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The nonlinear behavior of a sheared immiscible fluid interface
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The two-dimensional Kelvin–Helmholtz instability of a sheared fluid interface separating
immiscible fluids is studied by numerical simulations. The evolution is determined by the density
ratio of the fluids, the Reynolds number in each fluid, and the Weber number. Unlike the Kelvin–
Helmholtz instability of miscible fluids, where the sheared interface evolves into well-defined
concentrated vortices if the Reynolds number is high enough, the presence of surface tension leads
to the generation of fingers of interpenetrating fluids. In the limit of a small density ratio the
evolution is symmetric, but for a finite density difference the large amplitude stage consists of
narrow fingers of the denser fluid penetrating into the lighter fluid. The initial growth rate is well
predicted by inviscid theory when the Reynolds numbers are sufficiently high, but the large
amplitude behavior is strongly affected by viscosity and the mode that eventually leads to fingers is
longer than the inviscidly most unstable one. ©2002 American Institute of Physics.
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I. INTRODUCTION

The Kelvin–Helmholtz instability of an initially flat in-
terface separating two fluids moving in the opposite direct
is one of the classical problems in fluid mechanics. In
simplest form, the fluids are assumed to be inviscid and
flow irrotational on either side of the interface. Linear stab
ity analysis dates back to the nineteenth century and com
tations of the nonlinear formation of a concentrated vor
are among the earliest examples of computational fluid
namics studies.1 As computers became widely availabl
studies progressed along two paths. Several investigator
amined the evolution of an infinitely thin vortex sheet, sep
rating two potential flow regions. This turned out to be
difficult task due to the ill-posedness of the vortex sh
problem ~and the rapid growth of small perturbations! as
well as the formation of a singularity at the point where t
vortex was expected to appear. The difficulty was eventu
resolved by Krasny2 who showed that a regularization of th
vortex sheet resulted in both a well-posed problem and
elimination of the singularity formation. Other investigato
examined the nonlinear evolution of the full Navier–Stok
equations~see, for example, Refs. 3 and 4! and showed tha
a perturbed shear layer develops into a row of vortices. Tr
gvason, Dahm, and Sbeih5 examined the limit of high Rey-
nolds numbers and a small initial thickness and compa
full Navier–Stokes simulations with the regularized invisc
model of Krasny.2 They showed that while it was not pos
sible to equate the regularization directly to a physical effe
the solution appeared to approach the same limit when

a!Electronic mail: gretar@wpi.edu
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initial thickness was reduced and the Reynolds number
creased, as the solution to the inviscid model when regu
ization was decreased.

The Kelvin–Helmholtz instability of two identical fluids
is now a well understood problem~for early three-
dimensional simulations see Ref. 6, for example!. The corre-
sponding problem for the instability and breakup of flui
with a finite density and viscosity stratification, particular
when the fluids are immiscible and surface tension must
included, is less understood. The effect of surface tension
fluids of equal densities was examined by Hou, Lowengro
and Shelly,7 who assumed that viscous effects could be
nored completely. They found that large surface tension s
pressed roll-up and that the interface instead evolved
long fingers of interpenetrating fluids. When surface tens
was lowered, the fingers folded over and in the limit of sm
surface tension the interface rolled up as in the classical n
linear Kelvin–Helmholtz instability. Pozrikidis8 examined
the other limit of Stokes flows and also found that the int
face can develop elongated fingers and that an increase i
viscosity ratio can destabilize the interface. Both inertia a
viscosity, as well as surface tension, has been included
Lafaurie, Nardone, Scardovelli, Zaleski, and Zanetti9 who
also found the development of long fingers at finite Reyno
numbers. These authors examined the effect of three dim
sionality and found that the two-dimensional fingers that
velop initially can evolve into fully three-dimensional finge
of one fluid pointing into the other fluid.

