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ABSTRACT

We modify the public PM code developed by Anatoly Klypin and Jon Holtz-

man to simulate cosmology with arbitrary initial power spectrum and equation

of state of dark energy. With this tool in hand, we perform the following studies

on the matter power spectrum.

With an artificial sharp peak at k ∼ 0.2hMpc−1 in the initial power spectrum,

we find that the position of the peak is not shifted by nonlinear evolution. An

upper limit of the shift at the level of 0.02% is achieved by fitting the power

spectrum local to the peak using a power law plus a Gaussian. This implies that,

for any practical purpose, the baryon acoustic oscillation peaks in the matter

power spectrum are not shifted by nonlinear evolution which would otherwise

bias the cosmological distance estimation. We also find that the existence of a

peak in the linear power spectrum would boost the nonlinear power at all scales

evenly. This is contrary to what HKLM scaling relation predicts, but roughly

consistent with that of halo model.

We construct two dark energy models with the same linear power spectra

today but different linear growth histories. We demonstrate that their nonlinear

power spectra differ at the level of the maximum deviation of the corresponding

linear power spectra in the past. Similarly, two constructed dark energy models

with the same growth histories result in consistent nonlinear power spectra. This

is hinting, not a proof, that linear power spectrum together with linear growth

history uniquely determine the nonlinear power spectrum. Based on these results,

we propose that linear growth history be included in the next generation fitting

formulas of nonlinear power spectrum.

For simple dark energy models parametrized by w0 and wa, the existing non-

linear power spectrum fitting formulas, which are calibrated for ΛCDM model,

work reasonably well. The corrections needed are at percent level for the power
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spectrum and 10% level for the derivative of the power spectrum. We find that,

for Peacock & Dodds (1996) fitting formula, the corrections to the derivative of

the power spectrum are independent of wa but changing with redshift. As a short

term solution, a fitting form could be developed for w0, wa models based on this

fact.

Subject headings: cosmology - large-scale structure of the universe

1. Introduction

For cosmologists, the clustering property of matter is a gold mine. Although we are at

the beginning stage of the operation, we have already been rewarded dearly: combined with

WMAP (Spergel et al. 2003), SDSS data constrains cosmological parameters to reasonably

high precision (for example, the matter density of the universe Ωm and the amplitude of the

matter perturbation σ8 to ∼ 10% (Tegmark et al. 2004; Abazajian et al. 2005; Seljak et al.

2005)). Fosalba, Gaztanaga, & Castander (2003) and Scranton et al. (2003) found direct

evidence of the mysterious dark energy through ISW effect using data from SDSS. Also using

SDSS data, the baryon acoustic oscillation (BAO) feature is used to probe the expansion

history of the universe and cosmological distances (Eisenstein et al. 2005; Cole et al. 2005).

Weak lensing surveys (Jarvis, Jain, Bernstein, & Dolney 2005) made the first attempt to

constrain the time evolution of dark energy ... Moreover numerous ambitious future surveys

of large scale structure are proposed, such as the Dark Energy Survey (DES3), PanSTARRS4,

Supernova/Acceleration Probe (SNAP5; Aldering et al. 2004) and Large Synoptic Survey

Telescope (LSST6). From these surveys, we want to answer questions like: Is our concordance

cosmology model correct? What is the nature of the mysterious dark matter and dark energy?

Do we need to modify gravity theory? Is the universe flat or curved?

1Presented as a dissertation to the Department of Astronomy and Astrophysics, The University of

Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

2Email: mzm@oddjob.uchicago.edu

3http://cosmology.astro.uiuc.edu/DES

4http://pan-starrs.ifa.hawaii.edu

5http://snap.lbl.gov
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On the other hand, we have tremendous success in theoretical modeling of structure

formation in our universe. Starting with a handful of cosmological parameters, we can

compute the linear theory matter power spectrum with high accuracy (e.g., Seljak et al.

2003). However, we measure the nonlinear matter or galaxy power spectrum from large-

scale structure surveys. Our understanding of the connection between linear and nonlinear

power spectrum is improving rapidly along with our ability to simulate the complex processes

involved.

1.1. Baryon acoustic oscillations

The baryon acoustic oscillation (BAO) features in the late time matter clustering,

characterized by a single peak in the correlation function and oscillations in the matter

power spectrum, are imprints of the acoustic oscillations in the early universe which pro-

duces the peaks and troughs in the CMB angular power spectrum (Peebles & Yu 1970;

Sunyaev & Zel’dovich 1970). Although the BAO features in the matter power spectrum are

much weaker compared to those of the CMB because the dominating dark matter did not

participate in the acoustic oscillations, these features can be measured with high accuracy

with sufficiently large surveys. Indeed, the first detection was made in the SDSS survey in

2005 (Eisenstein et al. 2005; Cole et al. 2005).

With the large galaxy surveys proposed, e.g. DES, PANSTARRS, SNAP, and LSST,

BAO is emerging as an important method to measure the expansion history of the universe

and cosmological distances (Eisenstein, Hu, & Tegmark 1998; Cooray, Hu, Huterer & Joffre

2001; Blake & Glazebrook 2003; Hu & Haiman 2003; Seo & Eisenstein 2003; Linder 2003;

Matsubara 2004; Amendola et al. 2005; Blake & Bridle 2005; Glazebrook & Blake 2005; Dolney et al.

