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The nonlinear behavior of a sheared immiscible fluid interface
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The two-dimensional Kelvin—Helmholtz instability of a sheared fluid interface separating
immiscible fluids is studied by numerical simulations. The evolution is determined by the density
ratio of the fluids, the Reynolds number in each fluid, and the Weber number. Unlike the Kelvin—
Helmholtz instability of miscible fluids, where the sheared interface evolves into well-defined
concentrated vortices if the Reynolds number is high enough, the presence of surface tension leads
to the generation of fingers of interpenetrating fluids. In the limit of a small density ratio the
evolution is symmetric, but for a finite density difference the large amplitude stage consists of
narrow fingers of the denser fluid penetrating into the lighter fluid. The initial growth rate is well
predicted by inviscid theory when the Reynolds numbers are sufficiently high, but the large
amplitude behavior is strongly affected by viscosity and the mode that eventually leads to fingers is
longer than the inviscidly most unstable one. 2002 American Institute of Physics.
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I. INTRODUCTION initial thickness was reduced and the Reynolds number in-

creased, as the solution to the inviscid model when regular-
The Kelvin—Helmholtz instability of an initially flat in- ization was decreased.

terface separating two fluids moving in the opposite direction ~ The Kelvin—Helmholtz instability of two identical fluids

is one of the classical problems in fluid mechanics. In itsis now a well understood problentfor early three-

simplest form, the fluids are assumed to be inviscid and théimensional simulations see Ref. 6, for examplne corre-

flow irrotational on either side of the interface. Linear stabil- SPonding problem for the instability and breakup of fluids

ity analysis dates back to the nineteenth century and compd‘-’ith a finite density and viscosity stratification, particularly

tations of the nonlinear formation of a concentrated vortexVN€n the fluids are immiscible and surface tension must be

are among the earliest examples of computational fluid dyl_ncluded, is less understood. The effect of surface tension for

namics studied.As computers became widely available, fluids of equal densities was examined by Hou, Lowengroub,

tudi dal i ths. S i fiaat and Shelly, who assumed that viscous effects could be ig-
Studies progressed along two pains. several INVestgators €x o 4 completely. They found that large surface tension sup-

amined the evolution of an infinitely thin vortex sheet, sepajaqqeq roll-up and that the interface instead evolved into
rating two potential flow regions. This turned out to be ajgng fingers of interpenetrating fluids. When surface tension
difficult task due to the ill-posedness of the vortex sheetyas |owered, the fingers folded over and in the limit of small
problem (and the rapid growth of small perturbationas  surface tension the interface rolled up as in the classical non-
well as the formation of a singularity at the point where thelinear Kelvin—Helmholtz instability. Pozrikidfs examined
vortex was expected to appear. The difficulty was eventuallyhe other limit of Stokes flows and also found that the inter-
resolved by Krasmwho showed that a regularization of the face can develop elongated fingers and that an increase in the
vortex sheet resulted in both a well-posed problem and theiscosity ratio can destabilize the interface. Both inertia and
elimination of the singularity formation. Other investigators Viscosity, as well as surface tension, has been included by
examined the nonlinear evolution of the full Navier—StokesLafaurie, Nardone, Scardovelli, Zaleski, and Zafettho

equationgsee, for example, Refs. 3 angl @d showed that also found the development of long fingers at finite Reynolds

a perturbed shear layer develops into a row of vortices. Trygnumbers. These authors examined the effect of three dimen-

gvason, Dahm, and Sbéikexamined the limit of high Rey- sionality and found that the two-dimensional fingers that de-

nolds numbers and a small initial thickness and compare&elo‘) initially can evolve into fully three-dimensional fingers
. . . ) . .. of one fluid pointing into the other fluid.

full Navier—Stokes simulations with the regularized inviscid : : :

model of Krasny? They showed that while it was not pos- The importance of understanding the breakup of an in-

ibl h larization directl hvsical eff terface separating immiscible fluids of different material
sible to equate the regularization directly to a physical e ECtproperties is considerable. Liquid fuels are usually burned by

the solution appeared to approach the same limit when gt atomizing a fuel jet to increase the surface area and
hence the evaporation rate. In the prediction of spray behav-
3Electronic mail: gretar@wpi.edu ior, the initial atomization is both the most critical and the
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least understood aspect of the spray. The importance of the 'y
initial breakup is well demonstrated by the large number of
atomizers that have been proposed. See, for example, the
books by Lefebvr® and Bayvel and Orzechowski.

