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Abstract
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1 Introduction

Since the onset of the financial crisis, research into the measurement and effects of uncertainty

has proceeded at a feverish pace. A rise in uncertainty is widely believed to have detrimental

effects on macro, micro, and financial market outcomes and induce responses from monetary,

fiscal, and regulatory policy. Theoretical models suggest that increasing uncertainty can have

effects through a number of economic channels. For example, firms may delay investment

and hiring during periods of high uncertainty (Bernanke 1983; Dixit and Pindyck 1994).

Households may exercise precautionary reductions in spending (Basu and Bundick 2017).

Financing costs may rise (Pástor and Veronesi 2013; Gilchrist, Sim, and Zakrajšek 2014).

Uncertainty about policy, in particular, can have detrimental economic effects (Friedman

1968; Rodrik 1991; Higgs 1997; Hassett and Metcalf 1999). Despite the relatively large

theoretical literature, there is much less empirical evidence on the channels through which

uncertainty affects the economy.

The majority of this evidence on the effect of uncertainty shocks on key economic vari-

ables such as employment, industrial production, real GDP growth, and inflation has been

produced in a linear environment using VARs (see Bloom 2009; Jurado, Ludvigson, and Ng

2015; Rossi and Sekhposyan 2015; Baker, Bloom, and Davis 2016; Leduc and Liu 2016; Jo

and Sekkel 2019, among many others). In short, most researchers, regardless of the econo-

metric approach, find that uncertainty shocks reduce economic activity (e.g., IP or real GDP

growth), raise unemployment, and lower inflation for several months after the shock. This

finding is consistent with the earlier literature by Bernanke (1983) and Dixit and Pindyck

(1994) who found real option effects on fixed investment–that is, delaying expenditures on

irreversible investment projects–during periods of increased uncertainty.

Linear models, however, do not account for the possibility that the level of uncertainty can

also affect how shocks propagate. While linear models are more common in the uncertainty

literature, some nonlinear models have been estimated. Caggiano, Castelnuovo, and Figueres

(2017) find that the response of unemployment to an economic policy uncertainty shock is
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larger in recessions than in expansions. Caggiano, Castelnuovo, and Pellegrino (2017) use a

nonlinear VAR to show that uncertainty shocks are larger during periods when the zero lower

bound is binding on the FOMC’s federal funds target rate. Carriero, Clark, and Marcellino

(2018) employ a VAR with stochastic volatility driven by aggregate macroeconomic and

financial uncertainty. They find that macroeconomic uncertainty shocks have large effects

on real activity while financial uncertainty shocks transmit to macroeconomic conditions via

financial variables. Mumtaz and Theodoridis (2018) use a time-varying-parameter VAR with

stochastic volatility and find that the response of output to uncertainty shocks has declined

over time. Finally, Shin and Zhong (2018) use sign restrictions in the VAR, allowing for

stochastic volatility, and define an uncertainty shock as that which increases the variance of

the economic shocks. Thus, in their model, an uncertainty shock can simultaneously affect

the volatility and the mean of the VAR. For the U.S., the authors find stronger evidence

suggesting financial uncertainty shocks reduce output and prompt a monetary easing in

comparison to the effects of shocks to macro uncertainty.

Three papers, in particular, focus on the asymmetric responses of macro variables to

uncertainty shocks. Jones and Enders (2016) estimate a logistic smooth transition autore-

gressive process and allow uncertainty to drive the transition between different environments.

They find that rising uncertainty has greater effects than falling uncertainty and the linear

model underestimates the effects of uncertainty during the global financial crisis. Grier,

Henry, and Olekalns (2004) use growth and inflation volatility as measures of uncertainty

and find evidence of asymmetric responses of inflation and economic growth following pos-

itive and negative shocks of similar magnitude. They find that negative shocks to output

growth have more persistent effects than positive shocks while the opposite is observed for

inflation shocks. Using the VIX as a measure of uncertainty, Foerster (2014) finds that

increases in uncertainty have larger effects on overall economic activity than decreases.

In this paper, we develop a model that is easy to estimate but also incorporates nonlinear-

ities through which the level of uncertainty can affect how shocks propagate. Similar to the
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three papers just mentioned above, our model incorporates a notion of directional asymme-

try while also accounting for the prevailing level of uncertainty. The model is a time-varying

threshold VAR in which shocks that lower uncertainty have limited linear effects but shocks

that raise uncertainty above the threshold can have amplified effects. Our model is, in part,

based on the asymmetric models used in the oil shock literature (see Hamilton 1996) that

use the maximum over a previous window as the threshold.

We find that, in the nonlinear framework, uncertainty shocks have larger effects than

what is typically found in linear models.1 Moreover, compared to our linear analogue which

has a persistent response after declining on impact, our nonlinear model exhibits a deep con-

traction, and gradual recovery, in real variables following shocks that raise uncertainty above

the threshold. An important component of our model is that the threshold for the nonlin-

earity is time-varying. Thus, our framework accommodates agent indifference to sustained

levels of uncertainty, even if uncertainty is high relative to historical standards. We find that

contractions in investment and consumption contribute substantially to the decline in GDP

observed after uncertainty shocks. In particular, business fixed investment and durables con-

sumption exhibit deep, persistent contractions in uncertain environments, thus supporting

the view that firms and households delay expenditure when faced with spikes in uncertainty.

Finally, we conduct counterfactual experiments by shutting down various channels through

which uncertainty shocks can propagate to the broader economy. We find evidence of the

ability of systematic monetary policy to mitigate the adverse effects of uncertainty shocks.

The balance of the paper is laid out as follows. Section 2 presents the max VAR and

compares it to the linear and threshold VARs. Section 3 provides the details of the Bayesian

estimation of the model and the computation of the impulse responses. Section 4 presents

1Baker, Bloom, and Davis (2016) find that an increase in their Economic Policy Uncertainty index from its
2005-2007 average to its 2011-2012 average (around 90 index points) results in a drop in industrial production
of 1.1% and declining employment by 0.35%. While we don’t study IP, we find a median response of a roughly
1.15% decline in employment by 8 quarters after an uncertainty shock around one-third the magnitude of the
shock in Baker, Bloom, and Davis (2016). Alternatively, Caggiano, Castelnuovo, and Pellegrino (2017) use
the VIX and find that, when not at the zero lower bound, uncertainty shocks trigger a 0.25% decline in real
GDP and consumption but a decline of around 2% in investment after two quarters. We find considerably
larger effects of uncertainty shocks for all three variables.
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the empirical results. Section 5 considers the channels of the effects of uncertainty. Section

6 discusses some robustness checks; further robustness checks are included in an online

appendix. Section 7 offers some conclusions.