The importance of understanding the breakup of an
terface separating immiscible fluids of different mater
properties is considerable. Liquid fuels are usually burned
first atomizing a fuel jet to increase the surface area
hence the evaporation rate. In the prediction of spray beh
ior, the initial atomization is both the most critical and th
1 © 2002 American Institute of Physics



f t
o

,

he
e

e
m
th
c
r

th
te
be
e
uc
es
pl

le
-
t

o
as
lts
e
a

ng
g

-

in
an
in

is
c
o
th

ty
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least understood aspect of the spray. The importance o
initial breakup is well demonstrated by the large number
atomizers that have been proposed. See, for example
books by Lefebvre10 and Bayvel and Orzechowski.11

Fluid jets break up in different ways, depending on t
governing nondimensional parameters. When capillary
fects are large, a jet undergoes a Rayleigh instability du
waves longer than its diameter and breaks up into a strea
relatively large drops. When capillary effects are small
jet is unstable to shorter waves that are generally enhan
by aerodynamic effects, resulting in smaller drops. At ve
large Weber numbers the jet breaks up into ligaments~or
‘‘fibers’’ ! that then break up into drops much smaller than
jet diameter. Under atmospheric conditions, where the ex
nal flow has little effect, the jet breakup is believed to
strongly affected by the turbulence level in the jet. Howev
for high pressure combustors, the density ratio is often m
smaller, and the injected jet laminar. For experimental inv
tigations of the different breakup modes see, for exam
Refs. 12 and 13.

Here, we investigate the initial breakup of an immiscib
fluid interface by numerical simulations of the two
dimensional Navier–Stokes equation. This study extends
work of Lafaurieet al.and Houet al.by examining the non-
linear behavior of the two-dimensional shear instability
immiscible fluids with large but finite Reynolds numbers
well as finite density differences. Limited preliminary resu
for two-dimensional shear layers have been reported in R
14 and 15. The second reference also included prelimin
three-dimensional simulations.

II. PROBLEM FORMULATION AND NUMERICAL
METHOD

We examine an initially nearly flat interface separati
two different fluids. The fluid below the interface is movin
to the right with velocityU1 and the fluid on the top is
moving to the left with velocityU2 . The density and viscos
ity of the bottom and top fluids arer1 , m1 and r2 , m2 ,
respectively. The rectangular computational doma
sketched in Fig. 1, has periodic horizontal boundaries
rigid, moving walls at the top and the bottom. The doma
size is the wavelength,l, in the horizontal direction and 2l
in the vertical direction. The evolution of the interface
determined by the velocity difference across the interfa
the surface tension, and the density and viscosity of b
fluids. When the viscosities are low enough, we expect
initial growth rate to be well predicted by linear stabili
analysis of inviscid flows~see Ref. 16, for example!. For
perturbations of the form

A5A0est1 ikx ~1!

it is found that

s52 ik
r1U11r2U2

r11r2

6Ak2r1r2~U12U2!2

~r11r2!2
2

Tk3

r11r2
, ~2!
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whereT is the surface tension andk is the wave number. The
first part of this expression is the phase velocity,c
52Im(s)/k and the second part is the growth rates
5Re(s). In nondimensional form we have

s̃5
sT

r2DU3
5

1

We
A 1

r 11 S r

11r
2

1

WeD ~3!

and

c̃5
c

DU
5

1

DU

rU 11U2

~r 11!
. ~4!

Here we have constructed a time and a velocity scale by

t̃5
1

kDU
and Ũ5DU, ~5!

and introducedDU5U22U1 and r 5r1 /r2 . The Weber
number is defined as

We5
r2DU2

Tk
. ~6!

FIG. 1. Computational setup.
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The expression for the phase velocity simply shows that
initial wave is advected by the density weighted average
locity. The growth rate is real if the expression under t
square root is positive, or

We.11
1

r
. ~7!

The growth rate is maximum for

Wemax5
3

2 S 11
1

r D ~8!

and the minimum Weber number for a real growth rate~the
critical Weber number! is

Wecrit511
1

r
. ~9!

We also introduce the Reynolds numbers based on the p
erties of the bottom and the top fluids, respectively, as

Re15
r1DUl

m1
and Re25

r2DUl

m2
. ~10!

The numerical method used for the computations p
sented here is based on writing one set of equations for
entire computational domain, independently of how ma
different fluids are involved. This is possible by allowing f
different material properties in the formulation and addi
singular terms at the boundaries between the different flu
to ensure that the correct interface conditions are satis
The resulting ‘‘one-field’’ Navier–Stokes equations are

]ru

]t
1¹•ruu52¹p1¹•m~¹u1¹uT!

1TE
F
~n3¹!3nd~x2xf !da. ~11!

Here,u is the velocity vector,p is the pressure,r andm are
the discontinuous density and viscosity fields, respectiv
andn is the surface normal. The surface forces act only
the interface between the fluids and appears in the cur
formulation multiplied by a two-dimensional delta functio
d. The integral is over the entire front or interface. Th
equation contains no approximations beyond those in
Navier–Stokes equations and in particular, it implicitly co
tains the proper stress conditions for the fluid interface. Si
the density and the viscosity are different for each fluid, i
necessary to track the evolution of these fields by equat
of state, which specify that each fluid particle retains
original density and viscosity,

Dr

Dt
50 and

Dm

Dt
50. ~12!

