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Abstract

We study a diffuse interface model of the two-component Hele–Shaw flow. This 

is an advective Cahn–Hilliard equation  for the relative concentration

ϕ, where the incompressible velocity �eld u is determined by the Darcy’s

law depending on the Korteweg force µ∇ϕ. Here µ is the derivative of a

nonlocal non-convex free energy characterized by a logarithmic potential. The 

system is subject to no-�ux boundary conditions for u and µ along with an 

initial condition for ϕ. First of all, we prove that the corresponding problem 

is globally well posed with respect to a natural notion of weak solution. Also, 

we establish the existence of global strong solutions. In dimension two, we 

show the validity of the so-called instantaneous separation property. This 

means that any solution, which is not a pure phase initially, stays away from 

the pure phases, uniformly with respect to the initial energy and total mass. 

Finally we prove the existence of the global attractor for the corresponding 

dynamical system as well as the convergence to a single equilibrium of any 

weak solution in the two-dimensional case.
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1. Introduction

The motion of a binary fluid mixture confined in a cell between two parallel plates, sepa-

rated by a narrow gap, is commonly called Hele–Shaw flow. When temperature gradients or 
shear stresses act along the interface between different components, driving respectively a 

thermocapillary and a mixing flow, the phase interfaces merge and reconnect in a trans ition 

towards an equilibrium configuration. The mathematical description of these evolutionary 

phenomena is a fundamental and challenging problem in the branch of hydrodynamics that 

studies topological changes observed at the interfaces between immiscible fluid mixtures. 

Within the diffuse interface approach, the above-mentioned processes are described by the 

Cahn–Hilliard–Hele–Shaw system proposed in [41] (see also [16, 38, 45]). This model has 
been deduced from the classical Cahn–Hilliard–Navier–Stokes system (also known as ‘model 
H’) for the motion of an incompressible and immiscible fluid mixture by assuming that the 
viscous forces prevail over the inertial ones and the flow is of Poiseuille type. Denoting the 

(volume-averaged) velocity field by u and the difference of the fluid concentrations by ϕ, in 

the case of matched densities (neglecting also the gravity, see section 7), the system reads as 

follows















u = −∇P + µ∇ϕ,

div u = 0,

ϕt + u · ∇ϕ−∆µ = 0,

µ = −∆ϕ+Ψ′(ϕ),

in Ω× (0, T), (1.1)

where Ω is a bounded domain in Rd, d = 2, 3, with a suf�ciently smooth boundary. Here all 
the physical constants have been set equal to one, P stands for the pressure and Ψ is a suitable 

double well potential. The physically most relevant choice of Ψ is given by the logarithmic 

potential (see [8], see also [9, 37] and the references therein), namely,

Ψ(s) =
θ

2

[

(1 + s) log(1 + s) + (1 − s) log(1 − s)
]

−
θ0

2
s

2
, ∀ s ∈ (−1, 1), (1.2)

where θ > 0 and θ0 > 0 represent, respectively, the absolute and the critical temperature 

(both supposed to be constant). If θ0 > θ  then Ψ is nonconvex with two symmetric wells. It 

is worth pointing out that the Cahn–Hilliard–Hele–Shaw system is originally a two-

dimensional model [16, 42]. However, the same system can be formally derived to describe 

porous media flows in three dimensions see, for instance, [33]. For this reason, the Cahn–

Hilliard–Hele–Shaw system is sometimes referred to as the Cahn–Hilliard–Darcy system in 

certain literature (see e.g. [18, 36]).

System (1.1) with (1.2) and subject to no-flux boundary conditions has been analyzed in 

[27]. The existence of a global-in-time weak solution has been proven (see also [15] for a 

more general system). In dimension two, the uniqueness of weak solutions as well as the 

instantaneous propagation of regularity have been established. Then, the validity of the so-

called instantaneous (also known as strict or uniform) separation property has been shown. 

This means that ϕ stays instantaneously away from the pure states  ±1 (uniformly with 

respect to the initial energy and the total mass), provided that the initial condition ϕ0 is not 

a pure state. In dimension three, the existence of a (unique) global-in-time strong solution 

close to a given local minimizers of the free energy has been demonstrated. In addition, the 

convergence to a single equilibrium has been proven though, in dimension three, the result 

holds provided that the initial datum is close to a local minimizer of the free energy. 

Comparing this theoretical picture with the results obtained in the regular potential case 

(e.g. 



Ψ(s) = 1

4
(s2

− 1)2, s ∈ R), we can say that the former is richer (see [6, 18, 36, 43, 46, 47],

see also [16] for unmatched densities). Nonetheless, system (1.1) is dif�cult to handle, espe-

cially in dimension three. For instance, in the latter case, no uniqueness of weak solutions or 

general existence of global-in-time strong solutions are known. Roughly speaking, system 

(1.1) does not appear to be any simpler than the corresponding Cahn–Hilliard–Navier–

Stokes system (see [1]).

The Cahn–Hilliard equation is well grounded from the physical viewpoint. More precisely,

it can be viewed as a conserved gradient �ow associated with the (non-convex) Ginzburg–

Landau free energy

U(ϕ) =

∫
Ω

1

2
|∇ϕ(x)|2 +Ψ(ϕ(x)) dx. (1.3)

On the other hand, going back to the classical literature (see [3] and the references therein), 

the non-zero thickness in diffuse interface theories is not postulated as arbitrary, but rather 

connected with the finite range interaction between molecules. This aspect leads to nonlo-

cal effects in the free energy (see [25]). However, these nonlocal interactions are generally 

described through a dependence on local concentration gradients in the energy (see (1.3)). 

Thus, in the free energy (1.3) the nonlocal effects are approximated. The same argument also 

goes for the Cahn–Hilliard–Hele–Shaw system, as recently illustrated in [48], where (1.1) 
has been employed to model solid tumor growth (see also [43] and the references therein). In 

particular, the starting adhesion energy has the form

E(ϕ) =

∫
Ω

F(ϕ(x)) dx −
1

2

∫
Ω

∫
Ω

J(x − y)ϕ(x)ϕ(y) dxdy, (1.4)

where J is a suitable interaction kernel and F is related to the entropy of mixing, namely

F(s) =
θ

2

[

(1 + s) log(1 + s) + (1 − s) log(1 − s)
]

, ∀ s ∈ (−1, 1). (1.5)

This is exactly the free energy associated with the so-called nonlocal Cahn–Hilliard 
equation with logarithmic potential (see [24] and the references therein). We recall that this 

macroscopic energy can be derived from a microscopic model through a hydrodynamic limit 

(see [25]).

In this work, on account of the above considerations, we aim to study a variant of (1.1) by 

replacing the standard Cahn–Hilliard equation with its nonlocal version. More precisely, we

consider the system














u = −∇P + µ∇ϕ,

div u = 0,

ϕt + u · ∇ϕ−∆µ = 0,

µ = F
′(ϕ)− J ∗ ϕ,

in Ω× (0, T), (1.6)

where Ω ⊂ R
d  with d = 2, 3 is bounded and smooth, J : R

d
→ R is such that J(x) = J(−x),

the convolution product stands for

(J ∗ ϕ)(x) =

∫
Ω

J(x − y)ϕ(y) dy,

and F is the convex logarithmic potential (1.5) (or a more general potential satisfying 

assump-tions (H.2) below). System (1.6) is subject to the following natural boundary 

and initial conditions



{

u · n = ∂µ
∂n

= 0, on ∂Ω× (0, T),

ϕ(·, 0) = ϕ0, in Ω,
 (1.7)

where n is the unit outward normal vector to the boundary ∂Ω. We observe, in particular, 

that this system is the cornerstone of the model discussed and then approximated in [ 48].

From the mathematical viewpoint, passing from a fourth order equation to a second order 

equation entails some advantages, provided one knows how to handle the lack of regularity 

(see [17] for the regular potential case, see also [19–22, 24] for the Cahn–Hilliard–Navier–

Stokes system). The goal of this paper is to show that we can prove uniqueness and 

regularity results in dimension three for system (1.6) and (1.7), which seem out of reach for 

system (1.1) with a singular potential Ψ like (1.2). We first prove the existence of global-in-

time weak solution via the energy method. This is mainly based on the dissipative nature of 

the system given by the (formal) energy identity

E(ϕ(t)) +

∫
t

0

‖∇µ(τ)‖2 + ‖u(τ)‖2
dτ = E(ϕ0), ∀ t � 0.

Thanks to an extra regularity for u, obtained by carefully rewriting the Korteweg force, we 

establish that the global-in-time weak solution depends on the initial datum continuously, and 

so it is unique. Then, we establish the existence of strong solutions under a further natural 

assumption on the initial datum. By virtue of the dissipativity, this entails that any weak solu-

tion becomes instantaneously a strong one. Further regularity properties are also achieved in 

two space dimensions on account of the validity of the instantaneous separation property. In 

the �nal part, we discuss the longtime behavior. More precisely, the smoothing effect of any 

solution implies the existence of the global attractor as well as the convergence (in dimension 

two) of any weak solution to a unique equilibrium. We conclude by observing that, compar-

ing the results obtained so far for various kinds of Cahn–Hilliard–Hele–Shaw models, the 
nonlocal case with logarithmic potential is the one with the richest picture in terms of well-

posedness and regularity in dimension three. Therefore, at least in this case, avoiding approx-

imations seems to be a good choice from the theoretical viewpoint.

1.1. Plan of the paper

In section  2 we recall the mathematical framework we will need throughout our analysis. 

Section 3 is devoted to existence and uniqueness of weak solution. The existence of strong 

solutions is discussed in section 4. Further regularity properties in two dimensions are pro-

vided in section 5. Finally, the content of section 6 is concerned with the asymptotic behavior.

2. Notation and functional spaces

We indicate by Wk,p(Ω), k ∈ N, the Sobolev space of real valued L p(Ω)-functions whose 
distributional derivatives of order less or equal to k belong to L p(Ω). Its norm is denoted by 

‖ · ‖Wk,p(Ω). For an arbitrary k ∈ N, H
k(Ω) = W

k,2(Ω) is a Hilbert space. The vector spaces

[Wk,p(Ω)]d  endowed with the product structure (d is the spatial dimension) is denoted by

W
k,p(Ω). As customary we set H = L

2(Ω) and the inner product as well as the norm in H are

denoted by (·, ·) and ‖ · ‖, respectively. We also set V = H
1(Ω). We recall the following well-

known interpolation inequalities

‖v‖L4(Ω) � C‖v‖1− d

4 ‖v‖
d

4

V
, ∀ v ∈ V , if d = 2, 3, (2.1)



‖v‖L3(Ω) � C‖v‖
1

2 ‖v‖
1

2

V
, ∀ v ∈ V , if d = 3. (2.2)

We indicate by V ′ the dual space of V . It is endowed with the standard dual norm ‖ · ‖V′ and

〈·, ·〉 denotes the corresponding duality product. For every f ∈ V ′, we denote the total mass of

f over Ω by f =
1

|Ω| 〈 f , 1〉. We introduce the spaces of zero-mass functions

V0 = {v ∈ V : v = 0} , L2
0 = {v ∈ H : v = 0} , V ′

0 =

{

f ∈ V ′
: f = 0

}

and the weak Neumann operator A ∈ L(V , V
′) de�ned by

〈Au, v〉 =

∫
Ω

∇u · ∇v dx, ∀ u, v ∈ V .

