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Analytic expressions for four-wave-mixing terms in an ideal, lossless wavelength–division-multiplexed soliton
system are derived with an asymptotic expansion of the N-soliton solution of the nonlinear Schrödinger equa-
tion. The four-wave contributions are shown to grow from a vanishing background and then to decay. Their
importance becomes evident in real, nonideal fibers, where they grow by an order of magnitude and equilibrate
to a stable value as an effect of periodic amplification. © 1997 Optical Society of America
[S0740-3224(97)02007-9]

1. INTRODUCTION

The study of soliton communication systems has been
marked by a number of important theoretical and techno-
logical advances. For example, it is now well known that
the effects of amplifier noise, known as Gordon–Haus
jitter,1 can severely limit the transmission rate. This
problem has been overcome by the recognition that slid-
ing filters reduce the debilitating effects of noise.2–4

Wavelength–division-multiplexed (WDM) soliton systems
offer the potential for significant increases in data-
transmission rates over that of single-channel soliton sys-
tems. The difficulties involving WDM solitons are less
clear mainly because researchers have not yet clarified all
of the potential problems. In an earlier work we dis-
cussed one problem: namely, timing jitter caused by
multisoliton collisions.5,6 This is an effect that is similar,
in spirit, to that of Gordon–Haus jitter, although it is not
caused by amplifier noise; rather it is due to nonuniform
soliton interactions because of the presence of amplifiers.

In two recent letters,7,8 a new and potentially serious
problem of WDM systems was discussed: namely, the
fact that soliton collisions in the presence of damping and
amplification produce significant four-wave interactions.
In Ref. 8 we analyzed damping and amplification in detail
and presented an analytical and numerical treatment
that explains the resonant growth and saturation of the
four-wave contributions. In this work we give a compre-
hensive analytical description of four-wave mixing in
ideal fibers, thus providing a useful framework in the
study of the more realistic damped-amplifier situation.

2. FOUR-WAVE MIXING FOR THE
NONLINEAR SCHRÖDINGER EQUATION

We begin this work by recalling essential formulas.9 It is
well known (see, e.g., Ref. 10) that quasi-monocromatic
light propagation in an ideal, Kerr-type, single-
transverse-mode optical fiber is described by the nonlin-
ear Schrödinger (NLS) equation

iqz 1 1/2q tt 1 uqu2q 5 0, (1)

where q is the slowly varying complex envelope of the
electric field, while z and t, respectively, are the propaga-
tion distance and the retarded time, expressed in the
usual nondimensional units.

The N-soliton solution of the NLS can be expressed as a
sum over the elements of an N 3 N matrix:

q~z, t ! 5 (
j,k51

N

~Q21!jk , (2)

where the elements of Q are given by

Q jk 5

exp~2ix j 2 S j! 1 exp~2ixk 1 Sk!

A j 1 Ak 1 i~V j 2 Vk!
(3)

and the phases S j(z, t), x j(z, t) are

S j~z, t ! 5 A j~t 2 T j 2 V jz !, (4)

x j~z, t ! 5 V jt 2 1/2~V j
2

2 A j
2!z 1 f j . (5)

The solution is specified by 4N parameters: A j , V j ,
T j , and f j , which play the roles of amplitudes, frequen-
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cies, displacements, and global phases, respectively. It is
worth remarking that the quantities l j 5 1/2(V j 1 iA j)
are the conserved discrete eigenvalues of the scattering
problem associated with the NLS equation (see Ref. 11).
Unfortunately, this exact solution is rather complicated,
even in the case of N 5 2. However, in the limit of
widely separated frequency channels, which is a case of
physical importance, this solution simplifies, and signifi-
cant information can be obtained.

In the limit of large frequency separations, uV j 2 Vku
@ 1 for j Þ k with A j ; O(1), it is convenient to intro-
duce the small parameter 0 , e ! 1, defined by

e 5 max
j,k51,...,N

kÞj

u~A j 1 Ak!/~V j 2 Vk!u (6)

[note the denominator of Eq. (3)]. We decompose Q as
Q 5 D 1 M, where D and M are the diagonal and the off
diagonal parts, respectively; i.e., Dkk 5 cosh Sk

3 exp(2ixk)/Ak and M jk 5 Q jk , where j Þ k, j, k

5 1, ..., N. Thus Q21
5 (D 1 M)21

5 (I 2 P 1 P2

1 ...)D21, where P 5 D21M; hence the matrix norm
iPni is O(e n). In this way an asymptotic expansion for
q is obtained:

q~z, t ! 5 q ~0 !~z, t ! 1 q ~1 !~z, t ! 1 q ~2 !~z, t ! 1 ...,
(7)

where q (n) ; O(en). The first term of the asymptotic se-
ries is given by D21 and is simply the superposition of
N one-soliton solutions corresponding to the different fre-
quency channels:

q ~0 !~z, t ! 5 (
j51

N

q j~z, t ! [ (
j51

N

A j exp~ix j!sech S j .