The momentum equation is also supplemented by an e
tion of mass conservation, which for incompressible flows

¹•u50. ~13!

The momentum equation is discretized on a regular s
gered grid using second-order, centered finite differences
the spatial derivatives and a second-order predict
e
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corrector time integration scheme. The continuity equati
when combined with the momentum equation results in
pressure equation that is not separable as for homogen
flow and is solved by a multigrid method.17 To advect the
material properties, and to evaluate the surface tension t
in the momentum equation, we track the interface betw
the different phases explicitly by connected marker poi
~front!. The number of points representing the front is s
lected such that there are approximately 2–4 front points
stationary mesh. As the front deforms, points are added
deleted dynamically to maintain adequate resolution. Thd
function is regularized by distributing the surface force a
the density gradient onto the fixed grid used to solve
momentum equation. In the computations reported here,
have used a distribution function introduced by Peskin18

which smooths thed function to the nearest nine grid point
The one-field formulation used here is common to oth
techniques for multifluid flows such as the VOF~volume of
fluid! method and the more recent level set method. In th
methods, however, the phase boundary is not tracked ex
itly, but reconstructed from a marker function. Explicit
tracking the interface avoids the difficulty of advecting su
marker functions and allows accurate evaluation of the s
face tension. While very high surface tension can sometim
cause unphysical parasitic currents as well as stiffness p
lems, explicit tracking as well as a semi-implicit treatment
the surface tension helps minimize these problems.19

The method has been applied to a number of multifl
problems and tested and validated in a number of ways,
only to check the implementation, but also its accura
Those tests include comparisons with analytical solutions
simple problems, other numerical computations, and exp
ments. The actual resolution requirement varies with the
rameters of the problem. High Reynolds numbers, for
ample, generally require finer resolution than lower ones
in other numerical calculations. However, in all cases
have found that the method converges rapidly under g
refinement, and in those cases where other solutions exis
have found excellent agreement, even for modest resoluti
For a more detailed description of the method, see Ref.
Validations by comparison with analytical results can
found in Nobari, Jan, and Tryggvason20 and Esmaeeli and
Tryggvason.21

III. RESULTS

The shear instability of an initially flat interface separa
ing two immiscible fluids moving in the opposite direction
is examined here for two density ratios:r 51 ~where both
fluids have the same density! and r 510. This selection of
density ratios is motivated by considerations of high-press
sprays where the density difference is much smaller tha
atmospheric pressures.

A. Linear stability

The velocity field is initially discontinuous and the Re
nolds numbers are high, so we expect the initial growth to
well predicted by inviscid analysis@Eq. ~2!#. To examine if
this is the case, several simulations were done using
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eigenmode from the stability analysis as the initial conditio
To find the initial velocity field, the vortex sheet strength
determined by subtracting the perturbation velocities at
interface. In nondimensional form, the result is

g̃5g
kT

r2DU3
52

1

We
1

r 21

r 11

z̃

We
62z̃ s̃ sin~ x̃!. ~14!

Here z̃5kz is the nondimensional initial amplitude,s̃ is the
linear growth rate, given by Eq.~3!, andx̃5kx is the nondi-
mensional horizontal space coordinate. Given the vor
sheet strength, the circulation,G, at discrete points is found
by integrating over a small segment of the interface:

G5E
DS

g ds. ~15!

Once the circulation at discrete interface points has b
found, it is distributed to the fixed grid next to the interfac
using Peskin’s distribution function,18 to give a grid-vorticity
field, v. The stream function is then found by solving

¹2c52v ~16!

and the velocity computed by a centered difference appr
mation of

u5
]c

]y
and v52

]c

]x
. ~17!

When the initial velocity field has been found, the soluti
can be integrated forward in time.