Fluid jets break up in different ways, depending on the
governing nondimensional parameters. When capillary ef-
fects are large, a jet undergoes a Rayleigh instability due to
waves longer than its diameter and breaks up into a stream of
relatively large drops. When capillary effects are small the Uz, P2, Uo
jet is unstable to shorter waves that are generally enhanced
by aerodynamic effects, resulting in smaller drops. At very
large Weber numbers the jet breaks up into ligameéots
“fibers” ) that then break up into drops much smaller than the
jet diameter. Under atmospheric conditions, where the exter-
nal flow has little effect, the jet breakup is believed to be
strongly affected by the turbulence level in the jet. However,
for high pressure combustors, the density ratio is often much
smaller, and the injected jet laminar. For experimental inves-
tigations of the different breakup modes see, for example,
Refs. 12 and 13.

Here, we investigate the initial breakup of an immiscible
fluid interface by numerical simulations of the two-
dimensional Navier—Stokes equation. This study extends the Ui, pr, Ui
work of Lafaurieet al. and Houet al. by examining the non-
linear behavior of the two-dimensional shear instability of
immiscible fluids with large but finite Reynolds numbers as
well as finite density differences. Limited preliminary results
for two-dimensional shear layers have been reported in Refs.
14 and 15. The second reference also included preliminary
three-dimensional simulations.

\

1. PROBLEM FORMULATION AND NUMERICAL
METHOD FIG. 1. Computational setup.

We examine an initially nearly flat interface separating
two different fluids. The fluid below the interface is moving ] )
to the right with velocityU; and the fluid on the top is WhereTis the surface tension ands the wave number. The
moving to the left with velocityJ,. The density and viscos- fIrst part of this expression is the phase velocity,
ity of the bottom and top fluids arp;, w1 and py, o, =—Im(s)/k and_ the _second part is the growth rate
respectively. The rectangular computational domain,=Re(). In nondimensional form we have
sketched in Fig. 1, has periodic horizontal boundaries and

rigid, moving walls at the top and the bottom. The domain ~ ~_ T _ i\/ 1(r 1 3
size is the wavelength, in the horizontal direction and\2 po,AUS We Vr+1il+r We
in the vertical direction. The evolution of the interface is
determined by the velocity difference across the interfaceand
the surface tension, and the density and viscosity of both
fluids. When the viscosities are low enough, we expectthe ~ ¢ 1 rU;+U, 4
initial growth rate to be well predicted by linear stability C=AU AU (r+1) - )
analysis of inviscid flows(see Ref. 16, for exampleFor
perturbations of the form Here we have constructed a time and a velocity scale by
A:Aoest+ikx (1)
it is found that kAU and U=AU, ®
+ .
s= —ikw and introducedAU=U,—U; and r=p,/p,. The Weber
p1tp2 number is defined as
2 _ 2 3
i\/k p1p2(U1—Up" Tk | @ "  pAU? ]
(p1+p2)? P1t P2 S ©
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The expression for the phase velocity simply shows that theorrector time integration scheme. The continuity equation,
initial wave is advected by the density weighted average vewhen combined with the momentum equation results in a
locity. The growth rate is real if the expression under thepressure equation that is not separable as for homogeneous

square root is positive, or
1
We>1+ —. (7
The growth rate is maximum for

8

1
1+=
r

3
Wena= E

and the minimum Weber number for a real growth réte
critical Weber numberis

flow and is solved by a multigrid methdd.To advect the
material properties, and to evaluate the surface tension term
in the momentum equation, we track the interface between
the different phases explicitly by connected marker points
(front). The number of points representing the front is se-
lected such that there are approximately 2—4 front points per
stationary mesh. As the front deforms, points are added and
deleted dynamically to maintain adequate resolution. Fhe
function is regularized by distributing the surface force and
the density gradient onto the fixed grid used to solve the

