
transactions of the
american mathematical society
Volume 314, Number 2, August 1989

THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. II
LEGENDRE TRANSFORM COORDINATES

AND CENTRAL TRAJECTORIES

D. A. BAYER AND J. C. LAGARIAS

Abstract. Karmarkar's projective scaling algorithm for solving linear program-
ming problems associates to each objective function a vector field defined in
the interior of the polytope of feasible solutions of the problem. This paper
studies the set of trajectories obtained by integrating this vector field, called
P-trajectories, as well as a related set of trajectories, called A-trajectories. The
/1-trajectories arise from another linear programming algorithm, the affine scal-
ing algorithm. The affine and projective scaling vector fields are each defined
for linear programs of a special form, called standard form and canonical form,
respectively.

These trajectories are studied using a nonlinear change of variables called
Legendre transform coordinates, which is a projection of the gradient of a loga-
rithmic barrier function. The Legendre transform coordinate mapping is given
by rational functions, and its inverse mapping is algebraic. It depends only on
the constraints of the linear program, and is a one-to-one mapping for canoni-
cal form linear programs. When the polytope of feasible solutions is bounded,
there is a unique point mapping to zero, called the center.

The .4-trajectories of standard form linear programs are linearized by the
Legendre transform coordinate mapping. When the polytope of feasible so-
lutions is bounded, they are the complete set of geodesies of a Riemannian
geometry isometric to Euclidean geometry. Each /1-trajectory is part of a real
algebraic curve.

Each P-trajectory for a canonical form linear program lies in a plane in
Legendre transform coordinates. The P-trajectory through 0 in Legendre
transform coordinates, called the central P-trajectory, is part of a straight line,
and is contained in the ^-trajectory through 0 , called the central A-trajectory.
Each /"-trajectory is part of a real algebraic curve.

The central ^-trajectory is the locus of centers of a family of linear programs
obtained by adding an extra equality constraint of the form (c, x) = p . It is
also the set of minima of a parametrized family of logarithmic barrier functions.
Power-series expansions are derived for the central .4-trajectory, which is also
the central P-trajectory. These power-series have a simple recursive form and
are useful in developing "higher-order" analogues of Karmarkar's algorithm.

^-trajectories are defined for a general linear program. Using this definition,
it is shown that the limit point Xoo of a central ^-trajectory on the boundary
of the feasible solution polytope P is the center of the unique face of P con-
taining Xoo in its relative interior.
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528 D. A. BAYER AND J. C. LAGARIAS

The central trajectory of a combined primal-dual linear program has a simple
set of polynomial relations determining it as an algebraic curve. These relations
are a relaxed form of the complementary slackness conditions. This central
trajectory algebraically projects onto the central trajectories of both the primal
and dual linear programs, and this gives an algebraic correspondence between
points on the positive parts of the central trajectories of the primal and dual
linear programs.

Two Lagrangian dynamical systems with simple Lagrangians are shown to
have /1-trajectories as q-trajectories. The Hamiltonian dynamical systems as-
sociated to these Lagrangian systems are completely integrable.

1. Introduction

In 1984 Narendra Karmarkar [K] introduced a new linear programming algo-
rithm which he proved ran in polynomial time in the worst case. This algorithm,
which we call the projective scaling algorithm, takes a series of piecewise linear
steps in the relative interior of the polytope of feasible solutions of the linear
programming problem. The step direction is computed using a vector field de-
fined on the relative interior of the polytope of feasible solutions. This vector
field, which we call the projective scaling vector field, depends on the linear pro-
gram's constraints and on the objective function. The projective scaling vector
field is defined for linear programs of a special form which we call canonical
form, and Karmarkar uses projective transformations to compute this vector
field direction.

Our viewpoint is that a fundamental object underlying the projective scaling
algorithm is the set of trajectories obtained by integrating this vector field, which
we call projective scaling trajectories, or P-trajectories, and that the polynomial-
time nature of Karmarkar's algorithm arises from special geometric properties
of these trajectories.

The projective scaling algorithm provides one method of approximately fol-
lowing these trajectories. Several authors [Re, V, Go, KMY] have recently
developed other linear programming algorithms that follow these trajectories in
a different manner.

This series of papers studies the P-trajectories and a related family of curves
which we call affine scaling trajectories or A-trajectories for short. The affine
scaling trajectories are associated to another vector field, the affine scaling vector
field, which arises in connection with another interior-point linear programming
method, the affine scaling algorithm, which was originally proposed by 1.1. Dikin
[Dl, D2] in 1967, and rediscovered by many people including [B, VMF].

In part I we defined the affine and projective scaling vector fields and showed
that /'-trajectories of a canonical form linear program:

' minimize (c, x),
^x = 0,
(e, x) = n ,
x>0,
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THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. II 529

having e = (1,1, ... , l)T as a feasible solution were the radial projections of
^-trajectories of the homogeneous standard form linear program:

{minimize (c, x),
Ax = 0,
x>0,

whose polytope of feasible solutions is a cone. Consequently P-trajectories
can be studied by studying the ^-trajectories of a related linear programming
problem.

This paper studies these trajectories using a nonlinear change of coordinates
which we call Legendre transform coordinates. Legendre transform coordinates
are given by a projection of the gradient of a logarithmic barrier function deter-
mined by the linear program's constraints. We show that Legendre transform
coordinates linearize the ^-trajectories. As a consequence when the polytope
P of feasible solutions is bounded the set of ^-trajectories for all objective
functions forms a complete set of geodesies for a Riemannian geometry on the
relative interior of P which is isometric to Euclidean geometry. P-trajectories
are partially linearized by Legendre transform coordinates in the sense that
each P-trajectory lies in a plane in Legendre transform coordinates. (This is
explained further in part III, where it is shown that P-trajectories are linearized
by a related mapping, projective Legendre transform coordinates.) The Legen-
dre transform coordinate mapping is a rational mapping, and consequently the
^-trajectories are parts of real algebraic curves. P-trajectories are also proved
to be parts of real algebraic curves. We use Legendre transform coordinates to
derive power-series expansions for ^-trajectories.

Associated to any set of constraints H having a bounded polytope PH of
feasible solutions is a special point xH which we call the center of PH . It is the
point mapped to 0 in Legendre transform coordinates, and coincides with the
"analytical center" of Sonnevend [Sol, So2]. For each objective function we call
the ^-trajectory (resp. P-trajectory) through the center the central A-trajectory
(resp. central P-trajectory). We show the central P-trajectory coincides with
the central yi-trajectory. We give several other characterizations of the central
^-trajectory, one of which is that it is the set of solutions to a set of fixed
point problems of a parametrized family of logarithmic barrier functions, the
logarithmic barrier function trajectory.

We describe interpretations due to the second author of ^-trajectories as
q-trajectories of Lagrangian dynamical systems whose associated Hamiltonian
dynamical systems are completely integrable.

We are indebted to Mike Todd for many comments improving the exposition
of this paper. The results of §§1-9 were presented at MSRI in January 1986.
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530 D. A. BAYER AND J. C. LAGARIAS

2. Summary of results

The affine scaling vector fields and projective scaling vector fields are defined
for linear programs of special forms which we call standard form and canonical
form, respectively.

A standard form linear program is one of the following form:
{minimize (c, x),

,4x = b,
x>0.

We call the constraints of such a linear program standard form constraints. We
say such a linear program is in strict standard form if it has a feasible solution
x = (xx, ... ,xn) with all x, > 0, and we call the corresponding constraints
strict standard form constraints. Strict standard form constraints have the nice
property that the relative interior Rel-Int(P) of the polytope P of feasible
solutions has

Rel-Int(P) = PnInt(R"),
so consists exactly of vectors x in P with x > 0.

A canonical form linear program is one of the following form:
minimize (c, x),
Ax = 0,
(e,x) = n,
x>0,

such that e = ( 1,1, ... , 1 ) is a feasible solution, i.e., Ae = 0. Constraints of
this form are called canonical form constraints. A canonical form linear program
is a special kind of strict standard form linear program.

The affine and projective scaling vector fields are defined using affine and
projective transformations to rescale the linear programs, in a manner described
in part I, §4. The affine scaling vector field \A(x;c) for the objective function
(c, x) at an interior feasible point x of the strict standard form linear program
(2.1) is given by

vA(x;c) = -Xn{AX)±(Xc)

where
' x,

(2.2)

X = diag(x)
M

Xn
is a diagonal matrix and x,AX)±  denotes orthogonal projection onto the sub-

space (AX)   . In particular

n(AX)± = I - XAT(AX2AT)~XAX.

The projective scaling vector field \p(x;c) for the objective function (c,x) atan
interior feasible point x of a canonical form linear program (2.2) is given by

(2.4) yp(x;c) = -Xn{AX)±(Xc) + (l/n)(Xe,n{AX)±(Xc))Xe.
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THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. II 531

The affine scaling trajectories and projective scaling trajectories are obtained
by integrating these vector fields. The affine scaling trajectory or A-trajectory
TA(x;c,A,b) of the standard form linear program (2.1) is the point-set deter-
mined by the solution to the affine scaling differential equation:

(dx(t)/dt = vA(x(t);c),
\x(0) = x,

extended to the maximal range of the parameter t for which a solution is
defined.   The projective scaling trajectory, or P-trajectory Tp(x;c,A) of the
canonical form problem (2.2) is the point-set determined by the projective scal-
ing differential equation:

(dx(t)/dt = \p(x(t);c),
\x(0) = x,

extended to the maximal range of t for which a solution is defined.
§3 introduces a nonlinear change of variables, Legendre transform coordi-

nates, to study ^-trajectories and P-trajectories. The Legendre transform co-
ordinate mapping <pH(x) is defined for any set H of inequality constraints

(*j,x)>bj,       l<j<m

on R" , and is defined on the relative interior of the polytope of feasible solu-
tions PH . It is a projection of the gradient of a logarithmic barrier function
associated to the constraints that are not constant on PH onto the subspace DH
of feasible directions. The feasible direction subspace DH is determined by the
constraints that are constant on PH . The mapping <pH(x) is given by rational
functions, and its range is the relative interior of a certain polyhedral cone CH
in DH . The range is all of DH in the case that the polytope PH is bounded.
The Legendre transform mapping is one-to-one if the constraints H are full
rank, that is, if R" = R[a, ,a2, ... ,am]. In that case the inverse mapping <p^'
is well defined and is an algebraic mapping. Legendre transform coordinates
transform contravariantly under invertible affine mappings y = J(x) = Lx + m,
so that

<PH(X) = Lr^L(H)(J(X))'

Twhere L denotes the transpose of L. §3 also gives an explicit formula for
the Legendre transform coordinates <pH(x) for a set of strict standard form
constraints:

l/xx

(2.5) <pH(x) =-nA±(X  Xe) = -(I-A(AATyXAT)
l/x2

For strict standard form problems the mapping 0H(x) is one-to-one, and its
range is the relative interior of the cone

CH = -nA±(R"+),

where R"  is the positive orthant in R" .
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532 D. A. BAYER AND J. C. LAGARIAS

§4 determines the effect on tangent vectors of the Legendre transform map-
ping for a strict standard form linear program. The tangent spaces in the domain
and range can both be identified with Ax and we show for v e A± that at the
point x one has

d(f>H(\) = nA±(X~2y),

and
d<l>~X(y) = Xn{AX)±(Xy).

§4 shows that Legendre transform coordinates linearize the affine scaling tra-
jectories. Theorem 4.1 asserts that

d(f>H(vA(x;c)) = -nA±(c),

so that the affine scaling vector field is constant. Hence the images <pH(TA(x;c))
of ^-trajectories in Legendre transform coordinates are (parts of) a family of
parallel straight lines in the direction -nA±(c).

An immediate consequence of this linearization is that the set of affine scaling
trajectories for all objective functions is naturally viewed as the complete set of
geodesies for a Riemannian geometry on the relative interior of the polytope of
feasible solutions. This geometry is the pullback of Euclidean geometry on the
Legendre transform coordinate space, which is R" if the polytope of feasible
solutions is bounded.

Another immediate consequence of the linearization is that each ,4-trajectory
is part of a real algebraic curve, because the mapping <p^ is algebraic. In
part I we showed that each P-trajectory is algebraically related to another A-
trajectory, so it follows that each P-trajectory is part of a real algebraic curve
as well.

§5 computes the projective scaling vector field for a canonical form linear
program in Legendre transform coordinates. Theorem 5.1 shows that

d<t>H(vP(x;c)) = -iir^jx (c) - -(Xe, n{AX)±(Xc))<pH(x).

This vector field has a constant component in the direction

c* = tt[4]X(c)

and a component pointing radially. As a consequence each P-trajectory
4>(Tp(x;c,A)) in Legendre transform coordinates lies in a plane in the
Legendre transform coordinate space.

A set of linear program constraints H having a bounded polytope PH of
feasible solutions has a unique point xH whose Legendre transform coordinates
are 4>H(xH) = 0. We call this point the center of PH . This notion coincides
with the "analytical center" introduced by Sonnevend [Sol, So2].

The central A-trajectory for a given linear program having a bounded poly-
tope of feasible solutions is that ^-trajectory passing through the center of
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PH . More generally, for a standard form problem (2.1) we define the central
A-trajectory TA(c ; A, b) for the objective function (c,x) by

TA(c;A,b) = {x: <pH(x) = tnA±(c) where ieR}.