To estimate the nondimensional linear growth rate,
rewrite Eqs.~1! and ~3! as

s̃5
T

r2DU3

1

t
ln~A~ t !/A0! ~18!

and plots̃ as a function of time. In Fig. 2,s̃ is shown for a
Weber number equal to 1.65, a density ratio equal to
Re15Re255000, and three different grid resolutions.z is
taken to be 2.5% of the wavelength. If the growth rate
mained constant, the line would be parallel to the time a
and equal to the solid horizontal line which is the nondime
sional growth rate derived from linear inviscid theory. It
clear that the numerical computations are converging to
line at early times but as the amplitude of the wave increa
nonlinear effects reduce the growth. We have repeated t
calculations for several different Reynolds numbers and
almost no changes for values ranging from 600 to 10 0
suggesting that viscous effects are indeed small at the ea
times.

In Fig. 3 the initial computed growth rate, normalized
the maximum linear inviscid growth rate, is plotted vers
the inverse Weber number normalized by the critical We
number, for Re15Re255000 and a density ratio equal to 1
The growth rate predicted by linear stability theory is sho
by a solid line. Open circles represent grid resolution
2563512 points, crosses are resolution of 643128 grid
points. The growth rate is well predicted, although the fin
resolution used leads to a slight underprediction. Similar
sults are obtained for the zero stratification case.14
.

e

x

n
,

i-

e

0,

-
is
-

is
s,
se
d
0,
est

s
r

f

-

B. Nonlinear evolution for a density ratio of 1

The evolution of an interface separating two fluids
equal densities and viscosities is shown in Fig. 4. The We
number is equal to 3.0, which corresponds to a wavelen
equal to the linear, inviscid, most unstable one. Here, R1

5Re2510 000 and the grid resolution is 2563512 points.
The initial conditions are again derived by normal mo
analysis, usingz equal to 5% of the wavelength. The inte
face and stream function contours are plotted on the left,
the interface and vorticity contours are plotted on the rig
for six different times.

The initial disturbance grows rapidly and the wave b
comes steeper on the downwind side. First, the vorticity
the interface is advected toward the middle of the steep
in the same way as the vorticity on an interface with ze
surface tension. Then, however, the vorticity peak divides
two as the interface becomes steeper. This is also seen i
inviscid simulations of Houet al.7 In the inviscid simulations
the interface continually grows but, in our finite Reynol

FIG. 2. Initial nondimensional growth rate vs time for density ratio510.0,
We51.65, Re15Re255000.

FIG. 3. Initial nondimensional growth rate for density ratio510.0,
Re15Re255000; and various Weber numbers.
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FIG. 4. Evolution for density ratio51.0, We53.0; Re15Re2510 000.
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number simulations, viscous effects eventually lead to
increased thickness of the shear layer and therefore a re
tion in the local shear strength. In addition to increas
shear layer thickness by viscous diffusion, separation
vorticity from the crest of the wave, as seen at times 1
and 25.0, reduces the local pressure minimum above
crest. As the driving mechanism for the instability is r
moved, surface tension pulls the interface back and at̃
n
uc-
d
f

0
he

535.0, the interface has returned to a nearly flat positi
The wave then grows again and is again pulled back t
nearly flat position, generating considerable amount
small-scale vorticity.

In Fig. 5, the Weber number has been increased to
The initial evolution is similar to the previous case, but
larger amplitude the wave folds over, resulting in a ‘‘finge
of one fluid penetrating into the other fluid. Similar ‘‘fingers
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FIG. 5. Evolution for density ratio51.0, We56.0; Re15Re2510 000.
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have also been seen by Houet al.7 The vortices that were
initially shed from the crest of the wave are left behind as
finger grows. These vortices are relatively weak and di
pate quickly. At later times, the tips bend backwards a
vorticity is again shed from the tip of the fingers, as seen
times 30.0 and 40.0. These shed vortices are much stro
than the vortices that formed initially, as seen from the
formation of the stream lines. The interface grows to a lar
amplitude than for We53.0, due to the weaker effect of su
face tension. As the shear layer becomes thicker, due to
diffusion and shedding of vorticity, surface tension even
ally pulls the interface back, depositing vorticity into bo
fluids. Although most of the vorticity remains of one sign,
little bit of vorticity of the opposite sign is generated
surface tension effects become important. See, for exam
the inward tip of the fingers at time 40.