momentum equation. In the computations reported here, we
have used a distribution function introduced by PedRin,
which smooths thé function to the nearest nine grid points.
) The one-field formulation used here is common to other
Wg also introduce the Reynolds numbers base.d on the pro?échniques for multifiuid flows such as the V@®lume of
erties of the bottom and the top fluids, respectively, a8 {id) method and the more recent level set method. In these
p1AUN poAUN methods, however, the phase boundary is not tracked explic-
= Re= . (100 itly, but reconstructed from a marker function. Explicitly
Ha He tracking the interface avoids the difficulty of advecting such
The numerical method used for the computations premarker functions and allows accurate evaluation of the sur-
sented here is based on writing one set of equations for thiace tension. While very high surface tension can sometimes
entire computational domain, independently of how manycause unphysical parasitic currents as well as stiffness prob-
different fluids are involved. This is possible by allowing for lems, explicit tracking as well as a semi-implicit treatment of
different material properties in the formulation and addingthe surface tension helps minimize these probl&ms.
singular terms at the boundaries between the different fluids  The method has been applied to a number of multifluid
to ensure that the correct interface conditions are satisfieghroblems and tested and validated in a number of ways, not
The resulting “one-field” Navier—Stokes equations are only to check the implementation, but also its accuracy.
dpu Those tests include comparisons with analytical solutions for
—r FV-puu= =Vp+ V- u(Vu+vuT) simple problems, other numerical computations, and experi-
ments. The actual resolution requirement varies with the pa-
rameters of the problem. High Reynolds numbers, for ex-
ample, generally require finer resolution than lower ones, as
i i i in other numerical calculations. However, in all cases we
Here, u is the velocity vectorp is the pressurgp andu areé  paye found that the method converges rapidly under grid
the discontinuous density and viscosity fields, respectivelyyefinament, and in those cases where other solutions exist we
andn is the surface normal. The surface forces act only oy ,ye found excellent agreement, even for modest resolutions.
the interface between the fluids and appears in the curre,. 4 more detailed description of the method, see Ref. 19.
formulation multiplied by a two-dimensional delta function, \sjigations by comparison with analytical results can be

. The integral is over the entire front or interface. This¢, ,nq in Nobari. Jan. and Tryggvagdrand Esmaeeli and
equation contains no approximations beyond those in th?ryggvasorﬁl ’ '

Navier—Stokes equations and in particular, it implicitly con-

tains the proper stress conditions for the fluid interface. SinCﬁI RESULTS

the density and the viscosity are different for each fluid, it is

necessary to track the evolution of these fields by equations The shear instability of an initially flat interface separat-

of state, which specify that each fluid particle retains itsing two immiscible fluids moving in the opposite directions

original density and viscosity, is examined here for two density ratios=1 (where both

Du fluids have the same densitand r=10. This selection of

—=0 and —=0. (12 density ratios is motivated by considerations of high-pressure
Dt Dt sprays where the density difference is much smaller than at

The momentum equation is also supplemented by an equatmospheric pressures.

tion of mass conservation, which for incompressible flows is

A. Linear stability

1
Wegri=1+ - )

+Tj (NXV)Xnd(x—x;)da. (11)
F

Dp

V-u=0. (13 The velocity field is initially discontinuous and the Rey-
The momentum equation is discretized on a regular stagaolds numbers are high, so we expect the initial growth to be
gered grid using second-order, centered finite differences fawell predicted by inviscid analysi€Eg. (2)]. To examine if
the spatial derivatives and a second-order predictor+this is the case, several simulations were done using the
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eigenmode from the stability analysis as the initial condition. ' ' ' '

To find the initial velocity field, the vortex sheet strength is ToC pugar foviscid Theory
determined by subtracting the perturbation velocities at the s 1281256

interface. In nondimensional form, the result is

-~ _ kT _ 1 + r_l ’Z 2~~ eyt 14 o ‘VTT_',‘}TT\':~1:.__ —————————————————————
=y we w2l @, 19 e

0.08 b

HereZ=k¢ is the nondimensional initial amplitude, is the
linear growth rate, given by Eq3), andx=kx is the nondi-
mensional horizontal space coordinate. Given the vortex
sheet strength, the circulatioh, at discrete points is found
by integrating over a small segment of the interface:

0.06 1

0.5 1 15 2 25 3

FZJ vds. (15 0 . . . . .
AS [

Once the circulation at discrete interface points has beehl!G. 2. Initial nondimensional growth rate vs time for density ratl®.0,
found, it is distributed to the fixed grid next to the interface, We=1-65 Re¢=Re=5000.
using Peskin’s distribution functiotf to give a grid-vorticity

field, w. The stream function is then found by solving B. Nonlinear evolution for a density ratio of 1

V= (16) The evolution of an interface separating two fluids of
and the velocity computed by a centered difference approxiequal densities and viscosities is shown in Fig. 4. The Weber
mation of number is equal to 3.0, which corresponds to a wavelength

m a equal to the linear, inviscid, most unstable one. Here, Re
u=— and v=——. (177 =Re=10000 and the grid resolution is 28612 points.
ay IxX The initial conditions are again derived by normal mode
When the initial velocity field has been found, the solution@nalysis, using’ equal to 5% of the wavelength. The inter-
can be integrated forward in time. face and stream function contours are plotted on the left, and

To estimate the nondimensional linear growth rate, wethe interface and vorticity contours are plotted on the right,

rewrite Egs.(1) and (3) as for six different times.