2006). The main theoretical uncertainties, including galaxy bias, nonlinear evolution and red-

shift space distortions, are investigated in detail by White (2005), Eisenstein, Seo, & White

(2006), Eisenstein et al. (2006) Huff et al. (2006) and Smith et al. (2006). Nonlinear evolu-

tion smears BAO peaks due to mode-mode coupling. This effect makes BAO signal weaker

and harder to detect. An even more worrying effect is that nonlinear evolution could poten-

tially shift the peaks which would bias the distance measurement from which the cosmological

parameters are inferred.

Eisenstein, Seo, & White (2006) made an order of magnitude estimation of the amount

of shift of BAO peaks due to nonlinear evolution. They use spherical collapse model to

estimate how much the overdensity within 150 Mpc has grown if the center were over-dense;

and the change in radius is a third of that in the over density. Their conclusion is that the

change in scale is on the order of O(10−4). In this work, we use N-body simulations to test
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how much the peaks are shifted due to nonlinear evolution.

1.2. Fitting formulas of the nonlinear matter power spectrum

Calibrated by simulations, fitting formulas of the nonlinear power spectrum have been

developed (Peacock & Dodds 1996; Smith et al. 2003; McDonald et al. 2005). Their preci-

sions, on the order of 10 − 20%, are sufficient for most of the current applications. Future

surveys would have statistical uncertainties so low that fitting formulas with improved ac-

curacy are highly desired (Huterer & Takada 2005). As a step toward fulfilling this goal,

we test the assumptions that go into the afore mentioned fitting formulas and propose the

necessary ingredients to build a more accurate one. First, let us briefly review the existing

fitting formulas.

In a series of papers (Hamilton et al. 1991; Peacock & Dodds 1994; Jain, Mo, & White

1995; Peacock & Dodds 1996), the first fitting formula of the nonlinear power spectrum is

worked out. The foundation of the fitting formula is the so called HKLM relation which has

two parts. The first part is to connect the nonlinear scale, rNL, to the linear scale, rL, by

volume-averaged correlation function ξ̄(r),

rL = [1 + ξ̄NL(rNL)]1/3rNL . (1)

The reasoning behind this is pair conservation (Peebles 1980). The second part of the HKLM

procedure is to conjecture that the nonlinear correlation function is a universal function of

the linear one,

ξ̄NL(rNL) = fNL[ξ̄L(rL)] . (2)

If one assumes that ξ̄(r) is equivalent to matter power spectrum at an effective wavenumber

k, then we have the power spectrum version of the HKLM relation,

kL = [1 + ∆2
NL(kNL)]1/3kNL , (3)

∆2
NL(kNL, t) = fNL[∆2

L(kL, t)] . (4)

It is commonly referred to as Peacock & Dodds fitting formula and fNL is calibrated using

N-body simulation assuming ΛCDM cosmology.

Another approach of calculating the nonlinear power spectrum is to use the halo model

(See Sheth & Cooray 2002, for a review), which splits up the contribution to the power

spectrum into one halo and two halo terms,

PNL(k) = P 1h(k) + P 2h(k) . (5)
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The one halo term P 1h(k) is the contribution from two particles that reside in the same halo,

P 1h(k) =

∫

dmn(m)

(

m

ρ̄

)2

|u(k|m)|2 , (6)

and the two halo term is the contribution from two particles that belong to two different

halos,

P 2h(k) =

[
∫

dmn(m)

(

m

ρ̄

)

b(m)|u(k|m)|
]2

PL(k) . (7)

Here m is the mass of the halo, ρ̄ is the mean density of the universe, and u(k|m) is the Fourier

transform of the profile of a halo (NFW profile Navarro, Frenk, & White 1997, for example)

with mass m, n(m) is the halo mass function which has the following form (Press & Schechter

1974; Jenkins et al. 2001; Sheth & Tormen 1999),

n(m) =
ρ̄

m
f(ν)

dν

dm
, (8)

where ν = δc/σ(m), σ(m) is the rms of the linear density field smoothed by a spherical

top-hat filter W (k, m),

σ2(m) =

∫

∞

0

dlnk∆2
L(k)W 2(k, m) . (9)

Note that adding a sharp spike in the matter power spectrum would only modify σ(m) below

a mass threshold which is determined by the location of the spike. The modification to the

mass function n(m) would also only occur below the same mass threshold. This could be

easily shown by adding a δ-function to ∆2
L(k) in equation 9.

Finally, based on a fusion of the halo model and an HKLM scaling, Smith et al. (2003)

provided an empirical fitting formula with improved performance (rms error better than 7%

is claimed). In detail, they replaced the two halo term with a Peacock & Dodds (1996) type

fitting form with an exponential cut off at nonlinear k to deal with translinear regime better;

and a fitting form to the one halo term. Again, the fitting forms are calibrated using ΛCDM

simulation.

To summarize, fitting formulas of the nonlinear matter power spectrum have been de-

veloped for ΛCDM cosmology with precisions on the order of 10 − 20%. The foundations

for these fitting formulas are the HKLM scaling relation and halo model. A less obvious

assumption behind all these fitting formulas is that the nonlinear power spectrum is deter-

mined by the linear power spectrum at the same epoch, i.e. the history of the linear power

spectrum does not affect the nonlinear one.

In order to achieve the 1% accuracy required by future surveys (Huterer & Takada 2005),

and with more general parametrization of dark energy models, what approach shall we take
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to build new fitting formula of the nonlinear power spectrum? To address the issue we will

test the assumptions that go into the existing fitting formulas using carefully constructed

numerical experiments. In the end we will decide which assumptions should be abandoned,

kept, and further included.

