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THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. I
AFFINE AND PROJECTIVE SCALING TRAJECTORIES

D. A. BAYER AND J. C. LAGARIAS

Abstract. This series of papers studies a geometric structure underlying Kar-
markar's projective scaling algorithm for solving linear programming problems.
A basic feature of the projective scaling algorithm is a vector field depending
on the objective function which is defined on the interior of the polytope of
feasible solutions of the linear program. The geometric structure studied is the
set of trajectories obtained by integrating this vector field, which we call P-
trajectories. We also study a related vector field, the affine scaling vector field,
and its associated trajectories, called ^-trajectories. The affine scaling vector
field is associated to another linear programming algorithm, the affine scaling
algorithm. Affine and projective scaling vector fields are each defined for linear
programs of a special form, called strict standard form and canonical form,
respectively.

This paper derives basic properties of ^-trajectories and /1-trajectones. It
reviews the projective and affine scaling algorithms, defines the projective and
affine scaling vector fields, and gives differential equations for P-trajectories
and ^-trajectories. It shows that projective transformations map ^-trajectories
into f-trajectories. It presents Karmarkar's interpretation of /1-trajectories as
steepest descent paths of the objective function (c, x) with respect to the Rie-
mannian geometry ds2 = ^2"_x dx¡dxj/xf restricted to the relative interior
of the polytope of feasible solutions. P-trajectories of a canonical form lin-
ear program are radial projections of /1-trajectories of an associated standard
form linear program. As a consequence there is a polynomial time linear pro-
gramming algorithm using the affine scaling vector field of this associated linear
program: This algorithm is essentially Karmarkar's algorithm.

These trajectories are studied in subsequent papers by two nonlinear changes
of variables called Legendre transform coordinates and projective Legendre
transform coordinates, respectively. It will be shown that /"-trajectories have
an algebraic and a geometric interpretation. They are algebraic curves, and
they are geodesies (actually distinguished chords) of a geometry isometric to a
Hubert geometry on a polytope combinatorially dual to the polytope of feasible
solutions. The /1-trajectories of strict standard form linear programs have sim-
ilar interpretations: They are algebraic curves, and are geodesies of a geometry
isometric to Euclidean geometry.
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500 D. A. BAYER AND J. C. LAGARIAS

1. Introduction

In 1984 Narendra Karmarkar [K] introduced a new linear programming al-
gorithm which moves through the relative interior of the polytope of feasible
solutions. This algorithm, which we call the projective scaling algorithm, takes a
series of steps inside this polytope whose direction is specified by a vector field
v(x) which we call the projective scaling vector field. This vector field depends
on the objective function and is defined at all points inside the feasible solu-
tion polytope. Karmarkar proved that the projective scaling algorithm runs in
polynomial time in the worst case. He suggested that variants of this algorithm
would be competitive with the simplex method on many problems, particularly
on large problems having a sparse constraint matrix, and computational exper-
iments are very encouraging [AKRV]. The algorithm has been extended and
adapted to fractional linear programming [A] and convex quadratic program-
ming [KV].

In these papers we study the set of trajectories obtained by following the
projective scaling vector field exactly. Given an initial point x0 one obtains a
parametrized curve \(t) by integrating the projective scaling vector field:

nn (dx/dt = v(x),
lx(0)=v

A projective scaling trajectory (also called a P-trajectory) is the point-set covered
by a solution to this differential equation extended to the full range of / for
which a solution to this differential equation exists.

Our viewpoint is that the set of trajectories is a fundamental mathematical
object underlying Karmarkar's algorithm and that the good convergence prop-
erties of Karmarkar's algorithm arise from good geometric properties of the set
of trajectories.

In these papers we show that the set of all P-trajectories has both an algebraic
and a geometric structure. Algebraically, all P-trajectories are parts of real
algebraic curves. Geometrically, there is a metric defined on the relative interior
of the polytope of feasible solutions of the linear program such that the P-
trajectories are geodesies for the geometry induced by this metric. This metric
geometry is isometric to Hubert geometry on the interior of a polytope dual to
the feasible solution polytope.

We also study the trajectories of another interior-point linear programming
algorithm, the affine scaling algorithm, which was originally proposed by Dikin
[Dl], in 1967, and rediscovered by others [B, VMF] more recently. We call
the associated set of trajectories affine scaling trajectories or A-trajectories. We
show that these trajectories also have both an algebraic and geometric structure.
Algebraically, they are also parts of real algebraic curves. Geometrically, they
make up the complete set of geodesies for a second metric geometry defined on

1 Actually they are curves of shortest distance (chords). In this geometry chords are not always
unique; see part III.
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the interior of the polytope of feasible solutions. If this polytope is bounded and
of dimension n , then this geometry is isometric to Euclidean geometry on R" .
/4-trajectories are also obtainable as ^-trajectories of a completely integrable
Hamiltonian dynamical system, arising from a Lagrangian dynamical system
having a simple Lagrangian.

These results for ^-trajectories and P-trajectories are proved by nonlinear
changes of variable that linearize these trajectories. For A -trajectories we call
the associated change of variables Legendre transform coordinates. The Legen-
dre transform coordinate mapping is a projection of a gradient of a logarithmic
barrier function associated to the linear program's constraints, and is given
by rational functions. (We call it the Legendre transform coordinate mapping
because it is related to the Legendre transform of a logarithmic barrier func-
tion.) For P-trajectories we call the associated change of variable projective
Legendre transform coordinates. It is also given by rational functions, and is
a nonlinearly scaled version of the Legendre transform coordinate mapping.
Legendre transform coordinates are introduced in part II of these papers, and
the results concerning ^-trajectories are proved there. Projective Legendre
transform coordinates are introduced by the second author in part III and the
results concerning P-trajectories are proved there.

Part I presents elementary facts about affine and projective scaling trajectories
and shows that P-trajectories are algebraically related to certain A -trajectories.
The affine and projective scaling vector fields have algebraically similar defini-
tions: the affine scaling vector field is defined using rescalings of variables by
affine transformations, while the projective scaling vector field is defined using
rescalings of variables by projective transformations. This algebraic parallel be-
tween the affine and projective scaling vector fields leads to a simple algebraic
relation between P-trajectories of a linear program and /1-trajectories of a re-
lated (homogeneous) linear program, which is given in §6. In particular this
result implies that the projective scaling algorithm can be regarded as a special
case of the affine scaling algorithm, as described in §7. The contents of part I
are summarized in detail in the next section.