The initial disturbance grows rapidly and the wave be-
comes steeper on the downwind side. First, the vorticity at
the interface is advected toward the middle of the steep part
3 5 in the same way as the vorticity on an interface with zero
and ploto as a function of time. In Fig. 2y is shown for a  surface tension. Then, however, the vorticity peak divides in
Weber number equal to 1.65, a density ratio equal to 10two as the interface becomes steeper. This is also seen in the
Re, =Re,=5000, and three different grid resolutions.is  inviscid simulations of Howet al. In the inviscid simulations
taken to be 2.5% of the wavelength. If the growth rate rethe interface continually grows but, in our finite Reynolds
mained constant, the line would be parallel to the time axis
and equal to the solid horizontal line which is the nondimen-
sional growth rate derived from linear inviscid theory. It is [ _ — ]

. . . . Linear Inviscid Theory
clear that the numerical computations are converging to this o 256x512
line at early times but as the amplitude of the wave increases, x 6428
nonlinear effects reduce the growth. We have repeated thest '[
calculations for several different Reynolds numbers and find
almost no changes for values ranging from 600 to 10000, osf
suggesting that viscous effects are indeed small at the earlies
times.

In Fig. 3 the initial computed growth rate, normalized by
the maximum linear inviscid growth rate, is plotted versus
the inverse Weber number normalized by the critical Weber **[
number, for Re=Re,=5000 and a density ratio equal to 10.
The growth rate predicted by linear stability theory is shown oz}
by a solid line. Open circles represent grid resolution of
256x512 points, crosses are resolution of x@@8 grid . . . . . .
points. The growth rate is well predicted, although the finite ° 02 04 08 o8 1 12
resolution used leads to a slight underprediction. Similar reg ;. 3. Initial nondimensional growth rate for density ratib0.0,
sults are obtained for the zero stratification cHse. Re,=Re,=5000; and various Weber numbers.

- 1
AT TIN(A)/A) (18)

0.6
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Time=5.0 Time=15.0

O

J\\

Time=25.0 Time=35.0

Time=45.0 Time=50.0

FIG. 4. Evolution for density ratie 1.0, We=3.0; Rg=Re,= 10 000.

number simulations, viscous effects eventually lead to ar=35.0, the interface has returned to a nearly flat position.
increased thickness of the shear layer and therefore a reduthe wave then grows again and is again pulled back to a
tion in the local shear strength. In addition to increasechearly flat position, generating considerable amount of
shear layer thickness by viscous diffusion, separation ofmall-scale vorticity.

vorticity from the crest of the wave, as seen at times 15.0 In Fig. 5, the Weber number has been increased to 6.0.
and 25.0, reduces the local pressure minimum above thehe initial evolution is similar to the previous case, but at
crest. As the driving mechanism for the instability is re- Jarger amplitude the wave folds over, resulting in a “finger”
moved, surface tension pulls the interface back and at of one fluid penetrating into the other fluid. Similar “fingers”
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Time=10.0 Time=20.0

Time=30.0 Time=40.0

FIG. 5. Evolution for density ratie 1.0, We=6.0; Rg=Re,= 10 000.