(8)

Each channel is located in the vicinity of the space–time
points satisfying the equation S j 5 0, i.e., t 5 T j

1 V j z. The frequency spectrum of the corresponding
solution consists of N localized contributions, which are
peaked around the channel frequencies V j . Because we
are considering the limit of widely separated frequency
channels, the pulses in frequency space remain well sepa-
rated even when the solitons interact in physical space.
Defining the Fourier transform,

q̂~z, v ! [ F v@q~z, t !# 5 E
2`

1`

dt exp~2ivt !q~z, t !,

(9)

we have

q̂ j~z, v ! [
p

A j

exp~iu j!sechF p

2A j

~v 2 V j!G , (10)

where

u j~z, v ! 5 1/2~V j
2

1 A j
2!z 2 V jvz 2 T j~v 2 V j! 1 f j .

(11)

As an example, we show in Fig. 1 a simultaneous three-
soliton collision; Fig. 2 displays the corresponding fre-
quency spectrum.

The next contribution in the asymptotic expansion
comes from the product D21MD21, which generates
O(e) and O(e2) terms:

D21MD21
5 (

j,k51
kÞj

N

A jAk exp@i~x j 1 xk!#sech S j sech Sk

3

exp~2ix j 2 S j! 1 exp~2ixk 1 Sk!

A j 1 Ak 1 i~V j 2 Vk!

' i (
j,k51
kÞj

N
1

V j 2 Vk

q jqk@exp~2ix j!sinh S j

2 exp~2ixk!sinh Sk#

1 (
j,k51
kÞj

N
A j 1 Ak

~Vk 2 V j!
2

q jqk@exp~2ix j!cosh S j

1 exp~2ixk!cosh Sk#. (12)

After a symmetrization of indices in the matrix products,
the O(e) contribution can be written as

q ~1 !~z, t ! 5 2i (
j,k51
kÞj

N
Ak

V j 2 Vk

q j tanh Sk . (13)

These terms describe the permanent phase shift that soli-
tons experience during mutual collisions. These perma-

Fig. 1. Simultaneous, three-soliton collision: A1 5 A2 5 A3

5 1, V1 5 211, V2 5 0, V3 5 17, and T1 5 T2 5 T3 5 0.

Fig. 2. Fourier spectrum relative to the collision shown in Fig.
1.
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nent phase shifts correspond to the temporary frequency
shift of the soliton carrier frequency. The frequency shift
is more clearly seen by taking the Fourier transform. In
the appendix we show that

E
2`

1`

dt exp~2ivt !sech t tanh~t 1 D !

[ p sech~1/2pv !
cosh D 2 exp~iDv !

sinh D
. (14)

Using Eq. (14), with A j 5 1, j 5 1, ..., N, we find

q̂ ~1 !~z, v ! 5 2pi exp~2iu j! (
j,k51
kÞj

N
1

V j 2 Vk

3 sech@1/2p~v 2 V j!#

3

cosh d jk 2 exp@id jk~v 2 V j!#

sinh d jk

, (15)

where

d jk~z ! [ Sk 2 S j 5 ~V j 2 Vk!z 1 T j 2 Tk (16)

is a measure of the temporal separation of solitons j and
k. That is, d jk 5 0 when soliton j and k interact in the
fiber. The effect of these terms on the carrier frequency
of the solitons was analyzed in detail in Ref. 9.

Contributions O(e2) are calculated in a similar way.
They arise from the remaining part of D21MD21 and
from D21MD21MD21. They are

q ~2 !~z, t ! 5 2 (
j,k51
kÞj

N

Ak

Ak 1 A j

~Vk 2 V j!
2

q j

1 (
j,k,l51
k,lÞj

N
A jAkA l

~V l 2 V j!~Vk 2 V j!
sech Sk

3 sech S l sech S j 3 $exp~ix j!cosh Dkl
2

1 exp~ixk!cosh Dkj
1

1 exp~ix l!cosh D lj
1

1 exp@i~xk 1 x l 2 x j!#%, (17)

where Dkj
6

5 Sk 6 S j . It is important to note that all
the terms in Eq. (17) are localized in the Fourier domain,
and they are all centered around the frequency of the in-
dividual soliton channels, except for the term correspond-
ing to the last exponential, i.e., exp@i(x k 1 x l 2 x j)#.
This last term, which we denote qFWM , corresponds to the
four-wave interactions of the solitons. It represents con-
tributions peaked around N2(N 2 1)/2 well-defined fre-
quencies. As an example, Fig. 3 shows the nine four-
wave-mixing frequencies that are generated during the
collision shown in Figs. 1 and 2.