Although all the existing fitting formulas are calibrated for ΛCDM cosmology, it has

been a common practice to apply them to dark energy models in general. We will quantify

how well this procedure works.

The rest of the paper is organized as follows: In section 2 we briefly introduce the

PM simulations. We demonstrate the behavior of the peak in the initial power spectrum

in section 3, and discuss what we could learn from it. We test basic building blocks of the

fitting formulas in section 4. In section 5 we evaluate the performance of the fitting formulas

when applied to general dark energy models. Finally, we summarize our findings.

2. The PM simulation

The public PM code developed by Anatoly Klypin and Jon Holtzman is used for this

work. The source code and manual are available at

http://charon.nmsu.edu/∼aklypin/PM/pmcode/

pmcode.html

The code assumes ΛCDM cosmology. In order to simulate cosmology with an arbitrary

equation of state of dark energy, w(z), or/and arbitrary initial power spectrum, we have

modified the code appropriately. In this section, we lay out the basic formalism used in the

simulation and the tests we have performed.

2.1. Formalism

We will use r, t and v as position, time and velocity variables in physical space and x,

τ and u as the corresponding variables in comoving space.

In physical space the Poisson equation is,

∇2
rΦ = 4πGρ , (10)

where Φ is the gravitational potential, G is the gravitational constant, and ρ is the density

of the universe including all constituencies. If we define a new potential φ as,

φ ≡ Φ +
1

2

ä

a
x2 , (11)

http://charon.nmsu.edu/$\sim $aklypin/PM/pmcode/


– 7 –

where over-dot represents derivative with respect to τ and a is the scale factor, then, in

comoving coordinates, the Poisson equation becomes,

∇2
xφ = 4πGρa2 + 3

ä

a
. (12)

Using Fredmann equation to substitute the ä/a term, we have,

∇2
xφ = 4πGa2(ρ − ρ̄) ≡ 4πGa2δρ , (13)

here ρ̄ is the mean density of the universe. The corresponding equations of motion in

comoving space are,

p ≡ mu = mẋ ; ṗ = mu̇ = −m∇xφ , (14)

with m the mass of the particle.

The PM code solves the Poisson equation 13 and the equations of motion 14. It is

convenient to make the variables dimensionless by choosing suitable units. Anatoly Klypin’s

PM code defines the code variables (denoted by ∼) as,

x = x̃x0 , p/m =
p̃

a
p0 , φ = φ̃φ0 , ρ =

ρ̃

a3
ρ0 , (15)

with the units,

x0 = Lbox/N
1/3
g , p0 = x0H0 ,

φ0 = (x0H0)
2 , ρ0 =

3H2
0

8πG
Ωm . (16)

Equation 13 and 14, in terms of these dimensionless variables, become,

∇̃2φ̃ =
3

2

Ωm

a
(ρ̃ − 1), (17)

dp̃

da
= −F (a)∇̃φ̃ ,

dx̃

da
= F (a)

p̃

a2
, (18)

where

F (a) = H0/ȧ (19)

=

√
a

√

Ωm + ΩΛa3 exp
[

−3
∫ a

a=1
(1 + w(a′))dlna′

]

.

Here w(a) is the equation of state of dark energy which has been generalized to an arbitrary

function of a.
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2.2. Brief summary of the PM code

PM code solves equation 17 and 18 in four main steps.

• setup the initial positions and velocities of the dark matter particles

• solve the Poisson equation using the density field estimated with current particle po-

sitions

• Advance velocities using the new potential

• Update particle positions using new velocities

The initial condition is setup using Zel’dovich approximation (Zel’dovich 1970; Crocce et al.

2006). The density assignment is done using Cloud-in-Cell (CIC) interpolation, which is the

method that linearly interpolates particle mass to its eight neighboring cells. The Poisson

equation is solved using the Fast Fourier Transform (FFT) and the particle positions and

velocities are solved using the leapfrog integration scheme. For further details of the imple-

mentation of these schemes, please check out the excellent write-up by Andrey Kravtsov at

http://astro.uchicago.edu/∼andrey/Talks/PM/pm.pdf .

2.3. Code testing

We setup a few test runs to determine the parameters to use in the simulations. These

include the number of particles Np, number of grid cells Ng, the starting redshift zini, evolving

time step da and the box size Lbox.

Ideally, the larger Np and Ng are the better. In practice, they are limited by the

computation resources. For a standard run used in this work, Np = 2563 and Ng = 5123,

one time step including the power spectrum evaluation takes about 2.5min to 6min on an

easily accessible Pentium box. Approximately 500Mb of memory is required. For a bigger

run with Np = 5123 and Ng = 10243, which is mainly used to check the uncertainties of the

standard runs, one step takes about 8 times longer and memory usage is on the level of 4Gb.

Figure 1 shows the differences of the matter power spectrum at z = 0 due to different

initial redshift of the simulation, zini. Simulations with lower zini under estimate the nonlinear

power spectrum. Relative to zini = 100, zini = 50 and zini = 30 have power deficits of 1.5%

and 3% respectively. These are in good agreement with the results from Crocce et al. (2006).

http://astro.uchicago.edu/~andrey/Talks/PM/pm.pdf
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Fig. 1.— The effect of initial redshift of the simulation on the matter power spectrum at

z = 0. The initial redshift zini and the step size da are listed in the legend. The Nyquist

frequency is kNy = 4 hMpc−1. All of our simulations use zini = 50 unless stated otherwise.