The set of P-trajectories for a given linear program differ geometrically from
the set of ^-trajectories for the same linear program. The metric geometry
defined in part II for which /i-trajectories are geodesies is Euclidean, hence
flat, while the metric geometry defined in part III for which P-trajectories are
geodesies behaves in many respects like a geometry of negative curvature. The
sets of trajectories also differ in how they behave viewed in the linear program's
coordinates (with the usual Euclidean distance). Megiddo and Shub [MS] show
that the set of A -trajectories and P-trajectories have qualitatively different be-
havior. They show that one can find /1-trajectories that pass arbitrarily close to
all 2" vertices of the «-cube while P-trajectories for the same linear program
do not exhibit this behavior.

In part II we show that the sets of ,4-trajectories and P-trajectories for a
fixed linear program have one trajectory in common, the central trajectory. This
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502 D. A. BAYER AND J. C. LAGARIAS

trajectory is the trajectory that passes through one particular point in the poly-
tope of feasible solutions called the center. This point is defined if the polytope
of feasible solutions is bounded (which it always is in Karmarkar's algorithm).
It is the unique point x that maximizes FlTLi((a/ >x) ~~ b,) on tne relative in-
terior of the polytope of feasible solutions, where {(a , x) > b ; 1 < j < m) is
the set of constraints that are not constant on the set of feasible solutions. This
notion of center was introduced and studied by Sonnevend [Sol, So2]. The
central trajectory has a number of different characterizations, among them that
it is the trajectory of a parametrized family of logarithmic barrier functions, in
which guise it is studied by Megiddo [M2]. It also has a power-series expan-
sion of a very simple form which is easy to compute, which is given in part II.
This leads to interior-point linear programming algorithms that use higher-order
power-series expansions, cf. [AKRV, KLSW].

Karmarkar's algorithm may be viewed in the context of nonlinear program-
ming as a path-following method that approximately follows the central trajec-
tory. It is analogous to Euler's method for solving the initial value problem (1.1),
cf. Nazareth [N]. Recently there has been rapid development of other interior-
point linear programming methods that follow the central trajectory. These
include algorithms of Iri and Imai [II], Renegar [Re], Vaidya [Va], Gonzaga
[Go], and Kojima, Mizumo and Yoshise [KMY]. The algorithms of Renegar
[Re], Vaidya [Va] and Gonzaga [Go] are essentially predictor-corrector meth-
ods. Vaidya [Va] and Gonzaga [Go] obtain worst-case running-time bounds
that improve on Karmarkar by a factor of >fm, where m denotes the number
of inequality constraints on the linear program. Megiddo [M2] studies related
families of trajectories based on parametrized families of logarithmic barrier
functions.

We are indebted to Jim Reeds and Peter Doyle for helpful conversations
about convexity and Riemannian geometry, and to Narendra Karmarkar for
inclusion of his steepest descent interpretation of ^-trajectories. We are also
indebted to Mike Todd for references to the discovery of the affine scaling
algorithm by Dikin in 1967, and for suggestions that improved the exposition of
the paper. The results of parts I and II were presented at MSRI in January 1986.

2. Summary

§3 reviews the affine and projective scaling algorithms. The projective scaling
algorithm is defined for linear programs in R" of the following canonical form:

' minimize (c, x),
„n I Ax = 0,

(e,x) = n,
x>0,

where e = (1,1, ... , l)r is feasible. The projective scaling algorithm also
requires an objective function (c,x) that has (c,x) > 0 for all feasible x and
(c, x) = 0 for some feasible x. An objective function with this property is said
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to be normalized. The affine scaling algorithm is defined for linear programs in
R" of the following standard form:

{minimize (c, x),
Ax = h,
x>0.

Such a linear program is in strict standard form (or has strict standard form
constraints) if it has a feasible solution x = (x,, ... ,xn) with all xi > 0. A
canonical form linear program is in strict standard form.

§4 defines the affine and projective scaling vector fields and obtains differ-
ential equations for ^-trajectories and P-trajectories. The affine scaling vector
field is calculated using an affine rescaling of coordinates, and the projective scal-
ing vector field is calculated using a projective rescaling of coordinates. (This
motivates our choice of names for these algorithms.) In order to apply these
rescaling transformations the linear programs must be of special forms: strict
standard form for the affine scaling algorithm, and canonical form for the projec-
tive scaling algorithm. Consequently ^-trajectories are defined in part I only for
strict standard form problems and P-trajectories only for canonical form prob-
lems. (In part II of this series of papers we extend the definition of ^-trajectory
to other linear programs and in part III we extend the notion of P-trajectory
similarly.)

In §5 we determine how the projective scaling vector field transforms under
projective transformations, and use this to show that a projective transformation
maps P-trajectories onto P-trajectories.

In §6 we show that P-trajectories of a canonical form linear program (2.1)
are radial projections of ^-trajectories of the associated (homogeneous) strict
standard form linear program obtained by dropping the inhomogeneous con-
straint (e, x) = zî . This gives an algebraic relation between these P-trajectories
and ^-trajectories.

§7 shows that a polynomial time linear programming algorithm for a canoni-
cal form linear program having a normalized objective function c^ results from
following the affine scaling vector field of the associated homogeneous standard
form problem, which is

{minimize (c^, x),
Ax = 0,
x>0,

where e is feasible, i.e., Ae = 0. The piecewise linear steps of the result-
ing "affine scaling" algorithm radially project onto the piecewise linear steps of
Karmarkar's projective scaling algorithm, so this "affine scaling" algorithm is
essentially Karmarkar's projective scaling algorithm. In fact this "affine scal-
ing" algorithm is not solving the linear program (2.3), but rather is solving the
fractional linear program with objective function (c,x)/(e,x) subject to ho-
mogeneous standard form problem constraints. Thus the results of §7 may be
viewed as an interpretation of Karmarkar's projective scaling algorithm as an
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504 D. A. BAYER AND J. C. LAGARIAS

"affine scaling" algorithm for a particular fractional linear programming prob-
lem. In this connection see Anstreicher [A].

In §8 we give Karmarkar's geometric interpretation of /4-trajectories for stan-
dard form linear programs as steepest descent curves with respect to the Rie-
mannian metric ds = Yl"=\ dx,dx,/x, . This Riemannian metric has a rather
special property: It is invariant under homogeneous affine transformations tak-
ing the positive orthant Int(R" ) onto itself.