This definition makes sense even for standard form problems with unbounded
polyhedra, which do not possess a center.

§6 gives several characterizations of central ^4-trajectories. First, the central
P-trajectory of a canonical form linear program is contained in the central A-
trajectory, and in the case of a normalized objective function they coincide.
Second, the central ^-trajectory TA(c;A,b) of a standard form problem is
exactly the set of centers xH   of the linear programming constraints

(Ax = b,
\x>0,

together with the extra equality constraint

(c,x) = p,

for the values p~ < p < p+ , where p.f and p~ are the maximum and min-
imum of the objective function (c,x) on the polytope of feasible solutions,
respectively. Third, if the feasible solution polytope is bounded then that part
of the central ,4-trajectory of a strict standard form linear program on one side
on the center is the logarithmic barrier function trajectory, described as the set
x(p) of solutions to the following parametrized family of nonlinear minimiza-
tion problems:

minimize (c,x) -p j ^logx; 1 ,

Ax = b,
lx>0,

for 0 < p < oo .
§7 derives two power-series expansions for ,4-trajectories. The first power-

series expansion applies to an arbitrary ^-trajectory of a standard form problem
and takes as power-series parameter a Legendre transform coordinate parameter
t, defined by

<pH(x(t)) = (t-t0)nA±(c).

The second power-series expansion applies to the central ^-trajectory of a
canonical form linear program and takes the value z of the objective func-
tion as power-series parameter, so that z = (c,x(z)), and

0H(X(Z)) = /(^)7r[^]x(c) ,

for a certain scalar function f(z). These power-series expansions have a sim-
ple form, suitable for computation, which yield "higher-order" analogues of
Karmarkar's algorithm, cf. [AKRV, KLSW].
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§8 defines ^-trajectories and central /1-trajectories for a general linear pro-
gram on R" given in the inequality form

n „ j minimize (c,x),
(     ] \(aj,x)>bj;        l<j<m,
which is of full rank. An A-trajectory consists of those points having

m a

where v is a fixed vector and the parameter p varies. §8 gives three different
definitions of ^-trajectories and proves they are all equivalent.

§9 studies central trajectories for linear programs having a full-dimensional
polytope of feasible solutions. It shows that if H is a set of inequality constraints
and H' is another set of constraints obtained by adding extra constraints of
the form ± (c, x) > b, for various different values of b, then the central A-
trajectory TA(c,w!) attached to H' is contained in the central ,4-trajectory
TA(c, H) attached to H . In the case that PH is a bounded polytope, the center of
H' is generally in a different place on the central trajectory than the center of H .
Reneger [Re] bases a linear programming algorithm on the idea of approximately
following a series of such centers along the central trajectory to an optimal
point; the series of centers is obtained by adding extra constraints of the form
- (c, x) > p where p is a parameter whose value is changed at each step, and the
centers are followed using Newton's method. §9 also shows that the limit point
x^ of a central /1-trajectory 7^(c,H) on the boundary dPH of the polytope
PH of feasible solutions is the center of the unique face of dPH in which x^
is a relative interior point.

§ 10 relates the central trajectories of a pair of dual linear programming prob-
lems. Consider the following pair (P) and (D) of dual linear programs:

( minimize (c, x),

and
ATx>b,

minimize - (b, y),
{Ay = c,

y>0.
The combined primal-dual linear program (PD) is:

' minimize (c, x) - (b, y),

(PD)
ATx>b,
Ay = c,

U>0.
The central trajectory of (PD) orthogonally projects onto the positive half of
the central trajectory of (P) in the x-variables, and onto the positive half of
the central trajectory of (D) in the y-variables. This gives rise to a one-to-
one algebraic correspondence between points on the positive half of the central
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trajectory of (P) and points on the positive half of the central trajectory of (D)
(see Theorem 10.1). This correspondence was previously observed by Osbourne
[Os] in the context of logarithmic barrier function trajectories.

§ 11 gives polynomial ideals of relations which specify algebraic curves that
contain ^-trajectories. The central ^-trajectory of the combined primal-dual
linear program (PD) satisfies a particularly simple set of relations. It is the set
of polynomial relations in the polynomial ring C[x,y,u,p] generated by the
relations

TA x - u = b,
^y = c,

yjUj=p,        l<j<m.

The last set of equations is a parametrically relaxed form of the complementary
slackness conditions for (PD). Megiddo [m2] studies this curve as a logarith-
mic barrier function trajectory, and a linear programming algorithm based on
following it is given in [KMY].

The Legendre transform mapping plays an important role in classical me-
chanics, where it is used to convert a dynamical system given in Lagrangian
form to an equivalent Hamiltonian dynamical system. This leads to the ques-
tion whether or not there are such dynamical systems of a simple form giving
rise to ^-trajectories.

§12 describes results due to the second author describing two simple La-
grangian dynamical systems where q-trajectories coincide with ^-trajectories.
The corresponding Hamiltonian dynamical systems are shown to be completely
integrable.

3. Legendre transform coordinates

Legendre transform coordinates are a nonlinear change of variable associ-
ated to a set of linear programming constraints. Let H denote a set of linear
inequality constraints on R" :

(3.1) (tLj,x)>bj,        l<j<m.

Let PH denote the polytope of feasible solutions of H , and let DH denote the
vector space of feasible directions of H , i.e.,

DH = {X{xx - x2) : x, , x2 e PH and X e R} .

Let MH denote the affine hull of PH , i.e.,
MH = {x0 + x, : x0 e PH and x, e DH).

The dimension d = d(H) is defined by
¿(H) = dim(PH) = dim(L»H) = dim(MH)

and the rank r = r(W) is the dimension of the vector space [a,,...,a ]
spanned by the vectors a( that are normal to the inequality constraint bound-
aries. A set of constraints is full dimensional if d(H) = n and is of full rank if
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r(H) = n . Any set of constraints H for which PH is bounded is necessarily of
full rank.

We first define the Legendre transform coordinate mapping 4>H(x) in the full-
dimensional case when Int(PH) is nonempty. Associate to H the logarithmic
barrier function

m
(3.2) /H(x) = -5>g«a,,x>-¿>;),

7 = 1

which is defined for x e Int(PH). The Legendre transform mapping <pH(x) is
the gradient of fH (x), which is

m a
(3.3) <M*) = V/H(x) = -£(a^_¿  .

To define the Legendre transform coordinate mapping in the case that PH is
nonempty and of dimension less than n , we need some more definitions. A con-
straint (a , x) > b, in H is nonsingular if there exists a feasible point xQ with
(a, x0) > b, ; otherwise it is singular. (That is, the singular constraints function
as equality constraints.) Let Wn denote the set of nonsingular constraints in H;
by renumbering the constraints, we may suppose they are

(3.4) (a],x)>bj,        l<j<m\

with m* < m . The nonsingular constraint polytope PH is always full dimen-
sional. The Legendre transform coordinate mapping <pH (x) is defined on the
relative interior Rel-Int(PH) of PH and is defined as the projection onto the
feasible direction space DH of the Legendre transform mapping cpH (x) of the
nonsingular constraint set Hn , which is:

(3-5) ^H(x) = ^H(0Hn(x)) = 7rDH(V/Hn(x))

Here nD denotes orthogonal projection onto the feasible direction subspace
DH.

The Legendre transform coordinate mapping is most naturally viewed as a
mapping onto a suitable quotient space of the dual space (R")*. This "coordi-
nate-free" definition is given in Appendix A. In it the gradient V/H(x) is re-
placed by the differential dfH(x), which is an element of (R")*, the set of linear
functional / : Rn -* R. The gradient V/H is obtained from the differential dfH
using the (not natural) isomorphism (R")* —» R" given by the transpose map:
/ e (Rn)* corresponds to y e Rn where /y(x) = (y,x). This mapping also
identifies quotient spaces of (Rn)* with subspaces of R" , and quotient map-
pings on (R")* with projection operators on R" . We use the coordinatized
definition for <pH (x) because it is convenient for explicit computations.
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The basic properties of the Legendre transform mapping in the full-dimen-
sional case are as follows.

Theorem 3.1. Let H be a set of constraints

(Aj ,x)>bj,        l<j<m,

in Rn such that PH has nonempty interior. The Legendre transform coordinate
map

m a
(3-6) 4>Jx) = -Y-.-f—r-

has domain Int(PH) andränge Rel-Int(CH), where CH is the cone

(3.7) CH = R+[-a,,-a2,-,-aJ.
If H is of full rank then CH is full dimensional and <pH is a one-to-one mapping.
Proof. One has

Int(PH) = {x: (a,. ,x) > bj for 1 < j < m)

and

(3.8) Rel-Int(CH) = \ x: x = - ¿pjk} with all p; > 0

Formula (3.6) shows that x 6 Int(PH) implies that 4>H(x) e Rel-Int(CH).
To show that the mapping is onto, let c e Rel-Int(CH) and write c =

-^7,7=1 P-j^j ' w^tn au A4, > 0 • Consider the function
m

(3.9) *(x) = -<c,x) - ^log((a, ,x) - b}).
7 = 1

We claim that g(x)  attains a global minimum x0 on Int(PH).   If so, then
necessarily Vg(x0) = 0. Since

Vg(x) = -c + 0H(x),

it follows that 0H(xo) = c as required.
We prove the claim. It is clear that g(x) attains a global minimum if PH

is bounded, for in that case every term on the right side of (3.9) is bounded
below on Int(PH), and g(x) —> oo as x approaches the boundary of PH . The
case that PH is unbounded requires a more involved argument. We rewrite the
formula for £(x) as

(3.10) g(x) = ¿ (-Uc,x) - log((a, ,x) - bj))
7=1   V '

and prove that each term in the sum is bounded below on Int(PH). Since
m m

-<c,x) = 5>,.«à;,x) - bj) + J2vjbj
7=1 ;=i
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with all p  > 0, on letting B = J2ßjb. we have

--(c,x)>-y2p.b, = -B,
m m ¿-"  J J     m

so that -(c,x) is bounded below. Then since (3.10) gives

(3.11) -{c,x)>iij({mj,x)-bj) + B,

we have

-¿(c,x) -log«a,,x) - bj) > -l(c,x) -log (~{c,x) - jß\

which is bounded below. If

W = {x: (c,x) = 0   and   (ay,x) = 0   for 1 < ; < m*},

then x0 e PH implies that the flat xQ + W C PH, and g(x) is constant on this
flat. Let IV± denote the orthogonal complement of W, and set PH =PHnH/J".
Then PH = PH@W and g(x) attains all values in its range on Rel-Int(PH).
Finally one checks that g(x) —► oo in PH as x approaches dPH because
some -log((a ,x) - b,) —► oo, and g(x) —► oo as ||x|| —► oo in PH because
-(c,x) —► co. (The last assertion holds because in PH as ||x|| —► oo either
-(c,x) —> oo or else some (a ,x) - b , -* oo, in which case -(c,x) -» oo
by (3.11).) This implies that g(x) attains a global minimum in Rel-Int(PH),
which is also its global minimum in Int(PH). The claim is proved.

If H is full rank, then CH is full dimensional. Also the Jacobian V0H(x) is
the Hessian V2/H(x), which is

m .

(3.12) V^H(x) = V-?a,a[.

Each term a a is a positive semidefinite symmetric matrix. The full-rank
hypothesis guarantees that V<pH(x) is positive definite for each x € Int(PH).
Indeed if y e R" then

m .

Since R" = [a,, ... ,am] there exists some (a- ,y) > 0 so this gives y V<pH(x)y
> 0 as required. It is well known [BT] that this positive-definiteness condition
implies that the logarithmic barrier function /H(x) is strictly convex on Int(PH)
and that <pH(x) = V/H(x) is one-to-one on Int(PH).   D

The Legendre transform mapping <pH = V/H is a mapping given by rational
functions, so is an algebraic mapping, and therefore its inverse mapping <p^ (y)
is given by algebraic functions. The rational map <pH(x) defined by (3.3) makes
sense outside the domain Int(PH ) ; in fact it is defined on all of C" outside of the
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hyperplanes {x: (a , x) = b,} . In this paper we are concerned with the mapping
<pH restricted to the real domain Int(PH). However some of its properties may
best be understood in terms of its behavior on C" .

To illustrate the Legendre transform coordinate mapping (pH and its inverse
mapping <p^ ', consider the following one-dimensional example. The constraint
set H is

Í   x>0,
\-x>-l,

which has Int(PH) = {x: 0 < x < 1} . The logarithmic barrier function /H(x) =
- logx - log( 1 - x) yields

<t>H(x) = VfH(x) = -^ + Y^.

Theorem 3.1 asserts that (pH: (0,1) —► (-00,00) is one-to-one and onto.  A
simple computation shows that if y = <pH(x) then

x = <t>H (y) =-2^-'

where the minus sign is taken in the square root to give the branch of <p~^ that
lies in Int(PH). This example shows that (p^ is not a rational function in
general.

Legendre transform coordinates transform contravariantly under invertible
affine transformations.