The restriction of A in V0 is an isomorphism from V0 onto V ′

0
. We de�ne the inverse map 

N : V
′

0
→ V0 such that AN f = f , for all f ∈ V ′

0
, and NAv = v, for all v ∈ V0. In accordance

with these de�nitions, we equip V ′

0
 with the norm ‖ f‖V′

0
= ‖∇N f‖ and we recall the chain

rule

〈 ft,N f 〉 =
1

2

d

dt
‖ f‖2

V′

0
a.e. t ∈ (0, T), ∀ f ∈ H1(0, T; V ′

0). (2.3)

For every f ∈ V ′, we set ‖ f‖∗ =
(

‖ f − f‖2

V′

0

+ | f |2
)

1

2 . It is well known that ‖ · ‖∗ is a norm

on V ′ which is equivalent to the usual norm. We report the following elliptic estimates for the 

Neumann problem

‖∇N f‖Hk(Ω) � C‖f‖Hk−1(Ω), ∀ f ∈ Hk−1(Ω) ∩ L2
0(Ω), k = 1, 2. (2.4)

We introduce the Hilbert space of solenoidal vector �elds

Hσ =

{

v ∈ H : div v = 0, v · n |∂Ω= 0

}

.

In the sequel (·, ·) and ‖ · ‖ will also indicate the norm and the inner product in Hσ, respec-

tively. We denote by Π the Helmholtz–Leray orthogonal projection from H onto Hσ. We recall 

that every vector �eld u ∈ H can be uniquely represented as

u = v +∇P,

where v = Πu ∈ Hσ and P ∈ V0. Moreover, Π is a bounded operator from Wk,p(Ω) (k ∈ N, 1 
< p < ∞) into itself (see [26, lemma 3.3]), namely

‖Πu‖Wk,p(Ω) � C‖u‖Wk,p(Ω), ∀ u ∈ W
k,p(Ω), (2.5)

where the constant C depends on p. On the other hand, we infer from ∇P = u −Πu that P is

the unique solution of the Neumann problem
{

−∆P = div u, in Ω,
∂P

∂n
= u · n, on ∂Ω,

 (2.6)

such that P = 0. By the classical elliptic regularity for the Neumann problem, given 

u ∈ Wk,p(Ω), it follows that P ∈ Wk+1,p(Ω). In addition, solenoidal vector fields in V ∩ Hσ 
fulfill the following inequality (see [28, theorem 3.8])

‖v‖V � C (‖∇ × v‖+ ‖v‖) , ∀ v ∈ V ∩ Hσ . (2.7)



equipped with inner product 〈u, v〉Vσ = (∇u, ∇v) and norm ‖u‖Vσ = ‖∇u‖.

Throughout the paper, if not speci�ed otherwise, we indicate by C generic positive con-

stants depending only on structural quantities. The constants C may vary from line to line 

increasing their value. Any further dependence will be explicitly pointed out if necessary.

3. Well-posedness

In this section we prove that problem (1.6) and (1.7) is well posed with respect to the notion 

of weak solutions in Ω ⊂ R3. The given functions J and F are supposed to ful�ll the main 
assumptions:

 (H.1)  J ∈ W1,1(Rd) with J(x) = J(−x);
 (H.2)  F ∈ C([−1, 1]) ∩ C2(−1, 1) such that

lim
s→−1

F
′(s) = −∞, lim

s→1
F
′(s) = +∞ and F

′′(s) � α > 0.

Without loss of generality, we require that F(s) = +∞, for all s ∈ [−1, 1]c, and

F(0) = F
′(0) = 0.

Remark 3.1. Condition (H.2) is satis�ed and motivated by the logarithmic potential given 

by (1.5).

By weak solution we mean the following

De�nition 3.1. Let ϕ0 : Ω → R be a measurable function with F(ϕ0) ∈ L
1(Ω), |ϕ

0
| < 1

and T  >  0 be given. A triple (u, P,ϕ) is a weak solution to problem (1.6) and (1.7) on [0, T] 
corresponding to ϕ0 if

u ∈ L
2(0, T; Hσ), P ∈ L

1(0, T; W
1, 3

2 (Ω)),

ϕ ∈ L
∞(0, T; H) ∩ L

2(0, T; V) ∩ H
1(0, T; V

′),

ϕ ∈ L
∞(Ω× (0, T)) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T),

F(ϕ) ∈ L
∞(0, T; L

1(Ω)), F
′(ϕ) ∈ L

2(0, T; V),

µ ∈ L
2(0, T; V),

such that

〈ϕt, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V , a.e. in (0, T), (3.1)

where

u = −∇P + µ∇ϕ, µ = F
′(ϕ)− J ∗ ϕ, a.e. in Ω× (0, T), (3.2)

and satis�es ϕ(0, ·) = ϕ0 a.e. in Ω.

Remark 3.2. We deduce from the assumptions F(ϕ0) ∈ L1(Ω) and |ϕ
0
| < 1 that the class 

of admissible initial conditions consist of ϕ0 ∈ L∞(Ω) such that |ϕ0(x)| � 1, for almost every 
x ∈ Ω. However, they cannot be pure phases, namely ϕ0 �≡ ±1, due to the restriction on the 
total mass. In addition, concerning the initial condition, note that ϕ ∈ C([0, T], H). Also, any

We shall also make use of the higher-order solenoidal Hilbert space

Vσ = {v ∈ V : div v = 0, v |∂Ω= 0}



weak solution satis�es the mass conservation property, namely

ϕ(t) = ϕ0, ∀ t � 0.

Remark 3.3. On account of the regularity satis�ed by ϕ, any weak solution ful�lls the 

identity

µ∇ϕ = ∇

(

F(ϕ)− (J ∗ ϕ)ϕ
)

+ (∇J ∗ ϕ)ϕ,

almost everywhere in Ω× (0, T). Thus, the Darcy’s law is equivalent to

u = −∇P
∗ + (∇J ∗ ϕ)ϕ, P

∗ = P − F(ϕ) + (J ∗ ϕ)ϕ, a.e. in Ω× (0, T),

and its weak formulation becomes∫
Ω

u · v dx =

∫
Ω

(∇J ∗ ϕ)ϕ · v dx, ∀ v ∈ Hσ , a.e. in (0, T). (3.3)

In particular, the modi�ed pressure P
∗
∈ L

2(0, T; V0). However, since the product µ∇ϕ is

bounded in L1(0, T; L
3

2 (Ω)), the original pressure P belongs to L1(0, T; W
1, 3

2 (Ω)).

Our �rst result regarding the existence of a weak solution is given by

Theorem 3.1. Let ϕ0 be a measurable function with F(ϕ0) ∈ L
1(Ω) and |ϕ

0
| < 1. Then,

there exists at least a weak solution (u, P,ϕ) to problem (1.6) and (1.7) satisfying

sup
t�0

‖ϕ(t)‖L∞(Ω) � 1.
(3.4)

In addition, assuming that |ϕ
0
| � m for some m ∈ [0, 1), there exists C = C(m) > 0, inde-

pendent of the initial datum, such that

‖u‖L2(t,t+1;Hσ) + ‖µ‖L2(t,t+1;V) + ‖ϕ‖L2(t,t+1;V) � C, ∀ t � 0. (3.5)

A solution in the sense of definition 3.1 will be constructed through several approximat-

ing problems. We introduce an arti�cial viscosity −ε∆u, with ε>  0, in the Darcy’s law and 
we replace the singular potential with a family of regular ones Fλ, depending on the positive 

parameter λ, which converges in a suitable way to F and satisfy some uniform properties with 

respect to λ. In this framework, the existence of a pair (uε,λ
, ϕε,λ) is carried out via the stand-

ard Galerkin scheme (the pressure will be recovered at the end of this argument). Then we aim 

to derive some uniform estimates with respect to the approximation parameters λ and ε. After 

that, it will be convenient to pass to the limit as λ which goes to 0, with ε >  0 �xed. In such 

a way, the velocity �eld is bounded in L2(0, T; Vσ) at this stage. This facilitates the goal of 

�nding an estimate for ϕt

ε,λ. Next, taking advantage of the uniform bound in L∞(Ω × (0, T)) 
of ϕε, we recover the limit system via compactness letting ε go to 0. We refer the reader to  

[17, 20, 24] and the references therein for some arguments used in the sequel.

Proof. The proof will be divided into �ve steps.

3.1. A two levels approximation problem

For any given ε >  0 and λ > 0, we consider the Cahn–Hilliard–Brinkman (CHB) system 
(see [17], c.f. also [6, 14] and the references therein)

















−ε∆u + u = −∇P + µ∇ϕ,

div u = 0,

ϕt + u · ∇ϕ−∆µ = 0,

µ = F
′

λ
(ϕ)− J ∗ ϕ,

in Ω× (0, T), (3.6)

subject to the following boundary and initial conditions

{

u = 0,
∂µ
∂n

= 0, on ∂Ω× (0, T),

ϕ(·, 0) = ϕ0, in Ω.
 (3.7)

The family o\f regular functions Fλ : R → R can be constructed in such a way that

(i)  for any 0 < λ � 1, there exists C  >  0 such that

Fλ(s) �
1

4λ
s

2
− C, ∀ s ∈ R, ∀λ ∈ (0,λ]; (3.8)

(ii)  Fλ is convex with

F
′′

λ
(s) �

α

1 + α

, ∀ s ∈ R; (3.9)

(iii)  F′

λ
 is Lipschitz on R  with constant 1

λ
; 

(iv)  Fλ(s) ր F(s) and |F′

λ
(s)| ր |F′(s)| for every s ∈ R as λ → 0 and, in addition, F′

λ

converges uniformly to F′ on any interval [a, b] ⊂ (−1, 1); 
(v)  Fλ(0) = F

′

λ
(0) = 0, for all λ > 0.

