (Lin et al., 2004;
Makandar et al., 2006; Potlakayala et al., 2007; Boller and
He, 2009; Wally et al., 2009; Parkhi et al., 2010a,b; Gao
et al., 2013; Kumar et al., 2013; Matthews et al., 2014).
Interestingly overexpression ofAtNPR1 seems to have a negligible
effect on basal defense gene expression in many crops, while
significantly increasing the response time and strength of defense
responses (Wally et al., 2009; Zhang et al., 2010b; Kumar et al.,
2013; Boscariol-Camargo et al., 2016). Remarkably, tobacco
overexpressing AtNPR1 also displayed increased resistance to
the herbivore Spodoptera litura (Meur et al., 2008). Thus, in
many cases increasing NPR1 expression not only increases broad
spectrum disease resistance but does so without negative impacts
on plant growth.

Overexpression of Rice NPR1 (OsNPR1/NH1) in Arabidopsis
is able to complement the npr1mutant, however, several negative
consequences are observed, including enhanced herbivore
susceptibility (Yuan et al., 2007). This, however, suggests a
role for NH1, like that of AtNPR1, in crosstalk between the
SA- and JA-defense signaling pathways. Yet, these observations
together with the negative phenotypic effects observed during
overexpression of AtNPR1 in rice while such deleterious
effects are absent in many other crops, would suggest that
some notable differences exist between species regarding the
regulation of NPR1. The high basal level of SA in rice which
remains unaltered following pathogen infection contrasts with
that of Arabidopsis and tobacco and supports such a theory
(Quilis et al., 2008; Dempsey et al., 2010). Therefore, although
NPR1 may serve functionally conserved roles in all plant
species, the underlying mechanisms which regulate NPR1-
dependant pathways need to be understood for the species
under investigation.
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Overexpression of AtNPR1 orthologs from several plant
species have also been studied (Malnoy et al., 2007; Potlakayala
et al., 2007; Le Henanff et al., 2009, 2011; Shi et al., 2010; Chen
et al., 2012b; Yocgo et al., 2012; Zhang et al., 2013; Wang et al.,
2017). Apple AtNPR1 orthologs MhNPR1 (Malus hupehensis)
and MpNPR1 (Malus pumila) enhanced resistance to several
important pathogens in Malus x domestica (Malnoy et al., 2007;
Chen et al., 2012b). Likewise, overexpression of LhSorNPR1 from
the oriental hybrid lily ‘Sorbonne’ in Arabidopsis increased wild-
type resistance to P. syringae (Wang et al., 2017). In tobacco,
overexpression ofMhNPR1 increased resistance to B. cinerea and
interestingly, salt tolerance (Zhang et al., 2012, 2014). Similarly,
complementation of Arabidopsis npr1 using VaNPR1.1 (Vitis
aestivalis cv. Norton) increased salt tolerance (Zhang et al., 2013).
Additionally, Arabidopsis npr1mutants are complemented using
BnNPR1 (Brassica napus) while overexpression in B. napus
enhanced resistance to P. syringae without any obvious negative
effects, emphasizing similarity between NPR1-dependant defense
responses in these two species (Potlakayala et al., 2007). However,
NPR1 incompatibility between species is made apparent as apical
dominance is affected in Arabidopsis overexpressing VvNPR1.1
(Le Henanff et al., 2011). These results support the highly
versatile and important role of NPR1 in studied plant species.
For a thorough review on its potential uses in transgenic crop
protection, see Silva et al. (2018).

CONCLUSION AND FUTURE
DIRECTIONS

Since its discovery more than 20 years ago, NPR1 has been
the focus of countless studies. During this time several NPR1-
dependant pathways have been uncovered as have many of
the complex mechanisms governing the regulation of NPR1
(Figure 2). However, much is still left unanswered, owed to
the multifaceted relationships that exist between NPR1, its
paralogs and their interacting partners. Truly grasping the extent
of such interactions requires an increased effort to discover
novel interactions in different species, tissues and during plant–
pathogen specific interactions. A topic pursuant to this which is
severely underrepresented in the literature is that of tissue specific
regulation of NPR1-dependant pathways. Microarray data
suggests that significant differences exist regarding the expression
of NPR1-like genes across various tissues in Arabidopsis (Shi
et al., 2013). Similarly, the expression of avocado NPR1-like
genes exhibit unique spatial preferences (Backer et al., 2015). The
importance of these observations are highlighted in Arabidopsis
npr3 knockout mutants which display increased resistance to
P. syringae on developing flowers but not leaves (Shi et al., 2013).

Important aspects of the regulation of NPR1 function
and homeostasis which require further attention are that of
post-translational modification and proteasome degradation of
NPR1. Important questions have been raised regarding these
processes, including whether NPR3 and NPR4 act as E3 ligases
which lead to the ubiquitinylation of NPR1. Surprisingly, even
though Fu et al. (2012) suggested such a role, a more recent
report failed to detect interactions between either NPR1 and

NPR3/NPR4 or NPR3/NPR4 and CUL3A (Ding et al., 2018).
Given the importance of NPR1 turnover to maintain optimal
NPR1-dependant gene expression and the role post-translational
modifications have in this process, it is imperative to further
characterize and understand the process. Discovering how
exactly NPR1 is ubiquitinylated by CUL3 given the absence
of direct interaction could increase our understanding of
post-translational modification as a means of regulating the
function of NPR1.

Given that NPR1, NPR3, NPR4, BOP1, and BOP2 all function
in the regulation of various transcriptional processes, it is hard
to ignore the possibility that NPR2 may serve a similar yet
undefined function. This is especially true since NPR2 is induced
by biotic stress and was shown to play a significant role in the
perception of SA (Canet et al., 2010b). Phytohormones SA, JA and
ET are known to promote leaf senescence and notably, various
WRKY and bZIP transcription factors are involved (Zhao et al.,
2016). Furthermore, an essential component of SA-induced leaf
senescence in Arabidopsis, MAPK6, influences the activity and
gene expression of NPR1 (Chai et al., 2014). Therefore it is
not surprising that Arabidopsis npr1-5 null mutants which are
impaired in SA biosynthesis suppress precocious leaf senescence
characteristic of pat14mutants (Zhao et al., 2016). Together, these
data clearly suggest that NPR1-dependant signaling is involved
in senescence. Interestingly, Shi et al. (2013) noted that NPR2
transcripts were most abundant in senescent tissue, thus it is
conceivable that NPR2 may serve a similar or even a more direct
role in senescence. Conversely, NPR2 may simply be a redundant
or non-functional paralog of NPR1. In either case, it would be
worthwhile to investigate and determining which transcription
factors interact with NPR2 may be a good place to start.

Given the complex nature of the NPR1-like protein family
and uncertainty surrounding the aspects mentioned above,
caution should be exercised regarding generalizing statements
concerning functions in planta and across species. Instead
emphasis should be placed on describing temporal, spatial and
plant–pathogen interaction specific functions. Nonetheless,
continued research on the NPR1-like protein family is
warranted and will undoubtedly bring forth novel insights
into the molecular pathways involved in plant stress responses
and development.
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