In the following section we investigate the main fea-
tures of four-wave interactions in ideal fibers by applying
the above formulas in a number of representative situa-
tions.

3. FOUR-WAVE MIXING IN IDEAL FIBERS

As a special and physically relevant situation we take
A j 5 1, Vk 2 V j 5 (k 2 j)V, k, j 5 1, ..., N. Here e
5 2/V and the four-wave contribution is given by

qFWM~z, t ! 5 1/4e2 (
j,k,l51
k,lÞj

N
1

~k 2 j !~l 2 j !

3 exp@i~xk 1 x l 2 x j!#sech Sk

3 sech S l sech S j , (18)

where now S j 5 t 2 T j 2 V j z and x j 5 V jt 2 1/2(V j
2

2 1)z 1 f j . We note that, since the coefficient of
exp@i(x k 1 x l 2 x j)# contains a product of three hyper-
bolic secants, the four-wave-mixing terms are nonnegli-
gible only during soliton collisions when the arguments
Sk , S l , and S j coincide. Hence from Eq. (18) we see that
the four-wave terms grow from a vanishing background,
become nonnegligible [i.e., O(e2)], and then decay back to
zero.

Let us be more concrete. We consider the case in
which all the solitons collide, say, at z 5 0 (maximal in-
teraction); i.e., consider the case T j 5 0, j 5 1, ..., N.
We also neglect the unimportant relative phases and set
f j 5 0, j 5 1, ..., N. The four-wave contribution at z

5 0 then is

qFWM~0, t ! 5 1/4e2 (
j,k,l51
k,lÞj

N
1

~k 2 j !~l 2 j !

3 exp@i~Vk 1 V l 2 V j!t#sech3t. (19)

In the appendix we evaluate the integral (which we will
use later as well)

E
2`

1`

dt exp~2ivt !sech2 t sech~t 1 D !

[ p sech~1/2pv !I~D, v !, (20)

where

I~D, v ! 5 @cosh D 1 iv sinh D 2 exp~ivD !#/sinh2 D.
(21)

Using this result, and noting that I(0, v) 5 1/2(1
1 v2), we obtain

Fig. 3. Nine four-wave frequencies generated during the colli-
sion shown in Fig. 1. The inset shows the location of the soliton
contributions.
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q̂FWM~0, v ! 5 1/8pe2 (
j,k,l51
k,lÞj

N
1

~k 2 j !~l 2 j !

3 sech@1/2p~v 2 Vklj!#

3 @1 1 ~v 2 Vklj!
2#, (22)

where Vklj [ Vk 1 V l 2 V j , k, l Þ j. Equation (22)
represents contributions peaked around the N2(N
2 1)/2 well-defined frequencies Vklj .

Equation (22) was derived from the assumption that all
the solitons interact at the same time. In general, a si-
multaneous multisoliton interaction is an exceptional
(nongeneric) case, as opposed to the case of nonsimulta-
neous two-soliton collisions. Nevertheless, an analogous
result holds in this more general case. Specifically, if
M solitons (with M < N) interact at a given point, Eq.
(22) remains valid provided that the values of j, k, l are
suitably restricted to the subset of the values correspond-
ing to the solitons that are interacting. That is, at each
fixed location z the only nonnegligible terms in Eq. (18)
are those corresponding to solitons that are interacting,
i.e., with overlapping phases Sk , S l , and S j , at that par-
ticular time. In what follows we will further elucidate
the situation with some examples.

Consider a nonsimultaneous three-soliton collision,
with A j 5 1, j 5 1, 2, 3, and V1 5 210, V2 5 0, V3

5 10, so that V 5 V3 5 10, and e 5 0.2. Figure 4
shows the collision in physical space, whereas Fig. 5 de-
picts the corresponding frequency domain. The four-
wave components are barely visible in Fig. 5 as small
humps alongside the soliton channels during the colli-
sions. Since in this case the interaction is pairwise, only
two four-wave-mixing terms are generated during each
collision. For example, during the collision between the
first two channels, two four-wave-mixing terms are gen-
erated at frequencies V112 5 2V1 2 V2 5 220 and V221

5 2V2 2 V1 5 10. The component located at v
5 V112 is clearly visible in Fig. 5. We note that the com-
ponent located at v 5 V221 is obscured by the third soli-
ton, which is located at the same frequency. However,
we can see that the inverse Fourier transform of the fre-
quency region around V3 , which is evaluated (numeri-
cally) during the collision between solitons 1 and 2, con-
tains both the third soliton and a small four-wave
component. This four-wave component is located in
physical space at the collision point of solitons 1 and 2, as
Fig. 6 shows. The inset in Fig. 6 compares this four-wave
component with the sech3 t profile predicted by Eq. (19);
both magnitude and shape match the predictions quite
well.