The existence of such a family of regular potentials has been shown in [24] appealing 

to the theory of maximal monotone operators and according to the assumptions on the 

singular potential (H.2).
As previously anticipated, arguing as in [17] and [24], one can prove the exist-ence of a 

weak solution to problem (3.6) and (3.7) via a Galerkin scheme, by exploit-ing standard 

energy estimates and then passing to the limit in the usual way. More precisely, given an 

initial datum ϕ0 ∈ H , there exists a pair (u, ϕ) such that u ∈ L2(0, T; Vσ),  
4

3ϕ ∈ L∞(0, T; H) ∩ L2(0, T; V) with time derivative ϕt ∈ L (0, T; V ′), which satisfies (see 
remark 3.3)

ε(∇u, ∇v) + (u, v) = ((∇J ∗ ϕ)ϕ, v), ∀ v ∈ Vσ , a.e. t ∈ (0, T), (3.10)

〈ϕt, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V , a.e. t ∈ (0, T), (3.11)

where µ = F
′

λ
(ϕ)− J ∗ ϕ ∈ L

2(0, T; V). Furthermore, introducing the regularized free energy

Eλ(ϕ) =

∫
Ω

Fλ(ϕ(x)) dx −
1

2

∫
Ω

∫
Ω

J(x − y)ϕ(x)ϕ(y) dxdy, ∀ϕ ∈ H,

 the energy inequality holds

Eλ(ϕ(t)) +

∫
t

0

ε‖∇u(τ)‖2 + ‖u(τ)‖2 + ‖∇µ(τ)‖2
dτ � Eλ(ϕ0),

 (3.12)

for almost every t � 0.



3.2. A priori bounds based on the energy estimate

We consider an admissible initial datum such that ϕ0 is measurable with F(ϕ0) ∈ L
1(Ω)

and |ϕ
0
| < 1. According to the previous stage, for any ε > 0 and λ > 0, there exists a pair

(uε,λ
,ϕ

ε,λ) satisfying the weak form ulation (3.10) and (3.11) and the energy inequality (3.12). 

Our next goal is to derive some a priori uniform bounds with respect to ε and λ.

By virtue of the properties of Fλ, we deduce that Eλ(ϕ0) � E(ϕ0). In light of (3.12), we �nd

Eλ(ϕ
ε,λ(t)) +

∫
t

0

ε‖u
ε,λ(τ)‖2

Vσ

+ ‖u
ε,λ(τ)‖2 + ‖∇µ

ε,λ(τ)‖2
dτ � E(ϕ0) (3.13)

for almost every t ∈ [0, T]. We notice that, as a consequence of property (i), we have in

particular

‖ϕε,λ(t)‖2 +

∫
t

0

ε‖u
ε,λ(τ)‖2

Vσ

+ ‖u
ε,λ(τ)‖2 + ‖∇µ

ε,λ(τ)‖2
dτ � E(ϕ0) + C, (3.14)

for almost every 0 � t � T , with C independent of ε and λ. Taking the gradient of µε,λ and

testing by ∇ϕ
ε,λ, we also obtain

(F′′

λ(ϕ
ε,λ)∇ϕ

ε,λ
,∇ϕ

ε,λ) = (∇µ
ε,λ

,∇ϕ
ε,λ) + (∇J ∗ ϕ

ε,λ
,∇ϕ

ε,λ).

By property (ii) and the Young inequality for convolution product, we reach

‖∇ϕ
ε,λ‖2

� C‖∇µ
ε,λ‖2

+ C‖ϕε,λ‖2
.

Thus, integrating in time and using (3.13) and (3.14), we arrive at

∫
T

0

‖∇ϕ
ε,λ(τ)‖2

dτ � C(1 + T)(1 + E(ϕ0)). (3.15)

We now prove a uniform estimate of µε,λ in V . It is suf�cient to �nd a control of the total mass 

µ
ε,λ, that is

µ
ε,λ =

1

|Ω|

∫
Ω

F
′

λ(ϕ
ε,λ) dx −

1

|Ω|

∫
Ω

J ∗ ϕε,λ
dx.

Thanks to the monotonicity of F′

λ
, it is possible to show (see [20, equations (3.35)–3.37] or 

[24, proof of theorem 3.15]) that

‖F
′

λ(ϕ
ε,λ)‖L1(Ω) � C

∫
Ω

(ϕε,λ − ϕ0)F
′

λ(ϕ
ε,λ) dx + C, (3.16)

where C depends on ϕ
0
, but is independent of ε and λ. Then, testing µε,λ by ϕε,λ

− ϕ0 yields∫
Ω

(ϕε,λ − ϕ0)F
′

λ(ϕ
ε,λ) dx � C‖∇µ

ε,λ‖‖ϕε,λ − ϕ0‖+ C‖ϕε,λ‖2 + C.

Collecting the above estimates and using (3.14), we �nd

∫
T

0

‖F
′

λ(ϕ
ε,λ)(τ)‖2

L1(Ω) dτ � C(1 + T)(1 + E(ϕ0))
2
, (3.17)

which, in turn, implies

∫
T

0

‖µε,λ(τ)‖2
V

dτ � C(1 + T)(1 + E(ϕ0))
2
. (3.18)

Observe that all the above estimates are independent of ε and λ.



3.3.  The CHB system with singular potential: the limit λ → 0
+

Our goal is to perform the limit λ → 0
+. To this end, we need to derive a uniform control of 

ϕ
ε,λ

t . By comparison, using standard Sobolev embedding and (2.2), we have

‖ϕε,λ
t

‖V′ � ‖∇µ
ε,λ‖+ ‖u

ε,λ‖L6(Ω)‖ϕ
ε,λ‖L3(Ω)

� ‖∇µ
ε,λ‖+ C‖u

ε,λ‖Vσ
‖ϕε,λ‖

1

2

H
‖ϕε,λ‖

1

2

V
.

Hence, we get

∫

T

0

‖ϕε,λ
t

(τ)‖
4

3

V′ dτ � C

∫

T

0

(1 + ‖∇µ
ε,λ‖2) dτ + C‖ϕε.λ‖

2

3

L∞(0,T;H)

(

∫

T

0

‖u
ε,λ(τ)‖2

Vσ

dτ

)
2

3

(

∫

T

0

‖ϕε,λ(τ)‖2
V

dτ

)
1

3

� C(1 + T)(1 + E(ϕ0))
4

3 .

Here C is independent of λ but depends on ε. Collecting the above estimates, we deduce that

‖ϕε,λ‖L∞(0,T;H) � C, (3.19)

‖ϕε,λ‖L2(0,T;V) � C, (3.20)

‖ϕε,λ
t

‖
L

4
3 (0,T;V′)

� C, (3.21)

‖u
ε,λ‖L2(0,T;Vσ) � C, (3.22)

‖µε,λ‖L2(0,T;V) � C, (3.23)

where the constant C depends on the initial energy E(ϕ0), ϕ0
, the form of F and ε, but is

independent of λ. Thanks to the uniform controls (3.19)–(3.23), letting λ → 0, we deduce the 

following weak convergence results (up to subsequences)

ϕ
ε,λ

⇀ ϕ
ε, weakly star in L

∞(0, T; H), (3.24)

ϕ
ε,λ

⇀ ϕ
ε, weakly in L

2(0, T; V), (3.25)

ϕ
ε,λ
t

⇀ ϕ
ε

t
, weakly in L

4
3 (0, T; V

′), (3.26)

u
ε,λ

⇀ u
ε, weakly in L

2(0, T; Vσ), (3.27)

µ
ε,λ

⇀ µ
ε, weakly in L

2(0, T; V). (3.28)

Besides, according to (3.20) and (3.21), an application of the Aubin–Lions compactness 

lemma entails

ϕ
ε,λ

→ ϕ
ε, strongly in L2(0, T; L p(Ω)), (3.29)

for p ∈ [2, 6). In turn, this gives the pointwise convergence (up to subsequences)

ϕ
ε,λ

→ ϕ
ε
, a.e. in Ω× (0, T). (3.30)

On account of the monotonicity of F′ and the uniform bound (3.17), it is possible to show (see 
the argument in [20] and [24]) that the limit function ϕε fulfills



ϕ
ε ∈ L

∞(Ω× (0, T)) such that |ϕε(x, t)| < 1 a.e. in Ω× (0, T). (3.31)

As a consequence, we deduce from property (iv) and the pointwise convergence (3.30) that

F
′

λ(ϕ
ε,λ) → F

′(ϕε), a.e. in Ω× (0, T). (3.32)

By comparison, we also get

‖F
′

λ(ϕ
ε,λ)‖L2(0,T;V) � C,

with C independent of λ. Then, we infer that F′

λ
(ϕε,λ) ⇀ χ weakly in L

2(0, T; V). On the 

other hand, the pointwise convergence (3.32) and the uniform control of F′

λ
(ϕε,λ) in L2(0,T;H) 

(with respect to λ) imply that F′

λ
(ϕε,λ) ⇀ F

′(ϕε) weakly in L2(0,T;H). Hence, by the unique-

ness of the weak limit

F
′

λ(ϕ
ε,λ) ⇀ F

′(ϕε), weakly in L
2(0, T; V). (3.33)

Regarding the product terms, it follows from (H.1), (3.25) and (3.29) that

(∇J ∗ ϕ
ε,λ)ϕε,λ

⇀ (∇J ∗ ϕ
ε)ϕε, weakly in L

4
3 (0, T; H),

and

u
ε,λ

ϕ
ε,λ

⇀ u
ε
ϕ
ε, weakly in L

4
3 (0, T; H).

Therefore, a passage to the limit in the weak formulation (3.34) and (3.35) yields

ε(∇u
ε

,∇v) + (uε

, v) = ((∇J ∗ ϕ
ε)ϕε

, v), ∀ v ∈ Vσ , a.e. t ∈ (0, T), (3.34)

〈ϕε

t
, v〉 − (uε

ϕ
ε

,∇v) + (∇µ
ε

,∇v) = 0, ∀ v ∈ V , a.e. t ∈ (0, T), (3.35)

where µε = F
′(ϕε)− J ∗ ϕ

ε almost everywhere in Ω× (0, T). Furthermore, owing to the

above convergences, we can pass to the limit into the energy inequality (3.13) obtaining

E(ϕε(t)) +

∫
t

0

ε‖∇u
ε(τ)‖2 + ‖u

ε(τ)‖2 + ‖∇µ
ε(τ)‖2

dτ � E(ϕ0), (3.36)

for almost every t ∈ [0, T], for any given T  >  0.