When the Weber number is increased to 10.0, see Fig
the length of the fingers increases and the slope at which
penetrate into the other fluid decreases. The highest W
number fingers are therefore nearly parallel to the interfa
As the fingers pull back, fluid accumulates at the tip of ea
finger, forming a drop. This drop is connected to the res
the finger by a thin thread that appears to have collap
completely in some cases. While somewhat reminiscen
e
i-
d
t
er
-
r

th
-

le,

6,
ey
er

e.
h
f
d

of

the formation of drops from a round ligament, the two d
mensionality of this problem makes the usual explanati
that the azimuthal component of the surface tension cau
the collapse of the ligament, not applicable. The formation
a thick border or a ‘‘two-dimensional drop’’ at the edge of
thin sheet of fluid has been examined in some detail by S
and Tryggvason.22 They showed that the border retreats w
a constant velocity~relative to the ambient fluid! and that the
thickness of the neck connecting the thick border with
rest of the sheet reaches a nearly constant value that
creases with the viscosity of the sheet. The neck, howe
does not appear to reach a zero thickness and break for fi
values of the viscosity.

As the Weber number is increased further to 15.0,
Fig. 7, the initial wave folds over once before starting to
drawn out into a finger parallel to the interface. When t
interface folds over a fluid drop appears to ‘‘pinch-off’’ ne
the fold, as seen at time520.0. This pinch-off was also see
by Hou et al.7 who studied the evolution up to the pinch-o
time in great detail. Although the geometry is different fro
the formation of a drop at the end of a sheet, it is likely th
the thickness of the thin layer only becomes zero in the
viscid limit. The interface is therefore not allowed to chan
its topology in the simulations and actual pinch-off does n
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take place. As the folded fingers are stretched by the sh
the interface unwinds and a long wavy finger grows and t
decays as before. At even higher Weber numbers, the in
face rolls up as it would do if the fluids were miscible. W
have not examined the transition from the folding-over
roll-up, but refer the reader to Houet al.7 for inviscid simu-
lations in the higher Weber number range and an exam
tion of the ‘‘pinch-off.’’ At very high Weber numbers the
interface is less ‘‘stiff’’ and separation less pronounced.
therefore expect their results to give a very good picture
the evolution of real systems in that parameter range.

C. Nonlinear evolution for a density ratio of 10

The evolution of an interface separating fluids with
density ratio of 10 and a Weber number equal to 1.7 is sho
in Fig. 8. The corresponding wavelength is close to the lin
most unstable wave (Wemax51.65). The initial conditions
are derived from a normal mode analysis, as in the z
density difference case. The initial amplitudez is equal to
5% of the wavelength and Re155000 ~heavy fluid!, and
Re251000~light fluid!. The Reynolds numbers used here a
smaller than those used for the zero density difference c
to ensure that the boundary layer on either side of the in
face is well resolved. As we saw for the smaller density ra

FIG. 6. Evolution for density ratio51.0, We510; Re15Re2510 000.
ar,
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the initial perturbation grows and the wave becomes stee
Here, however, the vorticity is advected to the tip of t
wave crest where the heavy fluid reaches into the ligh
fluid, and the wave is asymmetric with a smooth trough a
a sharp crest. The wave moves to the right, with the he
bottom fluid, as the left side becomes steeper. There
strong asymmetry in the vorticity field as well, and almost
the vorticity is shed from the wave crest into the lighter flu
The strong deposition of vorticity in the lighter fluid is due
two effects. First, the kinematic viscosity of the lighter flu
is higher, so vorticity diffusion into it is more rapid than int
the heavier fluid. Second, the curvature of the finger p
etrating in the lighter fluid is higher than of the one exten
ing into the heavier fluid, and this leads to stronger vortic
production. For this Weber number, surface tension quic
stabilizes the wave and we see again that waves close to
linear most unstable wavelength grow initially, but visco
effects prevent them from reaching large amplitudes.

The evolution for a Weber number equal to 5.0 is sho
in Fig. 9. Again there is an asymmetry in the evolution of t
interface and the vorticity, as the wave becomes steeper,
eventually a thin finger, or a ligament, of heavy fluid
pulled from the crest into the lighter fluid. Diffusion an
shedding of vorticity from the crest eventually reduces

FIG. 7. Evolution for density ratio51.0, We515.0, Re15Re2510 000.
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shear and surface tension begins to pull the finger back
the finger is pulled back, a circular drop is formed at its t

In Fig. 10, we show results for a higher Weber numb
We510.0. The evolution is similar to the We55.0 case, but
the fingers become longer and narrower as the Weber num
increases. This parallels the results for the zero density

FIG. 8. Evolution for density ratio510.0, We51.7, Re155000; Re2
51000.
s
.
r,

er
if-

ference. Once the fingers start to retreat, we see again
formation of two-dimensional drops.