For most of our applications, we use the ratio of the power spectrum. Percent level power

deficit is not a concern for us. So we choose zini = 50 as our standard initial redshift unless

stated otherwise. As to the step size, figure 2 shows that, with zini = 50, the power spectrum

at z = 0 differs by less than 0.3% between da = 0.004 and 0.001. Choosing da = 0.004 as

our standard step size, a full standard run takes anywhere between 10 hours and a day.

The box size of the simulation is more determined by the k range that a particular

application requires than anything else. The Nyquist frequency kNy ≡ N
1/3
g π/Lbox is the

highest mode that is resolved by the simulation. The lowest mode is 2π/Lbox. Because of

aliasing, not all the k modes in this range are faithfully calculated. To determine the precision

of the power spectrum, we use these from simulations with higher resolution (Np = 5123 and

Ng = 10243) with which we compare the results from our standard simulation (Np = 2563

and Ng = 5123). With Lbox = 400h−1Mpc, figure 3 shows that our standard run agrees with

the higher resolution run perfectly for k < 0.6hMpc−1 and the agreement worsens to about

10% at k = 1.0hMpc−1.

For all of our applications, except for the test of the shifting of peaks in the power

spectrum, we use the ratio of power spectra instead of the absolute power. This practice
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Fig. 2.— Effect of the step size of the simulation on the matter power spectrum at z = 0.

The initial redshift zini = 50 and the stepsizes da are listed in the legend. The Nyquist

frequency is kNy = 4 hMpc−1. All of our simulations use da = 0.004 unless stated otherwise.

takes care of the sample variance. Figure 4 shows the uncertainty levels of the ratio. Again,

we compare our standard run with the one that has higher resolution (Np = 5123 and

Ng = 10243). For each simulation setup, we run two cosmological models and take the

ratio of their power spectra. One cosmological model is ΛCDM (w0 ≡ w(z = 0) = −1 and

wa ≡ −dw/da|a=1 = 0) and the other is w0 = −1 and wa = 0.3 model. According to figure 4,

the ratios of the power spectra in simulations of different resolutions agree to better than

0.5% all the way to k ∼ 3 hMpc−1.

3. the Fate of a Peak in the Initial Power Spectrum

3.1. Setting up the experiment

To address the issue of whether nonlinear evolution of the power spectrum would shift

the position of BAO peaks, we construct the following numerical experiment. We put an

artificial sharp peak in the otherwise smooth initial matter power spectrum and evolve
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Fig. 3.— Comparison of the matter power spectrum, at z = 0, from the simulation with these

from fitting formulas of Smith et al. (2003) and Peacock & Dodds (1996). The upper panel

shows the matter power spectra P (k) and the lower panel shows the fractional difference of

P (k) between the higher resolution simulation with Np = 5123 and the rest. The simulation

box is 400 h−1Mpc and the corresponding Nyquist frequencies are kNy = 4 and 8 hMpc−1 for

simulations with Np = 2563 and Np = 5123 respectively. The initial power spectrum without

BAO peaks is used for the Peacock & Dodds fitting formula.

it using a PM simulation (Shandarin & Melott (1990); Bagla & Padmanabhan (1997) used

similar setups to test the transfer of power among different scales). The initial peak is located

at k ∼ 0.2hMpc−1 with a FWHM = 0.013hMpc−1 and the maximum at k = 0.2051hMpc−1.

At the maximum, P (k) is ten times what it would be without the peak. The location of

the peak is at about where the third peak of the BAO sits and deep in the nonlinear regime

today. The reason to use a sharp peak is to make it easier to detect peak shifting without

using any sophisticated analysis. To set the peak amplitude high is to overcome the sample

variance of the simulation which is at least at the level of the BAO peaks (10%). Techniques

have been developed to get around sample variance and make BAO features easily seen in

simulations. For example, the Millennium Simulation group (Springel et al. 2005) corrects

the power spectrum of the actual realization of the initial fluctuations in their simulation to

the expected input power and apply these scaling factors at all other times. It is not clear

that these scaling factors are not affected by nonlinear evolution. To test the physics behind
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Fig. 4.— The ratio of the matter power spectra of wa = 0.3 model to that of ΛCDM model

at z = 0. Different curves are from simulations with different resolutions which are labeled

in the legend. The Nyquist frequencies are kNy = 4 and 8 hMpc−1 for simulations with

Np = 2563 and Np = 5123 respectively.

it, our approach is much cleaner.

The requirement for the simulation is such that k = 0.2hMpc−1 is well resolved and the

peak is sampled with at least a few points in k space. With these considerations, we use a

simulation with box size of 2h−1Gpc, number of particles Np = 5123 and number of grid cells

Ng = 10243. The corresponding Nyquist frequency is 1.6hMpc−1 and the peak is in the well

resolved scale. With this simulation setup, the peak is sampled with five points in k space.

3.2. The shifting of the peak

Figure 5 shows the position of the peak at z = 30 and z = 0. Table 1 lists the positions

k and the corresponding P (k) for the points within the peak.

The most conservative estimate of how much does the peak shift is to assume that at

z = 0 the maximum of the peak is somewhere between the second left (k = 0.198 hMpc−1)

and second right (k = 0.211 hMpc−1) points relative to the highest point of the peak in
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Fig. 5.— Testing the shift of peaks in the initial power spectrum. The blue asterisks show

the linear power spectrum at z = 0. The nonlinear power spectrum at z = 0 is shown using

red plus signs. While the peak is being smeared by nonlinear evolution, the position of the

peak is not shifted at all.

figure 5. We also know that the maximum of the input peak is at k = 0.204 hMpc−1; So if

the peak has shifted, the shift is less than (0.211 − 0.204)/0.204 = 3.2%.