3. Affine and projective scaling algorithms
We briefly summarize Karmarkar's projective scaling algorithm [K] and the

affine scaling algorithm [Dl, D2, B, VMF].
Karmarkar's projective scaling algorithm is a piecewise linear algorithm which

proceeds in steps through the relative interior of the polytope of feasible solu-
tions to the linear programming problem. It has the following main features:
an initial starting point, a choice of step direction, a choice of step size at each
step, and a stopping rule. The algorithm is defined only for linear programming
problems whose constraints are of a special form, which we call (Karmarkar)
canonical form, which comes with a particular initial feasible starting point
which Karmarkar calls the center. Karmarkar's algorithm also requires that the
objective function z = (c, x) satisfy the special restriction that its value at the
optimum point of the linear program is zero. We call such an objective function
a normalized objective function. In order to obtain a general linear programming
algorithm, Karmarkar [K, §5] shows how any linear programming problem may
be converted to an associated linear programming problem in canonical form
which has a normalized objective function. This conversion is done by combin-
ing the primal and dual problems, then adding slack variables and an artificial
variable, and as a last step using a projective transformation. An optimal solu-
tion of the original linear programming problem can be easily recovered from
an optimal solution of the associated linear program constructed in this way.
The step direction is supplied by a vector field defined on the relative inte-
rior Rel-Int(P) of the polytope of feasible solutions of a canonical form linear
program. Karmarkar's vector field depends on both the constraints and the ob-
jective function. It can be defined for any objective function on a canonical
form problem, whether or not this objective function is normalized. However
Karmarkar only proves good convergence properties for the piecewise linear al-
gorithm he obtains using a normalized objective function. Karmarkar's vector
field is defined implicitly in his paper [K], in which projective transformations
serve as a means for its calculation. This is described in §4.

The step size in Karmarkar's algorithm is computed using an auxiliary func-
tion g: Rel-Int(P) —<• R which he calls a potential function. In fact g: (R")+ —►
R is defined by

n

g(x) = n log(c ,x)-J2 loi xi ■
i=i
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It depends on the normalized objective function (c, x) and approaches +00 at
all nonoptimal points dP of the polytope P of feasible solutions, and can be
made to approach -00 approaching any optimal point on the boundary along
a suitable curve. It is related to the objective function by the inequality

(3.1) *(x)>/jlog((c,x».

If x is the starting point of the y'th step and v the step direction, then the
step size is taken to arrive at that point x.+1 on the ray {x + X\: X > 0} which
minimizes g(x) on this ray. If x+1 is not an optimal point, then x+1 remains
in Rel-Int(P). Karmarkar proves that

(3.2) ¿r(x,+l)<g(x,)-±
provided that (c,x) is a normalized objective function. Finally, the stopping
rule is related to the input data and to the bound (3.2) on the potential function.
If (3.2) fails to hold at any step, the original linear program was infeasible or
unbounded. If we start at the center xQ = e then

£(x0) = /îlOg(c,X0).

With (3.1) and (3.2) this implies for a normalized objective function that

<c,x,)/<c,x0)<^/5.

It is known that there is a bound L easily computable from the input data of a
canonical form linear program with normalized objective function and rational
data such that

(c,w)>2_L

for any nonoptimal vertex w of the polytope. When e~J/5 < 2" the algorithm
is stopped, and one locates a vertex w of P with

(3.3) (c,w)<(c,x.>,

which is then guaranteed to be optimal. In practice one does not wait until the
bound e~ < 2~ is reached; instead every few iterates one derives a solution
w to (3.3) and checks whether or not it is optimal.

The affine scaling algorithm is similar to the projective scaling algorithm. It
differs in the following respects. The input linear program is required to have
strict standard form constraints. This form is less restricted than (Karmarkar)
canonical form. The step direction is given by the affine scaling vector field
defined in §4. This vector field is calculated using a scaling transformation based
on an affine change of variable; this justifies calling this algorithm the affine
scaling algorithm. There are a number of different proposals for calculating the
step size, one of which is to go a fixed fraction (say 95%) of the way to the
boundary along the ray specified by the step direction [VMF]. The stopping rule
is the same as in Karmarkar's algorithm. The affine scaling algorithm using a
suitable step size has been proved (in [D2, B, and VMF]) to converge to an
optimum solution under suitable nondegeneracy conditions. The affine scaling
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506 D. A. BAYER AND J. C. LAGARIAS

algorithm has not been proved to run in polynomial time in the worst case, and
it is likely not a polynomial time algorithm in general.

In §7 we show that a particular special case of the affine scaling algorithm does
give a provably polynomial time algorithm for linear programming. This occurs,
however, because the resulting algorithm is essentially identical to Karmarkar's
projective scaling algorithm.

Surveys of Karmarkar's algorithm and recent developments appear in
[Ho, Ml].

4. Affine and projective scaling vector fields
and differential equations

In this section we define the affine and projective scaling vector fields in terms
of scalings of the positive orthant R" .

A. Affine scaling vector field. The affine scaling vector field is defined for linear
programs of a special form called strict standard form. A standard form linear
program is

(4 1) ( minimize (c, x),

(4.2a) \ Ax = \},
(4.2b) [x>o.

By eliminating redundant equality constraints one can always reduce to the case
T*

in which AA is invertible. In that case the projection operator nA±_ which
projects R" onto the subspace A   = {x: Ax = 0} is given by

(4.3) nA±=I- AT(AAT)~XA.

In the rest of the paper we assume that AA    is invertible.
We define standard form constraints to be constraints of the form (4.2). A set

of linear program constraints is in strict standard form if it is a set of standard
form constraints that has a feasible solution x = (xx, ... ,xn) such that all x, >
0. A homogeneous strict standard form problem is a linear program having strict
standard form constraints in which b = 0, and its constraints are homogeneous
strict standard form constraints.

The notion of a set of strict standard form constraints H is a mathematical
convenience introduced to make it easy to describe the relative interior of the
polytope PH of feasible solutions of H, denoted Rel-Int(PH), which is then
PH n Int R" , and to give explicit formulae for the effect of affine scaling trans-
formations. A standard form linear program can always be converted to one
that is in strict standard form by dropping all variables x, that are identically
zero on PH .

In defining the affine scaling vector field we first consider a strict standard
form linear program having the point e = ( 1,1, ... , 1 ) as a feasible point.
We define the affine scaling direction \A (e ; c) at the point e to be the steepest
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descent direction for (c, x) at x0 = e, subject to the constraint Ax = b, so that

(4.4) \A(x,c) = -7tA±(c).

This may be obtained using Lagrange multipliers as a solution to the constrained
minimization problem:

{minimize (c, x) - (c, e),
(x - e, x - e) = e,
A\ = b,

for any e > 0.
Now we define the affine scaling vector field vA(û;c) for an arbitrary strict

standard form linear program at an arbitrary feasible point d = (dx, ... ,dn)
in

Int(R") = {x: allx, >0}.
Let D = diag(<5?,, ... ,dn) be the diagonal matrix corresponding to d, so that
d = De. Introduce new coordinates by the affine (scaling) transformation

y = 4'Z)_1(x) = zr1x

with inverse transformation

VD(y) = Dy = x.

Under this change of variables the standard form program (4.1)-(4.2) becomes
the following standard form program:

(4.6) ( minimize (Dc, y),
(4.7a) ¡ADy = b,
(4.7b) ly >0.