2 Empirical Model

The workhorse model used to evaluate the effects of uncertainty and the channels in which

they act is the VAR. We describe two model environments: (i) a linear VAR with off-the-

shelf uncertainty shocks and (ii) a nonlinear VAR with our max uncertainty shock. We

then compare our non-linear environment to the threshold VAR, a commonly used nonlinear

model that can capture differences in the phases of the business cycle.

2.1 The Linear VAR

One of the standard methods for evaluating the effects of uncertainty is to compute the

impulse responses from a VAR. Let Xt reflect a vector of macro variables and Zt reflect the

measure of uncertainty. A conventional reduced-form VAR has the form





Zt

Xt




 =





bzz (L) bzx (L)

bxz (L) bxx (L)










Zt−1

Xt−1




+





εzt

εxt




 , (1)

where the bij (L) are lag polynomials reflecting j’s effect on i and εt = [ε
z
t , ε

x
t ]
′
∼ N (0,Ω)

are the reduced-form errors.2

The structural form of the VAR can be obtained in the usual way, either through sign or

exclusion restrictions. In our case, we obtain the strucural form by computing the Cholesky

2We utilize a constant volatility model for the balance of the paper. A number of other studies have
investigated the use of stochastic volatility to both identify and measure the effects of uncertainty. In these
models, uncertainty has both linear effects and affects the variance of shocks in the VAR. We estimated
a model that included common stochastic volatility (see Carriero, Clark, and Marcellino 2018) but found
no important differences in the shapes of the responses to uncertainty shocks. During periods of high
uncertainty, when the variances are large, the common volatility parameter scales the responses but the
shapes are unchanged. These results are available upon request.
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decomposition assuming that uncertainty is ordered first in the VAR. We identify the struc-

tural uncertainty shocks consistent with the extant literature through causal ordering re-

strictions on the contemporaneous effects matrix. In particular, Baker, Bloom, and Davis

(2016) order the economic policy uncertainty variable first in the VAR. Thus, shocks to the

macro variables do not contemporaneously affect uncertainty but shocks to uncertainty do

contemporaneously affect macro variables.3

Notice that the conventional VAR implies a linear effect of a shock to uncertainty on

the macro variables. In particular, the effect of shocks in the VAR are (1) independent

of the history of the variables, (2) symmetric with respect to the direction of the shock,

and (3) scaled by the magnitude of the shock. Thus, a small change in uncertainty has a

correspondingly small effect on the macro variables and decreases in uncertainty have the

same magnitude effect on the macro variables (albeit in the opposite direction). Moreover,

the level of uncertainty at the time of the shock does not matter in the linear VAR: the effect

of uncertainty shocks in times of low uncertainty have the same effect as a similar magnitude

shock in times of high uncertainty.

2.2 The Max Uncertainty VAR

Our model is based on the conjecture that the effects of uncertainty may depend on the

level of uncertainty. One way to account for potential nonlinear effects of uncertainty on

macro variables is to construct a new variable, Ẑt, that reflects the percentage increase in

uncertainty over the previous maximum within the last m periods:

Ẑt = max

{
0,
Zt −max {Zt−1, ..., Zt−m}

max {Zt−1, ..., Zt−m}

}
. (2)

We consider the maximum value of uncertainty over the previous m = 4 quarters.

Our construction is similar to Hamilton’s (1996) max oil variable, defined with monthly

3Baker, Bloom, and Davis (2016) verify that the responses to uncertainty are robust to changes in the
causal ordering.
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data as the percentage increase in the price of oil over its maximum during the last m = 12

months. Because Hamilton assumes that oil prices are essentially exogenous, he can estimate

the effect of a max oil shock using only the equations for the macroeconomic variables in the

VAR, (1):

Xt = b
xx (L)Xt−1 + b

xz (L) Ôt−1 + ε
x

t
,

where Ot is the period−t price of oil and Ôt−1 is defined similarly to (2). Notice that there

is no feedback from Xt−1 into Ôt and no linear effect of Ot.

For our application, we want to allow for feedback from the macroeconomic variables to

uncertainty. We cannot, however, insert max uncertainty, Ẑt, directly into the VAR as it

would imply a counterfactual linear relationship between Xt−1 and Ẑt. Instead, we posit the

following model:



Zt

Xt


 =



bzz (L) bzx (L)

bxz (L) bxx (L)






Zt−1

Xt−1


+




0

b̂xz (L)


 Ẑt−1 +



εz
t

εx
t


 , (3)

where again εt = [εz
t
, εx
t
]′ ∼ N (0,Ω) are the reduced-form errors. The model (3) has a

number of characteristics: (i) it preserves the linearity between uncertainty and its own

lags through the lag polynomial bzz (L), (ii) it allows lagged macro variables to (linearly)

affect uncertainty through the lag polynomial bzx (L), (iii) it allows uncertainty to affect

macro variables linearly through the lag polynomial bxz (L) in low uncertainty times, but

(iv) it introduces a nonlinearity in the effects of uncertainty on macro variables around a

threshold determined by the history of uncertainty. When uncertainty exceeds peak levels–

i.e., Zt > max {Zt−1, ..., Zt−m}– its effect on macroeconomic variables is amplified, switching

from bxz (L)Zt−1 to b
xz (L)Zt−1 + b̂

xz (L) Ẑt−1.

The model partitions the space of the relevant history of uncertainty into two subsets:

One in which uncertainty is sufficiently below its past max that a one-standard-deviation

shock will not change the dynamics and one in which uncertainty is close enough to its
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(recent) historical max that a positive shock can produce nonlinear effects. Notice that,

in addition to the nonlinear effects around the threshold, the model produces directionally

asymmetric effects. A negative shock to uncertainty can produce some effects via the lag

polynomial bxz (L) whether in times of high or low uncertainty. On the other hand, only a

positive shock to uncertainty can trigger the additional effect through b̂xz (L) only if the new

level of uncertainty is sufficiently high. In addition, we explicitly assume that uncertainty

does not have nonlinear effects on itself, reflected by the assumption b̂zz (L) = 0 imposed

in the second term of eq. (3). This assumption prevents uncertainty amplification–that

is, when in a high uncertainty state, the uncertainty shock does not have a larger effect on

itself.