Even though the density ratio is only ten here, the e
lution is much more reminiscent of what we would expect
see for an air/water interface, for example, than the z
density difference case. The reason is the advection of
ticity along the interface by the density weighted velocity.
the limit of a completely free surface, the vorticity simp
moves with the heavy fluid. For inviscid flows, the interfa
vorticity is always bound to the interface, but for visco
flows we generally expect separation, particularly for a no
zero surface tension.

The resolution used for the computations presented h
has been selected so that reasonably high Reynolds num
could be simulated in a reasonable amount of time. To as
the adequacy of the resolution used, several grid refinem
studies have been carried out. Figure 11 shows the inter
at time 30 for the case shown in Fig. 9, computed on bot
128 by 256 and a 256 by 512 grid. Obviously, the results
very similar. The only difference is that the better resolv
finger is slightly shorter. At this stage the fingers are be
pulled back by surface tension and since the interface
smoothed out more on the coarsest grid, the effect of sur
tension is slightly weaker.

D. Discussion

To understand the results presented in the preceding
tions better, we have examined the data in a number of w
In Figs. 12 and 13, the peak-to-peak amplitude, normali
by the wavelength, is shown versus the nondimensional t
for various Weber numbers. Figure 12 shows the results f
zero density difference. Initially, the growth of the wave
extremely rapid as expected from linear theory. For W
56.0, 10.0, and 15.0 the nondimensional amplitudes
nearly the same for times less than 5.0, since the nondim
sional growth rate becomes linearly proportional to the wa
number in the limit of large Weber numbers and therefo
independent of the Weber number, see Eq.~3!. For smaller
Weber numbers the growth rate is no longer linearly prop
tional to the wave number and the growth rate is smaller.
later times, the growth rate slows down when nonlinear a
viscous effects take over. For We53.0, the amplitude oscil-
lates as the initially growing wave becomes a standing c
illary wave. As the Weber number is increased, the maxim
amplitude increases until roll-up begins to occur. A compa
son between the graph in Fig. 12 and Fig. 5 shows that
amplitude starts to decay as the fingers stop to grow. In
13, the amplitude is plotted versus time forr 510. The
growth rate of the most unstable wave reaches its maxim
amplitude quickly. While the amplitude for the We55.0 case
stops growing around time 20, when a distinct drop h
formed at the tip of the fingers, the amplitude grows sligh
again due to the continuing increase in the depth of
trough where the light fluid reaches into the heavier flu
~see Fig. 9!. As the Weber number is increased to 10.0,
see that the maximum amplitude also increases.

To examine the effect of viscosity, the peak-to-peak a
plitude for Re15Re2510 000,r 51, We53.0 is compared to
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FIG. 9. Evolution for density ratio510.0, We55.0; Re155000; Re251000.
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the case of Re15Re255000 in Fig. 14. For these Reynold
numbers, the initial growth rates are similar, since visco
effects are negligible at early times. However, at later tim
and larger amplitudes viscous effects begin to become
portant. The amplitude of the smaller Reynolds number w
begins to decay at an earlier time after reaching a sma
maximum amplitude. This trend is continued in the seco
s
s
-
e
er
d

growth-and-decay phase where the amplitude of the inter
oscillations decrease with the Reynolds number. While
maximum amplitude of the interface depends on the R
nolds number, the overall evolution of the instability is n
significantly changed as long as the Reynolds numbers
sufficiently large.

The average horizontal velocity profile, computed by a
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eraging over horizontal grid lines, is plotted for two differe
cases and several different times in Figs. 15 and 16. In
15, where We56.0 andr 51, the velocity profile grows sym
metrically about the original flat interface. Initially, the widt
of the shear layer grows rapidly, but the velocity profile r
mains approximately linear. At later times, it stops spread
and develops an ‘‘N’’ shape due to flow reversal caused b
the massive separation of vorticity from the tip of the finge
Indeed, Fig. 5 shows that the shear layer consists of two r
of primary vortices, even though the initial conditions co
tained only one wavelength. In Fig. 16, wherer 510 and

FIG. 10. Evolution for density ratio510.0, We510.0; Re155000; Re2
51000.

FIG. 11. Grid resolution test for the case shown in Fig. 9. Here We55, r
510, Re155000, and Re251000.
g.