One reasonable assumption we can make is that there is only one peak. This narrows

down the maximum to somewhere between the first left (k = 0.201 hMpc−1) and first right

(k = 0.207 hMpc−1) points. With the input maximum known, the shift of the peak is less

than 1.6%.

We can certainly do better than these crude estimates. One simple method we use is

to fit the power spectrum local to the peak with a power law plus a Gaussian. The fits for

the power spectra at z = 0 and z = 30 are shown in figure 7 and figure 6. The centers of the

peak are found to be at 0.205092 hMpc−1 and 0.205133 hMpc−1 respectively. They agree to

0.02%. This estimation is approaching the theoretical limit and for any practical purpose

this is equivalent to no shift.

These simple arguments have not taken errors into account. Sample variance does not

apply here because the initial peak and the final peak is from the same realization. The
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Fig. 6.— Fitting the z = 30 power spectrum near the peak with a power law plus a Gaussian.

The peak position kpeak and width σk are labeled in the legend.

Poisson errors are on the level of 0.4%. This is too small to change the ordering of the points

in the peak, so the first two estimations are not affected. The last estimation would have an

uncertainty of ∼ 10−6 which is too small to be relevant.

3.3. Other effects that could shift the BAO peaks

There are effects other than nonlinear collapse could shift the BAO peaks. The ex-

periment above is dark matter simulation, but the actual tracer of BAO peaks are galaxies

which we know is biased tracer of dark matter. If galaxy bias is scale dependent, it could

potentially shift the peaks. As shown in White (2005), and Smith et al. (2006), this is indeed

the case and the scale dependency should be carefully calibrated.

Another worry is that BAO peaks sit on top of the smooth underline power spectrum

whose slope changes due to nonlinear evolution might shift the peaks. As pointed out in

Eisenstein, Seo, & White (2006) that this need not be the case. The argument is that one

can easily make a template of the smooth underline power spectrum against which to achieve

an unbiased measurement.
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Fig. 7.— Fitting the z = 0 power spectrum near the peak with a power law plus a Gaussian.

The peak position kpeak and width σk are labeled in the legend.

3.4. Effects of the peak on nonlinear power spectrum

To see the effects of the peak on nonlinear power spectrum, we compare the nonlinear

power spectra evolved from initial power spectra with and without artificial peak. The

smooth part of these initial power spectra are set to have the same amplitude. Note that

this is different from requiring the same σ8 which would allocate more power to the no peak

case on scales outside the peak which would certainly make things more complicated and less

clean. The simulation we use for this test is with Np = 2563, Ng = 5123, Lbox = 400h−1Mpc

and the corresponding Nyquist frequency is kNy = 4hMpc−1. We start the simulation at

z = 30 and the step size is da = 0.004. The higher Nyquist frequency is the main reason

that we use this run instead of the one used for the peak position test.

The result is shown in figure 8. We see that the peak is washed out as the system

evolves and the nonlinear power is boosted at all scales smaller than the scale where the

peak is located. The amount of boost in power shows no scale dependency.

The mapping between linear and nonlinear scale proposed by Hamilton et al. (1991) and

adopted by Peacock & Dodds (1996) would have predicted that the peak being mapped to a

nonlinear scale kNL which increases as the nonlinear power grows. We do not see that kind of
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Fig. 8.— Comparison of power spectra in simulations with or without a peak in the initial

power spectrum. The comparison is done at a few redshifts to show the evolution of the peak

and the nonlinear power spectrum. It is clear that Peacock & Dodds (1996) like mapping

between linear and nonlinear k does not exist. Instead, the effect of the peak is close to what

halo model would predict.

mapping here. On the other hand, the result is similar to what halo model’s approach would

predict. In the halo model, the one halo term (see equation 6) is determined by the halo

profile and the halo mass function n(m). The halo profile has nothing to do with whether

there is a peak in the matter power spectrum or not. An extra peak in the linear power

spectrum would increase the halo mass function below certain mass threshold determined by

the position of the peak. As a result, the nonlinear power are boosted on small scales which is

close to what we observe in this test. In detail, it does not agree with halo model’s prediction

perfectly. As shown in figure 9, halo model predicts that the fractional boost in power due

to the existence of a peak has some weak scale dependence which is slightly different from

what we see in the simulation. Since the addition of a spike in the power spectrum only

changes the mass function at the low mass end where u(k|m) is scale independent at k = a

few tenths hMpc−1, the one halo term acts like a shot noise term. The fractional difference

of the power spectra is scale dependent due to the addition of this short noise like term to

the power spectrum. We do not yet understand what accounts for this difference between

halo model and the simulation.
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Fig. 9.— Comparison of power spectra predicted by halo model for the cases with or without

a peak in the linear power spectrum. The comparison is done at z = 0. The effect of the peak

on the nonlinear power spectrum is similar to that from simulation (figure 8), but different

in details.

4. Linear Growth Function and non-linear Matter Power Spectrum

Existing fitting formulas of matter power spectrum, Peacock & Dodds (1996), Smith et al.

(2003) or a simple Halo model, have the following assumption: the nonlinear power spec-

trum does not depend on the time evolution (history) of the linear power spectrum; it is

determined by the linear power spectrum at the same epoch.

There is a weaker version of the assumption, which states that the linear power spectrum

plus its time evolution determine the nonlinear power spectrum. A halo model incorporating

merger history is a good example of building fitting formula of nonlinear matter power

spectrum under this weaker assumption.