2.3 The Case for the Max Uncertainty VAR vs. a Fixed Threshold

Our model introduces a nonlinearity when uncertainty reaches a local peak but nests a

standard, linear VAR in times of relatively low uncertainty. Given this setup, one might

ask why our model is preferable to other nonlinear models–e.g., Markov-switching VAR,

STVAR, or threshold (TVAR) models. Constant transition probability Markov-switching

models (e.g., Hamilton 1989) impose that movement between regimes is independent of the

level of the variables in the model. Smooth-transition VARs and threshold VARs allow

for interaction between the model variables and the regime but generally impose a fixed

threshold.

Our setup is most comparable to the threshold model with a time-varying threshold. To

see this, consider the threshold VAR of the form:




Zt

Xt



=




bzz (L) bzx (L)

bxz (L) bxx (L)








Zt−1

Xt−1



+I[Zt−1>Z∗]




0 0

∆bxz (L) 0








Zt−1

Xt−1



+




εzt

εxt



 , (4)

where I[Zt−1>Z∗] is an indicator variable that takes on a value of 1 when Zt−1 > Z
∗ and 0

otherwise that imposes a similar change in dynamic to our model. In (4), the threshold

value Z∗ is constant. The first term on the RHS is the standard linear VAR and the second
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term triggers an amplification effect in the channel from uncertainty to the macro variables.

When uncertainty rises above the threshold value, its effect on the macro variables changes to

bxz (L)+∆bxz (L); at values below the threshold, uncertainty only affects the macro variables

linearly through bxz (L).

We can write our model similarly:


 Zt

Xt


 =


 bzz (L) bzx (L)

bxz (L) bxx (L)




 Zt−1

Xt−1


+ I[

Zt−1>Z
∗

t−1

]


 0 0

b̂xz (L) 0




 f (Zt−1)

Xt−1


+


 εzt

εxt


 , (5)

where Z∗t−1 is now time-varying. Note also that the effect of uncertainty on macro variables

during uncertain times is determined by a function f (Zt−1) determined by eq. (2), which

scales the effect of uncertainty on macro variables by the percentage that uncertainty rises

above its local max.

Our model has some advantages over conventional nonlinear models. Compared with

the standard constant transition probability Markov-switching models, the max uncertainty

VAR allows the level of uncertainty to determine how uncertainty affects macro variables.

Compared with conventional smooth transition VARs and time-varying transition probability

models, we add the flexibility of a time-varying, history-dependent threshold. Moreover, our

setup implies that only positive shocks to uncertainty–events that make uncertainty rise–

propagate nonlinearly to the macro variables. Similar models with time-varying thresholds–

e.g., Dueker, Owyang, and Sola (2010)–use autoregressive processes to filter the threshold.

However, these models are hard to estimate and, generally, use two-sided filters to obtain

the threshold value. These techniques heighten uncertainty at the end of the sample, making

prediction from these models difficult. Moreover, the policymaker never really knows how

close the economy is to the tipping point in real time.

On the other hand, our model does not allow the same interaction between uncertainty

levels and other shocks as a full regime-switching model. This would be important if the

recession was caused by rising levels of uncertainty or if a different shock caused the recession,

which then triggered the rise in uncertainty, as conjectured in Bloom (2014). Stock and
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Watson (2012) argued that “heightened uncertainty” was a key factor that triggered the

2007-2009 recession, but the sharp rise in oil prices and financial market disruptions were

also important.

3 Data and Inference

3.1 Measuring Uncertainty

Because uncertainty is unobserved, a key challenge is devising a proxy. An early attempt

to measure uncertainty developed by Bloom (2009) used actual and implied stock market

volatility. More recent attempts to measure uncertainty use a more formal econometric

framework. Jurado, Ludvigson, and Ng (2015) use multiple series, exploiting the common

variation in forecast errors as a measure of uncertainty. Rossi and Sekhposyan (2015) use

the Survey of Professional Forecasters (SPF), to measure upside and downside uncertainty.

Campbell (2007) also used a forecasting approach that relied on the SPF. Baker, Bloom,

and Davis (2016) constructed an Index of Economic Policy Uncertainty (EPU) by using the

frequency of newspaper articles containing several key search terms.4

Our intention is not to enter the debate about the optimal measure of uncertainty.5 In-

stead, we use off-the-shelf uncertainty series taken from other sources.6 Our benchmark mea-

sure of uncertainty is the Baker, Bloom, and Davis (2016) EPU, which is publicly available for

the sample 1985-2018 from the following website: http://www.policyuncertainty.com/us_monthly.html.7

4In theoretical models, uncertainty is typically characterized as Knightian (see Knight 1921), where risks
are unknown. These proxies, however, may include both known and unknown risks, making them not pure
measures of Knightian uncertainty.

5Scotti (2016), asking a somewhat different question, finds that uncertainty measures that relate to the
state of the real economy–as opposed to financial market volatility or forecast disagreement–produce more
modest effects on economic activity. Strobel (2015) found that uncertainty measures based on realized
variables like Baker, Bloom, and Davis (2016) are more volatile than measures based on forecasts.

6Ludvigson, Ma, and Ng (2019) assert that using an external measure of uncertainty can lead to a form
of endogeneity bias. On the other hand, Carriero, Clark, and Marcellino (2018) argue that the endogeneity
bias only manifests for financial uncertainty; macroeconomic uncertainty is not affected. Recognizing this
issue is still an open debate, we leave it for further research.

7For robustness, we also consider the Chicago Board of Exchange VIX measure of implied stock market
volatility as a measure of uncertainty in Section 6. This approach is consistent with Bloom (2009) and
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We convert monthly series to quarterly by taking the average value over the months in each

quarter. Using the EPU, we setm = 4 to construct the Ẑt series by considering the maximum

value of uncertainty over the previous 4 quarters. Figure 1 shows the quarterly EPU (dashed

line, right axis) from 1985-2018, plotted with the mean value over the full sample, and the

max uncertainty series (solid line, left axis). The shaded vertical bars represent NBER-dated

recessions.