Theorem 3.2. Let H be a set of constraints
(*j,x)>bj,       l<j<m,

in R" such that PH  has nonempty interior.  Let y = J(x) = Lx + m be an
invertible affine transformation with inverse x = J~'(y) = L~xy-L~xm, and let
J(H) denote the transformed set of constraints

(3.13) (*j,rl(y))>bj,        l<j<m.
Then PJ(H) = J(PH) and the following diagram commutes:

Int(PH)     -^     Int(PJ(H))

(3.14) 4>J Uj(H)
lt

Rel-Int(CH) *- Rel-Int(CJ(H))
Proof. The relation PJ(H) = J(PH) is immediate. Next we claim that

/j(h)(J(x)) = /h(x)>

for all x e Int(PH). Indeed if y = J(x) then
m

/,,H)(JW) = - El0g«ay ' J"'(J(X))) - bj) = M*) ■
7=1
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Now differentials transform contravariantly under invertible affine transforma-
tions, i.e., for any function f(x), if f(y) = f(J~X(y)) then

(3.15) (df)xW = f((df)J{x))(J(y)),
for v a tangent vector at x, where J* : (R")* —► (Rn)* is the linear transforma-
tion adjoint to J, defined by

J*(/)(x) = /(J(x)-J(0)) = /(Lx),

where / e (R")* is a linear functional /:R"-»R. Under the identification of
(Rfl)* with R" by /y(x) = (y,x) one has J*(y) = Lry and (df)x = (V/)x.
Thus (3.14) follows as a special case of (3.15).   D

We call the mapping <pH (x) the Legendre transform coordinate mapping be-
cause it is related to the Legendre transformation used in the theory of convexity
(see [F, RI, R2]), which is an extension of the Legendre transformation used in
differential equations (see [Ar, CH, Ln]). To explain this relation, let the pair
(f,D) consist of a real-valued function / defined on a domain D in R" such
that:

(i) D is open and convex and / is strictly convex and continuously differ-
entiable on D.

(ii) For any sequence {x,} in D with lim/^oo x; = x a point on dD one
has \\df(x,)\\^œ.

To any pair (f,D) with these properties one associates a pair (f ,DC) in which
f° is the (Fenchel) conjugate function f : (Rn)* -»Ru {+00} defined by

f(l) = sup{l(x)-f(x):xeD},
and Dc = {I: f(l) < 00} . Rockafellar calls (f ,DC) the Legendre transform
of (f ,D) and proves [R2, Theorem 26.5] that it has the following properties:

(1) The map x —► (df)x is a one-to-one map of D onto Dc.
(2) The pair (f ,DC) has properties (i), (ii), so that (fc ,DCC) is defined,

and fc = f, Dcc = D.
(3) (dfc)   is the inverse map to (df)x.

The proof of Theorem 3.1 shows that if PH is full dimensional and H is of
full rank then (/H , Int(PH)) satisfies (i), (ii), the Legendre transform coordinate
map <pH is the differential (dfH)x, and Dc = Int(CH). By Rockafellar's the-
orem the pair (f^,Int(CH)) exists and (df^) inverts the Legendre transform
coordinate mapping. It seems a difficult problem to find f^ explicitly, however.

Now we treat the Legendre transform coordinate mapping <pH(x) in the case
that PH is a lower-dimensional polytope.

Theorem 3.3. Let H be a set of constraints in Rn whose nonsingular constraints
H„ are

(3.16) <a7,x)>¿>.,       l<j<rn.
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The Legendre transform coordinate mapping <pH(x) has domain Rel-Int(PH)
andränge Rel-Int(CH) where

CH = nDH(CH„) and CHn=R+[-a,,-a2,...,-aw.].

If H is of full rank then dim(CH) = dim(PH) and 4>H is a one-to-one mapping.
Proof. This is proved in the full-dimensional case in Theorem 3.1, so we may
suppose that d = dim(PH) < n . We reduce to the full-dimensional case by an
affine change of variables. Take a one-to-one affine transformation J: R —> R"
such that J(R ) = MH the affine hull of PH . Let y = J(x) = Lx + m and note
that the associated linear mapping y = Lx maps R to the feasible direction
subspace DH . Now define a set of constraints Hn = J_1(Hn) in R   by

(stj,J(x))>bj,        l<j<m*.

The polytope Prr   is easily checked to be full-dimensional in R , and

(3.17) " J(PïïJ = PHnnMH=PH,
and one also has

(3.18) /Hl(íW) = 4W,       xeRá.
We claim that the following diagram commutes:

Int(Pïï )     —i->   Rel-Int(PH)

<hn </>H„

(3.19) Rel-Int(Cïï(i) <- Rel-Int(CHii)

u
ni>»

•Rel-Int(CH)

The commutativity of the top square in (3.19) follows from the general trans-
formation property of gradients under a one-to-one affine change of variable
(which generalizes (3.15)). The bottom triangle in (3.19) commutes because
(3.20) Lry = 0   forallyeZ)^.

This holds since for all x e R one has Lx e DH so that (LTy ,x) = (y ,Lx) =
0.

Now by Theorem 3.1 the map «p^ is one-to-one and onto its range
Rel-Int(Crr ), hence the commutativity of (3.19) guarantees that the mapping
<pH = kDh o <pHn maps onto Rel-Int(CH).

Finally observe that if H is full rank in R" then the constraints Hn are full
rank in R . By Theorem 3.1 the mapping <pq is one-to-one, and then (3.19)
implies that <pH is also one-to-one, since J is onto.   D

Legendre transform coordinates transform in a simple way under affine trans-
formations in the general case.
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Theorem 3.4. Let H be a set of constraints in R"

(*j,x)>bj,       l<j<m,

having DH as its subspace of feasible directions, and let MH be the affine hull
L-

of PH . Let y = J(x) = Lx + m be an affine mapping from R   to R    which
is one-to-one on the domain MH . Let J"1 denote any affine mapping from R
to R" such that J~ (J(x)) = x for all x e MH and let J(H) denote the set of
constraints

r-i,

on R\
mutes:

(3.21)

<a;,J    (y))>bj,        l<j<m,

Then DJ{H) = J(DH), PJ(H) = J(PH), and the following diagram com-

Rel-Int(PH)

<t>»

Rel-Int(CH)

Rel-Int(PJ(H))(»)'

0J(H)

Rel-Int(CJ(H)).

r-lWe remark that although the choice of J      is not necessarily unique, the
Legendre transform mapping <pJ(H) is well defined independent of this choice.

Proof. We can find a full-dimensional linear program H on R , where d =
d(H), and two injective affine mappings J, : R —► R" and J2: R -* R such
that J,(H) = H, J2(H) = J(H), and such that the top triangle in the following
diagram commutes:

Int(Pïï),

Rel-Int(Pïï)

0H

Rel-Int(CH)

t>H

Rel-Int(Cïï)

► Rel-Int(PJ(H))

<t>l{H)

Rel-Int(CJ(H))

Here J,(x) = L,x + m,. Then the whole diagram commutes, for the two sides
commute by (3.19), and the relation L L2 = Lx follows from Jo Jj = J2.
This proves (3.21). Finally since J and <pH are onto maps, (3.21) determines
<pJ(H) uniquely, so it must be well defined independent of the choice of J~  .   o
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Given a set of inequality constraints H of full rank the map <pH is one-to-
one so there is at most one point x such that <tjh (x) = 0. If it exists we call it
the center of H and denote it by xH . Theorem 3.4 implies that the center is an
affine invariant of H in the sense that

(3.22) J(xH) = x•J(H)

holds for any affine transformation that is one-to-one on the domain PH . In the
full-dimensional case the center is defined by V/H (xH ) = 0, which is equivalent
to the condition that xH maximizes the function

m

7=1

on Int(PH), so xH coincides with the "analytical center" of Sonnevend [Sol,
So2].

Now we find Legendre transform coordinates for the constraints of a (strict)
standard form linear program. Recall that standard form constraints are given
by

(3.23, {£-/■
and that such a set of constraints is in strict standard form if it has a feasible
solution x = (xx, ... ,xn) with all xt > 0. For a linear program in strict
standard form the relative interior Rel-Int(PH) of the polytope PH of feasible
solutions is nonempty and is PH n Int(R" ), which is

(Ax = b,
\x>0.

A set of standard form constraints H is always of full rank. For a set of strict
standard form constraints H the nonsingular constraints Hn are

xx> 0,       1 < i < n,

and the associated logarithmic barrier function is
n

¡=i

Hence

<t>nSX) = -X    'e =
1/X.

where X = diag(x,, ... ,xn) is a diagonal matrix.
Theorem 3.3 yields the following result, stated as a theorem for ease of ref-

erence.
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Theorem 3.5. Let H denote a set of strict standard form linear programming
constraints,

iAx = b,
\x>0.

The Legendre transform mapping <pH having domain Rel-Int(PH) is defined by

(3.24) <f>H(x) = -nA±(X-Xe).

It is a rational mapping which is one-to-one and onto its range Rel-Int(CH). If
the feasible solution set PH  is bounded then its range is all of A   . If e is in

TPH , and e    is in the row space of A then <pH (e) = 0, so that e is the center of
PH.     D

The mapping <pH (x) is given explicitly in matrix form as

(3.25) <pH(x) = -(/ - AT(AAT)~XA)X~Xe

provided that the matrix A has full row rank so that (AAT)~~X exists. This
formula shows that the entries of <pH(x) are homogeneous rational functions
of x of degree -1 . Theorem 3.5 implies that for a strict standard form problem
the mapping <pH is real-analytic, and that the inverse mapping

<p~X : Rel-Int(CH) -» Rel-Int(PH)

is algebraic, and that <p^x is a real-analytic diffeomorphism of Rel-Int(CH)
onto Rel-Int(PH).

We compute the effect of the Legendre transform mapping <pH on tangent
vectors. The tangent space r(Rel-IntPH)x at a point x of Rel-Int(PH) is iden-
tified with A by viewing PH as embedded in R" , and the tangent space
T(Ax)x to A± has a similar identification with A± . Let

(dcf>H)x: T(Rel-Int(PH))x^ T(a\

denote the differential of <pH .

Theorem 3.6. For any set H of strict standard form linear programming con-
straints and any x e Rel-Int(PH) the mapping

(3.26) (d<pH)x: r(Rel-Int(PH))x - T(A\{x)

is a linear isomorphism. In particular, on identifying both of these tangent spaces
with A    one has for v e A    that

(3.27) (d<pH)x(y) = nA±(X-2y),

and if y = <pH(x) then

(3.28) (d<p-x)(y) = Xn{AX)±(Xy).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. II 545

Proof. For v in A and x in Rel-Int(PH) the curve c(t) = x + iv lies in
Rel-Int(PH) for -e < t < e with e small enough, and has v as tangent vector
at x. Then if X = diag(x) and V = diag(v) then for |r| small enough we have

<pH(x + ty) = -nA±((X + tV)-Xe)
= -nA±((I + tX'xV)-xX~xe)

= -nA±(X~xe - tX~2Ve + 0(t2))

= cf>H(x) + tnA±(X-2y) + 0(t2),

from which (3.27) follows. Here we use the identity

(X + tV)~X =(i + tx~xv~x)~xx~x

which is valid for small enough \t\ since the diagonal matrices X and V com-
mute and X is invertible.

We define the linear operators L,: R" —>■ R" by L,(w) = nA±(X~~2yv) and
L2(w) = XnAX± (Xyy). It is easy to check that both these operators have range
spaces contained in A . The formula (3.28) for (dcp^ ) is equivalent to the
algebraic identity

(3.29) L2(Lx(y))=y,    all v e AL .

That is, the (generally noninvertible) linear operators Lx and L2 when re-
stricted to the domain A are invertible and are mutual inverses of each other.
To verify (3.29) suppose that v e A    and set

y = Lx(y) = nAX(X~2y).

Using nA± = I - A(AAT)~X A we have

(3.30) L2 o L, (v) = L2(v) = Xn,AX)± (XnA± (X~2y))

Xn,AX^(X  Xy)-Xn.AX,±(XAT(AAT)   'AX \).

(Axy

'■(ax)±\"-    v) _ "-"-(Axy

For the first term on the right of (3.30) we find on expanding n,AX)± that

(3.31) Xn(AX)±(X~Xy) = XX~Xy - X2A(AX2ATfXAy = y,

using the fact that Ay = 0 since v is in A± . For the second term on the right
in (3.30), on expanding n,AX)± we obtain

X(XAT(AAT)~XAX~2y)

- X(XAT[(AX2ATfXAX(XAT)](AAT)~XAX~2y) = 0,

using the fact that the product in brackets is the identity. Combining the last
three equations proves (3.29) holds.   D
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4. Affine scaling vector field in Legendre transform coordinates

We take as given a linear program in standard form:

(minimize (c, x),
^x = b,
x>0

such that there exists a feasible solution x = (xx, ... ,x ) with all xt > 0. In
part I, Lemma 4.1, it is shown that the affine scaling vector field \A(x;c) for a
strict standard form linear program is

(4.2) yA(x;c) = -Xn{AX)±(Xc),

where X = diag(x). The affine scaling vector yA (x ; c) lies in A , as may be
verified using (4.2). In part I, Lemma 4.1 it is also shown that the vector field
v^(x;c) depends only on the component nA±(c) of c in the ^-direction, i.e.,

(4.3) yA(x;c) = yA(x;nA±(c)).