Furthermore *Ffl_,(d) = e. By definition the affine scaling direction for this
problem is -n,AD)±(Dc), and we define the affine scaling vector v^djc) to be
the image under *¥D of this vector, which yields

(4.8) v,(d;c) = (VD).(-n(AD)±(Dc)) = -Dn(AD)±(Dc)

= -D(I - DAT(AD2AT)~xAD)Dc.

We check that the affine scaling vector depends only on the component nA± (c)
of c in the A direction, and summarize the discussion so far in the following
lemma.

Lemma 4.1. The affine scaling vector field for a strict standard form problem
(4.1)-(4.2) having a feasible solution x = (xx, ... ,xn) with all x, > 0 is

(4.9) yA(d;c) = -Dn{AD]±(Dc).

It satisfies

(4.10) v/1(d;c) = v/1(d;7r^(c)).
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Proof. Only (4.10) needs to be demonstrated. Let nA denote orthogonal pro-
jection on the row space of A . Using

nA(c) = A (AA )~ Ac = A w,

we find from direct substitution in (4.9) that

v^(d ; nA(c)) = -D2ATvt + D2AT(AD2ATfXAD2ATw = 0.

Since c = nA±(c) + nA(c), (4.10) follows.   D

The affine scaling vector field has no isolated critical points.

Lemma 4.2. The affine scaling vector field v^(d;c) for a strict standard form
problem with constraints given by

(Ax = b,
\x>0,

is everywhere nonvanishing if nA± (c) ^ 0. It is identically zero if nA± (c) = 0.
Proof. Let H denote the constraints and PH the polytope of feasible solutions.
Suppose that nA±(e) ^ 0 so that (c,x) is nonconstant on PH . For any given
d in Rel-Int(PH) the transformed linear program obtained by the affine trans-
formation ^..(x) = D~ x has the polytope of feasible solutions

4V,(PH) = {4V,(x):xePH}
and the transformed objective function (Dc,y) is not constant since

(Dc,y) = (Z)c,L>"1x) = (c,x).

Since 4/D_,(PH) is given explicitly by

(ADy = h,
\y>o,

and since (Dc,y) is nonconstant on ^^(P^ it follows that

n{AD)±(Dc)¿0.

Hence
vA(d;c) = Dn{AD)±(Dc)¿0,

since D is invertible. Hence v4(d;c) is everywhere nonvanishing.
If n4±(c) = 0 then Lemma 4.1 gives

v A(d;c) = vA(d;nA±(c)) = yA(d;0) = 0.   D

B. Projective scaling vector field. The projective scaling vector field is defined
for linear programs in the following form, which we call canonical form:

' minimize (c, x),

(4.1.) f-°'I (e, x) = n ,
,x>0,
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where e is feasible. A canonical form problem is always in strict standard form.
Canonical form constraints are constraints of a canonical form linear program.

The projective scaling vector field is more naturally associated with a canon-
ical form fractional linear program, which is

minimize (c,x)/(b,x),
^4x = 0,

1 (e,x) = n,
x>0,

where e is a feasible solution and the denominator b > 0 is scaled so that
(b,e) = l.

We identify a canonical form linear program (4.11) with the fractional lin-
ear program having objective function (c,x)/(e/zi,x). Observe that this FLP
objective function agrees with the LP objective function (c, x) everywhere on
the constraint set in view of the constraint (e, x) = n .

The projective scaling vector v^ejc) of a canonical form fractional linear
program at e is the steepest descent direction of the numerator (c, x) of the
fractional linear objective function, subject to the constraints Ax = 0 and
(e, x) = n , which is

(4.13) v/>(e;c) = -7rr^x(c).

The fact that this definition does not take into account the denominator (b, x)
of the FLP objective function may seem rather surprising. We will show how-
ever that it gives a reasonable search direction for minimizing a normalized
objective function.

To define the projective scaling vector field vp(d;c) for a canonical form
problem at an arbitrary feasible point d in Rel-Int(5'n_1) = {x: (e,x) = n and
x > 0} , we introduce new variables by the projective transformation

(4.14) y = &     (x) = n X   ,
e D    x

which has inverse transformation

(4.15) <D   (y) = „-gL=x.
e Dy

Under this change of variables the canonical form fractional linear program
(4.12) with objective function (c,x)/(e/n,x) becomes the following canonical
form fractional linear program:

' minimize (Dc,y)/(De/n,y),
ADy = 0,
(e,y) = «,

ly>0,
where e is a feasible solution, i.e., ADe = 0. Note that 0D_,(d) = e. By
definition the projective scaling direction for this point is
(4.17) vp(e;Dc) = -n^(Dc).

(4.16)
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We define the projective scaling vector \p(û;c) to be the image of \p(e;Dc)
under the inverse map <J>D acting on the tangent space, i.e.,

vp(d;c) = (<S>DUvp(e ;Dc)).

Now Q>D is a nonlinear map, and a computation gives the formula

(cPD)t (W) = Dyv--(De, w)De.

The last three formulae combine to yield

(4.18) yp(d;c) = -Dn^(Dc) + ^(De,nr^(Dc))De.

One motivation for this definition of the projective scaling direction is that
it gives a "good" direction for fractional linear programs having a normalized
objective function. To show this we use observations of Anstreicher [A]. Define
a normalized objective function of an FLP to be one whose value at an opti-
mum point is zero. This property depends only on the numerator (c, x) of the
FLP objective function. The property of being normalized is preserved by the
projective change of variable y = ^.¡(x) = nD~xx/eTD~xx. In fact the FLP
(4.12) is normalized if and only if the transformed FLP (4.16) is normalized.
Now consider the FLP (4.12) with an arbitrary objective function. Let x* de-
note the optimal solution vector of a fractional linear program of form (4.12),
and let z* = (c,x*)/(b,x*) be the optimal objective function value. Define the
auxiliary linear program with objective function

minimize (c,x) — z*(b,x)

and the same constraints as the FLP (4.12). The point x* is easily checked
to be an optimal solution of this auxiliary linear program, using the fact that
(c,x)/(b,x) > z* for all feasible x. In the special case that z* = 0 which
arises from a normalized FLP, the steepest descent direction for this auxiliary
linear program is just the fractional projective scaling direction (4.13). Since
normalization is preserved under the projective transformation y = <PD_,(x)
this leads to definition (4.18) of the projective scaling direction v/)(d;c) for a
canonical form linear program with a normalized objective function.

This discussion provides no justification for the claim that the projective scal-
ing direction v/)(d;c) given by (4.13) is a good search direction for minimizing
a general objective function, and sometimes it is not (see part III). In fact the
direction specified by \p(d ; c) in the general case does have one reasonable con-
sequence: It leads to the simple relationship between affine scaling trajectories
and projective scaling trajectories given in Theorem 7.1.