The same choice of parameters can be used to illustrate
another interesting feature of four-wave interactions;
namely, that during nonsimultaneous collisions the four-
wave-mixing term can have a dramatic effect on the fre-
quency range of the solitons that are not participating in
the collision. In the specific case we are considering, the
frequency range in question is that of soliton 3. During
the collision of solitons 1 and 2, which is located at z12

[ (T1 2 T2)/V 5 21, the only significant contributions
to the frequency amplitude in the neighborhood of V3 are
the soliton component and the four-wave-mixing term,

which are, respectively, of O(1) and O(e2). The terms
O(e) are exponentially small in the neighborhood of V3

and can therefore be neglected because the third soliton is
spatially separated from the first two [cf Eq. (15); see also
Ref. 9]. Using the integral defined in Eq. (21), we have

Fig. 4. Nonsimultaneous three-soliton collision: A1 5 A2

5 A3 5 1, V1 5 210, V2 5 0, V3 5 10, T1 5 0, T2 5 10, and
T3 5 0.

Fig. 5. Fourier spectrum relative to the collision shown in Fig.
1.

Fig. 6. Inverse transform of the frequency components around
V3 during the 1 and 2 collision of Fig. 4. The inset shows a com-
parison between the FWM component as determined numerically
(solid curve) and analytically (dashed curve).
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I(D,v 2 V) . 1/2 sech2(1/2D) around v 5 V. Thus in the
neighborhood of v . V3 and z . z12 the frequency spec-
trum of the solution is

q̂~z, v ! . p sech@1/2p~v 2 V !#

3 $exp~iu3! 1 1/8e2

3 exp~iu221!sech2@1/2d21~z !#%, (23)

where d jk(z) 5 Sk 2 S j 5 (V j 2 Vk)z 1 T j 2 Tk is de-

fined in Eq. (16), u3 5 1/2(V2
1 1)z 2 Vvz 2 T3(v

2 V) is defined in Eq. (11), and u221 [ 1/2(V2
1 1)z

2 T2(v 2 V). The location of the maximum of uq̂u
clearly depends on the phase difference u221 2 u3 . Ex-
plicitly,

uq̂~z, v !u . p sech@1/2p~v 2 V !#

3 $1 1 1/8e2 sech2@1/2d21~z !#

3 cos@V2z 1 d32~z !~v 2 V !#%, (24)

where A1 1 O(e2) . 1 1 1/2O(e2) is used. Taking
duq̂u/dv and looking for its zeros, we find the following
transcendental equation, which determines the frequency
at maximum modulus at z . z12 :

v 5 V 2 1/2~e/p !2d32~z !sech2@1/2d21~z !#

3 sin@V2z 1 d32~z !~v 2 V !#, (25)

where the approximation tanh(v 2 V) . v 2 V for v
. V is used. The maximum of uq̂u oscillates around v
5 V as a function of z with frequency V2 ; O(e22). Ob-
serve that the actual amplitude of the oscillations is not

O(e2), because d32(z) . Vz ; O(e21). That is, the re-

sulting amplitude is 1/2(e/p)2d32(z) sech2@1/2d21(z)#

; O(e). Also, the amplitude of the oscillations decays
exponentially as solitons 1 and 2 separate after the colli-
sion. The fast oscillations of the maximum in numerical
simulations of the collision can be observed in Fig. 7 (see
also Ref. 5). The amplitude and the frequency of the os-
cillations perfectly match the above predictions based on
Eq. (25).

Note that, contrary to the O(e) frequency shift that
solitons 1 and 2 undergo during interaction, these oscilla-
tions do not represent a change in the actual frequency of
the solitons. In fact, the frequency modification pre-
dicted by Eq. (25) is caused by the interference between
two components, namely, the soliton and the four-wave-
mixing term. These two contributions are simulta-
neously present in the same frequency region, but they
actually correspond to terms that are separated in physi-
cal space (as seen in Figs. 5 and 6).