We have the following result.

Theorem 4.1. Given a set H of standard form constraints

(Ax = b,
\x>0,

having a feasible point x with all xj. > 0, so that Rel-Int(PH) = PH n Int(R").
Let v^(x;c) = -Xn{AX,±(Xc) denote the affine scaling vector field associated
to the objective function (c,x). If (j>H: Rel-Int(PH) —> A is the Legendre
transform map <pH(x) = -nA±(X~ e) then

(4.4) (d<pH)x(yA(x;e)) = -7tA±(c).

Proof. The formula for v^(x;c) and Theorem 3.6 yield

yA(x;nA±(c)) = -Xn{AX)±(XnA±(c))

= (d<l>Hl)y(-nA±(c)),

where y = <pH(x). Then using (4.3) gives

(dc/>H)x(yA(x;c)) = (d</>H)x(yA(x;nA±(c)))

= (d<pH)x((d4>-X)y(-nA±(c)))

= -^x(c),

proving the theorem.   G

This result immediately shows that ^-trajectories are parts of straight lines
in Legendre transform coordinates.
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Corollary 4.1a. Let a set H of strict standard form constraints be given, and
let TA(x;c) be the affine scaling trajectory associated to the objective function
(c,x) that goes through x e Rel-Int(PH). Let <pH: Rel-Int(PH) -► A1- be the
Legendre transform coordinate mapping. If the polytope PH of feasible solutions
is bounded then the image of TA(x;c) in Legendre transform coordinates is a
straight line in AJ~ in the direction

(4.5) c* = -^(c).

If PH is unbounded, then the range RH of <pH is the relative interior of a
cone in A and the image of TA(x ;c) in Legendre transform coordinates is the
intersection of a straight line with direction nA± (c) with RH , and is either a
half-line or a line segment.
Proof. Formula (4.4) shows that the transformed vector field is constant in
Legendre transform coordinates, so that its integral curves are parts of straight
lines.   D

Corollary 4.1a has the immediate consequence that we can define a global
metric geometry on Rel-Int(PH) of a strict standard form problem having a
bounded polytope of feasible solutions such that the yl-trajectories are geodesies.

Corollary 4.1b. Given a set H of strict standard form constraints

(Ax = b,
\x>0,

whose polytope PH of feasible solutions is bounded, there is a global metric
dH: Rel-Int(PH) x Rel-Int(PH) —► R such that every geodesic with respect to
dH(,-) is an A-trajectory associated to a suitable objective function. Conversely
every A-trajectory for any objective function not constant on PH  is a geodesic
of d(, •). This metric geometry is isometric to Euclidean geometry on R with
d = dim (/I  ), hence is geodesically complete.

Proof. The Legendre transform coordinate space is A± , using Theorem 3.5.
Now we can take any complete metric geometry d(, •) on A± having straight
lines as unique geodesies and pull it back to Rel-Int(PH) using the inverse
Legendre transform map <p^  , i.e., we define

dH(xx,x2) = d(<pH(xx),<t>H(x2)).

We may use Euclidean geometry on A± , or more generally any (global) affine
rescaling of Euclidean geometry.   D

Note that with this choice the global metric geometry on the Legendre trans-
form coordinate space arises from a Riemannian geometry. The pullback global
metric geometry on Rel-Int(PH) then also arises from a Riemannian geometry.

A third consequence of Theorem 4.1 is that each ^-trajectory is part of a
real algebraic curve.
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Corollary 4.1c. Every A-trajectory of a standard form linear programming prob-
lem is part of a real algebraic curve in the linear program's coordinate system.
Proof. Any standard form linear programming problem H may be brought to
strict standard form by dropping all variables x, which are identically zero
on PH . Consequently it suffices to prove the corollary for strict standard form
linear programs only. For strict standard form problems the result follows di-
rectly from Corollary 4.1a, since each ^-trajectory is the inverse image under a
rational mapping of a line segment, a half-line, or a straight line.   D

All P-trajectories are parts of a real algebraic curve, because each P-trajec-
tory is algebraically related to an ^4-trajectory of a standard form problem.

Corollary 4.1d. Every P-trajectory of a canonical form linear programming prob-
lem is part of a real algebraic curve in the linear program's coordinate system.
Proof. Part I, Theorem 7.1 showed that any P-trajectory Tp(x;c,A)
of a canonical form problem is the radial projection of the ,4-trajectory
TA(x;c,A,0) of the associated strict standard form linear program obtained
by dropping the constraint (e, x) = n , i.e.,

Tp(x;c,A) = {ny/(e,y):yeTA(x;c,A,0)}.
Since this is an algebraic relation and this /i-trajectory is part of a real algebraic
curve by Corollary 4.1c, so is Tp(x;c,A).   D

5. Protective scaling vector field in
Legendre transform coordinates

Consider a linear program in canonical form:
' minimize (c, x),

,. ,. ,4x = 0,
(5A) \ i      \I (e,x) = n,

x>0,
where e is a feasible solution. Part I, Lemma 4.3 showed that the projective scal-
ing vector field yp(x;c,A) for a canonical form linear program with objective
function (c,x) is

(5.2) yp(x;c,A) = -Xn{AX)±(Xc) + (l/n)(Xe,n(AX)±(Xc))Xe,

where X = diag(x). We normally abbreviate yp(x;c,A) to v/)(x;c), omitting
the explicit dependence on the constraints. The projective scaling vector field
vp(x;c) for x in Rel-Int(PH) lies in [AT] , as may be verified from (5.2). Part
I, Lemma 4.3 showed v/,(x;c) depends only on the component nA±(c) of c in
the A  -direction, i.e.,
(5.3) yp(x;c)=yp(x;nA±(c)).

This vector field does depend on the component of c in the e-direction, even
though this component of the objective function remains constant on the poly-
tope PH due to the constraint (c, x) = n.
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Now we compute the projective scaling vector field in Legendre transform
coordinates.

Theorem 5.1. Let H be a set of canonical form linear programming constraints,
and let vp(x;c) be the projective scaling vector field associated to the objective
function (c,x) at xe Rel-Int(PH), given by

(5.4) vp(x;c) = -Xn[AX)±(Xc) + (l/n)(Xe,n{AX)±(Xc))Xe.

If <pH : Rel-Int(PH ) —► A    is the Legendre transform mapping given by

(5.5) </>H(x) = -n[&]±(X-Xe),

then

(5.6) (dcpH)x(yp(x;c)) = -n^]±(c) - (l/n)(Xe,n{AX)±(Xc))cf>(x).

Proof. Apply Theorem 3.2 to the formula for \p(x;c) above to obtain

(5.7) (d4>H)x(yp(x;c)) = - n^(X~ln(AX)X(Xc))
e'

+ (l/n)(Xe, n± (Xc))n^± (X~Xe).

To simplify the first term on the right of (5.9), we use

(5.8) X~Xn,AX)±(Xc) = X~X(I - XAT(AX2AT)~XAX)Xc-(Axy

c- A w,

where

(5.9) yy = (AX2AT)'XAX2c.
T TNow nA± (A w) = 0, either by noting that A w lies in the row space of A , or

by directly calculating

nA±(ATyv) = (I - AT(AAT)~XA)AT(AX2ATyXAX2c = 0.

Thus (5.8) yields

-nljr]±(X~Xn{AX)±(Xc)) = -7t^]±(c) + n{eT)±(nA±(ATyv))

= -nlj.]±(c),

using the fact that 7trj,]± = n(tT)±nAi. since Ae = 0. Substituting this equality
and the identity (5.5) into (5.7) completes the proof.   D

We remark that the vector w = (AX A )~ AX c has a natural interpretation
as a set of dual variables (see Todd-Burrell [TB]).

Theorem 5.1 shows that the projective scaling vector field in Legendre trans-
form coordinates is a vector sum of the constant vector field -c* where c* =
Ä[j.]j.(c) > together with a vector field that points radially toward or away from
the origin 0 at each point in the Legendre transform coordinate space. This
has the following consequence.
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Corollary 5.1 a. For a canonical form linear program every P-trajectory with
objective function (c, x) viewed in the Legendre transform coordinate space lies
in a plane containing the line L   = {c t : - oo < t < 00}, where c  =n,A,± (c).

C 1 e7~ 1

Proof. Consider the P-trajectory passing through a point y = <pH(x) in
Legendre transform coordinates. The vector field (d(pH)x(\p(x;c)) has Lc,
as an invariant set, so that if y is on Le. then the P-trajectory stays on Lc.
(see also Theorem 6.1). If y is not on Lc. then the plane determined by y
and Lc. in Legendre transform coordinates is an invariant set of the vector
field (d<pH)x(vp(x;c)) and the P-trajectory in Legendre transform coordinates
<pH(Tp(x;c)) must lie in it.   D

The projective scaling vector field \p(x;c) depends on the component of c
in the e-direction. An objective function (c,x) is normalized if (c,x) > 0
for all feasible solutions and (c,x) = 0 for some feasible solution. Normal-
ized objective functions play a special role in Karmarkar's projective scaling
algorithm, and Karmarkar's convergence proof only applies to normalized ob-
jective functions. The criterion that an objective function (c, x) be normalized
uniquely determines its component in the e-direction, as follows (proved in
part I, Lemma 4.4). Given any objective function c of a canonical form linear
program there is a unique normalized objective function c^ such that c^ lies
in A-1, and n^]±(c) = ^^(c^). In fact if c* = ^^(c) and xopt is an
optimal solution then

c,v = c*-(l/rt)(c\xopt)e.

It can be proved that an objective function is normalized if and only if in
Legendre transform coordinates all P-trajectories are asymptotically parallel to
the central P-trajectory as they approach an optimal solution, see part III.

6. Central trajectories

The Legendre transform coordinate map <pH associated to a set of linear
programming constraints H whose polytope PH of feasible solutions is bounded
determines a unique point xH such that

(6.1) 0h(xh) = O>

which we call the center of H . By Theorem 3.5 a canonical form linear program
always has a bounded polytope PH and the point e is its center. We call the A-
trajectory and P-trajectory through the center e of a canonical form problem
with objective function (c,x) the central A-trajectory with objective function
(c,x), denoted TA(c,A), and the central P-trajectory with objective function
(c,x), denoted by Tp(c,A). The trajectory TA(c,A) is TA(e;c,[$],[$]) in
the notation of part I.

We first show that central ^4-trajectories contain (and usually coincide with)
central P-trajectories.
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Theorem 6.1. The central P-trajectory Tp(c,A) of a canonical form linear pro-
gram is contained in the central A-trajectory TA(c,A) for the same linear pro-
gram. They coincide if and only if the projective scaling vector field v/,(x;c) does
not vanish for all x on the central A-trajectory TA(c,A).
Proof. Let c* = n.A „(c). By Corollary 4.1a the central ^-trajectory is simply

the line -ct in Legendre transform coordinates, i.e.,

(6.2) TA(e;c,A) = {x: n[jL]±(X   e) =-tc*,  - oo < t < oo}.

Let x( = Xte denote the unique point on 7^(e;c,.4) with

0H(X() = -n[A,]±-(X7 e) = ~tc* ■
e'

By Theorem 5.1 the projective scaling vector field at xr in Legendre transform
coordinates is

(d<PH)x,(yp(x>c>A)) = (-1 + (t/n)(Xte,n(AX¡)±Xtc))c .
Hence in Legendre transform coordinates the projective scaling differential
equation trajectories starting at a point on the line c*t remain on the line ct.
Furthermore the usual existence theorems for ordinary differential equations tell
us that the trajectory starting at 0 in Legendre transform coordinates extends
to the nearest zeros of the projective scaling vector field on c*t on both sides of
0, so that if t+ = min{i: t > 0 and yp(xt;c,A) = 0} and t~ = max{<: t < 0
and vp(xt;c,A) = 0} then

(6.3) Tp(c,A) = Tp(e;c,A) = {xt: - n[jL]X(xt) = tc  and t+ < t < /"}.
e'

In particular Tp(c,A) = TA(c,A) if and only if the projective scaling vector
field yp(x;c,A) does not vanish on the central ^-trajectory TA(c,A).   D

If (c, x) is a normalized objective function, then we showed (part I, Lemma
4.5) that the projective scaling vector field never vanishes. By Theorem 6.1 the
central P-trajectory and the central /1-trajectory coincide in this case. If (c,x)
is not a normalized objective function then the projective scaling vector field can
have at most one critical point, which is always on the central trajectory, and in
this case the central P-trajectory is strictly contained in the central ^4-trajectory;
we do not consider this case further.

Now we define central ^-trajectories for strict standard form linear programs
and give two characterizations of them. Consider a linear program H in strict
standard form:

¡minimize (c,x),
/lx = b,
x>0

having the feasible solution x = (xx, ... ,xn) with all jc, > 0.   The central
A-trajectory TA(c, A,b) is defined by

(6.5)    TA(c,A,b) = [x: nA±(X~Xe) = -nA±(c)t,
for all t with nA±(c)t e Rel-Int(CH)}.
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This definition reduces to (6.2) for a canonical form problem, and also makes
sense for standard form problems having an unbounded domain PH . The cen-
tral ^-trajectory TA(c,A,b) so defined is a curve if c* = nA±(c) e Rel-Int(CH)
with c* t¿ 0 ; it is the center {xH} if c* = 0 e Rel-Int(CH) ; it is the empty set
if c* i Rel-Int(CH).