Now we obtain a simplified formula for the projective scaling direction
v/)(d;c), and also show that it depends only on the component 7tA±(c) of c
in the A    direction. We summarize the facts in the following lemma.
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Lemma 4.3. The projective scaling vector field for a canonical form linear pro-
gram (4.11) is given by

(4.19) v/d ; c) - -Dn{AD)± (Dc) +x-(De, n{AD)± (Dc))De.

It satisfies
(4.20) yp(d;c)=yp(d;nA±(c)).

Note that vp(d;c) ^ vi>(d;7rrJ.]J.(c)) in general.

Proof. By construction v/)(d;c) lies in [¿f] , so it lies in e . Now we simplify
(4.18) by observing that the feasibility of d gives ADe = Ad = 0. Hence the
projections n,AD)X and it.eT,± commute with each other and

71 r „nil. = n(eT)±Tt(AD)± ■

TNext we observe that it.T,± — I - J/n where J = ee is the matrix with all
entries one, and that Jw = (e, w)e for all vectors w. Applying these facts to
(4.18) we obtain

(4.21 ) v„(d ; c) = -Dn(eT)X (n(AD)± (Dc)) + XDe(e<)±\'-(AD)

1
n

= -Dn,,m±(Dc) + pDe,

= -Dx(AD)±(Dc) + -DJn{AD)±(Dc) + XDe

"(AD)

where X and p are scalars and

(4.22) p = i (De, it r^j x (Dc)) + ± (e, n{AD)± (Dc)).

Multiplying (4.21) by e   , and using the identity (e,v/3(d;c)) =0 we derive an
alternate expression for p which is

p = -(De,n{AD)±(Dc)),

and this proves (4.19).
To prove the remaining formula, start from

nA(c) = A  (AA  )~ Ac = A w

where we define w = (AA )~xAc. Then

nAD±(DnA(c)) = -(I - DAT(AD2AT)~XAD)DATw = 0.

Substituting this in (4.19) yields \p(d;nA(c)) = 0. Since c = nA±(c) + nA(c)
formula (4.20) follows.   D

The projective scaling vector field \p(d ; c) depends on the component of c in
the e-direction. The requirement in Karmarkar's algorithm that the objective
function be normalized so that it is zero at an optimal solution specifies the
component of c in the e-direction and removes this ambiguity.
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Lemma 4.4. Given a canonical form linear program and an objective function c
there is a unique normalized objective function cN such that

(i) c^ lies in A   .
(ii)  nr^,±(c) = nr^±(cN) = n{eT)±(cN).

If c = Tr^ix(c) and xopt is an optimal solution for the objective function (c,x)

then cN is given by

\_
n

Proof. The condition Ae = 0 implies that A± = [■£■] © R(e). Hence condi-
tions (i) and (ii) imply that any normalized objective function satisfying (i) and
(ii) has cN = c* + p:e for some scalar p. The normalization condition gives

(CN ' Xop,) = <C* >*opt> - »(* > Xopt) = ° '

Since a canonical form problem has (e, x) = n , we have (e, x    ) = n so that

(4-23) c„ = c*--(c*,xopt)e.

1 i * v
^=^<C   >Xopt>

is unique.   D

Now we study critical points of the projective scaling vector field. It turns out
that for some objective functions c the projective scaling vector field vp(d;c)
can have a single isolated critical point, which is either a source or a sink, see
part III. We show that for a normalized objective function critical points do not
occur.

Lemma 4.5. The projective scaling vector field vp(d;c) for a canonical form
problem with constraints given by

Ax = Q,
(e, x) = n,
x>0,

having e as a feasible solution is everywhere nonvanishing if c is normalized
and n r   -, ± (c) ^ 0. It is identically zero if c is normalized and n r^-i ± (c) = 0.

Proof. Let H denote the constraints and PH the polytope of feasible solutions,
and suppose that c is normalized, i.e., (c,x ) = 0 and (c,d) > 0 for all d
inPH.

Now suppose 7Tr , ij-(c) = c* t¿ 0. Then (c,x) is not constant on PH so that

(4.24) (c, x) > 0   for all x e Rel-Int(PH ).

Suppose that d e Rel-Int(PH) is given. Then the canonical form fractional
linear program obtained by the projective transformation

y = <DD_,(x) = nD~xx/eTD~Xx
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has objective function (Dc,y)/(De,y), see (4.16). Now for all

yeRel-Int(<DD_,(PH))

one has

(De,y)      (e,x)      n[C'  h
Choosing x = d and y = <PD_, (d) = e we have

using (4.24). Hence (L>c,e) > 0 and letting yopt = Oß.|(xop) we know that
(Dc,y ) = 0 since projective transformations take normalized objective func-
tions to normalized objective functions. Hence (Dc,x) is not constant on
<DD_,(PH), which is

(ADy = 0,
< <e,y) = «,
ly>0.

Consequently the gradient of (Dc,x) in 3>D_,(PH) at e is nonzero, i.e.,

Kr   ^(Dc)*0.

Then
vp(d;c) = (<VD)t(-n^3Dc))¿0,

since (í>fl)t is a vector space isomorphism. This proves that v/)(d;c) is an
everywhere nonvanishing vector field in this case.

Now suppose that ztr   ,i(c) = c* =0.   We may suppose without loss of

generality that c is in A± by Lemma 4.3, and then must have c = pe for some
p. The normalization condition

<C>Xopt>=<"<e>Xop,> = °

then forces p = 0. So c = 0 and vp(d;c) = vp(d;0) = 0 using (4.19).   D

C Affine and projective scaling differential equations. The affine and projective
scaling trajectories are found by integrating the affine and projective scaling
vector fields, respectively.

For the affine scaling case, consider a strict standard form problem
minimize (c, x),
Ax = b,
x>0,

having a feasible solution x = (xx, ... ,xn) with xt > 0. In that case the
relative interior Rel-Int(P) of the polytope P of feasible solutions is

Rel-Int(P) = {x: Ax = b and x > 0} = P n Int(R" ).
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Suppose that x0 is in Rel-Int(P). We define the A-trajectory TA(xQ;c,A,b)
containing x0 to be the point-set given by the integral curve x(t) of the affine
scaling differential equation:

(4.25) (dx/dt = -Xn{AX)±(Xc),
I x(U) = x0,

in which X = X(t) is the diagonal matrix with diagonal elements xx(t), ... ,
xn(t), so that x(t) = X(t)e. This differential equation is obtained from the
affine scaling vector field as defined in Lemma 4.1, together with the initial
value x0. The integral curve x(t) is defined for the range tx(xQ;A,c) < t <
t2(x0;c,A) which is chosen to be the maximum interval on which the solution
exists. (Here tx = -co and t2 = -foo are allowable values. It turns out that
finite values of tx or t2 may occur. Refer to equation (4.30).) An ^-trajectory
T(x0;c,A,b) lies in Rel-Int(P) because the vector field in (4.25) is defined
only for x(t) in Rel-Int(P).