It can be clearly seen that uncertainty is high around recessions. The period of heightened

uncertainty associated with the global financial crisis and Great Recession persists well after

the NBER defined the end of the recession in 2009:Q2.8

We find 18 different events lasting a total of 29 quarters during which Ẑt > 0. Of these,

six events occur after 2008:Q4, once the federal funds rate hit the zero lower bound. Figure

1 also shows the max uncertainty series with historical events associated with some of the

substantial spikes. We note five major uncertainty events. In 1998:Q3, Russia defaulted

on its externally-held debt. The spike in uncertainty during 2001:Q3 is associated with

the terrorist attacks on September 11, the collapse in technology stock prices, and corporate

governance scandals. The next two uncertainty spikes–2008:Q1 (Bank of America purchased

Countrywide Financial and JPMorgan Chase purchased Bear Stearns) and 2008:Q4 (the

aftermath of Lehman Brothers bankruptcy in September 2008, the placement of Fannie Mae

and Freddie Mac into government receivership, Bank of America’s purchase of Merrill Lynch,

the bailout of AIG, the failure of Washington Mutual Bank, and Citigroup’s purchase of

Wachovia Securities)–were associated with key events during the 2007-2009 Great Recession

and Financial Crisis.9 The spike in 2011:Q3 was associated with Europe’s banking and

Caggiano, Castelnuovo, and Pellegrino (2017), among others. The data are available on the Federal Reserve
Bank of St. Louis FRED database and the CBOE website. We use the average of the daily VIX over each
quarter and again construct Ẑt with m = 4.

8Stock and Watson (2012) and Caldara et al. (2016) argue that disentangling financial and uncertainty
shocks may be difficult because uncertainty is correlated with financial stress. While it is possible that the
EPU is affected by financial conditions, it is more likely that uncertainty influences financial conditions.
Baker, Bloom, and Davis (2016) compare the correlation between the EPU index and the VIX and find
that the two often move together. However, an important distinction highlights how the VIX more strongly
captures events with strong connections to financial and stock markets.

9See the St. Louis Fed’s Financial Crisis Timeline for more details on critical events during this time
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sovereign debt crisis and Standard and Poor’s announcement on August 5 that it downgraded

U.S. sovereign debt from AAA to AA+.

Figure 1: Max Uncertainty Series (solid line - left axis) with the Baker, Bloom, and Davis
(2016) Economic Policy Uncertainty Index (dashed line - right axis) and mean EPU over the
sample. The Max Uncertainty series is labeled with significant historical events associated
with large spikes in uncertainty

3.2 Macroeconomic Data

In addition to the EPU index, we include five macroeconomic variables in our baseline VAR.

Transforming the data to ensure stationarity, we use the first differences of quarterly log real

gross domestic product (GDP), log Personal Consumption Expenditures chain price index

(INF), and log total nonfarm employment (EMP). Additionally, we include the effective fed-

eral funds rate (FFR) and the 10-year Treasury note yield (10Y) in levels. All macroeconomic

data are obtained from the Federal Reserve Bank of St. Louis FRED database.

In a subsequent section considering through which channels uncertainty propagates, we

include first differences of log real personal consumption expenditures (CONS) and log real

total investment (INV). We then consider disaggregate consumption and investment series.

frame: https://www.stlouisfed.org/financial-crisis/full-timeline.
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In particular, we include first differences of log real personal durable consumption expendi-

tures (DUR), log real personal nondurable consumption expenditures (NON), and log real

personal service consumption expenditures (SERV). As disaggregate investment series, we

include first differences of log real private inventories (VEN), log real residential fixed invest-

ment (RES), and log real nonresidential business fixed investment (BFI).10

Since the EPU index is available starting in 1985, we estimate the VAR using data

from 1985:Q1-2018:Q2. The interest rates are taken as the average value over each quarter.

We considered lag orders from one to four for the VAR and found the BIC to favor one

lag. Therefore, we report the results of the estimation of a VAR(1) in the six variables

(macroeconomic plus the EPU).

3.3 Estimation and Inference

One benefit of the setup (3) is that the homoskedastic model can be estimated simply using

conventional methods. While the model allows us to estimate the VAR using OLS, we will

utilize Bayesian methods. We impose a normal-inverseWishart prior on the coefficients of the

reduced-form model and assume that the parameters have mean zero and are uncorrelated.

Let Ψ represent the full vector of parameters, let Ψ−ψ represent the full vector of parameters

less the parameter ψ, and letY collect the data. The sampler has two blocks: (1) the reduced-

form VAR parameters, B (L), and (2) the reduced-form constant variance-covariance matrix,

Ω. Given the prior, the sampler is a standard normal—inverse-Wishart conjugate draws.

One drawback of the model is that impulse responses will depend on the history of the

uncertainty variable and both the size and direction of the uncertainty shock and, therefore,

cannot be constructed in the usual way. Instead, we can construct generalized impulse

response functions (GIRFs), developed by Koop, Pesaran, and Potter (1996). The GIRFs are

constructed using Monte Carlo methods from random draws from the history of uncertainty

10Total fixed investment is the sum of nonresidential and residential fixed investment. Total gross private
domestic investment is thus measured as total fixed investment plus the change in private inventories. Here,
we include the log of real private inventories in first differences to express the magnitude in comparable terms
to the other variables in the VAR, as percentage changes.
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and are described in the Appendix.11 Since GDP, PCE inflation, and EMP all enter the VAR

in first differences of logs, we express the cumulative impulse responses of these variables

to see the log-level response. In order to compare across different constant-volatility model

specifications, we consider a shock with magnitude equal to one standard deviation of the Z

data series.12

After discarding the first 2000 draws, we use 8000 draws from the sampler, thinning at

each 10th draw, to construct generalized impulse responses.

4 Measuring the Effect of Uncertainty Shocks

Initially, we consider three permutations of the nonlinear VAR outlined in equation (3):

(i) uncertainty has only linear effects–i.e., where b̂xz (L) = 0; (ii) uncertainty has only

nonlinear effects–i.e., where bxz (L) = 0; and (iii) uncertainty can have both linear and

nonlinear effects–i.e., where we leave bxz (L) and b̂xz (L) unrestricted. In this last model,

uncertainty shocks have linear effects in periods of low uncertainty. When uncertainty rises

above the threshold, the second term on the right-hand-side of (3) produces additional

nonlinear effects. In our initial experiments, we use the baseline macroeconomic dataset,

Xt = [GDPt, INFt, EMPt, FFRt, 10Yt]
′.

Our first exercise is to consider the fit of each of the three alternative specifications. For

each of the three models listed above, we compute the BIC at each iteration of the Gibbs

sampler to obtain the mean BIC.13 The model with the lowest average BIC is permutation

(ii), the max uncertainty VAR where bxz (L) = 0, which we adopt as our benchmark model.

This initial result suggests that nonlinearities are important in quantifying the effects of

uncertainty shocks. Moreover, once we account for these threshold nonlinearities, the linear

term bxz (L) contributes less to increasing in-sample fit than the corresponding increase in

11In our model, the history of the Xt variable does not affect the response to an uncertainty shock.
12For the EPU, this results in a shock equal to 28.99 index points. For the VIX, the shock is equal to 7.81

index points.
13Kass and Raftery (1995) argue that the BIC closely approximates the computation of Bayes factors.
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estimation error associated with the additional parameters. Thus, real activity, inflation,

and interest rates are only affected when a shock raises uncertainty above a local maximum

and firms and households to begin to pay attention.