The central trajectory T^c.^b) is an affine invariant in the sense that if
^d-i (x) = D~ x is an affine transformation with all dt > 0 then

(6.6) 4V,(7>,^,b)) = TA(Dc,AD,b).
This follows from Theorem 3.2.

One characterization of the central ^4-trajectory TA(c,A,b) for a strict stan-
dard form linear program is that it is the locus of centers of a parameterized
family of standard form linear programs having an extra sliding equality con-
straint of the form (c, x) = p added.

Theorem 6.2. Let H denote the set of strict standard form linear program con-
straints:

(Ax = b
\x>0

and let H   denote these constraints together with the extra constraint (c,x) = p.
Set p+ = max((c,x): x e PH) and p_ = min((c,x): x e PH), and suppose
p_ < p+ . Let x(p) denote the center of PH   if one exists.  Then the central
trajectory T^c^.b) is the set of centers x(p) of PH   for p_ < p < p+, i.e.,

(6.7) T(c,A,b) = {x(p):p_<p<p+}.

Before beginning the proof we remark that if PH is unbounded for some
value of p, then it is unbounded for all values of p . In this case there are no
centers x   and Theorem 6.2 asserts that T(c,A,b) is the empty set.

Proof. By definition if x is in TA(e,A,b) then x is in Rel-Int(PH) and

(6.8) (f>H(x) = -nA±(X~xe) = -nA±(c)t

for some real t. The condition p~~ < p+ shows that (c,x) is not constant on
PH , so that for x in Rel-Int(PH) one has (c,x) = p with p_ < p < p+. Now
H    is a set of strict standard form constraints and x e Rel-Int^), and

<t>Hß(x) = -*lj.]±(x~le)-

Set c = 7tA± (c) and observe that

where nèT and nA± commute since Ac = 0. Hence one has

(6.9) 4>Hii(x) = -n{èT)±(nA±(X~le))

= n{èT)±(<t>H(x)).
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Using (6.8) one obtains

<^(x) = 7f(ê7>L(-&) = 0.

Hence H has a center x(p) and x = x(p). This proves that T(c,A,b) ç
{x : p_ < p < p+} . For the reverse inclusion if (j>H (x) = 0 then (6.9) yields

n{iT)±(<pH(x(p))) = 0,

so <pH(x(p)) = c7 for some /.   D

Theorem 6.2 has the important consequence that the objective function value
p = (c,x(p)) always provides a natural parameterization of the central A-
trajectory, i.e., there is at most one point x on the central A-trajectory with a
given value of (c, x).

Second, we show that all points on the central ^-trajectory on one side of
the center are the solutions of a parameterized family of nonlinear fixed point
problems described by a logarithmic barrier function.

Theorem 6.3. Let H denote a set of strict standard form linear program con-
straints

( Ax = b,
\x>0.

Suppose that PH is bounded and that (c, x) is not constant on PH . Then the
nonlinear minimization problem

( - \(6.10) minimize (c, x) - p   J^1°S*,- )

over x e Rel-Int(PH) attains its minimum at a unique point x(p) for 0 < p <
oo.
The Legendre transform coordinates of x(p) are

(6.11) <pH(x(p)) = -(l/p)nA±(c),

so that x(p) lies on the central A-trajectory TA (c, A, b).

Proof. Since V g (x) = pX where X = diag(Xj, ... ,xn) is positive definite
on Rel-Int(PH), it follows that g (x) is strictly convex and hence has at most
one critical point in Rel-Int(PH), which is a global minimum if it exists. We find
Lagrange multipler conditions for a critical point x(p) of g„(x), for p > 0.
Set

Lfi(x,X) = gß(x)-XT(Ax-b).
The Lagrange multiplier conditions are

(6.12a) dLJdx = c- pX~Xe-ATk = 0,
(6.12b) dLfi/dX = Ax-b = 0.
Consequently any critical point x(p) must satisfy

(6.13) X~xe = (l/p)(c-ATX),
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so that

(6.14) <t>H(*(p)) = -7CAA*~le) = ~(l/p)nA±(c).

By hypothesis 7tA±(c) / 0, and there is a unique point x(p) in Rel-Int(PH)
satisfying (6.14), which is on the positive part of the central trajectory; further-
more there is then a unique X such that (6.12) holds, so that x(p) is a critical
point. It is the unique global minimum of g (x), and taking 0 < p < oo one
obtains all points on the positive side of the center.   D

Theorem 6.3 holds also for standard form linear programs having an un-
bounded polytope PH of feasible solutions, provided that the objective function
(c,x) is not constant on PH and that -nA±(c) is in the range Rel-Int(CH) of
the Legendre transform coordinate mapping, so that (6.14) is solvable and the
minimization problem (6.10) then has a unique solution.

7. Power-series expansions for ^-trajectories

Since A -trajectories are parts of real algebraic curves, they have locally con-
vergent power-series expansions about any (nonsingular) point of the curve. We
derive two power-series expansions: the first is for an arbitrary ^-trajectory of
a standard form problem in terms of a parameter measuring Euclidean distance
in Legendre transform coordinates. The second power-series expansion is for
the central ^-trajectory of a canonical form problem at the center, and uses the
objective function value as the power-series parameter.

Theorem 7.1. Given a strict standard form linear program

minimize (c, x),
Ax = b,
x>0,

and feasible point x0 = X0e with x0 > 0. Set c* = nA±(c), and parametrize
the A-trajectory TA (x0 ; c) using Legendre transform coordinates by

(7.1) 0H(x,) = 0H(xo)-/c\

Then the power-series expansion
oo

(7.2) x, = xo + £v/
k=\

has coefficient vectors v = vjt(c*) computed recursively as follows. Let Vk =
diag(v^), and <E>0 = /, and initialize with

(7.3a) yx=X0n{AXo)±(X0c),

(7.3b) <t>x=-X~XVx.
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The recursion step determining vk and <Pfe is:

(7.4a) v, = -X0n{AXo)± lxoJ2n^X^V^)

(7.4b) •*--^T'ÊV*-r
7=0

The matrices <¡>k are diagonal matrices.

Proof. Define Xt = diag(x(), and the power-series expansion (7.2) to be deter-
mined is equivalent to

oo

(7.5) *, = *o + EF/
Zc=l

where the Vk are diagonal matrices. The vector x( - x0 lies in the subspace
A   = {x: Ax = 0} ; hence (7.2) yields

(7.6) nA±(Vke) = 0   for k > 1.

Define the diagonal matrices <J?k by
oo

(7.7) ^r'^'E*/-
Zc=0

Now (7.5) gives

Kk=\
x;x = x-1 [i + x;x [j:vkt^

since diagonal matrices commute. Comparing the last two equations shows that

Evaluating coefficients of powers of t in this formula yields <t>0 = I, and

Zc-l
,-1^ + E^Av*-7 = 0'    ***■

7=0

This yields the recursion

(™) ^-<EvJ.
since diagonal matrices commute, and proves (7.3b) and (7.4b).
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Using the definition of Legendre transform coordinates and the definition
(7.7) one obtains

-v vk+Ev e
k=l

OO

= 4>H(x0)-nA±\T(X-x®ke)tk\.

Comparing this with (7.1) and equating powers of t gives

(7.9a) nA±(X~X^xe) = c,

(7.9b) nA±(X~X<í>ke) = 0,    allzc>2.

We have ®x = -X~x Vx by (7.8) so that

(7.10) nA±(XQ 2Vxe) = nA±(XQ 'o.e) = c*.

The condition (7.6) asserts that v( = r^e is in A± , and Theorem 3.6 now
shows that (7.10) has a unique solution which is given by

Vl = X0n(AX0)± (X0C ) '

and this proves (7.3a). Next, for k > 2 substitute (7.8) into (7.9) to obtain

(7.11) nA± (X~2 Vke) = - ¿ nAX (X^ Vk_ ,e).
7 = 1

Now yk = Vke is in A   , so applying Theorem 3.6 to (7.11) yields

*k = -X0*(AX0)±   I X0 Ë nA-(X^jVk-je) j   '

which is (7.9a) and completes the proof.  (Note here that <P,Vk_ e is usually
not in A± , so one cannot simplify the right-hand side of this equation further
using (3.31).)   D

The formulae of Theorem 7.1 simplify considerably when the initial point x0
is e, as happens in a canonical form linear program. The recursive formulae
for k = 1 are then

(7.12a) Vj = -c*,
(7.12b) <I>1=-^.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE NONLINEAR GEOMETRY OF LINEAR PROGRAMMING. II 557

and for k > 2 are

(7.12c)

(7.12d)

In particular only the single projection nA± is involved in computing each yk .
Now we derive a power-series formula for the central ^-trajectory of a canon-

ical form linear program about the point e, using the value z = (x, e) of the
objective function as the power-series parameter. The remarks after Theorem
6.2 imply that the objective function value parameter z is a monotone decreas-
ing function of the Legendre transform coordinate parameter t.

Theorem 7.2. Given a canonical form linear program in R"

' minimize (c*, x),
Ax = 0,
(e,x) = n,
x>0,

such that e = (1,1, ... , 1) is feasible and c* is in [¿f] . Define z = (c* ,x),
and parametrize the central A-trajectory TA(e;c*) as {x(z)}, with x(0) = e.
Then the power-series expansion around z = 0 is given by

(7.13) x(z) = e + J2*lzk*   kr~

k=\

where the coefficient vectors v* =v£(c*) are computed recursively as follows. Let
Vk = diag(v^) and &0 = I, initialized with

(7.14a) ax = -(c*,cTx,
(7.14b) v* = -a,c*,
(7.14c) &* = -V*.

The recursion step determines ak, v*, and the diagonal matrices <J>*k by

k-\
(7.15a) ak =a,(c*, ¿^C,e),

X 7 = 1 '

(7.i5b) v; = -^,Jx;*;Cy«]-a^'
,7=1

k-\

(7.150        <t>:=-E**K-r
7=0
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Proof. By definition x(z) is that point on the central ^-trajectory for which

(7.16) z = (c,x(z)),

and x(0) = e. Since x(z) is on the central ^-trajectory one has

(7.17a) <pH(x(z)) = -/(z)c*,

where

(7.17b) /(z) = f>tz*
Zc=0

converges in a neighborhood of z = 0 since <pH and x(z) are both analytic
mappings. Note that if xt is the Legendre transform parameterization of the
central ^-trajectory, with <t>H(xt) = -tc , then (7.17) yields

oo

/ = f(z) = J>kz* .
Zc=0

This gives a conversion formula from a power-series in t to one in z.
Before beginning the calculations observe first that since x(z) is in [¿f]   ,

(7.13) implies that

(7.18) «r¿n(0-V

Substitute the power-series expansion (7.13) into (7.16) and equate powers
of z to obtain

(7.19a) (c*,v;> = l,
(7.19b) (c*,v*) = 0,    allzc>2.

To evaluate </>H(x(z)), let X* = diag(x(z)) and Vk = diag(v*). The power-
series expansion (7.13) is equivalent to

Zc=l

Set
oo

(7.20) {K)~l=T,*lzk>
k=0

and one easily finds as in Theorem 7.1 that O^ = I and

(7.21) *î = -Ë*X-r    all/c>l,
7=0
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which proves (7.14c) and (7.15c). Now compute
r*\~l(f>H(x(z)) = n{^]±((Xz)    e)

OO

k=\ J

*   \   k

k = \

Equating this with (7.17) term by term yields q0 = 0 and

(7.22) akc  = n{^]± (fl>*e),    all k > 1.

Now (7.21) gives O* = -V* hence 0*e = -v* so that the last equation for
zc = 1 yields

(7.23) axc  =-n[^]±(y*x).

Multiplying this equation by (c*)T and using (7.19a) yields

Q1(C*,C*) = -(C*,7T[^]X(VÍ)) = -(C*,V¡) = -1.

This proves (7.14a). Also n,A,±(v*) = v*, so that (7.23) gives v* = -a,c*,
which proves (7.14b). To derive the recursion step, multiply (7.22) on the left
by (c*)    to get

(7.24) afc(c*,c*) = (c*,7r[^]±(<D¡e))

x       7=0 '

using (7.21) and the fact that c* is in [¿f]   . Now we note that

<c*, nI4,x(*0K;e)) = (c* ,&0Vkme) = (c* , v¡) = 0,

using (7.18) and (7.19b). Substituting this in (7.24) yields
k-\

X 7=1 '

which proves (7.15a). Finally (7.21) and (7.22b) give
k-l

-akc' = n{^(Vke) + £ n[&]±(&k_x Vje).
7 = 1

Using (7.18) this yields , >.

