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Econorneirica, Vol. 50, No. 4 (July. 1982) 

THE NONPARAMETRIC APPROACH TO DEMAND ANALYSIS 

This paper shows how to test data for consistency with utility maximization, recover the 
underlying preferences, and forecast demand behavior without making any assumptions 
concerning the parametric form of the underlying utility or demand functions. 

THE ECONOMIC THEORY of consumer demand is extremely simple. The basic 
behavioral hypothesis is that the consumer chooses a bundle of goods that is 
preferred to all other bundles that he can afford. Applied demand analysis 
typically addresses three sorts of issues concerning this behavioral hypothesis. 

(i) Consistency. When is observed behavior consistent with the preference 
maximization model? 

(ii) Recoverability. How can we recover preferences given observations on 
consumer behavior? 

(iii) Extrapolation. Given consumer behavior for some price configurations 
how can we forecast behavior for other price configurations? 

The standard approach to these questions proceeds by postulating parametric 
forms for the demand functions and fitting them to observed data. The estimated 
demand functions can then be tested for consistency with the maximization 
hypothesis, used to make welfare judgements, or used to forecast demand for 
other price configurations. This procedure will be satisfactory only when the 
postulated parametric forms are good approximations to the "true" demand 
functions. Since this hypothesis is not directly testable, it must be taken on faith. 

In this paper I describe an alternative approach to the above problems in 
consumer demand analysis. The proposed approach is nonparametric in that it 
requires no ad  hoc specifications of functional forms for demand equations. 
Rather, the nonparametric approach deals with the raw demand data itself using 
techniques of finite mathematics. In particular I will show how one can directly 
and simply test a finite body of data for consistency with preference maximiza- 
tion, recover the underlying preferences in a variety of formats, and use them to 
extrapolate demand behavior to new price configurations. Thus each of the issues 
of concern to demand analysis mentioned above is amenable to the nonparamet- 
ric approach.2 

1. TESTING FOR CONSISTENCY WITH THE MAXIMIZATION HYPOTHESIS 

Letp '  = ( p ; ,  . . . ,pL) denote the ith observation of the prices of some k goods 
and let x '  = (x ; ,  . . . ,xk) be the associated quantities. Suppose that we have n 

'This work was financed by grants from the National Science Foundation and the Guggenheim 
Memorial Foundation. I wish to thank Erwin Diewert, Avinash Dixit, Joseph Farrell, Angus Deaton, 
and Sydney Afriat for comments on an earlier draft. 

2Another concern of applied demand analysis is the issue of testing for restrictions on the form of 
the utility function or budget constraint such as homotheticity, separability, etc. I address these 
questions in Varian [29, 301. 
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observations on these prices and quantities, (pi ,xi) ,  i = 1, . . . ,n. How can we 
tell if these observations could have been generated by a neoclassical, utility 
maximizing consumer? 

DEFINITION:A utility function u(x) rationalizes a set of observations (p ', x '), 
i =  1 , .  . . , n ,  if u ( x i ) 2 u ( x ) f o r a l l x  such t ha tp ix i2p ix .  

At the most general level there is a very simple answer to the above question: 
any finite number of observations can be rationalized by the trivial constant 
utility function u(x) = 1 for all x. The real question is when can the observations 
be rationalized by a sufficiently well behaved nondegenerate utility function? The 
best results in this direction are due to Sydney Afriat [I,2,3,4,5]. 

AFRIAT'STHEOREM:The following conditions are equivalent: 
(1) There exists a nonsatiated utility function that rationalizes the data. 
(2) The data satisfies "cyclical consistency"; that is, 

p rx r  2 p r x 3 ,  psxs 2pSx ' ,  . . . , p4x4 2 p 9 x r  

implies 

prxr  =prxs, pSxS=psx', . . )  p9xq =pyxr.  

(3) There exist numbers Ui, X i  > 0, i = 1, . . . ,n, such that 

U i S ~ J + X j p j ( x i - x i )  for i , j = l ,  . . . , n. 

(4) There exists a nonsatiated, continuous, concave, monotonic utility function 
that rationalizes the data. 

PROOF: See Appendix 1. 

There are several remarkable features of Afriat's theorem. First, the equiva- 
lence of (1) and (4) shows that if some data can be rationalized by any nontrivial 
utility function at all it can in fact be rationalized by a very nice utility function. 
Or put another way, violations of continuity, concavity, or monotonicity cannot 
be detected with only a finite number of demand observations. Secondly, the 
numbers Ui and X i  referred to in part (3) of Afriat's theorem can be used to 
actually construct a utility function that rationalizes the data. The numbers U' 
and X i  can be interpreted as measures of the utility level and marginal utility of 
income at the observed demands. This is described in more detail in Appendix 1. 

Thirdly, parts (2) and (3) of Afriat's theorem give directly testable conditions 
that the data must satisfy if it is to be consistent with the maximization model. 
Condition (3) for example simply asks whether there exists a nonnegative 
solution to a set of linear inequalities. The existence of such a solution can be 
checked by solving a linear program with 2n variables and n2 constraints. 
Diewert and Parkan [lo] describe some of their computational experience with 
this technique using actual demand data. Unfortunately the fact that the number 
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of constraints rises as the square of the number of observations makes this 
condition difficult to verify in practice for computational reason^.^ 

Condition (2) seems rather more promising from the computational perspec- 
tive. As it turns out, there is an equivalent formulation of condition (2) which is 
quite easy to test. In addition this equivalent formulation is much more closely 
related to the traditional literature on the revealed preference approach to 
demand theory of Samuelson [24], Houthakker [12],Richter [21], and others. In 
order to describe this formulation we must first consider the following defini- 
tions: 

DEFINITIONS:Given an observation x i  and a bundle x :  
(1) x' is directly revealedpreferred to x ,  written x 'ROx,if pix' L p ' x .  
(2) x i  is strictly directly revealed preferred to x ,  written x ' P O X ,  if pix ' > pix. 
(3) x i  is revealed preferred to x ,  written x ' R x ,  if p ' x i  L pix', pJx i  

- . . . ,pn7x 2 pn'x for some sequence of observations ( x i ,  x J ,  . . . ,x " I ) .2 "' 
In this case we say that the relation R is the transitive closure of the relation RO.  

(4) x' is strictly revealedpreferred to x ,  written x 'Px,  if there exist observations 
x i  and x i  such that x iRxJ ,  xJpox l ,  X'RX.  

Note that in the above definitions we do not require x ' ,  X I ,  x l ,  etc. to be 
distinct observations. We also adopt the convention that xRx for all bundles x .  

DEFINITIONS:A set of data satisfies the: 
(1) Strong Axiom of Revealed Preference, version 1 (SARP 1) if X ' R X ~  and 

xJRxl  implies x' = x J ;  
(2) Strong Axiom of Revealed Preference, version 2 (SARP 2) if X'RXJand 

x' # xJ implies not xJRx l ;  
(3) Strong Axiom of Revealed Preference, version 3 (SARP 3) if x lRxJ  and 

x '  # xJ implies not xjROx';  
(4 )  Generalized Axiom of Revealed Preference (GARP) if x'RxJ implies not 

XJPOX'. 