4.1 Impulse Responses

As we alluded to above, the impulse responses one obtains from the linear VAR are invariant

with respect to the events leading up to the time of the shock: Whether uncertainty has

been high or low in recent history does not affect the future propagation of a shock at time

t. On the other hand, the responses for our nonlinear max uncertainty VAR will depend

on the history (at least through the window m) of uncertainty up to the time of the shock.

One approach to computing the responses would be to average over all possible histories.

Instead, we compare the responses under two alternative histories leading up to the shock

at time t: (1) Ẑt−1 = ... = Ẑt−p = 0, and (2) Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0.14 The

first scenario represents times when the economy has not experienced a spike in uncertainty

in recent history. The second scenario represents the case for which uncertainty has just

reached a high level in the previous period.15

Figure 2 shows the impulse responses of macro variables and interest rates to a one-

standard-deviation shock to the EPU index for the max uncertainty VAR. The solid line

and light-shaded band, respectively, represent the posterior median and 68-percent posterior

coverage of the responses when uncertainty has not recently crossed the threshold (Scenario

1). The dashed line and dark-shaded band show the responses when uncertainty has recently

crossed the threshold, Ẑt−1 > 0 (Scenario 2).

As expected, an increase in uncertainty produces recessionary conditions in both scenar-

ios, leading to declining output, prices, and employment. We also find reductions in the

14In our baseline model, an extreme case is obtained when the level of uncertainty does not cross the local
max threshold for the duration of the response period; in this case, uncertainty shocks will have no effect on
real variables.
15Our scenarios do not encompass all possible histories. Also, note that the first scenario includes histories

in which the shock raises uncertainty above the threshold as well as histories in which the threshold is not
crossed for the duration of the response horizon.
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federal funds rate and the interest rate on the 10-year Treasury Bill. This may reflect the

systematic response of monetary policy intended to mitigate the contractionary effects of the

uncertainty shock.16 When uncertainty has recently been high, the contractionary effects are

stronger, leading to larger reductions in economic activity and inflation.

Figure 2: Impulse responses from the benchmark VAR (ii) with only non-linear effects of
uncertainty. Scenario 1 represents times when the economy has not experienced a spike in
uncertainty in recent history: Ẑt−1 = ... = Ẑt−p = 0. Scenario 2 represents the case for which

uncertainty has just reached a high level in the previous period: Ẑt−1 > 0 and Ẑt−2 = ... =
Ẑt−p = 0. We report cumulative impulse responses for those variables that enter the VAR
in first differences of logs in order to interpret the effects on log-levels of these variables.

4.2 Comparison with the Linear VAR

We next compare the responses from a linear VAR with those estimated from the max

uncertainty VAR. Figure 3 plots the posterior median responses of the linear model (open

squares), the max uncertainty VAR under Scenario 1 (solid lines), and the max uncertainty

16Using the VIX, Caggiano, Castelnuovo, and Pellegrino (2017) find statistically stronger negative real
effects of uncertainty when monetary policy is at the zero lower bound (defined as the subsample from
2008:Q4-2015:Q4). A closer look at the EPU index reveals that the observations from 2008:Q3-2013:Q4 are
above the sample average, coinciding with much of the ZLB period. Our max uncertainty variable takes on
values greater than zero in 10 quarters after the end of 2008. Thus, our results are comparable to those of
Caggiano, Castelnuovo, and Pellegrino (2017) in that many of the high-uncertainty episodes occur once the
economy faces the zero lower bound.
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VAR under Scenario 2 (dashed lines). For the first six quarters, the responses from the

linear VAR are less contractionary but more persistent than those from either scenario in

the max uncertainty VAR. When we introduce the nonlinear transmission of uncertainty

shocks, all variables contract more quickly following the shock but also recover more quickly

once uncertainty either stabilizes or declines (i.e., once Ẑt+k = 0 for some future k).

As depicted in the top left panel of Figure 3, the shock to Zt is persistent and has long-

term effects regardless of whether nonlinear effects are included or not. In the linear model,

the persistence of the uncertainty shock produces economic effects across the entire response

horizon. The contraction in output continues after uncertainty has stabilized because the

longer-run level of uncertainty is higher than it was pre-shock. On the other hand, in the

max uncertainty VAR, once Zt stabilizes around its new, higher level, households and firms

become accustomed to the new environment building up a form of uncertainty tolerance.

After a short period, output begins to recover.

Figure 3: Comparison of impulse responses from the benchmark VAR (ii) with only non-
linear effects of uncertainty versus model (i), the linear VAR. Scenario 1 represents times

when the economy has not experienced a spike in uncertainty in recent history: Ẑt−1 =
... = Ẑt−p = 0. Scenario 2 represents the case for which uncertainty has just reached a high

level in the previous period: Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0. We report cumulative
impulse responses for those variables that enter the VAR in first differences of logs in order
to interpret the effects on log-levels of these variables.
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4.3 Comparing to the Threshold VAR

Next, we compare our max uncertainty VAR–where the state change occurs when uncer-

tainty is locally high–to a constant threshold VAR–where a state change occurs when

uncertainty is above sample mean of the EPU index. As seen in Figure 1, the index is above

the mean during all three recessions that occur in the sample (1990:Q3-1991:Q1, 2001:Q2-

2001:Q4, and 2008:Q1-2009:Q2). The EPU also suggests uncertainty was above average from

the beginning of the sample through the end of 1986. After the Great Recession ends in

2009, the EPU stays above average through the end of 2013.

We construct GIRFs from the threshold VAR for two scenarios: (A) uncertainty was

above the threshold in the previous period and (B) uncertainty was below the threshold in

the previous period. We then compare these two threshold VAR scenarios to the two max

uncertainty VAR scenarios described in the previous section. Figure 4 shows the posterior

median responses to equal-sized uncertainty shocks for the four scenarios: open circles and

dots, respectively, for the threshold VAR scenarios A and B and solid line and dashed line,

respectively, for the max uncertainty VAR scenarios 1 and 2.17

When compared to the sharp declines in the macro variables exhibited from the max

uncertainty VAR, GIRFs from the threshold VAR are relatively more shallow but remain

more persistent. Similar to the comparison of our model with the linear VAR, the real

variables recover more slowly in the threshold VAR than in the max uncertainty VAR. Thus,

it seems that both accounting for the nonlinear transmission of heightened uncertainty and

time-variation of the threshold are important for tracing out the effects of uncertainty shocks.