-
g

.
s

-

We55.0, the asymmetry of the interface is reflected in t
evolution of the velocity profile. The velocity of the lighte
fluid decreases significantly, but the velocity of the hea
fluid remains nearly unchanged. Again, we see a rapid
crease in the thickness of the shear layer initially and fl
reversal at late times when the rate of growth is slower.
early time, the velocity profile over-shoots, as separation
vorticity from the crest of the wave speeds up the velocity
the trough~see the streamlines in Fig. 9 at times 7 and 1!.
The slight ‘‘hump’’ in the velocity profile at the latest time i
the result of the finger of heavy fluid being pulled to back
surface tension.

To quantify the thickness of the shear layer, we use
moments of the velocity profile gradient defined by

Mn52E
2l

1l

yn
dUave

dy
dy for n50,1,2 ,... . ~19!

Here, Uave is the velocity averaged in the horizontal dire
tion, andy50 is the original location of the flat interface
The zeroth moment is simply the difference in the veloc

FIG. 12. Amplitude vs time for density ratio51.0.

FIG. 13. Amplitude vs time for density ratio510.0.
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above and below the interface,M05U12U2 ; the first mo-
ment measures the skewness of the velocity gradient, an
second moment yields the width of the shear layer. T
boundary displacement thickness used for wall boun
shear flows cannot be used here, because its value dep
on which frame of reference one chooses.

The value of the moments as defined by Eq.~19! de-
pends on where we sety50. To avoid this ambiguity, we
define a new origin by

y5D1y8, ~20!

whereD is selected in such a way that the first moment ab
y8 is zero. Substituting fory in the definition of the first
moment@Eq. ~19! with n51] yields

M152E
2l

1l

~y81D!
dUave

dy
dy5M181DM0 . ~21!

FIG. 14. Amplitude vs time for density ratio51.0, We53.0; Re15Re2

510 000, and Re15Re255000.

FIG. 15. Averaged horizontal velocity for density ratio51.0, We56.0;
Re15Re2510 000.
the
e
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nds
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SelectingD5M1 /M0 makesM1850 and the second momen
around the new origin is easily found:M285M22D2M0 .

For zero density stratification,D is zero for all times and
Weber numbers, since the velocity profile remains symme
abouty50. For a finite density ratio, on the other hand, mo
of the change in the velocity takes place in the lighter flu
and D is positive. In Fig. 17, the nondimensional displac
ment, D̃5D/l is plotted versus time for three Weber num
bers. For We55 and 10 the displacement increases unti
saturates at about a third of the wavelength, but for
51.7, the growth is less and the displacement saturate
about 10% of the wavelength.

The second moment,M28 , is plotted versus time in Figs
18 and 19 for all the Weber numbers simulated. In Fig.
wherer 51, the second moments are approximately the sa
at early times. However, aroundt510.0, M28 is greater for
We53.0 and 6.0 than for We510.0 and 15.0. This can b
explained by looking at the peak-to-peak amplitudes in F
12. For t.10.0, the amplitude for the low Weber numb
cases are larger than those of the higher Weber number o

FIG. 16. Averaged horizontal velocity for density ratio510.0, We55.0;
Re155000; Re251000.

FIG. 17. Displacement vs time for density ratio510.0.
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since the slopes at which the fingers penetrate into each
are larger for the smaller Weber numbers. Therefore, the
locity deficit due to vorticity shed from the fingers occu
further away fromy50, resulting in a largerM28 . When the
amplitude of the interface stops growing,M28 continues to
grow due to diffusion, but at a slower rate. In Fig. 19,M28 is
plotted versus time forr 510. Initially, M28 increases, but
then M28 actually decreases between times 7 and 15, du
the overshoot in the velocity profile.

The effect of viscosity can also be seen by examining
energy. While the surface energy increases initially at
expense of kinetic energy, the total energy must decrease
to dissipation. In Fig. 20 we show the total energy

Etot5T•S1E
V

1

2
ru•u da ~22!

for the r 51 simulations. HereS is the interface length and

FIG. 18. Second order moment vs time for density ratio51.0.

FIG. 19. Second order moment vs time for density ratio510.0.
id
e-

to

e
e
ue

the integral is over the whole computational domain. T
energy has been normalized by the total initial energy.
reference we also include the total energy for a comple
flat interface, calculated using the solution to Stokes’ fi
problem,

u~y!5U erfS y

2Ant
D . ~23!

Initially the total energy decreases at about the same rat
all cases. However, after time515.0, the vortex shedding in
creases the energy dissipation. The energy dissipation
decreases with increasing Weber numbers for We53.0 to
10.0, but for We515.0, where the interface starts to roll-u
the rate increases again. In Fig. 21 where the total energ
plotted versus time forr 510.0, the energy losses for W
55.0 and 10.0 are essentially the same. The loss is sm
for We51.7 since the instability grows only slightly before

FIG. 20. Total energy for density ratio51.0.