have also been seen by Hetal.” The vortices that were the formation of drops from a round ligament, the two di-
initially shed from the crest of the wave are left behind as thamensionality of this problem makes the usual explanation,
finger grows. These vortices are relatively weak and dissithat the azimuthal component of the surface tension causes
pate quickly. At later times, the tips bend backwards andhe collapse of the ligament, not applicable. The formation of
vorticity is again shed from the tip of the fingers, as seen aa thick border or a “two-dimensional drop” at the edge of a
times 30.0 and 40.0. These shed vortices are much strongttin sheet of fluid has been examined in some detail by Song
than the vortices that formed initially, as seen from the de-and TryggvasoR? They showed that the border retreats with
formation of the stream lines. The interface grows to a largea constant velocityrelative to the ambient flujdand that the
amplitude than for We 3.0, due to the weaker effect of sur- thickness of the neck connecting the thick border with the
face tension. As the shear layer becomes thicker, due to botlest of the sheet reaches a nearly constant value that de-
diffusion and shedding of vorticity, surface tension eventu-creases with the viscosity of the sheet. The neck, however,
ally pulls the interface back, depositing vorticity into both does not appear to reach a zero thickness and break for finite
fluids. Although most of the vorticity remains of one sign, avalues of the viscosity.
little bit of vorticity of the opposite sign is generated as As the Weber number is increased further to 15.0, see
surface tension effects become important. See, for exampl&jg. 7, the initial wave folds over once before starting to be
the inward tip of the fingers at time 40. drawn out into a finger parallel to the interface. When the
When the Weber number is increased to 10.0, see Fig. énterface folds over a fluid drop appears to “pinch-off” near
the length of the fingers increases and the slope at which theye fold, as seen at time20.0. This pinch-off was also seen
penetrate into the other fluid decreases. The highest Webey Hou et al.” who studied the evolution up to the pinch-off
number fingers are therefore nearly parallel to the interfaceime in great detail. Although the geometry is different from
As the fingers pull back, fluid accumulates at the tip of eachthe formation of a drop at the end of a sheet, it is likely that
finger, forming a drop. This drop is connected to the rest othe thickness of the thin layer only becomes zero in the in-
the finger by a thin thread that appears to have collapsediscid limit. The interface is therefore not allowed to change
completely in some cases. While somewhat reminiscent ats topology in the simulations and actual pinch-off does not
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Time=10.0 Time=20.0

);\\\

Time=45.0 Time=35.0

FIG. 6. Evolution for density ratie1.0, We=10; Rg=Re,=10 000. FIG. 7. Evolution for density ratie1.0, We=15.0, Rg=Re,= 10 000.

takg place. As th_e folded fingers are st_retched by the She%e initial perturbation grows and the wave becomes steeper.
the interface unwinds and a long wavy finger grows and ther|]—|ere, however, the vorticity is advected to the tip of the

decays as before. At even higher Weber numbers, the Inte{/\’/ave crest where the heavy fluid reaches into the lighter

Lace rolli up as It \évotl;ld tdo |f':[[.he flfwds \tl\;]eref r|r1(:;§0|ble. Wte fluid, and the wave is asymmetric with a smooth trough and
ave not eéxamine € transition from tne folding-over 1o, sharp crest. The wave moves to the right, with the heavy

roI_I-up, .bUt refe_r the reader to Hoat al” for inviscid simu- . bottom fluid, as the left side becomes steeper. There is a
Igtmns n th? h|gher V,\,/eber numper range and an examm‘%’trong asymmetry in the vorticity field as well, and almost all
tion of the “pinch-off.” At very high Weber numbers the

interf is | “stiff” and tion | d Wthe vorticity is shed from the wave crest into the lighter fluid.
Interface 1s 1ess “Stlt™and separation 1ess pronounced. Wer, strong deposition of vorticity in the lighter fluid is due to

therefore gxpect their results _to give a very good picture ngo effects. First, the kinematic viscosity of the lighter fluid
the evolution of real systems in that parameter range. is higher, so vorticity diffusion into it is more rapid than into
the heavier fluid. Second, the curvature of the finger pen-
etrating in the lighter fluid is higher than of the one extend-
The evolution of an interface separating fluids with aing into the heavier fluid, and this leads to stronger vorticity
density ratio of 10 and a Weber number equal to 1.7 is showproduction. For this Weber number, surface tension quickly
in Fig. 8. The corresponding wavelength is close to the lineastabilizes the wave and we see again that waves close to the
most unstable wave (Wg,=1.65). The initial conditions linear most unstable wavelength grow initially, but viscous
are derived from a normal mode analysis, as in the zereffects prevent them from reaching large amplitudes.
density difference case. The initial amplitudeis equal to The evolution for a Weber number equal to 5.0 is shown
5% of the wavelength and Re 5000 (heavy fluid, and in Fig. 9. Again there is an asymmetry in the evolution of the
Re,=1000(light fluid). The Reynolds numbers used here areinterface and the vorticity, as the wave becomes steeper, and
smaller than those used for the zero density difference cassventually a thin finger, or a ligament, of heavy fluid is
to ensure that the boundary layer on either side of the interpulled from the crest into the lighter fluid. Diffusion and
face is well resolved. As we saw for the smaller density ratioshedding of vorticity from the crest eventually reduces the

C. Nonlinear evolution for a density ratio of 10
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Time=8.0

Time=12.0

Time=25.0

FIG. 8. Evolution for density rati®10.0, We=1.7, Rg=5000; Re
=1000.

Tauber, Unverdi, and Tryggvason

ference. Once the fingers start to retreat, we see again the
formation of two-dimensional drops.