It should also be remarked that in the case of simulta-
neous collisions, there is no corresponding high-frequency
oscillation, since in this case, all the d jk(z) vanish simul-
taneously during the interaction, and the corresponding
term d32(z) in Eq. (25) is zero. There is, however, the
O(e) correction to the frequency of the interacting soli-
tons, as a result of the terms present in q (1) [cf Eq. (15);
see also Refs. 9 and 12]. This fact is illustrated in Fig. 8,
where the displacements T j of the solitons are chosen in
such a way that the collision is simultaneous.

Again we emphasize that in the ideal case, the four-
wave-mixing energy is reabsorbed into the soliton compo-

nents after the collision process is completed. However,
this is not the case when damping and amplification are
introduced in the system. As an example, we show in
Fig. 9 a numerical simulation of a nonsimultaneous three-
soliton collision with damping and amplification, whereas
Fig. 10 displays the corresponding frequency spectrum.
It is evident that the amplification process induces insta-
bility and growth of the four-wave-mixing terms, which
have an amplitude that becomes many times larger than
in the unperturbed case and saturates after the collision
is completed. This is unlike the ideal case, in which the
amplitudes grow and then return to zero. In both the
ideal and the amplified cases, some of the four-wave fre-
quencies coincide with the soliton carrier frequencies.
Hence we observe the same interference phenomenon de-
scribed before. However, because of the resonant growth
of the four-wave-mixing term and their stable, nonzero

Fig. 7. Location of the maxima of uq̂u for the collision process
shown in Fig. 4. The O(e) frequency shifts of the colliding soli-
tons are visible, together with the corresponding frequency oscil-
lations induced in the third channel.

Fig. 8. Same as Fig. 7, but for a simultaneous collision, i.e.,
T1 5 T2 5 T3 5 0.
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asymptotic value, in this case we observe much larger
perturbations in the frequency channels of the solitons.
This effect has potentially serious implications on the
overall properties of the system and could significantly in-
crease the error rates in long-distance communications.
An analytical and numerical study of the effects of damp-
ing and amplification on four-wave interactions can be
found in Ref. 8.

APPENDIX A

Below, we calculate the following Fourier transforms:

F a@sech z tanh~z 1 D !#, F a@sech2 z sech~z 1 D !#,
(26)

where

F a@ f~z !# [ E
2`

1`

dz exp~2iaz !f~z !. (27)

In both cases, i.e., when f(z) 5 sech z tanh(z 1 D) and
when f(z) 5 sech2 z sech(z 1 D), the computation is per-
formed by closing the integration contour in the complex z
plane, employing the periodicity of the hyperbolic func-

tions along the direction of the imaginary axis. We use
the identities sinh(x 1 iy) 5 sinh x cos y 1 i cosh x sin y

and cosh(x 1 iy) 5 cosh x cos y 1 i sinh x sin y, and we
take a rectangular contour with vertices at points z
5 6R, 6R 1 pi. In both cases the integrals over the
short sides (i.e., from 6R to 6R 1 pi) vanish in the limit
R → `. The singularities inside the contour are located

at z 5 1/2pi and z 5 2D 1 1/2pi. Thus in both cases,

@1 1 exp~pa !#E
2`

1`

dz exp~2iaz !f~z !

5 2pi$Res@exp~2iaz !f~z !#z51/2pi

1 Res@exp~2iaz !f~z !#z52D11/2pi%. (28)

For the first transform the singularities are simple
poles. The residues are readily computed; they are

Res@exp~2iaz !sech z tanh~z 1 D !#z51/2pi

5 2i exp~1/2pa !tanh D, (29)

Res@exp~2iaz !sech z tanh~z 1 D !#z52D11/2pi

5 i exp~1/2pa 1 iaD !csch D. (30)

Hence

F a@sech z tanh~z 1 D !#

5 p sech~1/2pa !
cosh D 2 exp~iaD !

sinh D
. (31)

The second transform is computed in a similar way.

Now the singularities are a double pole at z 5 1/2pi and a

simple pole at z 5 D 1 1/2pi. The residues are

Res@exp~2iaz !sech2 z sech~z 1 D !#z51/2pi

5 2i
exp~1/2pa !

sinh2 D
~cosh D 1 ia sinh D !, (32)

Res@exp~2iaz !sech2 z sech~z 1 D !#z52D11/2pi

5 i
exp~1/2pa !

sinh2 D
exp~iaD !. (33)

Hence

F a@sech2 z sech~z 1 D !#

5 p sech~1/2pa !

3

cosh D 1 ia sinh D 2 exp~iaD !

sinh2 D
. (34)
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