3.4. The vanishing viscosity limit ε → 0
+

First, according to (3.31) and (3.36), it follows immediately that

‖ϕε‖L∞(Ω×(0,T)) � 1,

‖u
ε‖L2(0,T;Hσ) � C

‖∇µ
ε‖L2(0,T;H) � C.

Repeating line by line all the estimates performed in step 2, we arrive at

‖ϕε‖L2(0,T;V) � C,

‖µε‖L2(0,T;V) � C,

‖F
′(ϕε)‖L2(0,T;V) � C.

We need to �nd a control for ϕt that is independent of ε. Thanks to the uniform L∞-bound of 
ϕ
ε (see also [24, remark 3.3]), we have by comparison



‖ϕε

t
‖V′ � ‖∇µ

ε‖+ ‖u
ε‖.

Hence, this leads to

‖ϕε

t
‖L2(0,T;V′) � C.

Being all the above bounds independent of λ, the following weak convergence results hold 

(up to subsequences)

ϕ
ε

⇀ ϕ, weakly star in L
∞(Ω× (0, T)), (3.37)

ϕ
ε

⇀ ϕ, weakly in L
2(0, T; V), (3.38)

ϕ
ε

t
⇀ ϕt, weakly in L

2(0, T; V
′), (3.39)

u
ε

⇀ u, weakly in L
2(0, T; Hσ), (3.40)

µ
ε

⇀ µ, weakly in L
2(0, T; V). (3.41)

We recall that, thanks to the Aubin–Lions lemma, we have that ϕε
→ ϕ strongly in

L2(0, T; L p(Ω)) for any p ∈ [2, 6). Thanks to (3.37)–(3.41), and applying a similar argument

to the one employed in step 3, we are able to pass to the limit as ε → 0 in the weak formulation 

(3.34) and (3.35) and the limit pair (u,ϕ) satis�es

(u, v) = ((∇J ∗ ϕ)ϕ, v), ∀ v ∈ Vσ , a.e. in (0, T), (3.42)

〈ϕt, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V , a.e. in (0, T), (3.43)

where µ = F
′(ϕ)− J ∗ ϕ. To conclude the proof, we need to comply with the weak form-

ulation stated in de�nition 3.1 by recovering the pressure P. In this regard, by a density 

argument, we observe that u = Π((∇J ∗ ϕ)ϕ). Thus, in accordance with (2.6), there exists

P
∗
∈ L

2(0, T; V0) such that u = −∇P
∗ + (∇J ∗ ϕ)ϕ. Owing to remark 3.3, we conclude that

P = P
∗ + F(ϕ)− (J ∗ ϕ)ϕ ∈ L

1(0, T; W
1, 3

2 (Ω)) and u = −∇P + µ∇ϕ. All identities here

hold almost everywhere in Ω× (0, T).

3.5. Uniform dissipative estimates

On account of the regularity (3.37)–(3.41), passing to the limit in (3.36) as ε goes to 0, we get

E(ϕ(t)) +

∫
t

0

‖u(τ)‖2 + ‖∇µ(τ)‖2
dτ � E(ϕ0),

for almost any t � 0. Since ϕ ∈ C([0, T], H), we deduce that
∫
Ω

F(ϕ(t)) dx  is bounded for any 

t � 0. In turn, it easily follows

sup
t�0

‖ϕ(t)‖L∞(Ω) � 1.

Moreover, due to the assumptions on the admissible initial datum, it is clear that E(ϕ0) � C,

where C is a positive constant depending on F, but not on the initial datum ϕ0. Thus, we 

deduce that ∫
t

0

‖u(τ)‖2 + ‖∇µ(τ)‖2
dτ � C, ∀ t � 0. (3.44)



Arguing as in step 2, we take the gradient of μ and multiply by ∇ϕ. After standard computa-

tions, we �nd

‖∇ϕ‖ � C(1 + ‖∇µ‖). (3.45)

Then, aiming to estimate µ , we recall the useful inequality (see [20, equations 

(3.35)–3.37] or [24, proof of theorem 3.15])

‖F
′(ϕ)‖L1(Ω) � C

∫
Ω

(ϕ− ϕ0)F
′(ϕ) dx + C,

where C depends on m. Thus, testing μ by ϕ− ϕ , we easily obtain

‖F
′(ϕ)‖L1(Ω) � C(1 + ‖∇µ‖),

which, in turn, entails

‖µ‖V � C(1 + ‖∇µ‖). (3.46)

Therefore, (3.5) follows from integrating (3.44)–(3.46) in time on (t, t + 1). The proof is

complete.

Remark 3.4. A consequence of the proof of theorem 3.1 is the existence of a weak solu-

tion to the nonlocal Cahn–Hilliard–Brinkman system with singular potential (please refer to

[14] for the local case).

Our next aim is to show the uniqueness of weak solutions. We remind that, in the local case,

this is known only in two dimensions (see [27]). To this purpose, we observe that the regular-

ity of the velocity �eld u ∈ L
2(0, T; Hσ) is not suf�cient. Nonetheless, taking advantage of the

equivalent formulation of the Darcy’s law (see remark 3.3) and using the global space-time

L
∞-control of ϕ, we prove that the velocity �eld of any weak solution is indeed more regular.

Lemma 3.1. Let (u, P,ϕ) be a weak solution in the sense of de�nition 3.1. For any 

p ∈ (1,∞), there exists C = C( p) > 0, independent of the initial datum, such that

‖u‖L∞(0,∞;L p(Ω)) � C. (3.47)

Furthermore, there exists C  >  0, independent of the initial datum, such that

‖u‖L2(t,t+1;V) � C, ∀ t � 0. (3.48)

Proof. Observe �rst that, by remark 3.3, up to a rede�nition of the pressure, u solves the 

equation u = −∇P
∗ + (∇J ∗ ϕ)ϕ. Since ϕ is essentially bounded, it is easily seen that

‖(∇J ∗ ϕ)ϕ‖L∞(Ω×(0,T)) � C, ∀ T > 0.

Thus, (3.47) follows from (2.5). Let us now apply the curl operator to the Darcy’s law. We �nd

(in a distributional sense)

∇× u = −(∇J ∗ ϕ)×∇ϕ. (3.49)

Exploiting once more the L∞-bound of ϕ, we reach

‖−(∇J ∗ ϕ)×∇ϕ‖ � C‖∇ϕ‖.



Then, owing to (3.5), we end up with

∫
t+1

t

‖(∇× u)(τ)‖2
dτ � C.

By virtue of (2.7), the above inequality entails (3.48) and this yields the proof. 

We are now in a position to prove the following continuous dependence estimate.

Theorem 3.2. Let ϕ01 and ϕ02 be two measurable initial data with F(ϕ0i) ∈ L
1(Ω) and

|ϕ
0i
| < 1, i = 1, 2. Then, there exists C = C(T , F(ϕ01), F(ϕ02)) > 0 such that

‖ϕ1(t)− ϕ2(t)‖
2
V′ � C‖ϕ01 − ϕ02‖

2
V′ + C|ϕ01 − ϕ02|, (3.50)

for all 0 � t � T . In particular, the weak solution to problem (1.6) and (1.7) is unique.

Proof. Let (u1, P1,ϕ1) and (u2, P2,ϕ2) be two weak solutions to problem (1.6) and 

(1.7) corre sponding to ϕ01 and ϕ02, respectively. Setting ϕ = ϕ1 − ϕ2, µ = µ1 − µ2 and

u = u1 − u2, we have (see remark 3.3)

(u, v) = ((∇J ∗ ϕ)ϕ1, v) + ((∇J ∗ ϕ2)ϕ, v), ∀ v ∈ Hσ , a.e. t ∈ (0, T),
 

(3.51)

〈ϕt, v〉+ (∇µ,∇v) = (uϕ1,∇v) + (u2ϕ,∇v), ∀ v ∈ V , a.e. t ∈ (0, T).
 

(3.52)

Taking v = 1 in (3.52) we readily obtain that ϕ(t) = ϕ(0) for all t ∈ [0, T]. Let us now take

v = N (ϕ− ϕ) in (3.52). By de�nition of N  and using the chain rule (2.3), we obtain

1

2

d

dt
‖ϕ− ϕ‖2

V
′

0
+ (µ,ϕ− ϕ) = I1 + I2,

where

I1 = (uϕ1,∇N (ϕ− ϕ)), I2 = (u2ϕ,∇N (ϕ− ϕ)).

Thanks to (H.2), we have

(F′(ϕ1)− F
′(ϕ2),ϕ) � α‖ϕ‖2

.

On the other hand, recalling the conservation of the total mass, note that

(F′(ϕ1)− F
′(ϕ2),ϕ) � |ϕ(0)|

(

‖F
′(ϕ1)‖L1(Ω) + ‖F

′(ϕ2)‖L1(Ω)

)

.

Moreover, recalling once more the de�nition of N , we deduce that

(J ∗ ϕ, ϕ− ϕ) = (∇J ∗ ϕ, ∇N (ϕ− ϕ)) �
α

2
‖ϕ‖2 + C‖ϕ‖2

∗
.

Therefore, we infer

1

2

d

dt
‖ϕ‖2

∗
+

α

2
‖ϕ‖2

� I1 + I2 + C‖ϕ‖2
∗
+ |ϕ(0)|W ,



where

W = C
(

‖F
′(ϕ1)‖L1(Ω) + ‖F

′(ϕ2)‖L1(Ω)

)

.

Let us proceed to estimate the terms Ii, i = 1, 2. We have

I1 � ‖u‖‖ϕ− ϕ‖V
′

0
.

In order to �nd a control of u in term of ϕ, we take v = u in (3.51) getting

‖u‖2 = ((∇J ∗ ϕ)ϕ1, u) + ((∇J ∗ ϕ2)ϕ, u).

After standard computations, we obtain

‖u‖2
�

(

‖ϕ1‖L∞(Ω) + ‖ϕ2‖L∞(Ω)

)

‖∇J‖L1(Ω)‖u‖‖ϕ‖.

Hence, we arrive at

‖u‖ � C‖ϕ‖,

which, in turn, gives

I1 �
α

8
‖ϕ‖2

+ C‖ϕ‖2

∗
.

Regarding I2, by using (2.2), (2.4) and (3.47), we �nd the control

I2 � ‖u2‖L6(Ω)‖ϕ‖‖∇N (ϕ− ϕ)‖L3(Ω)

� C‖u2‖L6(Ω)‖ϕ‖‖ϕ− ϕ‖
1

2 ‖ϕ− ϕ‖
1

2

V
′

0

�
α

8
‖ϕ‖2 + C‖ϕ‖2

∗
.