For the projective scaling case, consider a canonical form problem (4.11). In
this case

Rel-Int(P) = {x: Ax = 0, (e,x) = n   and   x > 0} .

Suppose that x0 is in Rel-Int(P). We define the P-trajectory Tp(x0;c,A) con-
taining xQ to be the point-set given by the integral curve x(t) of the projective
scaling differential equation:

(4.26) I Tt = ~Xn(^)ÁXc) + -(Xe>n(Ax)-(Xc))Xe>
lx(0) = x0.

This differential equation is obtained from the projective scaling vector field as
defined in Lemma 4.3, together with the initial value x0 .

We have defined ,4-trajectories and P-trajectories as point-sets. The solu-
tions to the differential equations (4.25) and (4.26) specify these point-sets as
parametrized curves. An arbitrary scaling of the vector fields by an everywhere
positive function p(x, t) leads to differential equations whose solutions give the
same trajectories with different parametrizations. Conversely, a reparametriza-
tion of the curve by a variable u = \p(t) with tp'(t) > 0 for all t leads to a
similar differential equation with a rescaled vector field having p(x,t) = tp (t) .
If y{t) = x(ip(t)) and y(0) = x0 and x(t) satisfies the affine scaling differential
equation, then y(t) satisfies

(4 27) iji = -v'(t)Yn(AY)AYc),
I y(0) = x0.

If x(/) satisfies the projective scaling differential equation instead, then y(t)
satisfies

(4.28) { % = -v'(t)[Yn{AY)±(Yc) - l-(Ye,n{AY)±(Yc))Ye),

y(0) = x,o ■
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The affine scaling differential equation can be solved in closed form in the
special case that the linear program has no equality constraints:

{minimize (c, x),
x>0.

The affine scaling differential equation (4.25) becomes in this case

— - -X2cdt~   X °'
x(0) = (dx,...,dfeInt(R"+).

This is a decoupled set of Riccati equations
dx, 2
It ' ~C-X< '
xi(0) = d„

for I < i < n . Using the change of variables y, = l/x, we find that

for I < i < n . From this we obtain

<«•*> '(" = (t73tW.TACW)-
This trajectory is defined for tx < t < t2 where

(4.30a) /, =maxi--r'.c, >oi,

(4.30b) i2 = min|-J:ci<0\

with the convention that tx = -co if all ci< 0 and t2 = oo if all c; > 0.

5.  PROJECTIVE TRANSFORMATIONS AND PROJECTIVE SCALING TRAJECTORIES

We compute the effect of a projective transformation
.      , .        nD~xx

on the projective scaling vector field vp(x;c) of a canonical form linear pro-
gram. The projective scaling vector field vp(x;c) of a canonical form linear
program is not invariant under projective transformations. The following result
shows that instead it transforms at each point by a variable positive scale factor.

Theorem 5.1. Let \p(x;c,A) denote a projective scaling vector field for a canon-
ical form problem with feasible poly tope P defined by

Ax = 0,
(e,x) = n,
x>0,
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and let d = De be in Rel-Int(P). The projective transformation <J>fl_, given by

.      . ,       nD~ x
y = <t>D_l(x)=-—x-

(D   e, x)

maps P to the polytope P* = <PD_,(P) defined by
(ADy = Q,
{ (e, y) = " ,
U>0.

Then

(5.1) («DD_,),(v/)(x;c,^)) = i(D-'e,x)v/)(<DD_1(x);Z)c,^D).

Proof. Before beginning the proof, we observe that

(5.2) vp(x ; Xc, A) = X\p(x ; c, A)

for all X ̂  0 and
(5.3) vp(x ;c,XA) = yp(x;c,A)

if X > 0. Now let x = Xe and
.      . ,       nD~xXe

y = Od_, x) = .-¡-.D (D~xe,Xe)

We use the fact that \p(x;c,A) and vp(y;Dc, AD) are both defined as pushfor-
wards (by different projective transformations) of \p(e ; Xc, AX). By definition

vp(x;c,A) = (<í>x),(vp(e;Xc,AX)),

so

(5.4) (Q>x_l),(vp(x;c,A))=yp(e;Xc,AX).

Next, using (5.2) and (5.3) we have

(5.5) yp(y;Dc,AD) = (<bY\(yP(a; YDc,ADY))

= (®D_[x).(n(D-Xe,Xe)-Xvp(e;XC,AX))

= n(D-Xe,Xe)-X(<I>D_lx)t(vp(e;Xc,AX)).

Now we compute using (5.4) and (5.5) that

(^d-7^p(^^^)) = (^D_io^>xo^x_l)f(vp(x;c,A))
= (<V.*).°((<V.UMx;c^)))
= (®D->xUyp(e;Xc,AX))
= -(D~xe,Xe)yp(y,Dc,AD),

n
proving the theorem.   D

An immediate consequence of this result is that a projective transformation
maps P-trajectories to P-trajectories.
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Corollary 5.1a. Let a canonical form linear program with feasible polytope P be
determined by the constraints

Ax = 0,
(e, x) = n ,
x>0,

and let d = De be in Rel-Int(P). Then the projective transformation

ü"'x

\p(x;c,A),        x(0) = x.

D"      (D~xe,x)

maps the P-trajectory Tp(x;c,A) to the P-trajectory Tp(^D_i(x);Dc,AD).
Proof. The trajectory Tp(x;c,A) is given by the differential equation

dx
dt

By Theorem 5.1 the curve y = <PD_,(x) satisfies the differential equation

^ = (<V,),(x) = X-(D-xe,x)yp(T,Dc,AD),       y(0) = <D0_,(x).

Since (D~xe,x) > 0 everywhere on Rel-Int(P), this is a positive rescaling of
the projective scaling differential equation on <P0_,(P) so it gives exactly the
P-trajectory Tp(Q>D_l(x);Dc,AD).   D

6. Relations between P-trajectories and ^-trajectories
There is a simple relationship between the P-trajectories of the canonical

form linear program:
' minimize (c, x),
Ax = 0,
(e,x) = n,

U>o,
and the ^-trajectories of the associated homogeneous strict standard form linear
program:

{minimize (c, x),
Ax = 0,
x>0,

where Ae = 0 in both linear programs, so that e is feasible. It is as follows.

Theorem 6.1. If TA(xQ;c,A,0) is an A-trajectory of the homogeneous strict
standard form problem (6.2) then its radial projection

(6.3) r={zzx/(e,x):xer4(x0;c,^l,0)}

is a P-trajectory of the associated canonical form linear program, which is given
by
(6.4) T=Tp(nxQ/(e,x0);c,A).

(6.1)
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Proof. Geometrically the radial projection produces the radial component in the
projective scaling vector field evident on comparing Lemmas 4.1 and 4.3. The
trajectory TA(xQ;c,A,0) is parametrized by a solution x(t) of the differential
equation

(6.5) ( -d¿ = ~Xn(AX)-(Xc)>
lx(0) = x0.