In this section, we test both versions of the above assumption using carefully chosen

dark energy models.
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4.1. Dark energy models construction

We choose the set of binned growth suppression Gi ≡ D+(ai)/ai and equation of state

of dark energy wi as parameters to be considered. Gi and wi share the same binning with

∆z = 0.1. The linear response of Gi to the perturbations of wi can be described by,

δGi = Rijδwj . (20)

Operationally the perturbation in wi is achieved by modulating the amplitude of the form,

Sw ∝ exp

[

−(z − zi)
α

2σ2
z

]

, (21)

where α = 8 is used to make the shapelet sharp, and σz = 0.05 is used (2σz = 0.1 is the

binning size). The resulting wi binnings are slightly overlapping which does not affect the

applications considered in this work. Gi is simply chosen as the growth suppression at the

center of the redshift bin zi. The response matrix Rij is calculated numerically using the

formula in Hu & Eisenstein (1999).

To test the strong assumption, we want to construct a w model that leads to the same

growth factor as the w = wconst model at z = 0 but different growth in the past. In order to

keep the linear growth factor at z = 0 the same, the w model we are looking for should have

an equation of state greater than wconst during some epochs and smaller during some other

epochs (to offset the effect on linear growth when it is greater). So we choose wconst = −0.8,

instead of -1, to avoid having wi < −1. There are many ways to achieve our goal. The

response matrix Rij is invertible. So one could either specify the linear growth and derive

the corresponding wi or the other way around. Here we use the latter. First we know that

the w model being sought after satisfies the constrain δG1 = 0 = R1jδwj, where we explicitly

label the redshift bin at z = 0 as bin number 1. Furthermore, we restrict the variation of

w to below redshift one where the effect of dark energy dominates. Finally we demand that

w(z) > −1. We then assign values to δwj satisfying the above conditions. One of our choices

of wi is shown in figure 10 (model-I). Figure 11 shows the comparison of the corresponding

linear growth suppression to that of w = −0.8 model. Our construction is successful since

the two dark energy models have the same linear growth at z = 0 and a maximum deviation

from each other by 0.8% at z ∼ 0.7.

To test the weaker version of the assumption, we want to construct a w model that

predicts the same (to certain precision) linear growth function as that of w = −0.8 model

at all redshift. We apply singular value decomposition (SVD) to the response matrix Rij

and select the eigenvectors that have small eigenvalues. These eigenvectors correspond to

the combinations of δwi to which δGi has the least response. Among the selected modes we
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Fig. 10.— The time evolution of the equation of state of dark energy. Model-I & II have the

same linear growth functions at z = 0 as that of w = −0.8 model but different in the past.

Their growth function comparisons are shown in figure 11. Model-III has the same linear

growth function (precise to 0.05% as shown in figure 13), at all redshift, as that of w = −0.8

model.

pick the ones that involve variations of wi at low redshift where the effect of dark energy

dominates. Only one mode passed the selection criteria and is shown in figure 10 as model-

III. The linear growth of the selected w model agrees with that of w = −0.8 model better

than 0.05% at all redshift as shown in figure 13. On the other hand, the expansion histories

of these two models differ by ∼ 0.6% as shown in figure 14.

4.2. History does matter

Figure 12 and 15 summarize the results. As shown in figure 12, the nonlinear matter

power spectra at z = 0 are different between w = −0.8 model and the constructed dark

energy model-I (figure 10) which has the same linear growth at z = 0 but different during

the past. So the nonlinear power spectrum does care about the time evolution of the lin-

ear power spectrum, contrary to what existing fitting formulas assume. Our interpretation

is the following. The difference in the linear power spectrum during the past causes some
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Fig. 11.— Comparison of the growth function of w = −0.8 model with these of the con-

structed dark energy model-I & II which are shown in figure 10. These dark energy models

have the same growth functions at z = 0, but different time evolutions. The fractional

differences shown in the lower panel are relative to w = −0.8 model.

differences in the nonlinear power spectrum which would stay there unless some rather del-

icate adjustments of the history of the linear power spectrum is done to offset the effect.

An arbitrary history of the linear power spectrum does not have the ability to undo the

difference in the nonlinear power spectrum. One possibility is that different linear growth

histories would produce different halo merger histories on which the halo concentration de-

pends (Weshsler et al. 2005). So the nonlinear power spectrum which mainly comes from

the one halo term would be different. It is hard to imagine that simply matching the linear

growth at z = 0 would erase the difference. So in general the difference would be there as

shown in our test case.

The effect of linear growth history on nonlinear power spectrum is by no means limited

to the ∼ 0.8% level shown in our test case. The nonsmooth nature of w(z) also would

not make our argument any weaker. By a little bit of more work, we come up with another

example that has much smoother w(z) curve (figure 10 model-II) and matching linear growth

at z = 0 but maximum difference of ∼ 1.5% in the past (figure 11 dash line). As shown in

figure 12 (dash line), the resulting nonlinear power spectra have maximum difference at ∼ 2%
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Fig. 12.— Comparison of the matter power spectrum at z = 0 of w = −0.8 model with these

of the constructed dark energy model-I & II which are shown in figure 10. These dark energy

models have the same growth functions at z = 0 but different time evolutions. The fractional

differences shown in the lower panel are relative to w = −0.8 model. The simulation box

size is Lbox = 100hMpc−1 and the Nyquist frequency is kNy = 16hMpc−1 .

level. From these examples, we see that the difference of the nonlinear power spectrum due to

different linear growth history is at the level of the maximum deviation of the corresponding

linear power spectra in the past.