The most common statement of the Strong Axiom is probably SARP 2.4 It is 
clear that SARP 1 is equivalent to SARP 2. It is not quite so clear that SARP 3 is 
equivalent to SARP 2, but nevertheless they are equivalent. One can easily show 
that SARP 1 ,  SARP 2, and SARP 3 imply GARP, but not vice versa. Basically 
SARP (in any of its formulations) requires single valued demand functions while 
GARP is compatible with multivalued dema.nd functions. For example, the data 
in Figure 1 violate SARP but are quite compatible with GARP. 

'one  can always use the duality theorem of linear programming to construct an equivalent 
problem with n2 variables and 2n constraints, but this problem may also be computationally difficult. 

4 ~ e eRichter [22]for several variations on revealed preference axioms. Note that Richter considers 
a framework where the entire demand correspondence is given, rather than only a finite number of 
observations. This leads to a number of differences in the analysis. 
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This is why we refer to GARP as the Generalized Axiom of Revealed 
Preference. It turns out to be a necessary and sufficient condition for data to be 
consistent with utility maximization, and is in fact equivalent to Afriat's cyclical 
consistency condition. 

FACT 1 :  A set of data satisfies cyclical consistency if and only if it satisfies 
GARP. 

PROOF: Suppose that we have some data containing a violation of cyclical 
consistency so thatprxr  2 p r x " .  . . ,pJxJ >pjx i ,  . . . ,pqxq 2pqxr .  Then xiRxJ 
by going around the cycle, and xjpOxi directly. Hence we have a violation of 
GARP. 

On the other hand, suppose we have some data that has a violation of GARP. 
Then writing out the violation in the above form shows we have a violation of 
cyclical consistency also. 

The equivalency of GARP and cyclical consistency is trivial from the mathe- 
matical point of view, but is quite important from the computational point of 
view, since GARP is quite simple to check in practice, as we discuss below. 

First, let us note that GARP can be restated as: if xiRxJ then pJxJ 5 pJxi for 
i, j = 1, . . . ,n.  Hence verifying that some data satisfies GARP is trivial once we 
know the relation R-the transitive closure of the direct revealed preference 
relation R O. 

It is clear that the computation of the transitive closure of a finite relation is a 
finite problem. The only issue is how one might compute it efficiently. This 
question has been addressed in the economics literature by Koo [14,15,16], 
Dobell [7], and Uebe [28],and in the computer science literature by Warshall [31] 
and Munroe [20], among others. 

Most of the algorithms in the economics literature compute the transitive 
closure of a relation in time proportional to n4. The computer scientists, utilizing 
the law of comparative advantage, do a bit better. Warshall's algorithm computes 
the transitive closure in n3 steps, and Munroe describes a process that does it in 
time proportional to n2.74.Warshall's algorithm is especially easy to implement 
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and quite ingenious. It  seems fast enough for the problems encountered in 
economics, as well. We therefore describe Warshall's algorithm in Appendix 2. 

At this point it might be worthwhile to be rather explicit about how one 
represents the relations R 0  and R in a form suitable for computation and how 
one actually verifies GARP in a systematic way. 

Let us construct an n by n matrix M whose i - j entry is given by: 

, , = 1 if p 'x ' 2 'xi, that is, x 'ROxJ;( 0 otherwise. 

M is constructed directly from the data; it summarizes the relation RO.Warsh-
all's algorithm, described in Appendix 2, operates on M to create a matrix MT 
where 

,t, = 1 if X ' R X J ,4
0 otherwise. 

MT can be used to check GARP in the following way. 

ALGORITHM1: Checking data for consistency with GARP. 
Inputs: ( p i , x ' ) ,i = 1 ,  . . . , n, and the matrix MT representing the relation R. 
Outputs: whether the data satisfies GARP or not. 
1. Is mtiJ= 1 and pJxJ>pJxi for some i and j? If so, we have a violation of 

GARP. 

Algorithm 1 is easily implemented on a computer. According to Afriat's 
theorem and Fact 1 we can use Algorithm 1 to simply and directly test a finite 
amount of data with the utility maximization model. If some data satisfies 
GARP then there is a nice utility function that will rationalize the observed 
behavior. If the data contains a violation of GARP then there does not exist a 
nonsatiated utility function that will rationalize the data. Hence we have a 
straightforward and efficient way to check a finite amount of data for consis- 
tency with the neoclassical model of consumer behavior. 

2. RECOVERABILITY-ORDINAL COMPARISONS OF 
CONSUMPTION BUNDLES 

Let us turn now to a somewhat different issue, namely the recoverability 
question described in the introduction. The revealed preference relation R which 
we discussed in the previous section summarizes all of the preference information 
contained in the demand observations. Any complete preference ordering that 
rationalizes the data must contain R,  and every completion of R that rationalizes 
the data is a possible preference ordering that generated the data. 

However, economists typically assume certain regularity conditions on the 
allowable preference orderings. For example we might restrict ourselves to 
preference orderings representable by utility functions that are nonsatiated, 
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monotonic, and concave. Afriat's theorem implies that we can always impose 
such restrictions with no loss of generality; and conversely, that it is impossible 
to detect violations of these restrictions with a finite amount of demand data. 

Suppose then that we are given two new consumption bundles x0 and x' that 
have not been previously observed. Suppose that every continuous, nonsatiated, 
concave, monotonic utility function u(x) that was consistent with (p l ,x l ) ,  
i = 1, . . . , n, implied that u(xO) > u(x'). Then we might well be justified in 
concluding that x0 was in fact preferred to x'. 

Alternatively we could adopt the following viewpoint. Suppose that every price 
vector po at which x0 could be demanded-and that was consistent with the data 
(pi,xi),  i = 1, . . . , n-also implied that x0 was revealed preferred to x'. Then 
certainly we could conclude x0 would be preferred to x' by any consistent 
consumer. Let us consider this approach in a bit more detail. 

First it is clear that if x0 has already been observed-so we know the price at 
which x0 is demanded-there is no problem in verifying whether X'RX'. Hence 
we concentrate on the case where x0 has not previously been observed. In this 
case we do not know what price to associate with x0 for purposes of the revealed 
preference comparison. However, we do know what the set of possible prices 
could be: 

DEFINITION:Given any bundle x0 not previously observed we define the set of 
prices that support x0 by: 

s (xO)= : (p l , x i ) ,  i = 0, . . . , n, satisfies GARP andp0x0 = 1 )  

This is simply the set of prices at which x0 could be demanded and still be 
consistent with the previously observed behavior. (The requirement thatp0x0 = 1 
is a convenient normalization.) We note that Afriat's theorem implies s(xO) is 
nonempty for all xO-just let p0 be the supporting price at x0 of any concave 
utility function that rationalizes the data. 

We can use the definition of GARP to provide a convenient description of 
s(xO): 

FACT 2: A price vector p0 is in s (xO)  if and only if it satisfies the following 
system of linear inequalities: 

pox05poxi for all x i  such that x 'RX', 
(2) 

pox0< pox ' for all x ' such that x 'pxO. 

PROOF: Follows immediately from the definition of GARP. 



DEMAND ANALYSIS 95 1 

According to Fact 2, S(xO) is simply the solution set to a certain system of 
linear inequalities constructed from the data (pi,xi),  i = 1, . . . , n, and the 
relations R and P. 