Now define
y(t)=    "*&

(e,x(t))-
We verify directly that y(/) satisfies a (scaled) version of the projective scaling
differential equation.

Let Y(t) = diag(yx(t), ... ,yn(t)) and note that Y(t) = n(e,x(t))~xX(t) so
that

Xn{AX)±(Xc) = n^2(e,x(t))2Yn{AY)±(Yc).

Using this fact and Ye = n(e,x(t))~xx we obtain

dy       ,     , .,-idx       , 2/    dx\
^ = n(e,x(t))    Tt-n(e,x(t))    (e^x

= -n(e,x(t))-X(n-2(e,x(t))2Yn.AY3Yc)(AYy
V-n-

(AYy-n 3(e,x(t))2(e,YnIAY]±(Yc)Ye)

= l-(e,x(t)) (-Yn{AY)±(Yc) + ^(Ye,n(AY)±(Yc))Ye

= -(e,x(0)vp(y;c).

Since  ip'(t;x0) = (e,x(t))/n > 0 for x(t) e Int(R") this is a version of the
projective scaling differential equation (4.28). This proves (6.4) holds.   D

As an example we apply Theorem 6.1 to the canonical form linear program
with no extra equality constraints:

minimize (c, x),
(e,x) = n,
x>0.

The feasible solutions to this problem form a regular simplex Sn_x . In this case
the associated homogeneous standard form problem has no equality constraints:

{
minimize (c, x),
x>0.

Formula (4.29) parametrizing the affine scaling trajectories for the problem gives

^"••^•H(ï7^7.ïTiVv) = '■<'<'»}•
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Hence Theorem 6.1 implies that the projective scaling trajectories are

(6.6)
Tp(d;c,ct>)

= lEL(i/^%^-1Vi7^1T^'---'i7^^):il<'</2}'
where tx and t2 are given by (4.30).

7. The homogeneous affine scaling algorithm
Consider the homogeneous standard form linear program:

{minimize (c, x),
Ax = Q,
x>0,

where Ae = 0. We define the homogeneous affine scaling algorithm to be a
piecewise linear algorithm in which the starting value is given by x0 = e, the
step direction is specified by the affine scaling vector field associated with (7.1)
and the step size is chosen to minimize Karmarkar's "potential function"

«>-±*{**)

(7.2)

¿=i
along the line segment inside the feasible solution polytope specified by the
step direction. Let x0, ... ,xn denote the resulting sequence of interior points
obtained using this algorithm. Consider the associated canonical form problem:

' minimize (c,x),
Ax = 0,
(e,x) = n,
x>0,

where Ae = 0. We have the following result.

Theorem 7.1. If {x{ ' : 0 < k < oo} are the homogeneous affine scaling algorithm
iterates associated with the linear program (7.1 ) and if y( ' are defined by

(k)
(7.3) v<*>-    nX

<e,x<*V
then  {y    : 0 < k < oo}  are the projective scaling algorithm iterates of the
canonical form problem (7.2).
Proof. We observe that Karmarkar's "potential function" is constant on rays
through the origin:

(7.4) g(Xx) = g(x)   if A>0.

Now we prove the theorem by induction on the iteration number k . It is true
by definition for k = 0. Suppose it is true for a given k . Then the proof of
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Theorem 6.1 shows that the nonradial component of the affine scaling vector
field agrees with the projective scaling vector field. Hence the radial projection
of the homogeneous affine scaling step direction line segment inside R" is the
projective scaling step direction line segment inside R" . Since Karmarkar's po-
tential function is constant on rays, the step size criterion for the homogeneous
affine scaling algorithm causes (7.3) to hold for k+ 1, completing the induction
step.   □

Theorem 7.1 proves that the iterates of the homogeneous affine scaling algo-
rithm and the projective scaling algorithms correspond for any objective func-
tion. Karmarkar [K] proves that the projective scaling algorithm converges in
polynomial time provided that the objective function c is normalized so that
(c,x) > 0 on the polytope of feasible solutions to (7.2) and (c,x) = 0 for at
least one feasible x. Theorem 7.1 allows us to infer that the homogeneous affine
scaling algorithm also converges in polynomial time for normalized objective
functions. These results do not hold for general objective functions; in fact the
projective scaling algorithm for a general objective function may not converge
to an optimal point, see part III.

The homogeneous affine scaling algorithm may be regarded as an algorithm
for solving the fractional linear program with objective function (c,x)/(e,x).
The condition that an objective function be normalized is that (c,x)/(e,x) > 0
on the polytope P of feasible solutions to the homogeneous standard form
problem (7.1), with equality for at least one feasible x. If Karmarkar's stopping
rule is used one obtains a polynomial time algorithm for solving this fractional
linear program.

8. The affine scaling vector field as a
steepest descent vector field

The affine scaling vector field of a strict standard form linear program has an
interpretation as a steepest descent vector field of the objective function (c,x)
with respect to a particular Riemannian metric ds defined on the relative
interior of the polytope of feasible solutions of the linear program.

We first review the definition of a steepest descent direction with respect to
a Riemannian metric. Let

n      n

(8.1) ds2 = 'Z2J2sijWdxidxJ
i=i j=\

be a Riemannian metric defined on an open subset Q of R", i.e., we require
that the matrix

(8.2) C7(x) = [gu(x)]

be a positive-definite symmetric matrix for all x e Q.. Let

(8.3) f-.a^R
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be a differentiable function. The differential dfx at x is a linear map on the
tangent space R" at x,

(8.4)

given by

(8.5)

di,-*"

f(x + ev) - f(x) + e dfx(v) + 0(e)

as e —> 0 and veR". The Riemannian metric ds   permits us to define the
gradient vector field VG/: fi —► R" with respect to C7(x) by letting VG/(x) be
that tangent direction such that / increases most steeply with respect to ds
at x. This is the direction of the minimum of f(x) on an infinitesimal unit
ball of ds   (which is an ellipsoid) centered at x. Formally we have

df

(8.6) Vfíf(x) = G(x)-
dx

■(*)

^(x)

Note that if ds  = 52"¡=l(dx¡)   is the Euclidean metric then VG/ is the usual
gradient V/. (See [Fl, p. 43].)

There is an analogous definition for the gradient vector field VG/|f of a
function / restricted to a zc-dimensional flat F in R" . Let the flat F be xQ+V
where V is an (n — m )-dimensional subspace of R" given by V = {x: Ax = 0} ,
in which A is an mxn matrix of full row rank m . Geometrically the steepest
descent direction VG/(x0)|f is that direction in F that maximizes f(x) on an
infinitesimal unit ball centered at x0 of the metric ds \F restricted to F. A
computation with Lagrange multipliers given in the Appendix shows that

(8.7)        VG/(x0 \F = (G ' -G  XAT(AG~
lATy lAG'

dx (xo

&W
where ds   has coefficient matrix G = G(xQ) at x0 .