Our test of the weaker assumption validates it as shown in figure 15. The nonlinear

power spectra of w = −0.8 model and the constructed dark energy model-III (figure 10)

are consistent with being essentially the same given the small difference of the linear power

spectra. This is not a proof that the history of the linear power spectrum fully determines

the nonlinear power spectrum, but it hints that it is possibly the case. Note that although

there is basically no hope of distinguishing the two apparently very different dark energy

models using their growth functions, their expansion histories differ by ∼ 0.6% (see figure 14)

which is close to the level that BAO could potentially have some handle on.
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Fig. 13.— Comparison of the growth function of w = −0.8 model with that of a wiggling

w(z) model-III which is shown in figure 10. The linear growth functions of these two dark

energy models agree to better than 0.05% at all redshift.

5. Matter Power Spectrum and the Equation of State of Dark Energy

With the ambitious observational efforts focused on measuring the equation of state

of dark energy to high precision (DES,SNAP,LSST,PanSTARRS), theoretical parameter

forecasts will need to be done more carefully than before. In particular, we have to have a

better understanding of the nonlinear power spectrum which is very important for cosmic

shear and any other probes that utilize the information of growth of density perturbations.

Since numerical simulations are too expensive to run for every application, fitting formulas of

the matter power spectrum are widely used. The ones provided by Peacock & Dodds (1996)

and Smith et al. (2003) are calibrated using ΛCDM models. McDonald et al. (2005) provided

a correction factor to the above mentioned fitting formulas for cosmology with constant w

(see also Ma et al. 1999). For two parameter dark energy models parameterized by w0 and

wa, Linder & White (2005) gives a simple procedure to calculate the nonlinear matter power

spectrum with a few percent accuracy. While the method provided by Linder & White

(2005) has not yet been widely adopted, a common practice is to apply Peacock & Dodds

(1996) and Smith et al. (2003) fitting formulas regardless of the dark energy models. In this

work we evaluate how well this common practice works.
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Fig. 14.— Comparison of the expansion history H(z)/H0 of w = −0.8 model with dark

energy models whose equations of state are shown in figure 10.

Two things could go wrong if we used an inaccurate fitting formula. One is that the

fitting formula predicts the wrong amplitude of the matter power spectrum. This is the

part we study in this work. Another effect of incorrect fitting formula is that the predicted

model parameter degeneracy directions and/or extent of the directions are off. Although

not covered in this study, the latter effect is very important when the parameters are highly

degenerate. During our study of the effect of photo-z on weak lensing tomography (Ma et al.

2006), we noticed that with no tomography binning the extent of the degeneracy among dark

energy parameters could differ by a factor of 4 depending on whether the fitting forms of

Peacock & Dodds (1996) or halo model is used to calculate the matter power spectrum.

For this study we further restrict ourself to two parameter dark energy models which

are parametrized by w0 and wa.
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Fig. 15.— Comparison of the matter power spectrum at z = 0 of w = −0.8 model with that

of dark energy model-III which is shown in figure 10. The linear growth functions of these

two dark energy models agree to better than 0.05% at all redshift. We conclude that the

two P (k) are consistent.

5.1. The findings

The quantity we use to evaluate the performance of the fitting formulas applied to

wa 6= 0 dark energy models is,

Q ≡ P (k, w)

P (k, w = −1)
− 1, (22)

which is the fractional difference of the matter power spectrum between wa model, P (k, w),

and the ΛCDM model, P (k, w = −1). The fractional difference of the power spectrum in

terms of Q is ∆Q/(Q + 1) and that of the derivative of the power spectrum is ∆Q/Q ≡
Q(fitting formula)/Q(simulation)−1. Figures 16-18 show the comparison of this quantify

Q from the simulation with those from the fitting formulas of Peacock & Dodds (1996) and

Smith et al. (2003) for wa = 0.3, 0.2 and 0.1 respectively.

First of all, the fitting formulas are doing a good job describing wa models. The fractional

difference of the power spectrum is ∆Q/(Q+1) ∼ 1% and that of the derivative is ∆Q/Q ∼
10% for k < 1.0 hMpc−1. In the context of Fisher matrix analysis, the Fisher matrix elements
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Fig. 16.— Performance of the fitting formulas when applied to non-ΛCDM cosmology. In

this particular case, w0 = −1.0 and wa = 0.3. The simulation box is 400 h−1Mpc and the

corresponding Nyquist frequency is kNy = 4 hMpc−1. The initial power spectrum without

BAO peaks is used for the Peacock & Dodds fitting formula.

would be 20% off at most. Again, just to remind ourself that we are only considering the

effect of the amplitude of the power spectrum but not that of the shape of the power spectrum

which is closely tied to the degeneracy direction of the model parameters.

The most surprising result we find is that the fractional differences in Q from Peacock & Dodds

(1996) fitting formula are independent of wa, as shown in figure 19. To turn this fact into

a fitting formula of the matter power spectrum for wa models, the time evolution of this

potential correction factor to Peacock & Dodds (1996) fitting formula should also be inde-

pendent of wa. Figure 20 shows this correction factor at z = 0.62. We see that the peak of

the correction shifts to smaller scale (higher k) as one goes to higher redshift and, amazingly,

it shows no dependency on wa. Although such regular behavior seems always have a good

reason behind it, at the moment, we do not have a physical explanation.