Combining all the previous estimates, we end up with the differential inequality

1

2

d

dt
‖ϕ‖2

∗
+

α

4
‖ϕ‖2

� C‖ϕ‖2

∗
+ |ϕ(0)|W .

Therefore, taking into account that W ∈ L
1(0, T), an application of the Gronwall lemma yields

‖ϕ1(t)− ϕ2(t)‖
2
∗
� C

(

‖ϕ01 − ϕ02‖
2
∗
+ |ϕ01 − ϕ02|

)

, ∀ t ∈ [0, T].

By the equivalence of the norms, (3.50) immediately follows. The proof is complete. 

We can also deduce the validity of the energy identity from lemma 3.1. This identity will 

play a crucial role to study the longtime behavior (see section 6).

Proposition 3.1. Let ϕ0 be a measurable function with F(ϕ0) ∈ L
1(Ω) and |ϕ

0
| < 1. Then, 

the unique weak solution (u, P,ϕ) to problem (1.6) and (1.7) satis�es the energy identity

E(ϕ(t)) +

∫
t

s

‖u(τ)‖2 + ‖∇µ(τ)‖2
dτ = E(ϕ(s)), ∀ 0 � s � t < ∞.

(3.53)

Proof. For κ  >  0, let us introduce the modi�ed energy functional L : H → R given by

L(ϕ) :=

∫
Ω

F(ϕ) dx −
1

2
(J ∗ ϕ,ϕ) +

κ

2
‖ϕ‖2

.



By virtue of (H.1), taking κ > 0 large enough, it is easily seen that L is proper, convex and

lower semicontinuous. On account of the regularity ϕ ∈ L
2(0, T; V), ϕt ∈ L

2(0, T; V
′) and

F
′(ϕ) ∈ L

2(0, T; V), we learn from [13, proposition 4.2] that L(ϕ(·)) is absolutely continuous

on [0, T] and

d

dt
L(ϕ) = 〈F′(ϕ)− J ∗ ϕ+ κϕ,ϕt〉,= 〈µ,ϕt〉+

κ

2

d

dt
‖ϕ‖2

,

for almost any t ∈ (0, T). Here we have also used the chain rule in L2(0, T; V) ∩ H
1(0, T; V

′).
Taking v = µ in (3.1) and summing up to the above equality, we �nd

d

dt
E(ϕ)− (uϕ,∇µ) + ‖∇µ‖2 = 0.

Then, testing the Darcy’s law by u, we have

‖u‖2 = (µ∇ϕ, u). (3.54)

Note that the above test by u is well de�ned due to lemma 3.1 (see, in particular, (3.47)). By 

the classical result on the product rule in Sobolev spaces, we can rewrite (3.54) as

‖u‖2 = −(ϕ∇µ, u). (3.55)

Thus, collecting the above equalities, we end up with

d

dt
E(ϕ) + ‖u‖2 + ‖∇µ‖2 = 0. (3.56)

An integration on (s, t), 0 � s < t , entails the energy identity (3.53).

4. Strong solutions and regularity properties

In this section we prove the global existence of the (unique) strong solution to problem (1.6) 

and (1.7) under a natural assumption on the initial datum. This will be achieved via a priori 

higher-order estimates. As mentioned in the introduction, this result (together with the unique-

ness of weak solutions) in the three dimensional case, points out the gap between the local and 

the nonlocal versions of the Cahn–Hilliard–Hele–Shaw model with logarithmic potential. In the

former case, we remind that the existence of a global-in-time strong solution has been proven only 

for initial data close to local minimizers of the Ginzburg–Landau functional. On account of the

parabolic dissipative nature of the system, we also show the time regularization of weak solutions.

Theorem 4.1. Let ϕ0 be a measurable function with F(ϕ0) ∈ L
1(Ω), |ϕ

0
| < 1 and

∇F
′(ϕ0) ∈ H. Then, the weak solution is a strong solution to problem (1.6) and (1.7) on [0, T] 

and satis�es

u ∈ L∞(0, T; V) ∩ L
8

d (0, T; W
1,4(Ω)) ∩ L2(0, T; W

1,p(Ω)),

P ∈ L∞(0, T; W1, 3

2 (Ω)) ∩ L2(0, T; V),

ϕ ∈ L∞(0, T; V) ∩ L
8

d (0, T; W1,4(Ω)) ∩ L2(0, T; W1,p(Ω)),

ϕt ∈ L∞(0, T; V ′) ∩ L2(0, T; H),

F′(ϕ) ∈ L∞(0, T; V),

µ ∈ L∞(0, T; V) ∩ L
8

d (0, T; W1,4(Ω)) ∩ L2(0, T; H2(Ω)),

for any 4 < p < ∞ if d  =  2 or 4 < p � 6 if d  =  3.



Proof. Let (u, P,ϕ) be the unique global-in-time weak solution to problem (1.6) and (1.7). 

Thanks to the additional assumption on the initial datum, we aim to show higher-order regu-

larity properties. We divide the proof into three steps.

4.1. Smoothing effect on time derivatives

For any h  >  0, let us introduce the difference quotient D
h
u = 1

h

(

u(t + h)− u(t)
)

. We �rst

consider the Darcy’s equation at two different times t and t  +  h. By subtracting them, it is

evident that (see remark 3.3)

(Dh
u, v) = ((∇J ∗ D

h
ϕ)ϕ(·+ h), v) + ((∇J ∗ ϕ)Dh

ϕ, v),

for all v ∈ Hσ and for almost any t  >  0. Choosing v = D
h
u, we deduce that

‖D
h
u‖2 = ((∇J ∗ D

h
ϕ)ϕ(·+ h), D

h
u) + ((∇J ∗ ϕ)Dh

ϕ, D
h
u).

By (H.1) and (3.4), we have

((∇J ∗ D
h
ϕ)ϕ(·+ h), D

h
u) + ((∇J ∗ ϕ)Dh

ϕ, D
h
u)

�

(

‖ϕ(·+ h)‖L∞(Ω)‖∇J‖L1(Ω) + ‖∇J ∗ ϕ‖L∞(Ω)

)

‖D
h
ϕ‖‖D

h
u‖

� C‖D
h
ϕ‖‖D

h
u‖,

which, in turn, gives

‖D
h
u‖ � C‖D

h
ϕ‖. (4.1)

Subtracting now the weak formulation (3.1) evaluated at time t from the one at time t  +  h we 

get

〈∂tD
hϕ, v〉+ (∇D

hµ,∇v) = (ϕ(·+ h)Dh
u,∇v) + (uD

hϕ,∇v), (4.2)

for every v ∈ V  and almost any t ∈ (0, T). Taking v = ND
h
ϕ, we obtain

1

2

d

dt
‖D

h
ϕ‖2

V′

0
+ (Dh

µ, D
h
ϕ) = J1 + J2, (4.3)

where

J1 = (ϕ(·+ h)Dh
u,∇ND

h
ϕ), J2 = (uD

h
ϕ,∇ND

h
ϕ).

By virtue of (H.1) and (H.2), we have

1

h
(F′(ϕ(·+ h))− F

′(ϕ), D
h
ϕ) � α‖D

h
ϕ‖2

,

and

(J ∗ D
h
ϕ, D

h
ϕ) = (∇J ∗ D

h
ϕ,∇ND

h
ϕ) �

α

6
‖D

h
ϕ‖2 + C‖D

h
ϕ‖2

V′

0

.

Let us control the terms Ji, i = 1, 2. By (2.4), (2.2), (3.47) and (4.1), we �nd

J1 � C‖D
h
u‖‖D

h
ϕ‖V′

0
�

α

6
‖D

h
ϕ‖2

+ C‖D
h
ϕ‖2

∗
,



3

2

V
0

α

6
‖D

h
ϕ‖2

+ C‖D
h
ϕ‖2

∗
.

Therefore, collecting the above estimates, we arrive at the differential inequality

1

2

d

dt
‖D

h
ϕ‖2

∗
+

α

2
‖D

h
ϕ‖2

� C‖D
h
ϕ‖2

∗
. (4.4)

Thus an application of the Gronwall lemma yields

‖D
h
ϕ(t)‖2

∗
� ‖D

h
ϕ(0)‖2

∗
e

CT
, ∀ t ∈ [0, T]. (4.5)

At this point, to deduce a global-in-time estimate we need to �nd a bound for ‖D
h
ϕ(0)‖∗. Tak-

ing advantage of (H.2), and using (3.47), we observe that

1

2

d

dt
‖ϕ− ϕ0‖

2
V
′

0
= 〈ϕt,N (ϕ− ϕ0)〉 = (µ,ϕ− ϕ0) + (uϕ,∇N (ϕ− ϕ0))

= −(F′(ϕ),ϕ− ϕ0) + (J ∗ ϕ,ϕ− ϕ0) + (uϕ,∇N (ϕ− ϕ0))

� −(∇F
′(ϕ0),∇N (ϕ− ϕ0)) + (∇J ∗ ϕ,∇N (ϕ− ϕ0)) + (uϕ,∇N (ϕ− ϕ0))

�

(

C + ‖∇F
′(ϕ0)‖

)

‖ϕ− ϕ0‖V
′

0
,

for almost every t � 0. An integration in time leads to

1

2
‖ϕ(t)− ϕ0‖

2
V
′

0
�

(

C + ‖∇F
′(ϕ0)‖

)

∫

t

0

‖ϕ(τ)− ϕ0‖V
′

0
dτ , ∀ t � 0.

Accordingly, an application of the Gronwall lemma (see [7, lemma A.5]) implies

‖ϕ(t)− ϕ0‖V
′

0
�

(

C + ‖∇F
′(ϕ0)‖

)

t, ∀ t � 0.