FIG. 21. Total energy for density ratio510.0.
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FIG. 22. Evolution of two mode initial conditions. Density ratio51.0, We56.0; Re15Re2510 000.
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begins to decay and there is little vortex shedding. For lar
Weber numbers the dissipation due to vortex shedding
greater, resulting in a greater rate of energy loss. The n
monotonic behavior of the dissipation versus Weber num
is similar to the results of Yang and Tryggvason23 for the
microbreaking of interfacial waves.
er
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n-
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E. Nonlinear evolution of two modes

The results in preceding sections show that while
inviscidly most unstable linear wave grows initially, it i
quickly stabilized. Longer waves, on the other hand, co
tinue to grow. This suggests that initial conditions with bo
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short and long waves will lead to a competition where
short waves first do better but the long waves eventually w
In Fig. 22 we show the evolution of an interface where t
initial perturbation consists of a linear addition of two wave

y~x!5
3

4
z cosS 2px

lshort
D1

1

4
z cosS 2px

l long
D . ~24!

The interface and the flow field is shown at six evenly spa
times~with the exception of the first frame!. Two periods are
shown, with the vorticity plotted on the right and the strea
function on the left. Herez is 5% of the longer wavelength
The Weber number based on the shorter wave is equal to
which is the linearly most unstable wave. The Weber num
based on the longer wave is We56.0 and its amplitude is
one-third of the shorter wave. Other parameters are1
5Re2510 000, based on the longer wavelength, andr 51.
Since the shorter wave is the most unstable one, it initia
grows rapidly. At later times however, when vorticity is b
ing shed from the crests of the waves and viscous effects
important, the amplitude of the shorter wave decays and
long wave begins to grow. This agrees with our results
just one wave, where longer waves grew to larger am
tudes. As the short wave is stabilized, large amounts of sm
scale vorticity is generated. This vorticity further increas
the growth of the shear layer, accelerating the stabilizatio
the shorter wave.

IV. CONCLUSION

Several simulations of the two-dimensional Kelvin
Helmholtz instability of immiscible fluids are presented. T
Reynolds numbers are selected to be sufficiently high so
the initial instability is well predicted by inviscid linear sta
bility theory. At larger amplitudes, however, viscous effec
become important. The viscous effects are manifested b
by diffusive growth of the shear layer, as well as shedding
vorticity. The increased thickness results in a reduction of
strength of the inertial mechanism driving the growth of t
instability and allows surface tension to stabilize the inv
cidly most unstable wavelength. While the growth of t
initially most unstable wave is saturated, longer waves c
tinue to grow.

We have conducted two sets of simulations, one fo
zero density difference between the fluids on either side
the shear layer and the other one for a density ratio of 10.
zero density differences the evolution is symmetric with
spect to the different fluids. However, surface tension p
vents Kelvin–Helmholtz roll-up as seen for miscible flui
and fingers of one fluid penetrate the other. The slope
these fingers depends on the nondimensional wavele
~Weber number!. While viscous effects limit the growth o
these fingers at low Weber numbers, high Weber num
fingers can become very long. When the interface growt
stabilized by viscous effects, considerable amount of sm
scale vorticity is generated, further increasing the thickn
of the shear layer. At even higher Weber numbers, the in
face starts to exhibit a behavior more similar to the class
nonlinear Kelvin–Helmholtz instability and roll-up. Th
e
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transition is complex, however, and we find intermedia
states where the interface folds over once before be
stretched into a long finger, for example.

At larger density ratios, the evolution is no longer sym
metric and waves of the heavy fluid grow into the light
one. As for the zero density difference, waves with wav
lengths close to the most unstable one are generally s
lized at large amplitude by viscous effects but longer wa
lengths lead to a ‘‘wave breaking’’ where a finger of th
heavy fluid is pulled into the lighter fluid by the effect of th
shear. Two-dimensional ‘‘drops’’ form at the tips of thes
fingers of heavy fluid.

Simulations of two initial modes~the inviscidly most
unstable one and another one twice as long! show that while
the short wave grows initially, it is the longer wave th
eventually dominates. The transition is, however, fairly co
plex and considerable amount of small scale vorticity is g
erated during the selection process.
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