<--n[^\È^i-Jvj'A-akc''

which proves (7.15b) and completes the proof,   o
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The formula / = Y^kLo akz expresses t in terms of z. By reversion of
power-series there is an inverse formula

oo

z = z(t) = J2ß/-
k=0

In fact one has

z = (c ,xt) = U* ,e + Y2yktk\
X Zc=l '

fc=l

so that ß0 = 0 and
ßk = (c*,yk),    all/c>l,

where the v^ may be computed using the formulae (7.12) with A replaced by

One can consider "higher-order" analogues of Karmarkar's projective scaling
algorithm, based on taking steps following truncated power-series expansions
to the central ^[-trajectory. The choice of the power-series parameter plays a
critical role in the performance of such algorithms. A second-order power-series
implementation of these ideas, using the coordinate for which the objective
function decreases (locally) most rapidly as the local power-series parameter,
is described in [AKRV]. An average 25% decrease in the number of iterations
of this second-order method compared to the projective scaling method was
empirically observed on a standard set of 30 test problems. Other power-series
implementations are described in [KLSW].

8.   A -TRAJECTORIES FOR FULL RANK LINEAR PROGRAMS

It is possible to define ^-trajectories for an arbitrary linear program. We
consider in detail the special case of a linear program in R" in inequality form:

J minimize (c,x)-c0
(     ' \(*j,x)>bj,        l<j<m,
which also satisfy the conditions:

(HI)  The poly tope PH is full dimensional.
(H2)  The vectors [a,, ... ,am] span Rn.
A linear program satisfying (H2) is of full rank; the condition (H2) automat-

ically holds if PH is bounded. We define ^-trajectories for this linear program
by finding a one-to-one affine mapping J : R" —► Rm which maps the linear pro-
gram into a standard form linear program in Rm , whose equality constraints

(8.2) Ay = b
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describe the image {J(x) : x e R" } , and which has an objective function (c, y) -
c0 for which

(8.3) (c,J(x))-c0 = (c,x)-c0

for all x e R". We define the A-trajectory TA(x0;c,H) to be the pullback
under J-1 of the ,4-trajectory of the standard form problem through J(x0),
which is J~ (T^J^îc^b)).

To verify that this definition makes sense we must show that we can find a
suitable J and (c,y) - c0, and that T^x^c,!!) is well defined independent
of the choice of J and (c,y) -c0. A suitable mapping y = J(x) is given using
the slack variables:

(8-4) yj = (aj,x)-bj,

since the transformed inequality constraints are now

(8.5) yj >0,       l<j<m,

so the problem is in strict standard form. Since J is one-to-one we can find a
projection n o J = I and define (c,y) - c0 = (c,n(y)) - c0. We show that the
trajectories are well defined independent of the choice of J and c in the proof
of Theorem 8.1 below.

A second definition of /1-trajectories for linear programs (8.1) which satisfy
conditions (Hl), (H2), uses rescaling ideas. Associate to this linear program's
constraints H the logarithmic barrier function

m

(8.6) /H(x) = -^log((a;,x)-¿z.).
7=1

In this case the Legendre transform coordinates <pH (x) are given by

(8.7) 0H(x) = V/H(x) = -¿
a7

and its Hessian is

(8.8, V»AW.^W.g___lV,J
which is positive definite for all x e Int(PH). At a given point x0 the Taylor-
series approximation to /H(x) is

(8.9) /H(x) = /H(x0) + (V/H(x0),x-x0) + i(x-x0)V/H(x-x0) + O(||x-x0||3).

Now choose an affine rescaling of variables to make the quadratic term in the
Taylor-series spherical. Set x = J(x) with J(x) = K(x- x0), where K is an
invertible matrix chosen so that

H = V2fH(x0) = KTK,
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which is always possible since H is a positive-definite symmetric matrix
[HK, p. 247]. The transformed potential function has the Taylor-series ex-
pansion:

/H(t) = /H(x0) + ((K~X)VfH(x0),x) + (x,x) + 0(\\x\f).

Then

(8.10) <c,x)-c0 = <(*  X)Tc,x) + ((c,xQ)-cA.

The affine scaling direction field is the pullback under J ' of the negative of
the transformed objective function direction -(K   ) c, which is

(8.11) yA(x0;c,rl) = (J-X)t(-(K-X)Tc)

= -K'\k~x)tc

= -(vVh(x0))_1c.
The ,4-trajectory TA(x0;c,H) is obtained by integrating this vector field starting
at x0.

A third definition of ,4-trajectories uses Legendre transform coordinates:

(8.12) 7^(x0;c,H) = {xe Int(PH): <pH(x) = <pH(x0) + tc for some ieR}.

These three definitions are equivalent.

Theorem 8.1. These three definitions define the same set of A-trajectories.
Proof, (i) o (iii). Start with the first definition, and choose any injective affine
mapping J: R" -> Rm that maps the linear program to the standard form
problem with constraints H = J(H) given by

ÍAy = b,
Uj>0,        l<j<m,

and objective function (c, y) - c0 satisfying

(c,J(x))-c0 = (c,x)-c0

for all x e R" . The associated Legendre transform mapping is

4>fx(y) = -nA±(Y-xe)

where Y = diag(y,, ... ,ym). By Theorem 3.4 the following diagram com-
mutes:

Rel-Int(PH) -^-^ Rel-Int(Pft)

(8.13) 4>H 4>H

Rel-Int(CH) ^—     Int(Cp)

Here J* is the adjoint mapping to J, defined by

(J*(y),x> = <y,J(x)-J«0)
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for all x e R", y € Rw. Theorem 3.4 also asserts that the mappings are
one-to-one and onto in (8.13).

By Corollary 4.1a the image of the ^-trajectories 7^(y;c,^,b) under </>ñ is
a family of parallel lines with slope nA± (c). Since J* is affine and one-to-one
its image in R" is also a family of parallel lines. To show these lines coincide
with those given by definition (iii) it suffices to prove that the slope of these
lines is c. By definition of the adjoint we have

(J*(^±(c)),x) = (^(c),J(x)-J(0)),

for all x € R". Since J(x) - J(0) lies in A   ,

(nA±(c),J(x)-J(0)) = (c,J(x)-J(0)).

Comparing this with (8.3) yields

(J*(nA±(c)),x) = (c,x)+cx,

for all x e R" , which implies that cx = 0 and J*(nA± (c)) = c, completing the
argument.

(ii) o (iii). We compute the affine scaling vector field vA = v^3)(x;c,H) as-
sociated to the third definition, which is defined by

V/H(x + eyA) = 4>H(x) -ec + 0(e2).

This just asserts that V<pH(x)v/) = -c, which by (8.8) yields

v^-(v2/H(x)r'c.

This coincides with (8.11), so that the second and third definitions are equiva-
lent.   D

One can similarly define ^-trajectories for a general linear program of the
form (8.1), which may have a lower-dimensional polytope of feasible solutions
but is assumed to be of full rank. The analogue of the first definition above is
as follows. The full rank condition guarantees that the slack variable transfor-
mation J: R" -> Rm' given by

y} = (»,•, x) - bj,        l<j<m*,

is one-to-one. It transforms the linear program (8.1) to a standard form linear
program in Rm , and one defines ^-trajectories to be the pullback by J-1 of
the ^-trajectories of this standard form problem. There are also extensions of
the second and third definitions of ^-trajectories given earlier to this case. The
extension of the third definition is

(8.14)      r4(xo;c,H) = {xeRel-Int(PH):0H(x) = 0H(xo) + ?c*    for / e R}

where c* = tî0h(c) . The obvious extension of Theorem 8.1 holds for all full
rank linear programs.
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One can define ^-trajectories for nonfull rank linear programs, using (8.14).
In this case the resulting ^-trajectories are not curves but are higher-dimensional
objects; we omit the details.

9. Central ^-trajectories for full rank linear programs

We define and study central ^-trajectories for an inequality form linear pro-
gram:

f minimize (c,x)-c0,
1     ' \(*j,l>bj,        l<j<m,
which is of full rank. We define the central A-trajectory 7^(c, H) by

(9.2) TA(c,H) = {xeInt(PH): <pH(x) = re for some t e R}.

An alternate definition is that if J: R" —> Rw transforms the linear program
(9.1) to the standard form linear program

{minimize (c, y) - c0,
,4y = b,
yj>0,        l<j<m,

then the central ^-trajectory 7^(c,H) is the pullback by J-    of the central
^-trajectory of this transformed problem, i.e.,

ri(c,H) = j-1(r4(c,^,b)).
The equivalence of these two definitions easily follows from (8.13).

Adding (or removing) constraints of the form ±(c,x) > b does not move
the central ^-trajectory with objective function (c, x).

Theorem 9.1. Let H be a full rank set of constraints

(a, ,x)>b,,        l<i<m,

in Rn.  Let H' denote H together with an additional set of constraints of the
form

(c,x)>b¡,        l<j<m+,

(-c,x)>b~,       l<j<m~,

which are nonsingular constraints in H'. Then the central A-trajectory TA(c;H')
is contained in the central A-trajectory TA(c, H).
Proof. Since PH, ç PH we have DH, ç DH and the nonsingularity hypothesis
guarantees that Dw = DH , so that

For any x in Rel-Int(PH) one has
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This gives

(9.3) <pH,(x) = <pH(x) + p.(x)c*/,

where

Mx) = "g(e,x)-è;+g(c,x) + è--

Consequently if x e TA(c,H') then 0H,(x) = íc*, = ic* which with (9.3) shows
that <pH(x) = t'c*H for some t', so that x e TA(c, H).   D

Although the central trajectory itself is not moved by adding extra constraints
of the form ±(c,x) > b,, added constraints generally move the center of H' to
a different place along the central trajectory from that of H, assuming that H
and H' have centers. As mentioned earlier, Renegar [Re] develops a linear pro-
gramming algorithm that approximately follows a sequence of centers produced
in this manner along the central trajectory to an optimal point.

Now we show that the limit point x^ of the central ^-trajectory 7^(c,H)
on the boundary dPH = PH -Rel-Int(PH) is the center of the largest dimensional
face of dPH containing x^ .

Theorem 9.2. Let H be a full rank set of constraints

(9.4) {%,,%) >b,,        I<i<m,

in Rn . Suppose that the central A-trajectory TA(c;H) is nonempty with

(9.5) TA(c, H) = {x,;<pH(x,) = ic* with f < t < oo}.

Then x^ = limí_>ooxí exists. Set p = (c,xj, and let H' be H together with
the constraints

(9.6a) (c,x)>p,
(9.6b) -(c,x)>-p,.

Then x^ is the center of PH,. Furthermore PH, is the unique face of PH con-
taining x^ in its relative interior.

Proof. If c* = nD (c) = 0 then TA(c, H) = xH is the center of H , and xf = xH
so x^ = xH . Also (c,x) is constant on H so the constraints (9.6) are singular
constraints, hence PH, = PH and the theorem holds trivially in this case.

Next suppose that c^, ^ 0, so that TA(c;H) is a curve by the full rank
hypothesis. Since Legendre transform coordinates only become unbounded ap-
proaching dPH = PH - Rel-Int(PH), and since x( parametrizes an algebraic
curve, the limit x^ exists.

Let Hn denote the set of nonsingular constraints of H , which we may suppose
without loss of generality are

(a,., x) > b,,        l<i<m*.
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Then the feasible direction subspace Z)R = [am.+1, ... ,am]x . The added con-
straints (9.7) are singular constraints of H' and its feasible direction subspace
is

DH' = [am* + l ' ••• 'am'C3     = [am- + l ' ••• >am'CH]     ■

Hence nD i = 7c.c.,±nDH, since c* e DH implies that n,e.)± commutes with
nD  . Consequently by definition of x   we have

*DHA(X/) = V)^W^h(x,))) = V)^ic*) = °
Then

(9.7) ^H,(xœ)=Hrn^H,(0H(xr)) = O.

The definition of p guarantees that x^ is in PH,, and (9.7) implies that xœ
must be in Rel-Int(PH,) and is the center xH, of H'.

Finally the constraints (9.6) are just the equality constraint (c,x) = p. This
constraint does not contain any relative interior point of PH ; hence the con-
straints H' must cut out a face of PH , so PH, is a face of PH . Each point
x of PH lies in the relative interior of a unique face of PH , so the theorem
follows,   o

Since the range space of RH of the Legendre transform coordinate mapping
is the relative interior of a cone, it follows that in (9.5) the limiting value
t~ must be either 0 or -co. If t~ = 0 then üm;_>0+ x does not exist,
and the corresponding central trajectory is unbounded in the linear program's
coordinates.

10. Central trajectories and linear programming duality

There is a simple rational mapping from the central trajectory of a linear
program to the central trajectory of its dual linear program. This mapping
appears in Osborne [Os, Theorem 2.2], where it is stated in terms of logarithmic
barrier functions.

Consider a linear program in R" in inequality form:

/minimize (c,x),
{P)     \ATx>b,

where A = [a,, ... ,am]. The corresponding dual linear program in Rm is

{minimize - (b, y),
Ay = c,
y>0.

We say that the dual linear programs (P) and (D) are transverse if both objec-
tive functions are nonconstant on their polytopes of feasible solutions. In the
case that (P) has an interior feasible point the transversality condition is that
c^O and n{AT)±(b) #0.
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Let r|f) denote the positive half of the central trajectory of (P), defined by

T{+P) = {x(t):<t>Hp(x(t)) = -tc, 0<t<œ},

where H^ denotes the constraints of (P), and 7j denotes the positive half
of the central trajectory of (D), defined by

Tf} = {y(t): 0Ho(y(O) = i^x(b), 0 < t < oo},
where Hß denotes the constraints of (D).