Even though the density ratio is only ten here, the evo-
lution is much more reminiscent of what we would expect to
see for an air/water interface, for example, than the zero
density difference case. The reason is the advection of vor-
ticity along the interface by the density weighted velocity. In
the limit of a completely free surface, the vorticity simply
moves with the heavy fluid. For inviscid flows, the interface
vorticity is always bound to the interface, but for viscous
flows we generally expect separation, particularly for a non-
zero surface tension.

The resolution used for the computations presented here
has been selected so that reasonably high Reynolds numbers
could be simulated in a reasonable amount of time. To assess
the adequacy of the resolution used, several grid refinement
studies have been carried out. Figure 11 shows the interface
at time 30 for the case shown in Fig. 9, computed on both a
128 by 256 and a 256 by 512 grid. Obviously, the results are
very similar. The only difference is that the better resolved
finger is slightly shorter. At this stage the fingers are being
pulled back by surface tension and since the interface is
smoothed out more on the coarsest grid, the effect of surface
tension is slightly weaker.

D. Discussion

To understand the results presented in the preceding sec-
tions better, we have examined the data in a number of ways.
In Figs. 12 and 13, the peak-to-peak amplitude, normalized
by the wavelength, is shown versus the nondimensional time
for various Weber numbers. Figure 12 shows the results for a
zero density difference. Initially, the growth of the wave is
extremely rapid as expected from linear theory. For We
=6.0, 10.0, and 15.0 the nondimensional amplitudes are
nearly the same for times less than 5.0, since the nondimen-
sional growth rate becomes linearly proportional to the wave
number in the limit of large Weber numbers and therefore
independent of the Weber number, see 8). For smaller
Weber numbers the growth rate is no longer linearly propor-
tional to the wave number and the growth rate is smaller. At
later times, the growth rate slows down when nonlinear and
viscous effects take over. For We.0, the amplitude oscil-
lates as the initially growing wave becomes a standing cap-
illary wave. As the Weber number is increased, the maximum
amplitude increases until roll-up begins to occur. A compari-
son between the graph in Fig. 12 and Fig. 5 shows that the
amplitude starts to decay as the fingers stop to grow. In Fig.
13, the amplitude is plotted versus time foe=10. The
growth rate of the most unstable wave reaches its maximum
amplitude quickly. While the amplitude for the We.0 case
stops growing around time 20, when a distinct drop has
formed at the tip of the fingers, the amplitude grows slightly

shear and surface tension begins to pull the finger back. Aggain due to the continuing increase in the depth of the
the finger is pulled back, a circular drop is formed at its tip.trough where the light fluid reaches into the heavier fluid
In Fig. 10, we show results for a higher Weber number,(see Fig. 9. As the Weber number is increased to 10.0, we

We=10.0. The evolution is similar to the \We.0 case, but

see that the maximum amplitude also increases.

the fingers become longer and narrower as the Weber number To examine the effect of viscosity, the peak-to-peak am-
increases. This parallels the results for the zero density difplitude for Rg =Re,=10000,r =1, We= 3.0 is compared to
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Time=5.0 Time=7.0

Time=10.0 Time=20.0

Time=30.0 Time=40.0

FIG. 9. Evolution for density rati®e10.0, We=5.0; Rg=5000; Rg=1000.

the case of Re=Re,=5000 in Fig. 14. For these Reynolds growth-and-decay phase where the amplitude of the interface
numbers, the initial growth rates are similar, since viscou®scillations decrease with the Reynolds number. While the
effects are negligible at early times. However, at later timegnaximum amplitude of the interface depends on the Rey-
and larger amplitudes viscous effects begin to become imrolds number, the overall evolution of the instability is not
portant. The amplitude of the smaller Reynolds number waveignificantly changed as long as the Reynolds numbers are
begins to decay at an earlier time after reaching a smallesufficiently large.

maximum amplitude. This trend is continued in the second The average horizontal velocity profile, computed by av-



2880 Phys. Fluids, Vol. 14, No. 8, August 2002

Time=10.0

Time=25.0

FIG. 10. Evolution for density rati®10.0, We=10.0; Rg=5000; Re
=1000.

eraging over horizontal grid lines, is plotted for two different
cases and several different times in Figs. 15 and 16. In Fi
15, where We= 6.0 andr =1, the velocity profile grows sym-

metrically about the original flat interface. Initially, the width
of the shear layer grows rapidly, but the velocity profile re-

Tauber, Unverdi, and Tryggvason

We=3.0

Amplitude Normalized by Lambda

L
20 30
Time

60

FIG. 12. Amplitude vs time for density ratiel.0.