Taking t  =  h, it follows that

‖D
h
ϕ(0)‖∗ �

(

C + ‖∇F
′(ϕ0)‖

)

, ∀ h > 0. (4.6)

Combining (4.5) with (4.6), we end up with

‖D
h
ϕ(t)‖∗ � C, ∀ t ∈ [0, T],

where C depends on ϕ0 and T. Owing to (4.4), we also infer that

‖D
h
ϕ‖L2(0,T;H) � C. (4.7)

Since ϕ ∈ H
1(0, T; V

′), we recall that Dh
ϕ converges to ϕt strongly in L2(0, T; V

′) as h → 0

(see [7, proposition A.6]). Then, by the uniqueness of the weak limit, we �nd the controls

‖ϕt‖L∞(0,T;V′) + ‖ϕt‖L2(0,T;H) � C. (4.8)

Besides, by (4.1), (4.7) and [7, corollary A.2 and proposition A.7], we deduce that

‖ut‖L2(0,T;Hσ) � C. (4.9)

4.2. L
∞-in time uniform estimates

Our next concern is to establish global-in-time bounds on u, P and ϕ. By (3.4), (3.46), (3.47), 

and (4.8), it is easily seen that

and

J2 � ‖u‖L6(Ω)‖D
h
ϕ‖‖∇N Dh

ϕ‖L3(Ω) � C‖D
h
ϕ‖ ‖D

h
ϕ‖ 

1

2 
′ �



‖µ‖L∞(0,T;V) � C. (4.10)

Then, by virtue of (3.45), we get

‖ϕ‖L∞(0,T;V) � C.

In light of the latter bound, by using (2.7) and (3.49), we have

‖u‖V � C
(

1 + ‖ϕ‖L∞(Ω)‖∇ϕ‖
)

, (4.11)

which, in turn, entails

‖u‖L∞(0,T;V) � C. (4.12)

As a consequence, we obtain

‖P‖
L∞(0,T;W

1, 3
2 (Ω))

� C.

4.3. Higher-order estimates in space

We proceed by proving higher-order regularity with respect to the space variables. In this 

regard, by (3.4) and (3.47), we observe that

‖uϕ‖L∞(0,T; L p(Ω)) � C, (4.13)

for any p � 2, where C depends on p. Now, we read (3.1) as the Neumann problem for µ.

Then, the weak Lp-regularity (see [39]) entails that, for any p  >  1, there exists C = C( p) > 0 

such that

‖µ‖W1,p(Ω) � C
(

‖ϕt‖(W1,p′ (Ω))′ + ‖u · ∇ϕ‖(W1,p′ (Ω))′ + ‖µ‖(W1,p′ (Ω))′

)

, (4.14)

where 1

p
+

1

p′
= 1. In light of (4.10) and (4.13), we have

‖µ‖W1,p(Ω) � C
(

‖ϕt‖+ ‖uϕ‖L p(Ω) + ‖µ‖
)

� C(1 + ‖ϕt‖
)

,

for any 1 < p < ∞ if d  =  2 or 1 < p � 6 if d  =  3. This gives

‖µ‖L2(0,T;W1,p(Ω)) � C.

To recover further integrability on ϕ, we argue as in [24, proposition 4.2] (see also [21]). 

We �rst deduce that F′′(ϕ)∇ϕ ∈ L2(0, T; L
p(Ω)), for any p � 1. Then, exploiting (H.2), we

reach

‖∇ϕ‖L p(Ω) � C
(

1 + ‖∇µ‖L p(Ω)

)

, (4.15)

which, in turn, entails

‖ϕ‖L2(0,T;W1,p(Ω)) � C. (4.16)

Accordingly, we can improve the integrability of the convective term u · ∇ϕ. By (3.47) and

(4.16), we �nd

‖u · ∇ϕ‖L2(0,T;H) � C.

Due to this, the regularity theory of the Neumann problem yields

‖µ‖L2(0,T;H2(Ω)) � C.



By (2.1) and the above estimates, we also learn that

‖∇µ‖
L

8
d (0,T;L4(Ω))

+ ‖∇ϕ‖
L

8
d (0,T;L4(Ω))

� C.

Finally, we consider again (3.49). It follows that, for any 1 < p < ∞ if d  =  2 or 1 < p � 6 if

d  =  3, there exists C = C( p) > 0 such that

‖∇ × u‖
L

8
d (0,T;L4(Ω))

+ ‖∇ × u‖L2(0,T;L p(Ω)) � C.

On account of [28, theorem 3.5], there exists g such that ∇× g = u and −∆g = ∇× u in Ω,

with g · n = 0 on ∂Ω. By the regularity theory for the Neumann problem, we obtain

‖g‖
L

8
d (0,T;W2,4(Ω))

+ ‖g‖L2(0,T;W2,p(Ω)) � C.

Thus, we infer that

‖u‖
L

8
d (0,T;W1,4(Ω))

+ ‖u‖L2(0,T;W1,p(Ω)) � C.

The further regularity of the pressure easily follows from (2.6) and the above estimates. This 

concludes the proof. 

We are now in a position to state that any weak solution becomes instantaneously a strong 

solution. To this aim, we consider a generic weak solution (u, P,ϕ) departing from a measur-

able initial datum ϕ0 such that |ϕ0| � m, for a �xed m ∈ [0, 1). Accordingly, throughout this

section, the generic positive constant C may depend on m, but will be independent of the initial 

datum.

Theorem 4.2. Let (u, P,ϕ) be a weak solution to problem (1.6) and (1.7). For any σ > 0, 

there exists C = C(σ) > 0 such that

‖ϕt‖L∞(σ,∞;V′) + ‖µ‖L∞(σ,∞;V) � C,

sup
t�σ

‖u(t)‖V + sup
t�σ

‖ϕ(t)‖V � C,

‖ut‖L2(t,t+1;Hσ) + ‖ϕt‖L2(t,t+1;H) + ‖µ‖L2(t,t+1;H2(Ω)) + ‖∇ϕ‖
L

8
d (0,T;L4(Ω))

� C, ∀ t � σ.

Moreover, for any 4 < p < ∞ if d  =  2 or 4 < p � 6 if d  =  3 and σ > 0, there exists

C = C(σ, p) such that

‖u‖L2(t,t+1;W1,p(Ω)) + ‖ϕ‖L2(t,t+1;W1,p(Ω)) + ‖µ‖L2(t,t+1;W1,p(Ω)) � C, ∀ t � σ.

Proof. The proof of theorem 4.2 can be obtained by arguing as in theorem 4.1. We recall 

the differential inequality

1

2

d

dt
‖D

h
ϕ‖2

∗
+

α

2
‖D

h
ϕ‖2

� C‖D
h
ϕ‖2

∗
. (4.17)

Observing that, for any 0  <  h  <  1,

‖D
h
ϕ‖L2(t,t+1;V′) � ‖ϕt‖L2(t,t+2;V′), ∀ t � 0,

and, by comparison,

‖ϕt‖V′ � C
(

‖∇µ‖+ ‖u‖L3(Ω)‖ϕ‖L6(Ω)

)

,

we deduce from (3.5) and (3.47) that



‖D
h
ϕ‖L2(t,t+1;V′) � C, ∀ t � 0,

where C is independent of h. Applying the uniform Gronwall lemma (see e.g. [44, lemma 1.1, 

chapter III]), for every σ > 0 there exists C = C(σ) > 0 such that

‖D
h
ϕ‖2

∗
� C, ∀ t � σ.

Since Dh
ϕ converges to ϕt strongly in L2(0, T; V

′) as h → 0, for any T  >  0, we conclude that

‖ϕt‖L∞(σ,∞;V′) � C.

Furthermore, an integration of (4.17) on the time interval (t, t + 1), with t � σ, together with

(4.1), yields also

‖D
h
ϕ‖L2(t,t+1;H) + ‖D

h
u‖L2(t,t+1;Hσ) � C, ∀ t � σ.

A passage to the limit as h → 0 in the above estimate leads to

‖ϕt‖L2(t,t+1;H) + ‖ut‖L2(t,t+1;Hσ) � C, ∀ t � σ.

All the remaining estimates follow by repeating line by line the arguments employed in the 

steps 2 and 3 of the proof of theorem 4.1. 

5. d = 2: separation property and its consequences

In this section we address the physically relevant quantitative property concerning the instan-

taneous and uniform-in-time separation from the pure phases. In other words, in the two 

dimensional case we can prove that the concentration parameter stays away from the singular 

values of the potential. Consequently, being the potential and its derivative globally bounded 

in L
∞-norm, we are also able to show a further regularization property. More precisely, we 

have

Theorem 5.1. Let d  =  2. Assume that F ∈ C3(−1, 1) satis�es the following conditions

F
′′(s) � e

C|F′(s)|+C
, F

′(s)F′′′(s) � 0, |F′′′(s)| � CF
′′(s)2

, ∀ s ∈ (−1, 1),

for some positive constant C. Then, we have:

(i)  If (u, P,ϕ) is a strong solution to problem (1.6) and (1.7) provided by theorem 4.1 and

‖ϕ0‖L∞(Ω) � 1 − δ0, for some δ0 ∈ (0, 1], then there exists δ ∈ (0, 1] depending on the

initial datum such that

sup
t�0

‖ϕ(t)‖L∞(Ω) � 1 − δ.
(5.1)

(ii)  If (u, P,ϕ) is a weak solution to problem (1.6) and (1.7) provided by theorem 3.1 then, for

any σ > 0, there exists δ = δ(σ, m) ∈ (0, 1] such that

sup
t�σ

‖ϕ(t)‖L∞(Ω) � 1 − δ.
(5.2)

Proof. Let (u, P, ϕ) be the strong solution to problem (1.6) and (1.7) provided by theo-

rem 4.1. In light of the regularity     F′ (ϕ) ∈ L∞(0, ∞; V) and the additional assumptions



on F, arguing as in [24, theorem 5.2], we deduce that F′′(ϕ) ∈ L∞(0,∞; L p(Ω)) and

F′′′(ϕ) ∈ L∞(0,∞; L p(Ω)), for any 2 � p < ∞. Then, repeating line by line the proofs of

[24, theorems 5.2 and 6.7], we arrive at the differential inequality, for any k ∈ N,

d

dt
‖F

′(ϕ)‖2
k

L2k (Ω)
+ ‖F

′(ϕ)‖2
k

L2k (Ω)
� C2

6k

(

1 + ‖F
′(ϕ)‖2

k

L2k−1

)

,

for almost every t � 0, and for some positive constant C depending on the initial datum, but

independent of k. Applying the Gronwall lemma, we �nd

max
t�0

∫

Ω

|F′(ϕ(t))|2
k

dx � ‖F
′(ϕ(0))‖2

k

L2k (Ω)
e
−t

+ C2
6k

(

1 +max
t�0

[

∫

Ω

|F′(ϕ(t))|2
k−1

dx

]2)

(1 − e
−t). (5.3)

Let us introduce

Λ = max
{

1, ‖F
′(ϕ0)‖L∞(Ω),max

t�0

∫

Ω

|F′(ϕ(t))| dx

}

,

which is �nite on account of the assumption on the initial datum. We rewrite the inequality 

(5.3) as follows

max
t�0

∫

Ω

|F′(ϕ(t))|2
k

dx � max
{

CΛ2
k

, C2
6kΛ + C2

6k

(

max
t�0

∫

Ω

|F′(ϕ(t))|2
k−1

dx

)2}

� C2
6k+1 max

{

Λ2
k

,

(

max
t�0

∫

Ω

|F′(ϕ(t))|2
k−1

dx

)2}

,

for some C independent of k. Thus, setting

Qk = max
t�0

∫
Ω

|F′(ϕ(t))|2
k

dx,

we deduce the iterative inequality for any k ∈ N

Qk � C2
6k
(

Λ
2

k

+ Q2
k−1

)

, Q0 � Λ.