Theorem 10.1. Let (P) and (D) be a pair of dual linear programs such that
(P) has an interior feasible point and the pair (P) and (D) are transverse. If
x(t) e r|P) and u(t) = ATx(t) - b are its corresponding slack variables then the
vector y(t) e r| ' satisfies

(10.1) Uj(t)yj(t) = l/t,       l<i<m.
Proof. Since (P) has an interior feasible point, one has

(10.2) *Hp(x(t)) = -E (>.,,(/))-0, = -Mi)'1 = -tC

where by definition
-i _ /_1_   _1_ 1    \

UW    -\uAt)'uM)'--'u(t))-
v-lNow define y = (l/r)u(í)    , and observe that y > 0 and

Ay=-(l/t)<pH(x(t)) = c,

so y is dual feasible and is in Rel-Int(PH ). Let Y — diag^ , ... ,ym). Then
one has

^Hfl(y) = -nAAY~le) = -tnA±(a(t))
= -tnA±(Ax(t) -b) = tnA±(b).

Thus y = y(í) e t[D) .   D

As t —» oo the point x(f) e rj approaches an optimal solution x^ of
(P), and y(t) e T+ ' approaches an optimal solution y^ of (D). To see this
one need only observe that (10.2) implies that (y^ ,xoo) are both feasible and
satisfy the complementary slackness conditions:

(10.3) yjUj = yj((aj,x) -b;) = 0,       l<j<m.

Theorem 10.1 actually gives a rational mapping which when restricted to the
domain r| ' maps T^x to r|0), since for x = x(t), one has

t = (I/c,)4>H(x)„
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where c = (c,, ... ,cn) and c, ^ 0.   Then using (10.1) one obtains such a
rational mapping ô     given by

1

S{P\x) =
0H(X),

(ax,x)-bx
1

L(am,x)-¿z„

One can also find a rational mapping ¿( '(y) which when restricted to r|D)
maps it to TfK One defines t by l¡t = <pH¡j(y),ln,AT)JL(b) ■ where Jt,AT)±(b)j
/ 0; next one defines u(r) using (10.1), and then x is recovered from u by
solving a suitable subset of the linear equations A x - b = u. One has

o{D)oó{P)(x) x, xeT (P)

The combined primal-dual linear program (PD) on Rm+" is

(PD)

minimize (c, x) - (b, y),
^4rx>b,
Ay = c,
y>0.

Let HpD denote the set of constraints of (PD).  It is easy to check that the
Legendre transform coordinate mapping for (PD) is

*"">\[y\)   l^HD(y). '
and that the central ^-trajectory TpD for (PD) is

PD {[yj^Qyj] '[^(b)]/
Hence the central ^-trajectory of (PD) projects onto the central ^-trajectories
of (P) and (D), via orthogonal projections onto the x-variables and y-varia-
bles, respectively. The algebraic correspondence given by Ö (x) associates the
x coordinate of a point (x,y)r on the central ^-trajectory of (PD) to the
y-coordinate.

By Theorem 10.1 points on the central trajectory (x(p),y(p)) of the com-
bined primal-dual linear program (PD) satisfy the system of equations

TA x- u = b,
Ay = c,

yjUj = p,        l<j<m,

with 0 < p < oo, where all u > 0. The path (x(p),y(p)) is a special case
of the parametric logarithmic barrier function trajectories studied by Megiddo
[M]. It can be viewed as a homotopy path in the parameter p, and Kojima,
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Mizumo and Yoshise [KMY] develop a polynomial-time linear programming
algorithm that follows this path, starting with p = 1 and making p —> 0.

11.   vi-TRAJECTORIES AS ALGEBRAIC CURVES

^(-trajectories are pairs of real algebraic curves. In this section we give poly-
nomial ideals of relations that cut out these curves.

For any ideal / in the polynomial ring C[xx, ... ,xn] let

V(I) = {(xx,... ,xn) eC": f(xx,... ,xn) = 0for all f el}
denote the algebraic variety cut out by the ideal /.

We can explicitly write down an ideal of relations satisfied by points on an
^-trajectory. Consider a linear program in R" in inequality form:

( minimize (c, x),
(  '    \<a;,x)>ôy.,       l<j<m,

having a full-dimensional polytope of feasible solutions. By Theorem 8.1 an
arbitrary ^-trajectory TA is defined by

TA = {x:tl>H(x) = tc + c0, teR}.

The complex line L(c,c0) = {lc + c0: I £C} in C" is the variety associated
to the polynomial ideal /(c,c0) generated by {(c. ,y) - c0,: 1 < i < n - 1} in
Qy.. ••• ,y„]> where [c,,... ,<:„_,] is any basis of c"1 and c0i = (c(,c0) for
1 < i < n - 1. Consider the ideal

(11.1) I(TA) = [px(x),...,pn_x(x)]
in C[xx, ... ,xn] generated by the polynomials

p,(x) = ((c,,0H(x)) - c0i)lÍ((aj,x) - bj),
for I < i < n , where the prime indicates that the product is over one copy of
each of the distinct linear factors among the (a ■, x) - b, ; this product serves
to clear denominators in 0H(x). The ideal I(TA) cuts out an algebraic variety
V(I(TA)) which contains the ^4-trajectory TA . In fact it seems likely that
if H is full rank and PH is full dimensional, and the linear program (P) is
nondegenerate, then V(I(TA)) is an irreducible curve in affine space C" .

There is a particularly simple ideal of relations satisfied by the central A-
trajectory of the linear program (P), which is obtained from the combined
primal-dual linear program (PD).

Theorem 11.1. Given a full rank linear program (P) in Rn having a full-
dimensional polytope P,p, of feasible solutions and having c / 0. For any
point x on the central A-trajectory of (P) except the center there is a unique
point (x, y, u, p) satisfying the relations:

(11.2a) ^rx-u = b,
(11.2b) ,4y = c,
( 11 -2c) y,u, = p,        1 < j <m.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



570 D. A. BAYER AND J. C. LAGARIAS

Conversely if x is an interior point of P.p) for which there is a ( complex-valued)
solution (x,y,u,p) of these equations, then x is on the central A-trajectory.
Proof. Let V(A, b, c) denote the algebraic variety determined by the relations
(11.2). Whenever x is a point on the positive part of the central trajectory
of (P), then there is a real point (x,y,u,p) on V(A,b,c) by Theorem 10.1,
having y > 0 and p > 0. The proof of Theorem 10.1 also shows that if x is a
point on the negative part of the central trajectory of (P), then there is a real
point (x,y,u,p) on V(A,b,c) having y<0 and p<0.

Conversely if (x,y,u,p) is a point on V(A,b,c) and x€lnt(P(/))) then x
must be on the central trajectory. To see this, one calculates that the equations
(11.2) imply that

<pH(x) = (l/»c,

if p ,¿ 0, which shows that p is real and x is on the central trajectory. In the
remaining case p = 0 the equations (11.2) are just the complementary slackness
conditions for (P), and can have no solution with x e Int(P,P)) if the objective
function (c, x) is nonconstant.

The point (x,y,u,p) on V(A,b,c) with x lying on the central trajectory is
unique, because by (11.2a) the value x determines u, and the system (11.2b),
(11.2c) is then a full rank system of linear equations in unknowns (y,p), thus
determining them uniquely.   D

Theorem 11.1 implies that there is an irreducible algebraic curve V(TA) in
P2"+m+1(C) whose projection onto x-space intersected with {x: x e R"} is a
finite set of real curves that includes the central ^-trajectory, and V(TA) is
a component in the variety V(A,b,c). The variety V(A,b,c) is defined by
n + 2m equations in n + 2m + 1 variables, so that all components of V(A, b, c)
have dimension at least one, and V(TA) has dimension exactly one. Under
the hypotheses of Theorem 11.1 all components of the variety V(A ,b,c) that
intersect the affine space Cn+ m+ have dimension one, but V(A,b,c) con-
tains higher-dimensional components in the hyperplane at infinity in projective
space P"+ m+1(C). To see this, consider the intersection of V(A,b,c) with the
hyperplane p = 0. Generically in the affine space cn+2m+1 this intersection
consists of exactly (^) points, all real. This holds because the conditions

y.Uj = 0,        l<j<m,

force at least one of each pair (v., w.) to be zero. Generically no more than n
of the Uj can be zero, because if (n + 1) M-variables are zero then the system
( 11.2a) is generically inconsistent, since it then consists of m linear equations in
m - 1 unknowns. By similar reasoning no more than m - n of the ^-variables
must be zero. Hence exactly m of the «-variables are zero and n - m of the
y-variables are zero, for which there are (™) choices. Once these are selected,
in the generic case all the other variables are uniquely determined by the linear
equations (11.2a), (11.2b); thus there are (™) points in the intersection. Now
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consider the hyperplane at infinity z = 0 in p"+2m+1(ç) intersected with the
homogeneous ideal

A x - u = bz,
Ay = cz,

yjUj = pz,       I <j <m.

It is easy to see that for full rank A that V(A,b,c) contains an (m - n)-
dimensional projective space determined by z = 0, y = 0, A x - u = 0 ; it
contains many other components of dimension > 2 as well.

It remains an open problem to give generators for an ideal cutting out exactly
the irreducible curve V(TA).

12.  LAGRANGIAN DYNAMICAL SYSTEMS PRODUCING   ^-TRAJECTORIES

The Legendre transform plays an important role in classical mechanics; it
converts a dynamical system given in Lagrangian form to one in Hamiltonian
form, see [Ar, Ln]. This conversion replaces a system of n second-order dif-
ferential equations in n variables (Lagrange's equations) with a system of 2«
first-order differential equations in 2n variables (Hamilton's equations). The
simple form of ^-trajectories and P-trajectories in Legendre transform coordi-
nate space suggests that they might be described by a simple dynamical system
in Lagrangian or Hamiltonian form.

This is the case for ^-trajectories. Consider linear programs in R" in the
inequality form:

Í minimize (c,x),
[      } \(aj,x)>bj,       \<}<m.

Let H denote this set of constraints and let PH denote its polytope of feasible
solutions. We present two Lagrangian dynamical systems in which the evolution
of the q-variables follows ^-trajectories. The first system has q-variables in R"
and yields all ^-trajectories for a fixed objective function. The second has
position variables (q,q) in R and the evolution of the q-variables yields A-
trajectories for all objective functions. The associated Hamiltonian dynamical
systems are globally completely integrable. For simplicity we treat in detail the
case that PH is bounded and has a nonempty interior. At the end of the section
we describe what happens in the cases that PH is unbounded with nonempty
interior and when PH is lower dimensional.

A Lagrangian dynamical system in a space R" has position variables q =
(qx> •■• ,Qn) and velocity variables q = (qx, ... , qn). The motion of the system
is specified by a Lagrangian function L(q,q) mapping R to R. Lagrange's
equations of motion are
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together with

(12.2b) è> = Tti(ii)'      l^^n-
The first Lagrangian dynamical system we consider has position variables q

in R" and the Lagrangian
m

(12.3) L1(q,q) = (c,q)-^log((a.,q)-Z7.).
7=1

We show that the q-trajectories of this Lagrangian system are the complete set
of ^-trajectories for the linear program (12.1), having a fixed objective function
(c,x>.

Theorem 12.1. Suppose that the set H of linear program constraints

(12.4) (a7,x)>¿>7,        l<j<m,

has a bounded polytope of feasible solutions in Rn with nonempty interior. Then
for c / 0 in R" each trajectory {q(t) : - oo < t < oo} of the Lagrangian
dynamical system with the Lagrangian

m

Lx (q, q) = (c, q) - E loS«a7 > *) " b7)
is an A-trajectory of the linear program to minimize the objective function (c, x)
with these constraints. Conversely, every A-trajectory of this linear program is a
q-trajectory of this Lagrangian dynamical system.
Proof. Define p( = dLx/dqi so that the vector p = (px, ... ,pn) satisfies

(12.5) p = dLx/dq.
A direct calculation from (12.2) yields

(12.6) p = -E7¿^7r^H(q),

where <pH(-) is the Legendre transform coordinate mapping associated to the
constraints H of the linear program. Now Lagrange's equations for this La-
grangian are

(12.7) ^(<pH(q)) = c.

Hence

(12.8) <pH(q) = ci + c0,

where c0 is a vector of initial conditions. Since the polytope PH of feasible
solutions is bounded with nonempty interior, by Theorem 3.5 the mapping
<pH: Int(PH) —► R" is one-to-one and onto and has an analytic global inverse
function <p^' : R" —► Int(PH). Hence we may invert (12.6) everywhere to get

q = 4>~i(ct + c0).
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But this is exactly the definition of an ^-trajectory for the objective function
(c,x) for this linear program, by (8.12). Since c0 is arbitrary we get all A-
trajectories for the fixed objective function (c,x) this way.   D

We convert this Lagrangian dynamical system to an equivalent Hamiltonian
dynamical system. A Hamiltonian dynamical system is specified by a Hamil-
tonian function H(p, q) defined on (a subset of) R " and has variables (p, q)
with p = (px, ... ,pn)T ■ Rn is usually called phase space. This system evolves
according to Hamilton's equations, which are
n2OA (p, = -dH/dq¡,        l<i<n,
K       ' \q, = dH/dp,, l<i<n.
We define the Poisson bracket {<px,tp2} of two continuously differentiable func-
tions on a subset of R " by

Wx,¥l)     trUp,^,.      dq,dp,
A Hamiltonian dynamical system on R " is said to be (globally) completely
integrable if there is an open subset S of phase space R which is an invariant
subset of H (i.e., it is a union of trajectories satisfying (12.9)) and there exist
n functions FX,F2, ... ,Fn defined on S such that

(a) {H,F,} = 0 for 1 < i < n ,
(b) {F,,Fj} = 0 for 1 <i<n,
(c) the gradients {(dF,)x: I < i < n} are linearly independent at all points

of S.
(See [Mo] for examples.) Any function F satisfying {H ,F} = 0 is called an
integral of the motion, and F is a conserved quantity of the motion in the sense
that

F,(p(t),q(t)) = constant
holds on any solution (p(t),q(t)) of Hamilton's equations. Most Hamiltonian
systems are not completely integrable when n>2.