We=5.0, the asymmetry of the interface is reflected in the
evolution of the velocity profile. The velocity of the lighter
fluid decreases significantly, but the velocity of the heavy
fluid remains nearly unchanged. Again, we see a rapid in-
crease in the thickness of the shear layer initially and flow
reversal at late times when the rate of growth is slower. At
early time, the velocity profile over-shoots, as separation of
vorticity from the crest of the wave speeds up the velocity in
the trough(see the streamlines in Fig. 9 at times 7 angl 10
The slight “hump” in the velocity profile at the latest time is
the result of the finger of heavy fluid being pulled to back by
surface tension.

To quantify the thickness of the shear layer, we use the
moments of the velocity profile gradient defined by

ndUave

Tydy for n=0,1,2,.... (19

q'—|ere, U, is the velocity averaged in the horizontal direc-

tion, andy=0 is the original location of the flat interface.
The zeroth moment is simply the difference in the velocity

mains approximately linear. At later times, it stops spreading

and develops anN" shape due to flow reversal caused by
the massive separation of vorticity from the tip of the fingers.

Indeed, Fig. 5 shows that the shear layer consists of two rows os

of primary vortices, even though the initial conditions con-
tained only one wavelength. In Fig. 16, where 10 and

Q.

Q
S N

Grid: 128 by 256

QJ

~J

Grid: 256 by 512

FIG. 11. Grid resolution test for the case shown in Fig. 9. Here=®/e
=10, Rg=5000, and Reg=1000.
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FIG. 13. Amplitude vs time for density ratel0.0.
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FIG. 14. Amplitude vs time for density ratiel.0, We=3.0; Rg=Re,
=10 000, and Rg=Re&,=5000.

above and below the interfackly=U;—U,; the first mo-
ment measures the skewness of the velocity gradient, and tr\lﬁe
second moment yields the width of the shear layer. The
boundary displacement thickness used for wall bounde@
shear flows cannot be used here, because its value depe

50 60

on which frame of reference one chooses.

The value of the moments as defined by EfP) de-
pends on where we sgt=0. To avoid this ambiguity, we
define a new origin by

y=A+y’,

whereA is selected in such a way that the first moment abou
y’ is zero. Substituting fol in the definition of the first
moment[Eq. (19) with n=1] yields

U ave

+\ d
Mlz_J (y'+4)

-\

(20

dy=M+AM,. (22)

Averaged Horizontal Velocity

—  Time=0.0

————— Time=5.0
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A
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+A

FIG. 15. Averaged horizontal velocity for density rati#.0, We=6.0;

Re;=Re,= 10 000.
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——  Time=0.0

Time=5.0

Time=10.0
Time=15.0
Time=25.0
Time=35.0
Time=45.0
Time=55.0

Averaged Horizontal Velocity

—A Vertical Coordinate +A

FIG. 16. Averaged horizontal velocity for density rati®0.0, We=5.0;
Re,=5000; Rg=1000.

SelectingA =M, /My makesM; =0 and the second moment
around the new origin is easily fount,=M,— A%Mj,.

For zero density stratificatiod is zero for all times and

ber numbers, since the velocity profile remains symmetric
bouty=0. For a finite density ratio, on the other hand, most
the change in the velocity takes place in the lighter fluid
and A is positive. In Fig. 17, the nondimensional displace-
ment,A=A/\ is plotted versus time for three Weber num-
bers. For We=5 and 10 the displacement increases until it
saturates at about a third of the wavelength, but for We
=1.7, the growth is less and the displacement saturates at
about 10% of the wavelength.

¢ The second moment,, is plotted versus time in Figs.

18 and 19 for all the Weber numbers simulated. In Fig. 18,
wherer =1, the second moments are approximately the same
at early times. However, arourtd=10.0, M is greater for
We=3.0 and 6.0 than for We10.0 and 15.0. This can be
explained by looking at the peak-to-peak amplitudes in Fig.
12. Fort>10.0, the amplitude for the low Weber number
cases are larger than those of the higher Weber number ones,
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FIG. 17. Displacement vs time for density ratit0.0.