We can use S(x) to describe the set of observations "revealed worse" than x0  
and "revealed preferred" to x' in the following way. 

R w(xO)= { x  :for allp0 in ~ ( x ~ ) , p ~ x ~  2 p 0 x i  for 

some xiPx or pox0 >poxi for some xiRx ), 

RP(x') = { x  :for allp in S(x) ,px 2 p x i  for some 

x'Px' orpx >?xi  for some xiRx'). 

More succinctly, and with only a slight abuse of our earlier definitions, we 
might write: 

RP(x') = { x  : for allp in S(x),  xPx') 

These definitions formalize the idea described earlier: if x' is in R w(xO), then 
whatever the price at which x0 is demanded-as long as it is consistent with the 
previous data-that price will necessarily make x0 revealed preferred to x'. Thus 
every concave monotonic utility function that rationalizes the data must rank x0 
ahead of x'. Of course RP(x') has a similar interpretation. In fact it is clear from 
the definitions that x0 is "revealed preferred" to x' if and only if x' is "revealed 
worse" than xO. We record this fact for future reference. 

FACT3: x0 is in RP(x') i f  and only i f  x' is in Rw(xO). 

Rp(xO) and R w(xO) are extremely important to the rest of our discussion so it 
is worthwhile presenting a few two-dimensional examples. The simplest case- 
with one data point-is presented in Figure 2. Let us verify that Figure 2 is 
correct. 

First, we consider Rp(xO). In this simple case, Rp(xO) is simply the convex 
monotonic hull of all points revealed preferred to xO: namely x '  and x0 itself. To 
verify this, let x be any point in Rp(xO), and let p be any (nonnegative) price 
vector at which x could be demanded. It is geometrically clear that, whatever 
budget line is chosen, x will be revealed preferred to xO-either directly, or 
indirectly through the observation x'. (The reader might check his understanding 
of this point by indicating the region where x will be directly revealed preferred 
to x0 by all supporting prices, and the region where x will only be indirectly 
revealed preferred to x0 for some supporting prices.) So much for RP(x'). 

In order to verify the construction of Rw(xO), we have to consider all of the 
prices at which x0 could be demanded and still be consistent with the previous 
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data point (p1,x') .  In this case GARP imposes an important restriction on 
the budget line through x0 can be no steeper than the indicated angle 8. If it were 
steeper we would create a violation of GARP: we would have x'RxO, and xOPOX'. 
R w(xO) is the set of points that lie below all budget lines consistent with GARP 
-exactly as illustrated in Figure 2. 

Figure 3 presents a more complex example. As before RP(xO) turns out to be 
the convex monotonic hull of all the points revealed preferred to xO. R w(xO) is a 
bit more interesting. For all budgets that support x0 and satisfy GARP, x0 is 
revealed preferred to x l ,  and a fortiori to all the points beneath xl 's budget 
set . . . including x2, x3 and so on. 

Now Figure 3 presents us with quite a bit of information about the indiffer- 
ence curve passing through xO: it cannot intersect Rp(xO) or Rw(xo)-hence it 
must lie in between the two. Put another way, the set of bundles preferred to x0 
(using the true utility function) must always contain RP(~') ,  and must be 
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contained in the complement of R w ( x O ) .This last set, the complement of R w ( x O ) ,  
will be useful later on; we will call it NR w ( x O )for "not revealed worse" than xO. 

It is clear from Figure 3 that R p ( x O )and NRW(X') are not only "inner" and 
"outer" estimates of the set of bundles preferred to xO,they are also the tightest 
inner and outer estimates. If a point x' is not contained in either of these sets 
then there is a nice utility function that rationalizes the data for which u(xO)  
2 u ( x l ) .. . and there is a nice utility function that rationalizes the data for 
which u ( x l )2 u(xO).  

These statements are obvious for the two dimensional example given in Figure 
3, but in fact they are true in general. In order to establish this we need the 
following criterion for membership in R w ( x O ) .  

FACT4: A bundle x' is in R w ( x O )i f  and only i f  there does not exist a p0 2 0 
that satisfies the following system of linear inequalities: 

'pox05pox for all x i  such that x 'RxO, 
(2) 

pox0 <pox' for all x i  such that x ' ~ x O ,  

pox05pox; for all x i  such that xjRx', 
(3) 

pox0 <p0xj for all xJ  such that XJPX' .  

PROOF:Suppose x' is in R w ( x O ) .Then any p0 that satisfies the first set of 
inequalities is a supporting price for x0 by Fact 2. By the definition of R w ( x O )it 
must therefore violate one of the inequalities in the second set. 

Conversely suppose x' is not in R w ( x O ) .Then there is some supporting price 
p0 at which x0 is not revealed preferred to x1by any chain. That is, p0 satisfies (2)  
and (3). 

Fact 4 gives us an explicit way to check whether x' is revealed worse than xO. 
And by Fact 3 we can see whether x' is revealed preferred to x0 just by checking 
whether x0 is revealed worse than x'. Hence we can recover all of the ordinal 
information in the data by checking whether there exists a solution to a simple 
set of linear inequalities. This is easily accomplished by solving a simple linear 
program. Note that the number of constraints in this program will at most be 
2n + 1-and generally be considerably smaller than 2n + 1. 

We can now verify the intuitively plausible statements made earlier concerning 
the relationship between Rp(xO) ,  R w ( x O ) ,  p ( xO)  = { x  : u ( x )> u ( x O ) ) ,and 
w ( x O )= { x  : u(xO)> u ( x ) ) .  

FACT5: Let u ( x )  be any utility function that rationalizes the data. Then for all 
xO,R P ( X O )  c p (xO)c N R W ( X O ) .  

PROOF:Obvious from the fact that xOpx' implies u(xO)> u(x ' )  for any utility 
function that rationalizes the data. 
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FACT6: Suppose that x' is not in R w ( x O ) ;  then there exists a nonsatiated, 
continuous, concave monotonic utility function that rationalizes the data for which 
u(xO)L u(x').  An analogous statement holds if x' is not in Rp(xO) .  

PROOF: Suppose x' is not in RW(xO) .Then by Fact 4 there exists a 
supporting x0 such that not xOpx'.Hence by using Fact 16 in Appendix 1 ,  there 
is a utility function with the stated properties. 

FACT7: Let xORx'. Then Rp(xO)  c RP(x').  Assume further that x' is observed 
as a chosen bundle at some price p'. Then R W ( x O )  > R W ( x t )  and NRW(X') 
C NR W ( x l ) .  

PROOF: Let 2 be in RP(xl) .Then for allp* that support 2 we have 2 ~ x O .Since 
by hypothesis xORx',transitivity implies .2Rx1.Hence 2 is in RP(x').  

Let 2 be in R W ( x l ) .  Since x' is actually chosen at price p' this implies x 'R2 ,  
Since by hypothesis xORx',transitivity implies xORR. Hence 2 is in R w ( x O ) .  

3. RECOVERABILITY-ORDINAL COMPARISONS OF  BUDGETS 

In many applications of demand analysis the natural objects of interest are not 
bundles of goods but are budgets-i.e. prices and expenditures. For example, if 
one wants to compare proposed changes in the tax structure, it is natural to 
compare alternative price configurations: given two proposed lists of prices and 
expenditures ipO, and (p ' ,  y') we want to know which one is preferred by 
some individual consumer. 