Then, an iteration argument yields

Qk � CK12
k

2
K22

k

Λ
2

k

(5.4)

where K1 =

∑
∞

m=0

1

2m  and K2 =

∑
k

m=0

6m+1

2m . Taking now the limit k → ∞ of the 1

2k  power of 

both sides of (5.4), we obtain

max
t�0

‖F
′(ϕ(t))‖L∞(Ω) � CΛ,

for some positive constant C which depends on the initial datum. Thanks to (H.2), the 

above inequality implies (5.1). The proof of (5.2) can be carried out arguing in the same 

way (see [24, theorem 5.2] for details). 

Remark 5.1. We note that the additional assumptions on the singular potential F of 

theorem 5.1 are satisfied by the physically relevant logarithmic potential (1.5).



Remark 5.2. Property (i) essentially says that if the initial datum is strictly separated from 

the pure phases then the corresponding solution remains separated for any time t  >  0. This im-

plies that the solution to problem (1.6) and (1.7) is also a solution to the same problem where 

the singular potential F is replaced by a regular extension FR (on R) of polynomial growth 

outside the interval [−1 + δ, 1 − δ]. In other words, there exist solutions to problem (1.6) and

(1.7) with a regular potential FR, whose ranges are in [−1, 1] (i.e. the physical range). We recall

that this property is often observed in numerical simulations for Cahn–Hilliard type equations.

On the other hand, from the theoretical viewpoint, only the global boundedness is known for 

solutions to problem (1.6) and (1.7) with FR (see [17]).

Taking advantage of the above result we can prove further regularization properties. In 

order to enhance the spatial Sobolev regularity of the solution ϕ up to H
2(Ω), we need a 

slightly higher regularity of the interaction kernel J, namely

 (H.3)  J ∈ W
2,1(Bδ), where Bδ = {x ∈ R

d
: |x| < δ} with δ ∼ diam(Ω) such that Ω ⊂ Bδ

or J is an admissible kernel in the sense of [5, de�nition 1].

We notice that both Newtonian and Bessel potentials ful�ll the second part of (H.3).

Let us �x m ∈ [0, 1) and consider a weak solution (u, P,ϕ) such that |ϕ
0
| � m. In par-

ticular, we remind once more that the generic positive constant C may depend on m, but will 

be independent of the initial datum.

Theorem 5.2. Let d  =  2 and let the assumptions of theorem 5.1 hold. Then, for any σ > 0, 

there exists C = C(σ) > 0 such that

‖ut‖L∞(σ,∞;Hσ) + ‖ϕt‖L∞(σ,∞;H) � C,

and, for any 1 � p < ∞, there exists C = C(σ, p) > 0 such that

sup
t�σ

‖µ(t)‖H2(Ω) + sup
t�σ

‖ϕ(t)‖W1,p(Ω) � C.

In addition, if J satis�es the assumption (H.3), there exists a constant C = C(σ) > 0 such that

sup
t�σ

‖u(t)‖H2(Ω) + sup
t�σ

‖ϕ(t)‖H2(Ω) � C.

Proof. Given σ > 0, we recall that any weak solution is a strong solution on the time inter-

val (σ
2

,∞) and satis�es the estimates provided by theorem 4.2. Let us test (4.2) by D
h
ϕ.

We have

1

2

d

dt
‖D

h
ϕ‖2 + (∇D

h
µ,∇D

h
ϕ) = H1 +H2,

where

H1 = (ϕ(·+ h)Dh
u,∇D

h
ϕ), H2 = (uD

h
ϕ,∇D

h
ϕ).

By (H.2), we �rst notice that

(∇D
h
µ,∇D

h
ϕ) � α‖∇D

h
ϕ‖2 − |(∇J ∗ D

h
ϕ,∇D

h
ϕ)| − |(∇ϕD

h
F
′′(ϕ),∇D

h
ϕ)|.

It is evident that

|(∇J ∗ D
h
ϕ,∇D

h
ϕ)| �

α

8
‖∇D

h
ϕ‖2 + C‖D

h
ϕ‖2

.



On the other hand, recalling that D
h
F
′′(ϕ) = D

h
ϕ
∫ 1

0
F
′′′(sϕ(t + h) + (1 − s)ϕ(t)) ds, from

the assumptions on F and exploiting (2.1) and theorem 5.1, we infer that

|(∇ϕD
h
F
′′(ϕ),∇D

h
ϕ)| � C‖∇ϕ‖L4(Ω)‖D

h
ϕ‖L4(Ω)‖∇D

h
ϕ‖

�
α

8
‖∇D

h
ϕ‖2 + C‖∇ϕ‖4

L4(Ω)‖D
h
ϕ‖2

.

We proceed by estimating the two terms Hi, i = 1, 2, on the right-hand side. Owing to (3.4),

(3.47) and (4.1), we obtain

H1 � C‖D
h
ϕ‖‖∇D

h
ϕ‖ � C‖D

h
ϕ‖2

+
α

8
‖∇D

h
ϕ‖2

,

and

H2 � C‖u‖L4(Ω)‖D
h
ϕ‖L4(Ω)‖∇D

h
ϕ‖ �

α

8
‖∇D

h
ϕ‖2

+ C‖D
h
ϕ‖2

.

Combining all the previous estimates, we �nd the differential inequality

1

2

d

dt
‖D

h
ϕ‖2

+
α

2
‖∇D

h
ϕ‖2

� C
(

1 + ‖∇ϕ‖4
L4(Ω)

)

‖D
h
ϕ‖2

, (5.5)

almost everywhere in (σ
2

,∞). Thanks to theorem 4.2, an application of the uniform Gronwall

lemma leads to

‖D
h
ϕ(t)‖+ ‖∇D

h
ϕ‖L2(t,t+1;H) � C, ∀ t � σ.

Here C is a positive constant depending on σ. A �nal passage to the limit as h → 0, together

with (4.1), entails

‖ϕt‖L∞(σ,∞;H) + ‖ut‖L∞(σ,∞;Hσ) � C (5.6)

and

‖ϕt‖L2(t,t+1;V) � C, ∀ t � σ.

Then, using (4.14) together with (4.13) and (5.6), we infer that, for any p  >  2, there exists 

C = C( p) > 0 such that

‖µ‖L∞(σ,∞;W1,p(Ω)) � C.

Thanks to (4.15), we end up with

‖ϕ‖L∞(σ,∞;W1,p(Ω)) � C. (5.7)

Now, by (3.47) and (5.7), we get

‖u · ∇ϕ‖L∞(σ,∞;H) � C.

Thus, on account of (5.6), the elliptic regularity theory of the Neumann problem yields

‖µ‖L∞(σ,∞;H2(Ω)) � C.

In light of the regularity ϕ ∈ C(0, T; H), for any T  >  0, and thanks to the validity of the separa-

tion property, it is immediate to observe by a comparison argument that µ ∈ C([σ, T); H), for

any T  >  0. As a consequence, we have

sup
t�σ

‖µ(t)‖H2(Ω) � C.
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Let us now assume that J satis�es (H.3). Thanks to this, we have the following estimates

‖∂i (∂jJ ∗ ϕ)‖
L p(Ω) � C ( p) ‖ϕ‖L p(Ω) , ∀ p ∈ (1,∞) , (5.8)

for all i, j ∈ {1, 2}. Since µ ∈ L
∞(σ,∞; H

2(Ω)), we easily infer from (5.8) that

‖F
′(ϕ)‖L∞(σ,∞;H2(Ω)) � C.

Using once more the separation property and the classical result on composition of functions 

in Sobolev spaces, we deduce that

‖ϕ‖L∞(σ,∞;H2(Ω)) � C.

Finally, by (3.49) and the above estimate, we reach

‖∇ × u‖L∞(σ,∞;V) � C

which, in turn, gives

‖u‖L∞(σ,∞;H2(Ω)) � C.

To conclude the proof, we observe that the estimates regarding u and ϕ holds for all t � σ on

account of (5.6), thus concluding the proof. 

6. Longtime behavior

In this section we provide a description on the asymptotic behavior of solutions as time goes to 

∞. This can be regarded as an application of our regularity results. In the �rst part we de�ne

the semigroup map related to problem (1.6) and (1.7) and we show the existence of the global

attractor. In the second part we prove that any weak solution does converge to a single equilib-

rium in dimension two, taking advantage of the uniform separation property.

6.1. The global attractor

We de�ne a semigroup on a suitable phase space as a consequence of theorem 3.1. Indeed, for 

any ϕ0 ∈ L
∞(Ω) such that ‖ϕ0‖L∞(Ω) � 1 and |ϕ

0
| < 1, there exists a unique global-in-time

weak solution (u, P,ϕ). Then, for any given m ∈ [0, 1), we de�ne

Hm =
{

ϕ ∈ L
∞(Ω) : ‖ϕ‖L∞(Ω) � 1 and |ϕ| = m

}

,

and we equip it with the metric

d(ϕ1,ϕ2) = ‖ϕ1 − ϕ2‖.

Then, for any ϕ0 ∈ Hm , we set

ϕ(t) := S(t)ϕ0,

ϕ being the unique global-in-time weak solution to (1.6) and (1.7). It is immediate to check

that the one-parameter family of maps S(t) on Hm satis�es the semigroup properties (see

[44]). Moreover, we also deduce that t �→ S(t)ϕ0 ∈ C([0,∞),Hm), for every ϕ0 ∈ Hm . On

account of theorem 3.2, we have a continuous dependence estimate with respect to the initial 



data in a dual norm. Nevertheless, appealing to the instantaneous regularity, we are able to 

show the following property

Proposition 6.1. For any t � 0, S(t) ∈ C(Hm,Hm).

Proof. The case t  =  0 is trivial. We consider t  >  0 and a sequence {ϕ0n} ⊂ Hm such that

d(ϕ0n,ϕ0) → 0, with ϕ0 ∈ Hm . Due to theorem 4.2, we infer that

‖ϕ(t)‖V + ‖ϕn(t)‖V � C.