2882 Phys. Fluids, Vol. 14, No. 8, August 2002 Tauber, Unverdi, and Tryggvason
35 T T T T T T T T T T
-—-- We=3.0 ——  Diffusion Only
—  We=6.0 --- We =3.0
af | — We=10.0 B we We =60
....... We=15.0 o We =10.0
e 5 We =15.0
- c
287 -~ | %ogs
. 5095
§ £
2 2F // 7 B
E s E 09
S K E
°
§1.5- ./,’ i g ,
-] 4 e & N
_./,’ e 5085 N 1
WL R | 5 AN
ey T ] .
ST e A
.
g4 . ,./ 08}F -
05 P i
%% — 1'0 2'0 3‘0 4'0 5'0 0 0 10 20 30 40 50 60

Time

FIG. 18. Second order moment vs time for density ratid.
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FIG

. 20. Total energy for density ratial.0.

since the slopes at which the fingers penetrate into each fluiéhe integral is over the whole computational domain. The
are larger for the smaller Weber numbers. Therefore, the ve2nergy has been normalized by the total initial energy. For
locity deficit due to vorticity shed from the fingers occurs reference we also include the total energy for a completely
further away fromy=0, resulting in a largeM) . When the flat interface, calculated using the solution to Stokes’ first

amplitude of the interface stops growinlgl; continues to problem,

grow due to diffusion, but at a slower rate. In Fig. M is

plotted versus time for=10. Initially, M} increases, but y

then M, actually decreases between times 7 and 15, due to  u(y)=U erf 20t (23

the overshoot in the velocity profile.

The effect of viscosity can also be seen by examining the
energy. While the surface energy increases initially at thanitially the total energy decreases at about the same rate in
expense of kinetic energy, the total energy must decrease d@ cases. However, after tirsel5.0, the vortex shedding in-

to dissipation. In Fig. 20 we show the total energy creases the energy dissipation. The energy dissipation rate
decreases with increasing Weber numbers for=\8d® to

10.0, but for We=15.0, where the interface starts to roll-up
the rate increases again. In Fig. 21 where the total energy is
plotted versus time for=10.0, the energy losses for We
] ) ] ) =5.0 and 10.0 are essentially the same. The loss is smaller
for ther=1 simulations. HereS is the interface length and o we=1.7 since the instability grows only slightly before it

1
Etot:T-SJrf =pu-uda (22
v 2
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Time=1.25 Time=5.0

Time=10.0 Time=15.0

Time=20.0 Time=25.0

FIG. 22. Evolution of two mode initial conditions. Density rati.0, We=6.0; Rg=Re,= 10 000.

begins to decay and there is little vortex shedding. For largeE. Nonlinear evolution of two modes

Weber numbers the dissipation due to vortex shedding is

greater, resulting in a greater rate of energy loss. The non- The results in preceding sections show that while the
monotonic behavior of the dissipation versus Weber numbeifviscidly most unstable linear wave grows initially, it is
is similar to the results of Yang and Tryggvaddmor the  quickly stabilized. Longer waves, on the other hand, con-
microbreaking of interfacial waves. tinue to grow. This suggests that initial conditions with both
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short and long waves will lead to a competition where thetransition is complex, however, and we find intermediate
short waves first do better but the long waves eventually winstates where the interface folds over once before being
In Fig. 22 we show the evolution of an interface where thestretched into a long finger, for example.

initial perturbation consists of a linear addition of two waves, At larger density ratios, the evolution is no longer sym-

metric and waves of the heavy fluid grow into the lighter
3 21X 1 27X . ? .
y(x)= _gcog< n)+ —gcos( . (24)  one. As for the zero density difference, waves with wave-
4 Asho 4 Mong lengths close to the most unstable one are generally stabi-
The interface and the flow field is shown at six evenly spacedized at large amplitude by viscous effects but longer wave-
times(with the exception of the first frameTwo periods are  lengths lead to a “wave breaking” where a finger of the
shown, with the vorticity plotted on the right and the streamheavy fluid is pulled into the lighter fluid by the effect of the
function on the left. Herg is 5% of the longer wavelength. shear. Two-dimensional “drops” form at the tips of these
The Weber number based on the shorter wave is equal to 3.0ngers of heavy fluid.
which is the linearly most unstable wave. The Weber number ~ Simulations of two initial modegthe inviscidly most
based on the longer wave is W.0 and its amplitude is unstable one and another one twice as jsigpw that while
one-third of the shorter wave. Other parameters arg Rethe short wave grows initially, it is the longer wave that
=Re,=10000, based on the longer wavelength, ardl.  eventually dominates. The transition is, however, fairly com-
Since the shorter wave is the most unstable one, it initiallyolex and considerable amount of small scale vorticity is gen-
grows rapidly. At later times however, when vorticity is be- erated during the selection process.
ing shed from the crests of the waves and viscous effects are

important, the amplitude of the shorter wave decays and thaCKNOWLEDGMENTS
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