If we had a measure of the consumer's indirect utility function u ( p ,  y )  we 
could simply compute O ( ~ O ,  and u ( p f ,  y') and compare the two numbers. If 
we have only a finite number of observations on a consumer's behavior ( p 1 , x ' ) ,  
i = I ,  . . . , n,  we could postulate a specification of an indirect utility function, 
derive the associated demand functions, and estimate the parameters of the 
resulting demand system. These estimated parameters of the demand system 
translate directly back to parameters of the indirect utility function which can 
then be used to make the welfare comparison between the two budgets. 

However, the parametric specification necessarily involves an unwarranted 
maintained hypothesis of functional form. How can we proceed to make a 
nonparametric comparison of versus (p ' ,  y')? 

Let us recall the notion of indirect revealedpreference of Sakai [23], Little [18], 
and Richter [22]. 

DEFINITION:Given an observed budget ( p i ,  y ' )  and a budget ( p ,  y ) ,  we say: 
( I )  ( p ,  y )  is directly revealed preferred to ( p ' ,  y '), written ( p ,y )R y '), if 

px' s y .  
(2)  ( p ,  y )  is strictly directly revealed preferred to ( p i ,y ' ) ,  written ( p ,y ) ~ O  

( p ' ,  y ' ) ,  if px' <y .  
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(3) (p,  y)  is revealed preferred to (pi ,  yi) ,  written (p,  y)R(pl ,  y'), if R is the 
transitive closure of R O. 

(4) (p, y)  is strictly revealed preferred to (pi,  y'), written (p,  y )P(p i ,  y') if 
there exist observed budgets (pJ, y j )  and (pl,  y l )  such that (p,  y)R(pJ, yj), 
($2 y j ) ~ ( p ' ,  yl), (p i ,  y ')R(p, y). 

Note that the indirect revealed preference relation works exactly opposite to 
the way the revealed preference relation works. To tell whether x0 is revealed 
preferred to something we need to know the pricep0 at which x0 is demanded- 
and then x0 is revealed preferred to the infinite number of bundles beneath its 
budget line. To tell whether (pO, is revealed worse than some budget we need 
to know the bundle x0 that is demanded at (po, yo)-and then (pO, yo) is 
revealed worse than the infinite number of budgets (p ,  y)  for which pxO 5 y.  

Nevertheless we can apply the same approach to ordinal comparisons to 
construct dual versions of the results in Section 3. This duality is most clearly 
exhibited if we normalize prices by dividing through by expenditure so that 
budgets are uniquely described by p0= (PO, 1) and p' = (p', I). 

DEFINITION:Given any price p0  not previously observed we define the set of 
bundles that support p0 by: 

s ( p O )= { x O: (p l , x i ) ,i = 0, . . . , n, satisfies GARP andp0x0 = 1) .  

As before the requirement that pox0 = 1 is only a normalization. 
We can now describe the set of budgets "revealed preferred" or "revealed 

worse" than a given budget by: 

R w(pO)= { p : for all x in S(p) ,  1 L pox' for somepiPp, 

or 1 > pox' for somep'Rp), 

RP(pf )= { p  :for all x' in S(pl) ,  1 Z p x '  for sornep'~p' 

Of course these definitions could also be stated as: 

R w(pO)= { p :for all x in S(p) ,  1 2 poxi for some xipx, 

or 1 >pox '  for some xiRx),  

RP(p1)= { p : for all x' in S(p1), 1 2 px i  for some xlPx' 

or 1 > px' for some x'Rx'}. 
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Or even more succinctly: 

R w ( p O )= { p :for some x in ~ ( p ) ,pORp),  

R P ( p ' )  = { p  : for some x' in S ( p ' ) , p P p f ) .  

We can now state the dual versions of Facts 2 and 4. The proofs are 
completely analogous and are left to the reader. 

FACT8: A bundle x0  is in s ( p O )  if and only if it satisfies the following system of 
linear inequalities: 

0 0 - 1( 1 )  p x  - > 

pixi  5 p'xO for al lpi  such that pORp', 
(2)  

pixi  <pix0 for all p i  such that pOPpi. 

FACT 9: A budget p' is in R p ( p O )  if and only if there does not exist an x0 2 0 
that satisfies the following system of linear inequalities: 

0 0 - 1(1) p x  - , 

pix' 5 pix0 for al lpi  such that pORp', 
(2) 

pix' <pix0 for allp' such that p 0 ~ p ' ,  

pJxJ5pJxO for allp' such that p' RpJ, 
(3) 

pJxj <pjxO for allpJ such that prPpJ. 

Of course the dual versions of Facts 3, 5, and 6 are also true. The statement 
and proofs of these are left to the reader as well. 

Another type of comparison that is often useful is to be able to compare 
bundles with budgets and vice versa. For example if we are given a direct and an 
associated normalized indirect utility function, u ( x )and v ( p ) ,we could consider: 

(1) All budgetsp preferred to a bundle xO:  

(2) All budgets p worse than a bundle xO:  

(3) All bundles x preferred to a budget 
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(4) All bundles x worse than a budget pO: 

Each of these constructs has its "revealed preferred" and "revealed worse" 
analogy: 

(I) All budgetsp revealed preferred to a bundle xO: 

PRP(xO)= { p : for all x in S(p), xPxO). 

(2) All budgets p revealed worse than a bundle xO: 

PR w(xO)= { p :for allp0 in s (xO) ,  and all x in S(p) ,  xOpx).  

(3) All bundles x revealed preferred to a budget pO: 

XRP(~ ' )= { x  :for allp in S(x), and all x0 in S(~O) ,  xpxO).  

(4) All bundles x revealed worse than a budget pO: 

X R W ( ~ ' )= { x  : for all x0 in s (pO) ,  xOPx). 

If we want to verify whether p' is in pRp(xO), etc. we simply have to write 
down the associated system of linear inequalities following the general model of 
Facts 2 and 4. In cases (2) and (4) above, these systems involve unknown p's and 
unknown x's and are therefore somewhat involved. Cases (I) and (4) on the other 
hand are rather simple. We record this fact for future reference. 

PRP(xO)= { p  : 1 > p x i  for some x'RxO or 1 2 p x i  for s o r n e x ' ~ ~ ~ ) ,  

XRW(~ ' )= {x : 1 >pox'  for some x ' ~ x  or 1 2 p x '  for some x'px). 

4. EXTRAPOLATION-FORECASTING DEMANDED BUNDLES 

Suppose that we have observed choices ( p i ,xi), i = 1, . . . , n, and that we are 
given some new budget (pO, 1) which has not been previously observed. What 
choice will the consumer make if his choice is to be consistent with the 
preferences revealed by his previous behavior? What is the best "overestimate" of 
the demanded bundle at pO? 

It turns out that we have already answered this question: it is simply the set of 
bundles that support the budget pO, namely s(pO). For s (pO)  is by definition all 
of the bundles of goods x0  which make the data (pi,  xi), i = 0, . . . , n, consistent 
with GARP. It is therefore the tightest overestimate of the demand correspon- 
dence at pO: every bundle in s (pO)  could be a chosen bundle at p0  and any 
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bundle outside of s ( p O )could never be chosen. Figure 4 gives a simple example 
of ~ ( ~ 0 ) .  