Hence, by interpolation and using (3.50), we obtain

d(ϕn(t),ϕ(t)) � ‖ϕn(t)− ϕ(t)‖
1

2

V′‖ϕn(t)− ϕ(t)‖
1

2

V
� C‖ϕ0n − ϕ0‖

1

2

V′ � Cd(ϕ0n,ϕ0)
1

2 .

The claim follows. 

The existence of the global attractor is given by

Theorem 6.1. The dynamical system (Hm, S(t)) has a connected global attractor Am

bounded in V .

Proof. Observe that, on account of theorem 4.2, there exists a positive constant C, inde-

pendent of the initial datum, such that

sup
t�1

‖ϕ(t)‖V � C.

This entails the existence of a compact absorbing set in Hm. The existence of the global attrac-

tor is thus implied by [44, theorem 1.1]. 

Remark 6.1. It is worth mentioning that the global attractor is more regular in the two di-

mensional case. Indeed, by theorem 5.2, it follows that Am is bounded in H2(Ω). Furthermore,

due to theorem 5.1, the �nite dimensionality of the global attractor and the existence of ex-

ponential attractors can also be proved. We refer the reader to [24] and the references therein.

6.2. Convergence to equilibrium in dimension two

We focus here on the longtime behavior of the single trajectory. Thanks to the separation 

property, we are able to employ the general strategy based on the Lyapunov property of the 

energy associated to the system (see proposition 3.1) and the well-known Łojasiewicz–Simon

inequality. We refer the reader to [27] for the local case (see also [1, 2]).

Given an admissible initial condition ϕ0 ∈ Hm , let (u, P,ϕ) be the related unique global-

in-time weak solution. We introduce the ω-limit set associated to ϕ0 by
{ }

ω(ϕ0) =  ϕ̃ ∈ Hm : ∃ tn → ∞ such that ϕ(tn) → ϕ̃ in H .

On account of theorem 4.2, any weak solution is uniformly bounded in V . By the compact 

embedding results in Sobolev spaces, we deduce that the set ω(ϕ0) is non-empty, compact, 

connected in Hm. We now proceed to characterize ω(ϕ0). To this aim, we introduce the notion 
of equilibrium point (or stationary solution) associated to (1.6) and (1.7).

De�nition 6.1. A  triple (u∞, P∞, ϕ∞) is called equilibrium (stationary solution) to

 problem ( 1.6) and (1.7) if u∞ = 0, P∞ = µ∞ϕ∞ and ϕ∞ ∈ Hm ∩ V satisfies the stationary



nonlocal Cahn–Hilliard equation

F
′(ϕ∞)− J ∗ ϕ∞ = µ∞, in Ω (6.1)

where µ∞ ∈ R.

The existence of a solution to (6.1) can be easily proven by means of a �xed point theorem. 

Instead, uniqueness does not hold in general (see, e.g. [4]). Besides, any stationary solution 

ful�ls the separation property.

Lemma 6.1. For any ϕ∞ ∈ V ∩Hκ satisfying (6.1), there exists δ > 0 such that

‖ϕ∞‖L∞(Ω) � 1 − δ.

Proof. Let us observe that J ∗ ϕ∞ + µ∞ ∈ L
∞(Ω). Hence, F′(ϕ∞) is essentially bounded.

Due to the assumption (H.2), the conclusion follows. □

Let us introduce the set of all stationary points of the nonlocal Cahn–Hilliard equation,

namely,

S =
{

ϕ∞ ∈ Hm ∩ V : ϕ∞ satisfies (6.1)
}

.

We now claim that ω(ϕ0) consists of stationary states, namely ω(ϕ0) ⊂ S . To show this,

we consider a sequence tn → ∞ such that ϕ(tn) → ϕ̃, where ϕ̃ ∈ ω(ϕ0). By proposi-

tion 3.1 we observe that u ∈ L
2(0,∞; Hσ). In light of theorem 4.2, an application of

[21, Lemma 1] entails u(t) → 0 as t → ∞. Next, for n ∈ N, we de�ne the sequence of trajec-

tories 
(

un(t),ϕn(t)
)

=
(

u(t + tn),ϕ(t + tn)
)

. Thanks to Theorem 4.2, ϕn ⇀ ϕ∗ weakly star in

L
∞(0,∞; V) (up to a subsequence), where ϕ∗ is a solution to (3.1) and (3.2) with u∗(t) = 0,

for all t � 0, and ϕ∗(0) = ϕ̃. Moreover, we have limn→∞ E(ϕn(t)) = E(ϕ∗(t)), for all t � 0.

Then, by (3.53), limt→∞ E(ϕ(t)) = E∞ and we deduce that E(ϕ∗(t)) is constant. Thus, by

(3.53) we also infer that ∇µ
∗
= 0 and ϕ∗

t
= 0 for almost every t � 0. In turn, this implies

that ϕ∗(t) = ϕ̃ for all t � 0. Thus, ϕ̃ satis�es (6.1) and the pressure is recovered through the

Darcy’s law.

We conclude this section  by proving that ω(ϕ0) is a singleton ϕ∞. We report here the

main tool to prove the convergence to equilibrium, that is the well-known Łojasiewicz–Simon

inequality (see [23])

Proposition 6.2. Let P0 : H → L
2

0
 be the projector operator. Assume that F satis�es

(H.2) and is real analytic in (−1, 1), ϕ ∈ V ∩ L
∞(Ω) is such that −1 + γ � ϕ(x) � 1 − γ,

∀ x ∈ Ω , for some γ ∈ (0, 1), and ϕ∞ ∈ S . Then, there exist θ ∈ (0, 1

2
), η > 0 and a positive

constant C such that

|E(ϕ)− E(ϕ∞)|1−θ
� C‖P0(F

′(ϕ)− J ∗ ϕ)‖∗, (6.2)

whenever ‖ϕ− ϕ∞‖ � η.

The main result of this section is the following

Theorem 6.2. Assume that F is real analytic on (−1, 1). Then, any weak solution (u, P,ϕ)
converges to an equilibrium (0, P∞,ϕ∞). In particular, we have

lim
t→∞

‖u(t)‖+ ‖ϕ(t)− ϕ∞‖ = 0. (6.3)



Proof. Thanks to the energy identity (3.53), it follows that E(ϕ(t)) is non increasing,

E(ϕ(t)) � E(ϕ∞) and E(ϕ(t)) → M , where M = E(ϕ∞), for any ϕ∞ ∈ ω(ϕ0). Without loss

of generality, we consider E(ϕ(t)) > E(ϕ∞), for all t � 0. Otherwise, if there exists t > 0

such that E(ϕ(t)) = E(ϕ∞), it is evident that ϕ(t) = ϕ(t), for all t � t , and the claim follows.

On the other hand, we �x θ ∈ (0, 1

2
) and η > 0 given by proposition 6.2. Via a contradiction 

argument, it is possible to show that there exists t∗ > 0 such that ‖ϕ(t)− ϕ∞‖ � η, for all

t � t
∗ (see, e.g. [21]). Then, by theorem 5.1 and proposition 6.2, for any t � t

∗, we have

(

E(ϕ)− E(ϕ∞)
)1−θ

�

(

C‖P0(F
′(ϕ)− J ∗ ϕ)‖

1

1−θ

∗

)1−θ

� C‖∇µ‖.

By using (3.53) together with the above inequalities, we deduce that

−
d

dt

(

E(ϕ)− E(ϕ∞)
)θ

= −θ
(

E(ϕ)− E(ϕ∞)
)θ−1 d

dt
E(ϕ)

�
θ
(

‖u‖2 + ‖∇µ‖2
)

C‖∇µ‖
� C‖∇µ‖.

An integration on the time interval (t∗,∞), for t
∗ suf�ciently large, leads to

∇µ ∈ L
1(t∗,∞; H). Also, in light of (3.4) and (3.55), we obtain u ∈ L

1(t∗,∞; Hσ). By com-

parison, we �nd ϕt ∈ L
1(t∗,∞; V

′). Thus, we conclude that ϕ(t) converges in V ′ as t goes to

∞. Using the interpolation ‖v‖ � C‖v‖
1

2

V′‖v‖
1

2

V
 and the uniform bound in V  (see theorem 4.2),

we deduce (6.3). 

7. Conclusions and further developments

The main purpose of this paper is to address the well-posedness of the nonlocal Cahn–

Hilliard–Hele–Shaw system with logarithmic potential in dimension three and the global 
regularity problem of its solutions. As mentioned in the introduction, we point out that this 

analysis has been carried out for the corresponding local Cahn–Hilliard–Hele–Shaw system in 
dimension two only (see [27]). In our opinion, there are several interesting open issues to be 

investigated. First of all, in connection to the application of diffuse interface models to tumor 

growth dynamics, the results herein could be extended to the case with a non-autonomous 

mass source term accounting for cell proliferation (see, for instance, [36, 43, 48]). In par-

ticular, the second and third equations in (1.6) read now as follows

div u = S, ϕt + u · ∇ϕ − ∆µ = S,

where S can be a given source or it can depend on other state variables (e.g. nutrients). A 

further problem is concerned with the inclusion of a body force G (that may depend on the 

density, see [16, 38]) or a Coriolis force (see [10]) in the Darcy’s law. A further important 
issue would be the so-called unmatched viscosities case, i.e. to allow the viscosity to depend 

where ν : [0, 1] R

on the concentration. In this case, the Darc

 is a strictly positiv 
y’s la

e and bounded function. 

w can be written as 

W 
ν(ϕ)u =

e recall that the unmatched

−∇P + µ∇ϕ, 
→ 

viscosity case has been recently analyzed in [14] for the Cahn–Hilliard–Brinkman system.

The nonlocal version of such a system also presents several open issues in terms of unique-

ness and regularity. We already pointed out that the Cahn–Hilliard–Hele–Shaw (or Cahn–

Hilliard–Darcy) system also plays a role in modeling porous media. In this context, it would



be interesting to consider nonlocal versions of models for karstic geometry (see [35]). Finally, 

we recall that very few recent papers are devoted to the numerical analysis of nonlocal Cahn–

Hilliard type equations (see [29–31]). We think that it would be worth extending this analysis, 
for instance, to the present model and then compare the numerical simulations with the ones 

existing for the local model (e.g. [11, 18, 32, 34, 40, 49]) possibly with the logarithmic poten-

tial (e.g. [12] and the references therein). Numerics could show, for instance, whether there are 

detectable differences between local and nonlocal models or it could give some hints about the 

possible validity of the separation property in three dimensions. This property seems related 

to the diffusion effects and numerical simulations might also shed some light on this relation.
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