It is very tempting to use such a fact to come up with a correction factor to the fitting

formula of Peacock & Dodds (1996). The hump at the nonlinear scale in figure 19 and the

ones at high redshift can be fit very well using a Gaussian in k space. However, as we have

pointed out throughout this work, the physical arguments supporting Peacock & Dodds’
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Fig. 17.— Performance of the fitting formulas when applied to non-ΛCDM cosmology. In

this particular case, w0 = −1.0 and wa = 0.2. The simulation box is 400 h−1Mpc and the

corresponding Nyquist frequency is kNy = 4 hMpc−1. The initial power spectrum without

BAO peaks is used for the Peacock & Dodds fitting formula.

fitting formula do not seem to hold: the linear and nonlinear scale mapping does not hold;

the assumption that the history of the linear growth does not affect the nonlinear power

spectrum is also being shown to be incorrect. Adding more corrections to Peacock & Dodds’

fitting formula would only turn it into another ”theory of epicycles”. We do not think this

is the right approach to build a good fitting formula. As a short term solution, this may be

worth doing. We leave the readers to make the judgment.

6. Discussion and Conclusions

We modify the public PM code developed by Anatoly Klypin and Jon Holtzman to

simulate cosmologies with arbitrary initial matter power spectra and the equation of state of

dark energy. Using N-body simulation, we test various aspects of the matter power spectrum,

including whether nonlinear evolution would shift the BAO peaks, the assumptions that go

into constructing fitting formulas of the nonlinear power spectrum, and the precision of the

existing fitting formulas when applied to dark energy models parametrized by w0 and wa.
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Fig. 18.— Performance of the fitting formulas when applied to non-ΛCDM cosmology. In

this particular case, w0 = −1.0 and wa = 0.1. The simulation box is 400 h−1Mpc and the

corresponding Nyquist frequency is kNy = 4 hMpc−1. The initial power spectrum without

BAO peaks is used for the Peacock & Dodds fitting formula.

Any shift of the BAO peaks in the matter power spectrum would bias the cosmological

distance inferred hence the cosmological parameters derived. To test whether nonlinear

evolution would shift BAO peaks, we implement an artificial sharp peak in the initial power

spectrum and evolve it using the PM code. We find that the position of the peak is not

shifted by nonlinear evolution. An upper limit of the shift at the level of 0.02% is achieved

by fitting the power spectrum local to the peak using a power law plus a Gaussian. This

implies that, for any practical purpose, the baryon acoustic oscillation peaks in the matter

power spectrum are not shifted by nonlinear evolution. There are other effects such as galaxy

bias that could potentially shift the peaks. These should be carefully calibrated as well.

We also find that the existence of a peak in the linear power spectrum would boost

the nonlinear power at all scales evenly. This is contrary to what HKLM scaling relation

predicts, but roughly consistent with that of halo model. The scale dependence is slightly

different from halo model prediction in detail. Further study is required to understand the

cause of the difference.

All existing fitting formulas of the nonlinear power spectrum assume that the linear
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Fig. 19.— The fractional differences of Q (defined in equation 22),

Q(fitting formula)/Q(simulation) − 1, for different wa. The power spectrum is

evaluated at z = 0.

power spectrum uniquely determines the nonlinear one, regardless of the linear growth his-

tory. To test this assumption, we construct two dark energy models with the same linear

power spectra today but different linear growth histories and compare their nonlinear power

spectra from the simulation. We find that the resulting nonlinear power spectra differ at the

level of the maximum deviation of the corresponding linear power spectra in the past. Simi-

larly, two constructed dark energy models with the same growth histories result in consistent

nonlinear power spectra. This is consistent with but not a proof of the conventional wisdom

that together, the linear power spectrum and the linear growth history uniquely determine

the nonlinear power spectrum.

Next generation large-scale structure surveys need better fitting formulas than what are

available now. With the high accuracy required, new fitting formulas should be based on

solid foundations. Our results suggest that we should abandon HKLM scaling relation, keep

halo model and further include linear growth history to build the next generation fitting

formulas of nonlinear power spectrum. Note that our study only includes dark matter. To

build fitting formulas with percent level accuracy, one has to include the effect of baryons

(White 2004; Zhan & Knox 2004; Jing et al. 2006) and substructure (Hagan et al. 2005).
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Fig. 20.— The fractional differences of Q (defined in equation 22),

Q(fitting formula)/Q(simulation) − 1, for different wa. The power spectrum is

evaluated at z = 0.62.

For simple dark energy models parametrized by w0 and wa, the existing nonlinear power

spectrum fitting formulas, which are calibrated for ΛCDM model, work reasonably well. The

corrections needed are at percent level for the power spectrum and 10% level for the deriva-

tive of the power spectrum. We find surprisingly that, for Peacock & Dodds (1996) fitting

formula, the corrections needed to the derivative of the power spectrum are independent of

wa but changing with redshift. As a short term solution, a fitting form could be developed

for w0, wa models based on this fact.
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Table 1. Peak position and height.

2nd left a 1st left the peak 1st right 2nd right

k d 0.198 0.201 0.204 0.207 0.211

P (k; z = 30) 5.442 17.75 29.66 26.11 11.53

P (k; z = 0) 2884. 4664. 6265. 5616. 3632.

Smearing b 0.96 0.48 0.38 0.39 0.57

iVolume c 48870 51554 54090 54314 56910

aRelative to the highest point of the peak.

bSmearing is P (k; z = 0)D2
+(z = 30)/[P (k; z = 30)D2

+(z = 0)],

where D+(z) is the linear growth function.

cThe number of cells in k space that contribute to the power spec-

trum. It determines the Poisson noise.

dUnits: [k]=hMpc−1; [P (k)]=h−3Mpc3.
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