17Comparing only the median responses, we see larger reductions in all real activity variables following an
increase in uncertainty when initially below the threshold. This is likely due to the fact that a one-standard-
deviation shock to Zt when uncertainty is initially low represents a much larger spike than when uncertainty
was already high to begin with. Further increases in uncertainty when the economy already is facing high
uncertainty produce similar contractionary effects.
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Figure 4: Comparison of impulse responses from the benchmark VAR (ii) with only non-
linear effects of uncertainty versus the fixed-threshold VAR. Scenario 1 represents times when
the economy has not experienced a spike in uncertainty in recent history: Ẑt−1 = ... = Ẑt−p =
0. Scenario 2 represents the case for which uncertainty has just reached a high level in the
previous period: Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0. We set the fixed threshold at the
mean value of the Z series and compute genearlized impulse responses when the economy
was above or below this threshold in the period before the shock. We report cumulative
impulse responses for those variables that enter the VAR in first differences of logs in order
to interpret the effects on log-levels of these variables.

5 Identifying Propagation Channels

Previous studies have proposed theories about the channels through which uncertainty could

affect real economic variables. We have highlighted a few of the papers which argue that

uncertainty could act through firm investment (Bernanke 1983; Dixit and Pindyck 1994),

household purchases (Basu and Bundick 2017), or both (Pástor and Veronesi 2013; Gilchrist,

Sim, and Zakrajšek 2014). Moreover, a few recent papers have argued for the importance of

monetary policy in affecting the transmission of uncertainty shocks (e.g., Caggiano, Castel-

nuovo and Nodari 2017). These papers focus on the systematic response of monetary policy

to changes in uncertainty.

In this section, our objective is to disentangle some of the channels through which un-

certainty can have effects on real variables. In particular, we consider whether uncertainty

affects real output more through investment or consumption. We then examine the effect
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of suppressing the systematic component of monetary policy to determine policy’s role in

mitigating the effects of uncertainty shocks.18 While similar to that conducted in Caggiano,

Castelnuovo, and Nodari (2017), our experiment differs from theirs along a number of impor-

tant dimensions. First, regime changes in their model are driven by real variables; thus, the

experiment is disconnected from the variable that drives the regime change. Second, their

threshold is time-invariant. In the previous section, we showed that the constant threshold

assumption leads to an increase in the persistence of the effects of uncertainty shocks, which

could lead to important differences in the response of monetary policy.

To do this, we consider a few variants of the baseline VAR.19 First, we augment the base-

line VAR with real aggregate investment to determine the extent to which uncertainty shocks

propagate through investment behavior. We then further disaggregate investment into busi-

ness fixed investment, residential investment, and inventories. Next, we augment the baseline

VAR with real consumption expenditures. We then further disaggregate consumption into

durable, non-durable, and service consumption.20

5.1 Investment and Consumption Channels

The first panel of Figure 5 shows that aggregate investment experiences a significant down-

turn following a shock increasing uncertainty. Because investment is the most volatile com-

ponent of aggregate output, it is not surprising to see it contract sharply in Scenario 2, when

the economy faces relatively uncertain times.

Next, we examine how uncertainty propagates through disaggregated measures of in-

vestment including business fixed investment, residential investment, and inventories. We

augment the baseline VAR with the first differences of log real spending on these three

categories, ordered directly after GDP. The second and third panels of Figure 5 show the

18In the online appendix, we also consider how financial conditions affect the propagation of uncertainty.
19For brevity, we do not include figures showing the impulse responses for all variables implied by this

model. These results are available from the authors upon request.
20All real expenditure variables enter the VAR in the first difference of logs. To remain consistent with

earlier results, we report the cumulative impulse responses so that we can interpret the effects of uncertainty
shocks on log-levels of these variables.
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cumulative responses of the three subcategories of investment to uncertainty shocks for the

two scenarios. For both histories of uncertainty, residential investment falls more on impact

and declines more sharply than the other two investment series, but it also rebounds more

quickly. Business fixed investment continues to fall for a longer duration after the shock and

exhibits a more persistent contraction. Under both starting scenarios, residential investment

reaches its minimum 3 quarters after the shock while business fixed investment continues to

fall through 6 quarters.21 Following the uncertainty shock, the initial decline in inventories

is small–although larger in Scenario 2–but persistent. These results imply that businesses

adapt to the uncertain environment rather quickly, adjusting their decision-making process

in accordance with volatile economic conditions. Inventories adjust downward even as con-

sumers reduce spending, thus suggesting that businesses might be cutting back both on

investment as well as production.

The first panel of Figure 6 shows that consumption, like the other real variables, declines

significantly after the shock to uncertainty. The effects are persistent under both scenarios,

with a more severe contraction if the recent history of uncertainty has been high. The

magnitude of the consumption response is about one-fifth that of the investment response.

Next, we estimate the baseline VAR including the first differences of log real consumption

spending on durables, non-durables, and services, ordered after GDP. The second and third

panels of Figure 6 plot the cumulative responses of the three subcategories of consumption

to uncertainty shocks for the two scenarios. Regardless of whether uncertainty has recently

been high or low, all three categories of consumption decline on impact in response to the

shock. Also, regardless of the uncertainty conditions at the time of the shock, durables

consumption falls by a larger magnitude and exhibits a more persistent contraction than

21Kim and Kung (2017) find that firms using less redeployable assets–an important feature of investment
irreversibility–reduce capital investment more after increases in uncertainty. This behavior explains the
severe contraction of business fixed investment.
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Figure 5: First panel: Generalized impulse responses of aggregate investment from the
benchmark VAR (ii). Second and third panels: Impulse responses of the subcategories of
investment from the benchmark VAR (ii), augmented with investment, with only non-linear
effects of uncertainty. Scenario 1 represents times when the economy has not experienced
a spike in uncertainty in recent history: Ẑt−1 = ... = Ẑt−p = 0. Scenario 2 represents the

case for which uncertainty has just reached a high level in the previous period: Ẑt−1 >
0 and Ẑt−2 = ... = Ẑt−p = 0. We report cumulative impulse responses for those variables
that enter the VAR in first differences of logs in order to interpret the effects on log-levels
of these variables.

the other consumption categories. This result supports the view that households exercise

precautionary reductions in spending, in particular related to durables spending which would

be comparable to the real-option effects of irreversible investment spending. Our results

confirm those of Bloom et al. (2018), that uncertainty shocks act as demand shocks, thus

reducing aggregate output via precautionary savings and real options effects.