Now we consider a linear programming problem given in strict standard form:

(8.8)
minimize (c, x),
Ax = b,
x>0,

having a feasible solution x with all x, > 0.   Karmarkar's steepest descent
interpretation of the affine scaling vector field is as follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



522 D. A. BAYER AND J. C. LAGARIAS

Theorem 8.1 (Karmarkar). The affine scaling vector field v^(d;c) of a strict
standard form problem is the steepest descent vector -VG((c,x0))|f at x0 = d
with respect to the Riemannian metric obtained by restricting the metric

(8.9) ds2 = ±d-^p
i=i     xi

defined on Int(R" ) to the flat F = [x: Ax = b}.

Before proving this result we discuss the metric (8.9). It may be characterized
as the unique Riemannian metric (up to a positive constant factor) on Int(R" )
which is invariant under the scaling transformations 00 : R" —► R" given by

x, —► dixi   for I < i < n,

with all d, > 0, and under the inverting transformations

I,((xx, ... ,x,, ... ,xn)) = (xx, ... ,l/x,, ... ,xn)   for 1 < i<n,

and under all permutations o((xx, ... ,xn)) = (xa,x), ... ,xa,n7). The geometry
induced by ds on Int(R" ) is isometric to Euclidean geometry on R" under
the change of variables y, = log x¡ for I < i < n . (These facts are verified by
simple calculations which we omit.)

Proof of Theorem S.I. The metric ds =Y11=\(dxT) ¡x, induces a unique Rie-
mannian metric ds \F on the region

Rel-Int(P) = {x: Ax = b   and x > 0}

inside the flat F = {x: Ax = b} . The matrix G(x) associated with ds is the
diagonal matrix

G(x) = diag(l/^,...,l/x„2) = X-2,

where X = diag(x,, ... ,xn). Using definition (8.7) applied to the function
/c(x) = (c,x) we obtain

Vg(4(x))If = X(J - XA(AX2ATyXAX)Xc.

The right side of this equation is -v^(x;c) by Lemma 4.1.   D

These steepest descent curves are not geodesies of the metric ds \F even in
the simplest case. To show this, we consider the strict standard form problem
with no equality constraints:

' minimize (c,x),
x>0.

The /1-trajectories for this problem are given by

1 1xm
l/dx+cxf--'l/dn + cnt
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where  (dx, ... ,dn) e Rn+, by (4.29).   On the other hand, the geodesies of
ds2 = Eli(dx,)2/x2 are

y(t) = (ea"+b7...,ea"t+b"),

where J2"=iai = 1  an(* _0° < t < oc.  To see this, we use the change of
variables y, = log*,  which transforms the metric to the Euclidean metric

„2 n 0
Hi=i(dy,) , whose geodesies are (axt + bx, ... ,ant + bn) with £).=1 a, = I.

It is easy to see that for zi > 2 the point-sets covered by the geodesies y(t)
do not coincide with those covered by the curves x(i), because the coordinates
of x(t) have algebraic dependencies while those of y(t) do not.

Appendix. Steepest descent direction
with respect to a riemannian metric

We compute the steepest descent direction -VG/(x0)|F of a function f(x)
defined on a flat F = x0 + {x: Ax = 0} with respect to a Riemannian met-

2 n nric ds   = Yli=\Ylj=\gij(x)dxidx, at x0.  We may suppose without loss of
generality that x0 = 0, and set G = [g,A0)].

The gradient direction is found by maximizing the linear functional

(A.i) «J.i-(!£m.§fm)-
on the ellipsoid

(A.2) EE*,
;=1 7-1

subject to the constraints

(A.3) ^v = 0.
The direction obtained will be independent of s .

We set this problem up as a Lagrange multiplier problem. Let

-Oír.ifA
We wish to find a stationary point of

(A.4) L = (d,v)-Ar^v-/i(vrC7v-e2).

The stationarity conditions are

(A.5) dL/dv = d-ATX-p(G + GT)v = 0,
(A.6) dL/dÀ = -Av = 0,
(A.7) dL/dp = \TGv-e2 = 0.

Using (A.5) and G = GT we find that

(A.8) y=^-G~X(d-ATX).
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Substituting this into (A.6) yields

AG~XATX = AG~Xd.
Hence
(A.9) X = (AG~XAT)~xAG~xd.

Substituting this into (A. 8) yields the stationary point

(A.10) v = ^-(G~X - G~lAT(AG~xAT)~xAG~x)d.
¿p

We show that the tangent vector

(A.ll) vf = (G~X - G"XAT(AG~XAT)~XAG~X)d

points in the maximizing direction. To show this, it suffices to show that
(d, w) > 0. Recall that any positive-definite symmetric matrix G has a unique
positive-definite symmetric square root G '  . Using this fact we obtain

(d,w) =dTG~xd-dTG~xAT(AG~XAT)~xAG~xd

= (dTG-X/2)(I - G-X/2AT(AG-XATrXAG-X/2)G-X/2d.
_1/2     T* _i     T*  _i _j/2

Now nw = I - G A (AG A ) AG is a projection operator onto the
subspace W = {x: AG~x/2x = 0}, so that

(d,w) = (G-'/2d)7"7r^,(G-1/2d)

= ||^(G-1/2d)||2>0,

where || • || denotes the Euclidean norm. Note that there are two special cases
where (d, w) = 0. The first is where d = 0, which corresponds to 0 being a
stationary point of /, and the second is where d ^ 0 but (d, w) = 0, in which
case the linear functional (df0, v) = (d, v) is constant on the flat F .

The vector (A. 11 ) is the gradient vector field with respect to G . We obtain
the analogue of a unit gradient field by using the Lagrange multiplier p to scale
the length of v. Substituting (A. 10) into (A.7) yields

4pV = dTG~ld - dTG~XAT(AG~X AT)~X AG~Xd,

so that
±1 ,AT „-\,        ,T „-1   .T.   .„-1   .T,-\   .~-l.\l/2p = —(d G   d-d G   A (AG   A )    AG   d)     .

Choosing the plus sign (for maximization) we obtain from (A. 10) that

(A.12) lim- = ö(C7,d)(G"' - G~xAT(AG~XAT)~XAG~l)d,
£—•0 £

where 6(G,d) is the scaling factor
Ö(C,d) = (drC7"1d-drG_1^r(^G^r)~1^C7"'d)-1/2.

Here f?(C?,d) measures the length of the tangent vector w with respect to the
metric ds . (As a check, note that for the Euclidean metric and F = R"
formula (A.ll) for w gives the ordinary gradient and (A.12) gives the unit
gradient.)
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