In an analogous manner s ( x O )gives us the tightest overestimate of the inverse 
demand correspondence. 

5. RECOVERABILITY-BOUNDING A SPECIFIC UTILITY FUNCTION 

It is often desirable to know not only whether some bundle is preferred to 
some other bundle, but by how much one bundle is preferred to another. Now of 
course, there is no unique answer to this question: demand theory is completely 
ordinal in nature and there is no unique cardinal representation of utility. On the 
other hand it is a common practice to use certain specific cardinalizations of 
utility in measuring economic welfare. 

One particularly useful cardinalization is Samuelson's "money metric" utility 
function (Samuelson [25]).For reasons that will become apparent, I prefer to call 
this function the direct income compensation function. We can define it in two 
equivalent ways: 

m ( p ,  xO)  = inf px 

such that x is in p ( x O )  

where p(xO)= { x : u ( x )> u ( x O ) )or, 

In the latter definition e ( p , u )  is the expenditure function and u ( x )  is the 
associated utility function. It  is obvious from this latter definition that m ( p , x O )  
behaves like an expenditure function with respect to P. It is also straightforward 
to show that for fixed p, m ( p , x O )  behaves like a utility function with respect to 
xO:since the expenditure function is always increasing in utility, m ( p , x O )is a 
monotonic transformation of a utility function and is therefore itself a utility 
function. 
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The direct income compensation function can be used to describe at least two 
measures of "how much" one configuration (pO ,xO)is preferred to another 
configuration (p ' ,  x'), namely Hicks' compensating and equivalent variations: 

C = m(p ' ,  x ' )  - m (p ' ,  xO), 

Since m ( p O , x )and m ( p l , x )are each utility functions that represent the same 
preferences, C and E must always have the same sign, but they generally will 
have different magnitudes. 

Let us accept for the moment that m ( p , x ) is a reasonable cardinalization of 
utility. The question that then arises is how we might measure it. If we are given 
a parametric form for the utility function or expenditure function it is always 
possible to compute m ( p ,  x )  directly. However, in the spirit of the nonparametric 
approach to demand analysis we ask how we might compare functions that 
provide bounds on m ( p , x )  that are consistent with a finite set of observed 
demands (p',x i ) ,  i = 1, . . . , n. 

In Section 2 we described the best inner and outer approximations to p(xO).It 
is natural to define the upper and lower bounds on the compensation function 
by: 

m + ( p ,  xO)  = inf px 

such that x is in R p ( x O ) ,  

nr - ( p ,  xO) = inf px 

such that x is in NR w ( x O ) .  

I refer to these as the overcompensation and the undercompensation functions 
respectively. 

FACT1 1 : Let m and m - be defined as above. Then + 

+(ii) x 'Rx implies m + ( p O ,x ') 2 m x ) .  ~fx ' R X ~and xJ  

is chosen at some price pJ, then m - x ') 2 m - (pO ,x i ) .  

PROOF:(i) Follows from Fact 5. (ii) Follows from Fact 7. 

Fact 11 shows that: (i) mt  ( p ,  x )  and m -  ( p ,  x )  do bound the compensation 
function, and (ii) they are themselves utility functions that respect the revealed 
preference ordering. 
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Thus the overcompensation and undercompensation functions provide theoret- 
ically ideal bounds to the compensation function. The problem with these two 
functions is that they are rather difficult to compute in practice. Recall that Fact 
4 gave us a way to verify whether any given bundle x was an element of RP(X') 
or R w ( x O ) .However, I do not currently have any explicit description of these 
two sets of the sort suitable for mathematical programming techniques. So 
instead I have proceeded by defining two approximations to the overcompensa- 
tion and undercompensation functions. These two approximations do provide 
bounds, but they are just not the theoretically tightest bounds. We turn now to a 
description of these approximations. 

Let us define the convex, monotonic hull of { x i: x i R x O ) :  

c M ( x O )= interior of convex hull of { x  : x 2 x i ,  x i R x O } .  

FACT 12: RP(X') > c M ( x O )for all xO.  

PROOF: Let x be a point in c M ( x O )and let p be any price vector that supports 
x .  Then I claim px > px i  for some x'RxO.For if not, p would separate x from 
CM(X'),  a contradiction. Since xRxi ,  xiRxO we have that x is in R p ( x O ) .  

Then we can define the approximate overcompensation function by: 

am + ( p ,  xO)  = inf px 

such that x is in CM(X' ) .  

Since c M ( x O )is a convex polytope whose vertices are precisely those xiRxO,we 
can also describe this minimization problem by: 

amt  ( p ,xO)= min px i ,  such that x i ~ x O  

Note that this function is quite simple to compute. Nevertheless, this approxi- 
mate overcompensation function does share some desirable properties with the 
true overcompensation function. 

FACT13: 

(1) am + ( p ,  x )  2 m + ( p ,  x )  2 m ( p ,  x ) .  

(2) xORx implies am + ( p ,xO)2 am+ ( p ,  x ) .  

(3) There exists a convex monotonic preference order >, such that 

am + ( p ,  xO)  = m ( p ,  xO)  for all xO. 

PROOF: The first two parts are obvious. The third is rather detailed. First we 
define the order and verify that it works; then we establish its properties. 
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Let x 2 x' if and only if am+ ( p , x )  2 am+(p , x ' ) .  Let us show that the 
compensation function that goes along with this order is in fact equal to 
am + ( p ,  x) .  

Let px* solve: 

px* = m ( p ,Z )  = min px 

such that am+ ( p ,  x )  2 am+ ( p ,  5)  

and let px" solve 

px" = am + ( p ,5)  = min px ' ,  such that x  'RZ. 

Now x"RF so property (2 )shows that am+ ( p ,  2)2 am+ ( p ,  5). Hence x" is feasible 
for the first problem and therefore px* S px". 

On the other hand 

Next we examine the properties of the preference ordering 2. 
(a) { x :am+ ( p , x )  2 k )  is convex. To prove this, we suppose am+ ( p , x ' )  2 k 

and am+ ( p ,  x" )  2 k.  Let 

A = { x '  : x iRx ' } ,  

I claim that if x i  is in C ,  then x i  is in A U B. For to say x i  is in C is to say that 
there exists a finite sequence such that: 

pix' ?pix ' ,  

prxr  2 p r x s ,  

p'x' 2 p ' ( t x f  + ( I  - t )x l ' ) .  

From the last inequality it is easy to show that either p 'x' 2 p  'x' or p  'x' 2pix", 
which establishes the claim. 

Now, since C cA U B, we have: 

k 5 rnin p x 5  rnin px= am+ ( p ,  tx' + (I  - t )x f ' ) .
x 1 n A U B  x in C 

(b) If x' 2 xO,then am ( p ,  x ' )  L am+ ( p ,  xO). This follows since { x '  : x 'RX ' )+ 

c { X I  : x i ~ x O j .  