5.2 The Interaction Between Uncertainty and Monetary Policy

One of the prevailing themes in the current literature is that monetary policy can be used as

a tool to mitigate the effects of uncertainty.22 In our baseline results, the Fed accommodates

22Castelnuovo and Pellegrino (2018) and Pellegrino (2018) find that monetary policy is less effective in a
high-uncertainty environment.
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Figure 6: First panel: Generalized impulse responses of aggregate consumption from the
benchmark VAR (ii). Second and third panels: Impulse responses of the subcategories
of consumption from the benchmark VAR (ii), augmented with consumption, with only
non-linear effects of uncertainty. Scenario 1 represents times when the economy has not
experienced a spike in uncertainty in recent history: Ẑt−1 = ... = Ẑt−p = 0. Scenario
2 represents the case for which uncertainty has just reached a high level in the previous
period: Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0. We report cumulative impulse responses for
those variables that enter the VAR in first differences of logs in order to interpret the effects
on log-levels of these variables.

the uncertainty shock by lowering the federal funds rate. Thus, the responses in the preceding

sections rely on the behavior of the Fed remaining consistent.23 As an alternative, one might

be interested in evaluating the effect of uncertainty shocks in isolation, where the Fed is not

responding to the shock. This both provides a benchmark response to uncertainty shocks

and demonstrates the extent to which the systematic monetary response can lessen the effect

of the uncertainty shocks.

The experiment that isolates the effect of the uncertainty shock and suppresses the re-

sponse of monetary policy is outlined in Bernanke, Gertler, and Watson (1997) and consists

of constraining the value of the federal funds rate to remain at its pre-shock level. For exam-

ple, to determine the response of GDP to uncertainty shocks when the interest-rate channel

is shut down, we compute the counterfactual response of GDP while removing the future

23Colombo and Paccagnini (2019) find that the Fed adjusts the federal funds rate less in expansions than
in recession when faced with a shock to financial uncertainty. Additionally, they find long-term effects on
the Fed’s balance sheet via unconventional policy measures.
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expected path of the federal funds rate from the simulation.

Figure 7 plots the posterior median of the cumulative GIRFs of GDP from the benchmark

with the counterfactual analysis shutting down the interest rate channel in either (i) the

baseline VAR, (ii) the baseline VAR augmented with investment, or (iii) the baseline VAR

augmented with consumption. We observe that the contraction in GDP is larger in all

cases when monetary policy does not systematically respond to the negative effects of the

uncertainty shock.

Table ?? shows the ratio of the 12-quarter cumulative reponse of GDP under the restricted

counterfactual to the unrestricted benchmark for each of the three VARs discussed above.

For each VAR, we compute the GIRFs using the two starting scenarios we define in Section

4.1. Values greater than 1.00 suggest that GDP declines more in the counterfactual than

in the benchmark. Not surprisingly, in every case, GDP declines more when we restrict

monetary policy’s ability to react to the uncertainty shock.24 In particular, monetary policy

reduces the effect of uncertainty shocks between 31 and 57 percent, depending on the model

specification and the initial conditions at the time of the shock. The channel through which

monetary policy has the largest effects is the case where we explicitly model the uncertainty

channel through consumption.

24Caggiano, Castelnuovo, and Nodari (2017) conduct a similar exercise but compare counterfactual sce-
narios in which systematic monetary policy does not react in either recessionary or expansionary economic
conditions. They find that monetary policy is influential for avoiding a recession if the uncertainty shock
occurs in a strong economy. Alternatively, monetary policy attenuation has little effect if the uncertainty
shock occurs when the economy is already facing a recession.
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Figure 7: Impulse responses from the benchmark VAR (ii) with only non-linear effects of
uncertainty. Scenario 1 represents times when the economy has not experienced a spike in
uncertainty in recent history: Ẑt−1 = ... = Ẑt−p = 0. Scenario 2 represents the case for which

uncertainty has just reached a high level in the previous period: Ẑt−1 > 0 and Ẑt−2 = ... =
Ẑt−p = 0. We shut down the response of the federal funds rate and compare the responses of
GDP in the restricted and unrestricted cases. We report cumulative impulse responses for
those variables that enter the VAR in first differences of logs in order to interpret the effects
on log-levels of these variables.

6 Robustness

6.1 Alternative Uncertainty Series

For robustness, we consider two alternative measures of uncertainty: the CBOE VIX measure

of implied stock market volatility and the macroeconomic uncertainty series constructed by

Jurado, Ludvigson, and Ng (2015), henceforth referred to as "JLN". In Figure 8, we plot

the EPU index (left axis - solid line) with the VIX (right axis - dashed line). The two series

behave similarly throughout the sample and exhibit a correlation of 0.43. The indices differ

considerably in magnitude where the EPU has a standard deviation equal to 28.99 index

points while that of the VIX is only equal to 7.81 points. Constructing ẐV IXt analogously,

the VIX produces 31 quarters during which ẐV IXt > 0. Figure 9 plots a comparison of the

Ẑt from the EPU index (left axis - solid line) with that of the VIX (right axis - dashed

line). While the VIX produces two additional observation of a non-zero ẐV IXt , most of the
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non-zero values are of much smaller magnitude than those associated with the EPU.

Alternatively, Figure 10 plots the EPU index (left axis - solid line) with the JLN index

(right axis - dashed line). With a correlation of only 0.34, we find more variation in the

behavior of these two series where the JLN index rises only slightly in the recessions of the

early 1990’s and early 2000’s but spikes dramatically during the financial crisis. Like the

VIX, the JLN series also takes on values of a much smaller magnitude than the EPU with

a standard deviation of only 0.08. Figure 11 plots ẐJLNt constructed with the JLN series,

highlighting 35 quarters in which ẐJLNt > 0. Only 15 of these quarters overlap with dates

for which the EPU Ẑt > 0. Ẑ
JLN
t spikes prior to, rather than during, the recession in the

early 1990’s. We also find large, non-zero values of ẐJLNt in 1996:Q1 and 2005:Q3, while our

Ẑt based on the EPU stays at zero during both of these episodes.

We construct generalized impulse responses of all variables in the VAR to an increase in

uncertainty under the same two environments considered previously: (1) when Ẑt−1 = ... =

Ẑt−p = 0, and (2) when Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0. To be concise, we do not include

figures showing the impulse responses when the VIX or the JLN series is substituted as the

measure of uncertainty.25 The results are qualitatively similar: an increase in uncertainty

when the economy has recently hit a local max produces a larger contraction in economy

activity and inflation and a larger reduction in both the federal funds rate and the interest

rate on 10-year Treasury bills. Furthermore, when comparing the max uncertainty VAR to

linear or threshold VARs, all variables contract more steeply and recover more quickly in

the former model.