The Legendre transformation converts a Lagrangian dynamical system
L(q,q) to a Hamiltonian system H(p,q) which is equivalent in the sense that
the functions q(t) evolve identically in the two systems. The Hamiltonian as-
sociated to a Lagrangian L is

(12.10) H(p,q) = Yàp,q,-L(q,q).
7=1

In this formula one needs to express the q, in terms of the (p, q) variables. To
do this one takes the defining relations

(12.11) Pi = dL/dq,,        1 </<«,
and solves this system for the q, to obtain

(12.12) ¿ = /(p,<l),        l<i<«.
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The Hamiltonian is then expressed explicitly as
n

(12.13) H(p,q) = J£pif(p,q) - L(q,f(p,q)).
1=1

This conversion method works in principle but usually not in practice since the
inversion (12.11) cannot usually be specified in closed form. (In addition there
may be singular points where the inversion cannot be done.)

In the case of the Lagrangian L,(q, q) in Theorem 12.1 we can carry out this
inversion and prove the following result.

Theorem 12.2. Suppose that the constraints H given by

(aj ,x)>bj,        1 < j < m,

have a bounded polytope of feasible solutions with nonempty interior. Then the
Hamiltonian Hx (p, q) corresponding to the Lagrangian

m

¿i fa » q) = <c, q) - E lo8((a7 » q> ~ bj)
7=1

is
m

(12.14) Hx(p, q) = <p,<p-1(p))-(c,q)-^log((aj,«p-1(p))-¿.)
7 = 1

where <p^ (•) is the inverse Legendre transform coordinate map for the con-
straints H . This Hamiltonian system is completely integrable on the whole phase

R2n

Proof. The hypotheses of Theorem 12.1 apply.   There we observed that p =
dL/dq = 0H(q), so that q = (p^x(p). Substituting the formulae q, = (p^ (p),
into (12.13) yields formula (12.14).

It remains to prove complete integrability.  Take {c    , ... ,c       } to be a
basis of c1, and set

Fk(p,q) = (c{k),p),        l<k<n-l,

Fn(p,q) =Hx(p,q).
We claim these functions satisfy conditions (a)-(c) for complete integrability.
We need only verify (b) and (c) since {Hx ,F,} = {Fn,F,} . It is clear that

{Fki,Fk2} = 0,        l<kx,k2<n-l

since dFk/dq¡ = 0 for all z in this case. Now

1   "   k)     ^f\dp,  dq," dq,  dpjdp,  dq,       dq, dp,

E(k)       i  (k)     ,       Ac.c\    = (c    , c) = 0

/=1

7k)     iAk)cic
i=i
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for 1 < k < n - 1, which proves (b). To verify (c) we show that {dFk: 1 <
Ink <n) are linearly independent at all points of R   . Now

dFk =
dF,, »Fk   dFk dF,

[dpx'---'dpn'dqx '""dqj
and we obtain

(12.15)

dF

dF.n-\

r     T
Cl

^«-1

dFn

where the entries in * are functions of (p, q). The linear independence of the
rows of (12.15) at all points of R " is clear. This proves (c).   □

The last two theorems imply that the q-trajectories of the Hamiltonian
Hx(p,q) are exactly the ,4-trajectories of the linear program (12.5). This can
also be verified directly from Hamilton's equations for Hx (p, q). Hamilton's
equations are

(12.16a) P = c,
.      dH,
q dp

= <Ah1(p) + ^[0h1(p)]-P-^^h'(p)K0h(^h'(p)))
-i, -i,

= <PH'(P)<(12.16b)

These yield
p(t)=ct + c0,       q(t) = <t>~'(ct + c0),

so that q-trajectories are ^4-trajectories for the objective function (c, x).
The second Lagrangian dynamical system has position variables (q,q) in

i-i,

.2« and the Lagrangian

(12.17) L2(q,q,q,q) = ^(q + 4>q +4) - Elog((av'^ ~ ̂ '
7=1

The q-trajectories of this dynamical system give all of the ,4-trajectories.

Theorem 12.3. Suppose that the set H of linear program constraints

(&j ,x)>bj,        1 < j < m,
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has a bounded polytope of feasible solutions in R" with nonempty interior. Then
each trajectory {q(t) : - oo < t < 00} of the Lagrangian dynamical system with
Lagrangian

1 • "l2 = 2 fa+q>q+q) - El08(fa> »q> - bj)
7 = 1

is an A-trajectory of a linear program with constraints H and some objective
function (c, x), and conversely all A-trajectories for such linear programs with
all possible objective functions (c, x) arise as q-trajectories of this Lagrangian
dynamical system.
Remark. In the case c = 0 these trajectories are constants. We make the theo-
rem hold in this case by defining ^-trajectories to be points when c = 0.

Proof. This is an easy computation. We see that

<9L, , . 9L,
^=q + q, ^=0,

dL2 dL2 .
^ = 0H(q)>    j(=*+*-

Hence Lagrange's equations of motion are

^(0H(q)) = q+q>    ^fa+^ = 0-
Consequently one has q + q = c where the c are arbitrary constants of integra-
tion, and <pH(q) = ci + c0 . Thus q(i) = <p~'(ci + c0) runs over the full set of
/i-trajectories for all linear programs with all possible objective functions (c,x)
and fixed constraints H , using (8.12).   D

We convert this Lagrangian system to its equivalent Hamiltonian dynamical
system and show that it is completely integrable.

Theorem 12.4. Suppose that the constraints H given by

(Aj,x)>bj,        l<j<m,

have a bounded polytope of feasible solutions with nonempty interior. Then the
Hamiltonian H2(p,p,q,q) corresponding to the Lagrangian

1 m
L, = 2(q + q>q + q)-Elos(fa7'q)_è7)

7=1

is
1 m

(12.18) H2 = j(p,p- 2q) + (p,0-'(P)> + ElQg(fa; ^h'(p)> " bj)
7=1

where <pH (•) is the inverse Legendre transform coordinate mapping for H . This
Hamiltonian dynamical system is completely integrable on the invariant open set

.An
R7"-{(p,p,q,q):px=0).
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Proof. One has

p = é>L/cZq = <pH(q),

p = ÖL/9q = q + q,
since the polytope PH is bounded and nonempty. Theorem 3.1 says that

(12.19a) q = 0H'(P)

is valid for all p and the equation for p yields

(12.19b) 4 = p-q.
By definition

1 m
n2 = (p,q) + (p,q) - 2<q + q>q + q) + Elos«a,'«> ~ bß-

7=1

Substituting (12.19) into this equation and simplifying yields (12.18).
To demonstrate complete integrability, one takes the set of functions Fk =

Fk(p,p,q,q) for I < k <2n defined by

Fk =pk, 1 < k < n,
Fn+k=PxPk+x-pk+xPx,        l<k<n-l,

Fln =Hr
It is easy to see that {Fk , Fk } = 0 for I <kx,k2<2n-l since these integrals
involve no (q,q) variables. Also {Fk,H2} = 0 for 1 < k < n because H2
contains no q.  variables. Finally a computation gives

{Pn+k^2} =
dF„^dH,     dF„^ dHn+k n+k

dpx    dqx       dpk+x dqk+]
= 0.

Since {H2,H2} = 0 this verifies (a) and (b).   To prove (c) we evaluate the
matrix of differentials

dF-f—      ÊL ■££.       9f af       af ôf       dF \
= \dpx' ••• ' dpn' dpx' ■•• ' dp/ dqx' ■■■ ' dqn' dqx' ••• ' dqj

to be
dF

dF2n-l
dFIn

dF.n+\

p2   p, • •• 0

Pn   0-p,

Px-Qx-Pn-Qn

P2-Px-
Pn     0-

<?h'(p) -Pr--P»
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where I is an n x n identity matrix and O denotes a zero matrix (of the
appropriate size). It is clear that this matrix has full row rank whenever px ^ 0.

Finally we note that the open set R4" - {(p,p,q,q): p, = 0} is an invariant
set for H2. Indeed, since Fx = p, is an integral of the motion, each level set
p, = constant is separately an invariant set.   D

What happens when the linear program does not have a bounded, full-dimen-
sional polytope of feasible solutions? In the case that the feasible solution poly-
tope PH is an unbounded full-dimensional polytope, the Lagrangians L, and
L2 are defined identically as in the bounded case, and the trajectories corre-
sponding to ^-trajectories occupy only part of the phase space. The image of
PH under the Legendre transform coordinates (pH(PH) occupies an open full-
dimensional pointed cone in the p-coordinates (by Theorem 3.5) and trajecto-
ries having p-coordinate inside this cone correspond to ^-trajectories. These
trajectories are not defined for all time but only for a time interval (t0,tx),
depending on the objective function, with some p-variable diverging at finite
time. These Hamiltonian systems are still completely integrable in an appro-
priate open invariant subset of the phase space. The remaining case where PH
is a lower-dimensional polytope can in principle be reduced to one of the full-
dimensional polytope cases by eliminating variables, i.e., restricting the problem
to the lower-dimensional flat in R" spanned by PH .

There are several open questions suggested by these dynamical systems. First,
are there analogous completely integrable Hamiltonian dynamical systems de-
scribing P-trajectories? Second, these systems identify ,4-trajectories with q-
trajectories, which correspond to velocities in the physical interpretation. What
connection (if any) to the linear programming problem do the position trajecto-
ries ( q-trajectories) have? Third, for a linear program with a bounded polytope
PH in which both (c,x) and -(c,x) have unique optimal solutions, all the
q-trajectories of the Lagrangian L,(q,q) have unique limiting velocities q(oo)
as i —» +00 and q(-oo) as t —► -oo (which correspond to optimal solutions
of these two linear programs). Hence they exhibit forward and backward scat-
tering. Is there a scattering theory interpretation of what this dynamical system
is doing in the q-variable space?

Appendix A. Abstract Legendre transform coordinates

The Legendre transform coordinate mapping <pH(x) has a coordinate-free
version, which we call the abstract Legendre transform coordinate mapping and
denote 0H(x). Consider a set H of inequality constraints

(aj ,x)>bj,       1 < j < m,

having the polytope of feasible solutions PH and feasible direction subspace
DH . Let H;| denote the set of nonsingular constraints, i.e., these constraints
that do not hold with equality in PH , which by renumbering constraints if
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necessary may be taken to be
<a.,x)>¿>.,        l<j<m\

The logarithmic barrier function
m

/H>) = -El0g«a7>X>-Ä7)
7=1

has differential dfH^: Int(PH) ^ (R")* defined by

fHn(x + ey) = fHn(x) + e((dfHn)x,v) + 0(e2),

as e —» 0. Let D^ be the subspace polar to DH in (R")*, defined by

DPH = {yeR")*: (y,x) = 0 for all x e DH},

and let ñ^ : (97)* -> (R")*/D^ be the quotient mapping. The abstract Legen-

dre transform coordinate mapping <pH (x) is defined by

4>H(x)=ñDPH((dfHn)x)-

The coordinate-free analogues of the results of §3 are as follows. Here we
regard the constraint coefficients a   as elements of (R")*.

Theorem A. 1. The abstract Legendre transform coordinate mapping 4>H(x) has
domain Rel-Int(PH) andränge Rel-Int(CH) where CH =7fDP(CH ) and CH  =

R+[-a,, ... , - am.] in (R")*. // H is of full rank then dim(CH) = dim(PH)
and 0H is a one-to-one mapping.

Let J(x) = Lx + m be an affine mapping for R" to R . Define its adjoint
mapping J* to be the linear mapping (R )* —► (R")* given by

<J*(y),v) = (y,J(v)-J(0)).
Let H be a set of constraints with feasible solution set PH  having MH  as its
affine hull. Define </>J(H) tobe 0ñ where H is any set of constraints that agrees
with the images of the constraints of H on the flat J(A/H). It can be checked
that 0J(H) is well defined independent of the choice of H .

i.
Theorem A.2. Let J(x) = Lx + m be any affine mapping from R   to R   which
is one-to-one on MH , the affine hull of PH . Then D},H) ç ker^^ o J*) so that

the induced map ñ^ o J*: (R )*/L>j(H) —► (Rn)*/DxPx  is well defined, and the
following diagram commutes:

Rel-Int(PH)   -^—+   Rel-Int(PJ(H))

«Ah

Rel-Int(CH) <—      - Rel-Int(CJ(H))
KDpoJ
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