Thus am+ x )  is a utility function that bounds the compensation function 
and the bound is uniformly tight in the sense that there exists a "nice" prefer-
ence ordering that actually generates am+ x )  as its compensation function. 
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However it must be pointed out that this ordering typically exhibits regions of 
satiation, and is in general discontinuous. An example is given in Figure 5.  Here 
all the points in the shaded region are assigned am+ ( p O ,  x )  = pox'. The approxi- 
mate overcompensation function increases linearly as one moves out the ray tx ,  
then is constant, and then jumps discontinuously. 

We turn now to the problem of computing an approximation to the under- 
compensation function. The basic trick here is to get an "inner bound" to 
R w ( x O )by eliminating the nonconvexities shown in Figure 3. We define this 
inner bound by: 

The crucial difference between R w ( x O )and IRW(X') is the requirement that 
x i  # xO.  This is made clear in Figure 3.  The complement of l R w ( x O ) ,  
NIRW(X') ,  is then given by: 

NIR w ( x O )= { x :p'x > pix'  for some x ' # x0 such that xORx' 

for all p0 in s ( x O )  

This is simply a set of a points defined by a finite number of linear inequalities. 
Hence there is no problem in computing the "approximate undercompensation 
function": 

am - ( p O ,Z)= inf pox 

such that x is in NIRW(X) .  

This also shares some desirable features with the true undercompensation func- 
tion: 



DEMAND ANALYSIS 

FACT14: 

(1) m ( p , x )2 m -  ( p , x )  2 am-  ( p , x ) ,  

(2) x O ~ x j  implies am - ( p ,x O )2 am - ( p ,x j ) .  

PROOF: Left to the reader. 

Thus am-  ( p ,  x )  bounds the true undercompensation function and it respects 
the revealed preference ordering, although it does not provide the theoretically 
ideal bound. 

6 .  RECOVERABILITY-BOUNDING A SPECIFIC 
INDIRECT UTILITY FUNCTION 

It is natural to extend the results of the last section to indirect utility 
comparisons. The function one wishes to bound is the indirect income compensa- 
tion function 

where e ( q , u )  is the expenditure function and v ( p ,  y )  is the indirect utility 
f ~ n c t i o n . ~An equivalent way to define y ( q ; p, y )  is: 

( " (9 ;  p, y )  = inf qx 

such that x is in X P ( p ,  y )  = {x :u ( x ) > v ( p ,y ) ) .  

Applying the approach of the last section, it appears natural to define the indirect 
overcompensation function and the indirect undercompensation function by: 

~ l + ( q ; p , y ) = i n f q x  

such that x is in X R P ( p ,  y ) ,  

p- ( q ;  p, y )  = inf qx  

such that x is in N X R  W ( p ,  y ) .  

Recall that X R P ( p ,  y )  consists of all bundles revealed preferred to the budget 
( p ,  y ) ,  and N X R W ( p ,  y )  consists of all bundles not revealed worse than the 
budget ( p ,  y ) ;  formal definitions were given in Section 3. 

It is by now straightforward to verify the following fact: 

5 T l ~ eindirect compensation function was first discussed by McKenzie [19]. It has been extensively 
treated by Hurwicz and Uzawa [13]. 
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FACT 15: The indirect over and under compensation functions have the following 
properties: 

(ii) ( p O ,  y O ) R  ( p ' ,  y ' )  implies p - ( q ;  pO, y o )  >= p - ( q ;  p', y ') .  

If is the budget for some observed choice 

then p+ ( 9 ;  pO, yo)  >= p+ ( q ;  p', y ') .  

Let us now consider the computability of p+ and p- .  As before, we can verify 
whether any given x' is an element of X R P ( p ,  y )  by solving a set of linear 
inequalities; however it seems difficult to get an explicit description of the sort 
necessary for mathematical programming. 

I therefore suggest the following approximation to p+: 

ap ' (q ;  p,  y )  = a m ' ( q , x f )  
. . 

if ( p ,  y )  = ( p ' ,  y ' )  for some observed ( p ' ,  y ' ) ,  

= max qx 

such that x is in S ( p ,  y )  otherwise. 

That is, if ( p ,  y )  is observed, we use the value of the approximate overcom- 
pensation function. Otherwise, we adopt the most conservative estimate and 
set up+ ( q ;  p,  y )  equal to the maximum expenditure over all bundles in the 
"overestimate" of the demand correspondence. This clearly gives an upper 
bound on the true overcompensation function. 

The indirect undercompensation function is, on the other hand, quite simple to 
compute. Since Fact 10 gives an explicit description of X R W ( p ,  y ) ,  as the 
solution set to a system of linear inequalities, we can simply compute p- ( q ;  p,  y )  
by solving a small linear program. An illustration of X R  W ( p ,  y )  and p(q; p,  y )  is 
given in Figure 6. 
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7. SOME APPLICATIONS 

The algorithms described in the previous sections have been assembled in a 
package of FORTRAN subroutines available from the author. Here I will briefly 
describe some computational experience with these routine^.^ 

First let us consider the issue of testing demand data for consistency with 
preference maximization. I have applied the routines of Section 1 to several sets 
of aggregate consumption data. In each case the aggregate consumption data was 
consistent with GARP: that is, it could have been generated by a single 
neoclassical "representative consumer." At first glance this may seem somewhat 
surprising given the negative theoretical results of Sonnenschein [27] and Debreu 
[S]. However, upon reflection, it is not difficult to understand why this occurs.' 

Most existing sets of aggregate consumption data are post-war data, and this 
period has been characterized by small changes in relative prices and large 
changes in income. Hence, each year has been revealed preferred to the previous 
years in the sense that it has typically been possible in a given year to purchase 
the consumption bundles of each of the previous years. Hence no "revealed 
preference" cycles can occur and the data are consistent with the maximization 
hypothesis. This observation implies that those studies which have rejected the 
preference maximization using conventional parametric techniques are rejecting 
only their particular choice of parametric form. 

Given that a set of aggregate consumption data are consistent with preference 
maximization, we can compute the over- and undercompensation functions 
described in Sections 5 and 6. One can use these functions to provide some 
interesting bounds on cost of living indices. 

Let ( p ' ,y ' )  be a budget in year i and yo) be a budget in the base year. 
Then the true cost of living index is defined by: 

The true cost of living index measures how much money one would need in the 
base year to be as well off as one was in the comparison year expressed as a 
fraction of base year expenditure. In order to calculate i one needs the indirect 
income compensation function which is equivalent to requiring complete knowl- 
edge of the individual preference ordering over some range. 

However, we can use the results of Section 6 to compute upper and lower 
bounds on i that are consistent with any finite set of data. Table I presents the 
results of such a computation using U.S. aggregate consumption data by nine 
categories from 1947-78. 

Note the tightness of the bounds. Typically the overestimate is within 15 per 

'Diewert and Parkan [lo] discuss their computational experience with some alternative nonpara- 
metric techniques. 

'For another independent recent application of revealed preference methodology to aggregate 
data see Landsburg [17]. 
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TABLE I 
UPPERAND LOWERBOUNDON TRUECOSTOF LIVINGINDEX^ 

(CLASSICAL IN PARENTHESES)BOUNDS 

Year Upper Bound Lower Bound 

dData are U.S. consumption data by 9 categories from the NBER Time 
Series Database (Tables 2.3 and 2.4). The goods are motor vehicles, furniture, 
other durables, food, clothing, gasol~ne and oil, housing, transportation, and 
other services. 

cent of the underestimate which allows for a fairly tight estimate of the true cost 
of living. However, the accuracy of the table is slightly misleading in the 
following sense. 