25These are available upon request.
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Figure 8: Max Uncertainty Series with the Baker, Bloom, and Davis (2016) Economic Policy
Uncertainty Index (solid line - left axis) and the VIX (dashed line - right axis)

6.2 Allowing Linear Responses to Uncertainty

The benchmark model that includes the restriction that bxz (L) = 0 shuts down the linear

effect of uncertainty on the macroeconomy, damping out the effect of small uncertainty shocks

(as they are less likely to cross the threshold and activate the second term in (3)) and zeroing

out the effect of decreases in uncertainty. While our specification tests suggest our benchmark

model is preferred, we estimated the model leaving bxz (L) unrestricted for comparison.

Figure 12 compares the responses of GDP from the restricted model with the unrestricted

model for scenarios 1 and 2, respectively.26 These figures show qualitatively comparable

contractionary effects for uncertainty shocks in both models, although the differences between

the two scenarios are less pronounced. The contraction in output is more persistent in the

unrestricted model where we estimate the full set of coefficients in the linear portion of the

VAR. This captures the behavior evident from the linear model in which output continues

to contract over the longer-term as the shock to uncertainty is so persistent. Thus, we are

able to allow for a similar dynamic in which the heightened uncertainty that persists long

after the initial spike to max uncertainty might continue to suppress economic activity over

26The responses of the other variables in the VAR are available from the authors upon request.
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Figure 9: Quarterly Data on the Baker, Bloom, and Davis (2016) Economic Policy Un-
certainty Index (solid line - left axis) and the Jurado, Ludvigson, Ng (2015) measure of
uncertainty (dashed line - right axis)

Figure 10: Max Uncertainty Series with the Baker, Bloom, and Davis (2016) Economic Policy
Uncertainty Index (solid line - left axis) and the Jurado, Ludvigson, Ng (2015) measure of
uncertainty (dashed line - right axis)

27



longer time horizons.

Figure 11: Comparison of impulse responses of GDP from the benchmark VAR (ii) with
only non-linear effects of uncertainty versus model (iii), the full VAR with both linear and
non-linear effects of uncertainty. Scenario 1 represents times when the economy has not
experienced a spike in uncertainty in recent history: Ẑt−1 = ... = Ẑt−p = 0. Scenario
2 represents the case for which uncertainty has just reached a high level in the previous
period: Ẑt−1 > 0 and Ẑt−2 = ... = Ẑt−p = 0. We report cumulative impulse responses for
those variables that enter the VAR in first differences of logs in order to interpret the effects
on log-levels of these variables.

7 Conclusion

We contruct a model with nonlinearities and a deterministic time-varying threshold. In

our model, uncertainty must rise above recent historical highs to trigger the nonlinearity.

The model has the advantage of being relatively easy to estimate, in part because of the

deterministic threshold. In addition, unlike models with time-varying unobserved thresholds,

the deterministic threshold is easy for a policymaker to interpret as the economy’s proximity

to the nonlinearity is known.

Our results are consistent with existing literature in finding that increases in uncertainty
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lead to economic downturns. Furthermore, we find empirically relevant differences between

the macroeconomic responses to uncertainty shocks under conditions of high and low uncer-

tainty. Compared to linear models and a number of other nonlinear alternatives, we find that

the effects of uncertainty shocks are deep and sharp but not as persistent. This is perhaps

due to households and firms ignoring fluctuations in uncertainty during tranquil economic

times that leads to considerable variation in the sensitivity to shocks that create volatility.
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A Computing the GIRFs

Stacking the elements of the VAR, let’s define yt+k =
[
X ′

t+k, Z
′

t+k

]
′

. We can think of an

impulse response as the difference between the expectation of the variable conditional on the

shock and the expectation of the variable conditional on no shock:

IRFk (δ) = Et [yt+k|Ωt, vt = δ]− Et [yt+k|Ωt, vt = 0] ,

where IRFk (δ) is the impulse response at horizon k after a shock of magnitude δ at time t,

vt is the structural shock, and Ωt is the information (history) at time t.

To construct the impulse response, we first compute the path of the variables for no shock

to uncertainty at time t. That is, we compute:



Zt

Xt


 =



bzz (L) bzx (L)

bxz (L) bxx (L)






Zt−1

Xt−1


+




0

b̂xz (L)


 Ẑt−1,

at time t. For the duration of the response, we simulate innovations out to horizon H by

drawing random values for εt+k from the N (0,Ω) distribution:



Zt+k

Xt+k


 =



bzz (L) bzx (L)

bxz (L) bxx (L)






Zt+k−1

Xt+k−1


+




0

b̂xz (L)


 Ẑt+k−1 +



εzt+k

εxt+k




for k = 1, ..., K. Obviously, the propagation of the shock will be different if uncertainty

is sufficiently high that Ẑt+k−1 is nonzero. Thus, we construct the response under two

alternative scenarios: (1) when Ẑt−1 = ... = Ẑt−p = 0, and (2) when Ẑt−1 > 0 and Ẑt−2 =

... = Ẑt−p = 0. The second scenario represents the case for which uncertainty has just

reached a high level in the previous period.

To compute Et [yt+k|Ωt, vt = δ] in general, we have
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
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Zt

Xt
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bzz (L) bzx (L)

bxz (L) bxx (L)
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ω11 0

ω21 ω22
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δ

0


 ,

where

chol (Ω) =



ω11 0

ω21 ω22


 .

In the first case, where when Ẑt−1 = ... = Ẑt−max{p,m} = 0, we have



Zt

Xt


 =



bzz (L) bzx (L)

bxz (L) bxx (L)





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Zt−1

Xt−1


+



ω11 0

ω21 ω22





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δ

0


 .

Should the shock to uncertainty of magnitude δ lead to Ẑt−k−1 > 0 for any k = 1, ..., K, this

would turn on the channel through which uncertainty affects the macroeconomic variables

via b̂xz (L) Ẑt+k−1.

In the second scenario, where Ẑt−1 > 0, we compute the GIRF with



Zt

Xt


 =



bzz (L) bzx (L)

bxz (L) bxx (L)






Zt−1

Xt−1


+




0

b̂xz (L)


 Ẑt−1 +



ω11 0

ω21 ω22






δ

0


 .

For as long as Ẑt+k−1 > 0, the b̂
xz (L) Ẑt+k−1 term perpetuates the uncertainty shock through

the response.
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