Given only the information contained in the two observations yo) and 
( p ' ,y ' )  it is possible to construct the classical bounds depicted in Figure 7. 
Improvements in these bounds are possible only when some budget set from 
another sample observation intersects the budget set given by ( p ' ,y ' )  as in 
Figure 8. 

Given the nature of the data, these intersections are quite rare, and in fact only 
occur for two years 1974 and 1975. Again, the lack of variation in the price data 
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Improved 

limits the power of these methods in this case. However, the techniques proposed 
here do provide an improvement on the classical bounds when sufficient varia- 
tion in price data is present. 

8. SUMMARY 

We have shown how the nonparametric techniques of revealed preference 
analysis can be used to: (1) test a finite amount of data for consistency with 
preference maximization model; (2) construct a nicely behaved utility function 
capable sf rationalizing a finite amount of demand data; (3) compare previously 
unobserved consumption bundles and budgets with respect to their ordinal 
rankings; (4) compute cardinal bounds on the direct and indirect compensation 
functions; and (5) compute estimates of the direct and indirect demand corre- 
spondence consistent with previously observed demand data. 

University of Michigan 

Manuscript received August, 1980; final revision received August I, 1981. 
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APPENDIX I: A PROOF OF AFRIAT'S THEOREM 

In this appendix we give a proof of Afriat's theorem. The proof we give is based on earlier proofs 
by Afriat [4] and Diewert [9], but is somewhat more constructive. In fact we will exhibit an algorithm 
which will actually compute a utility function which rationalizes any given finite amount of data. It 
turns out that it is convenient to first describe the algorithm to do this computation and then verify 
that it works in the course of the proof of Afriat's theorem. 

The algorithm that we describe below makes use of a subroutine which calculates a maximal 
element of a finite set with respect to some binary relation. 

Let us recall the following definition. 

DEFINITION:An element x m  of a set S is maximal with respect to a binary relation B if xiBx'" 
implies x "Bx'. 

If x'" is a maximal element then either there is nothing that is ranked ahead of it or the only things 
that are "ahead" of it are things that are indifferent to it. 

If we have a finite set with a reflexive and transitive binary relation then there is always at least 
one maximal element; the following algorithm shows us how to find it. (See Sen [26, p. 111.) 

ALGORITHM2: Finding a maximal element. 
Input: a reflexive and transitive binary relation B defined on a finite set S = (x ' ,  . . . ,x n )  

indexed by I = (1 ,  . . . , n). 
Output: an index m where x'Bxm implies x'"Bxl. 
1.  Set m = 1, bO= x ' .  
2. For each i = 1 , .  . . , n, if x ' B ~ " '  set b' = x i ,  and m = i. Otherwise set b ' =  b l - ' .  

We will let max(1) be a routine that performs Algorithm 2; that is, given a set S indexed by I ,  
max(1) returns the index of a maximal element in S .  

It is perhaps not immediately obvious that Algorithm 2 works. Hence we provide the following 
proof. 

FACT 15: The output of Algorithm 2 is the index of a maximal element of S .  

PROOF: First we note that by the transitivity and reflexivity of B, bnBbJ for all j = 0, . . . , n. Also 
note that x m  = b ". 

Now suppose we are given some x'Bxm; i.e. x'Bbn. We must show that b"Bxl. First we observe 
that since x'Bbn, and bnBb'- l ,  then x ' B b '  I .  Line 2 of the algorithm then implies b '  = x i .  But then 
b"Bbl, b' = x '  gives h"Bxl as required. 

We note that the revealed preference relation R is transitive and reflexive, so Algorithm 2 will 
therefore correctly compute a maximal element. We can now present an algorithm which calculates 
numbers that satisfy the Afriat inequalities: 

ALGORITHM Constructing the Afriat numbers. 3: 
Input: A set of demand observations (pi,x') ,  i = 1, . . . , n, and the revealed preference relation R 

that satisfy CARP. 
Output: A set of numbers Ui, A '  > 0, i = 1, . . . , n, that satisfy the Afriat inequalities. 
1. I = ( l ,  . . . , n ] , B = 0 .  
2. Let m = max(1). 
3. Set E = ( i  in I :  xiRxm).  If B = 0 ,  set Urn = A m  = 1 and go to 6. Otherwise go to 4. 
4. Set Urn = min,E,minJ,Bmin( UJ + A$j(xi - xJ), UJ). 
5. Set A m  = max,,,max,EBmax((UJ - Um)/pi(xJ - x'), 1). 
6. Set U' = Urn,A '  = A m  for all i E E. 
7. Set I = I \ E ,  B = B U E. If I = 0 ,  stop. Otherwise, go to 2. 

It is not at  all obvious that Algorithm 3 does in fact compute numbers that satisfy the Afriat 
inequalities; however that fact will be verified in the proof of Afriat's theorem. 
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AFRIAT'S THEOREM: The following conditions are equivalent: 
( 1 )  There exists a nonsatiated utility function that rationalizes the data. 
(2) The data satisjes GARP: if xlRxJ ,  then pJxJ 5 pJxl.  
(3) There exist numbers U',  X' > 0 such that U' 5 UJ+ XJpJ(x' - x J )  for i, j = 1, . . . ,n. 
(4)  There exists a nonsatiated, continuous, concave, monotonic utility function that rationalizes the 

data. 

PROOF:(1)*(2). Let u ( x ) rationalize the data. If pix' 2 p ' x J  then u ( x i )2 u ( x J )by definition so 
that X'ROXJimplies u ( x i )2 u (xJ ) .If pix' >p'xJ so that xipOxJ,then I claim that u ( x i )> u(x j ) .  If 
not, then u ( x l )= u(xJ ) .But by local nonsatiation there is then an i such that p'x' >p'2 and 
u(;) > u ( x i ) .  But then u ( x )  could not rationalize the data point ( p ' , x i ) .  Hence ~ ' P ' X J  implies 
u ( x l )> u ( x J ) ,and GARP follows. 

(2)*(3). In order to prove this we need to verify that Algorithm 3 works; i.e., that the numbers it 
calculates do indeed satisfy the Afriat inequalities. 

At each pass through the algorithm a set of indices of "equivalent" elements, E ,  is removed from I 
and added to B, a set of indices of "better" elements. We will show that after step 6 is executed, the 
U's and the A's at  that stage satisfy the Afriat inequalities for all the U's and X's calculated up to that 
point. That is, we will verify the following three statements: 

(a) U' 5 UJ+ X-'pJ(xi- x J )  for all j in B and all i in E,  

(b) UJ5 U' + h 'p ' (xJ- x ' )  for all j in B and all i in E, 

(c) U' 5 UJ+ XJpJ(xl- x J )  for all i and j in E. 

Proof of ( a ) :  By step 4 of the algorithm: 

U' = Urn5 UJ+ XJpJ(xi- x J )  for all j in B and all i in E.  

Proof of (b):  First note that when the algorithm correctly executes statement 5, pi(xJ  - x i )> 0,  
for all j in B. If not, xlRxJ  for some j in B. But then i would have been moved into B before j was 
moved into B. 

Hence, the division is well defined and 

A' = A" 2 UJ- U' for all j in B and all i in E .  

p Z ( x J- x i )  


Cross multiplying: 

X$'(xi  - x i )  2 UJ- U' for a l l j  in B and all i in E 

which proves (b). 
Proof of (c ) :  First note that i, j in E implies p J ( x i- x i )  2 0. If not X J P ' ~ ' ,giving a violation of 

GARP. Now for all i and j in E :  

U ' = U J  and X J = X m > O  

(3)*(4). We define the function U ( x )by 

U ( x )= min { U' + X'pl(x - x ' ) ) .  
I 

It is clear from the definition that this piecewise linear function has the stated properties. Hence we 
only need to verify that it rationalizes the data. 
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First we note that U(x')  = U' for all i = 1, . . . , n. For suppose the minimum is attained at  x m ;  
then 

since h'"p(xx' - x ' )  = 0. But if this inequality were ever strict we would violate one of the Afriat 
inequalities. 

Now suppose we are given some x such that pJxJ 2 p J x .  We must show that U(xJ) 2 U(x). This 
follows directly from the following set of inequalities: 

U(x) = min { U' + X'pi(x - x i ) )  
I 

since XJpJ(x - xJ) 5 0. 
(4)* (I). This is obvious. 

It is worthwhile giving a somewhat more heuristic argument for Afriat's Theorem, which more 
directly exhibits the meaning of the Afriat inequalities. Suppose that we have a differentiable concave 
utility function that rationalizes some data ( p l , x ' ) ,  i = 1, . . . ,n. Then concavity implies 

and utility maximization implies 

Putting these together we see that the Afriat conditions are a necessary condition for utility 
maximization in this differentiable framework. To  motivate the sufficiency result we simply note that 
by concavity we have n overestimates of the utility at some point x since 

U(X)5 ~ ( x ' )+ X'pl(x - x ' )  for i = 1, . . . ,n. 

Hence the minimum of the right hand side over all observation i-the lower envelope-should give us 
a reasonable measure of the utility of x. 

This interpretation of the U"s as utility levels and the hi's as the marginal utilities of income was 
first suggested by Afriat [I] and further elucidated by Diewert and Parkan [lo]. Varian [29, 301, has 
used this sort of argument to derive finite necessary and sufficient conditions for a number of 
specializations of the utility maximization model. 

Finally we give a proof of one last fact concerning Afriat's construction that was stated without 
proof at  one point in the text. If x '  is not revealed preferred to xJ, then it is intuitively plausible that 
there is a nice utility function that rationalizes the data for which u(xJ) 2 u(xi). This is verified in the 
next statement. 

FACT 16: If not x'RxJ, then there is a nonsatiated, continuous, concave, monotonic utility function 
that rationalizes the data for which u(xJ) 2 u(xl). 

PROOF: Simply ensure that, max(I) returns the index j before the index i. Line 4 of Algorithm 3 
then implies that u(xJ) 2 u(xl) .  

APPENDIX 11: COMPUTING CLOSURETHE TRANSITIVE 

The following discussion concerning the computation of the transitive closure of a relation is taken 
from Aho and Ullman [6], which in turn is based on Warshall [31]. Their results are very slightly 
generalized in a way that is useful in some other applications (Varian [29]). 
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Let M be an n by n matrix representing a binary relation; i.e. my = 1 if X'R'XJ and m,, = 0 
otherwise. We can also think of M as representing a directed graph as in Figure 9: there is an arrow 
from vertex i to vertex j if and only if my = 1. It is this interpretation that gives rise-somewhat 
indirectly-to Warshall's algorithm. 

Suppose now that we have an arbitrary directed graph and some associated cost function c,, where 
c,, P 0 measures the cost of transporting one unit of a good directly from vertex i to vertex j. If vertex 
i and vertex j are not directly connected c,, is by definition infinite. Now although the cost of moving 
i toj directly is given by c,,, the cheapest cost of moving i to j may be much less. Warshall's algorithm 
is concerned with calculating the least cost of moving from any vertex to any other vertex. We denote 
the magnitude of this least cost by T,,. 

I claim that if we can solve this "least cost problem" we can easily solve the "transitive closure" 
problem. We just create a cost matrix C where 

1 i f m , , = I ,  
c,, = { cc if m,, = 0. 

Now we run C through Warshall's algorithm to compute the least cost matrix (Z,,): Then if 
FU = I < m we know that there is some path of length 1 that connects vertex i with vertex J. Hence a 
method to solve the least cost problem gives us a method to solve the transitive closure problem. 

ALGORITHM4: Minimum cost of paths in a graph. 

Input: c,, = cost of moving from node i to node j ;  c, 2 0. 

Output: zY = minimum cost of moving from node i to node j .  

(1)Set k = 1. 
(2)For all i and j,if c,, 2 c,, + ckJ set c,, = c,, + ckJ. 
(3) If k < n, let k = k + 1 and go to 2. If k = n, set z, = c,, for all i and j. 

It is not at all obvious that Algorithm 4 does indeed compute the minimum cost of moving from i 
toj for all i and j.But the following argument shows that it works. 

FACT 17: Let (i,I ,  . . . , m ,  j) be a path from i to j. Then T ,  5 c,, + . . . + cmJ. 

PROOF:Consider the algorithm when it has completed step (2).We will show that c,, is the cost of 
the cheapest path from i to j that passes through no intermediate vertex with index greater than k. 
This is certainly true for k = 1, and we suppose it to be true for k - 1. 

Let (I,I ,  . . . , m ,  j) be a path from i to j that passes through no intermediate vertex with index 
greater than k. If it does not pass through vertex k we are done. If it does pass through k, we can 
suppose it only passes through once, since removing a cycle cannot increase the cost. By the 
induction hypothesis c,, is the cheapest path from i to k with no intermediate vertex greater than 
k - 1 and similarly for ckJ.Since step (2)of the algorithm ensures c,, 5 c,, + cg ,  we are done. 

Note that step (2)of the algorithm will be executed n3  times; thus we can compute the transitive 
closure of a relation in n3 computer additions and comparisons. Of course, if we are using Warshall's 
algorithm only to compute the transitive closure of a relation we can improve a bit on that bound. 
Consider for example the following FORTRAN subroutine which computes the transitive closure of 
a relation represented by the matrix M .  
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ALGORITHM5: Computing the transitive closure. 
Input: M ( I ,  J )  = 1 if  p'x' 2 p 1 x J ,  0 otherwise. N = number o f  observations; nobs = maximum 

number o f  observations. 
Output: M ( I ,  J )  = 1 i f  x 'RxJ ,  0 otherwise. 

SUBROUTINE T C L S R  ( M ,  N )  
DIMENSION M(nobs,  nobs) 
D O 3 0 K =  l , N  
D O 2 0 I =  l , N  
DO l O J =  l , N  
IF ( M ( I ,  K )  .EQ. 0 .OR. M ( K ,  J )  .EQ. 0 )  G O  T O  10 
M ( I ,  J )  = 1 

10 CONTINUE 

20 CONTINUE 

30 CONTINUE 


RETURN 

E N D  


This clearly computes the transitive closure by a straightforward modification o f  the argument 
given in Fact 17. 
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