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Abstract—In this paper, we develop the nonsubsampled
contourlet transform (NSCT) and study its applications. The
construction proposed in this paper is based on a nonsubsam-
pled pyramid structure and nonsubsampled directional filter
banks. The result is a flexible multiscale, multidirection, and shift-
invariant image decomposition that can be efficiently implemented
via the à trous algorithm. At the core of the proposed scheme is
the nonseparable two-channel nonsubsampled filter bank (NSFB).
We exploit the less stringent design condition of the NSFB to
design filters that lead to a NSCT with better frequency selectivity
and regularity when compared to the contourlet transform. We
propose a design framework based on the mapping approach,
that allows for a fast implementation based on a lifting or ladder
structure, and only uses one-dimensional filtering in some cases.
In addition, our design ensures that the corresponding frame
elements are regular, symmetric, and the frame is close to a tight
one. We assess the performance of the NSCT in image denoising
and enhancement applications. In both applications the NSCT
compares favorably to other existing methods in the literature.

Index Terms—Contourlet transform, frames, image denoising,
image enhancement, multidimensional filter banks, nonsubsam-
pled filter banks.

I. INTRODUCTION

A
NUMBER of image-processing tasks are efficiently

carried out in the domain of an invertible linear transfor-

mation. For example, image compression and denoising are

efficiently done in the wavelet transform domain [1], [2]. An

effective transform captures the essence of a given signal or a

family of signals with few basis functions. The set of basis func-

tions completely characterizes the transform and this set can

be redundant or not, depending on whether the basis functions

are linear dependent. By allowing redundancy, it is possible to

enrich the set of basis functions so that the representation is

more efficient in capturing some signal behavior. In addition,

redundant representations are generally more flexible and easier

to design. In applications such as denoising, enhancement, and
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contour detection, a redundant representation can significantly

outperform a nonredundant one.

Another important feature of a transform is its stability with

respect to shifts of the input signal. The importance of the shift-

invariance property in imaging applications dates back at least

to Daugman [3] and was also advocated by Simoncelli et al.

in [4]. An example that illustrates the importance of shift-

invariance is image denoising by thresholding where the lack

of shift-invariance causes pseudo-Gibbs phenomena around

singularities [5]. Thus, most state-of-the-art wavelet denoising

algorithms (see for example [6]–[8]) use an expansion with

less shift sensitivity than the standard maximally decimated

wavelet decomposition—the most common being the nonsub-

sampled wavelet transform (NSWT) computed with the à trous

algorithm [9].1

In addition to shift-invariance, it has been recognized that an

efficient image representation has to account for the geometrical

structure pervasive in natural scenes. In this direction, several

representation schemes have recently been proposed [10]–[15].

The contourlet transform [14] is a multidirectional and mul-

tiscale transform that is constructed by combining the Lapla-

cian pyramid [16], [17] with the directional filter bank (DFB)

proposed in [18]. The pyramidal filter bank structure of the

contourlet transform has very little redundancy, which is im-

portant for compression applications. However, designing good

filters for the contourlet transfom is a difficult task. In addi-

tion, due to downsamplers and upsamplers present in both the

Laplacian pyramid and the DFB, the contourlet transform is not

shift-invariant.

In this paper, we propose an overcomplete transform that we

call the nonsubsampled contourlet transform (NSCT). Our main

motivation is to construct a flexible and efficient transform tar-

geting applications where redundancy is not a major issue (e.g.,

denoising). The NSCT is a fully shift-invariant, multiscale, and

multidirection expansion that has a fast implementation. The

proposed construction leads to a filter-design problem that to the

best of our knowledge has not been addressed elsewhere. The

design problem is much less constrained than that of contourlets.

This enables us to design filters with better frequency selec-

tivity thereby achieving better subband decomposition. Using

the mapping approach we provide a framework for filter design

that ensures good frequency localization in addition to having

a fast implementation through ladders steps. The NSCT has

proven to be very efficient in image denoising and image en-

hancement as we show in this paper.

1Denoising by thresholding in the NSWT domain can also be realized by
denoising multiple circular shifts of the signal with a critically sampled wavelet
transform and then averaging the results. This has been termed cycle spinning

after [5].
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Fig. 1. Nonsubsampled contourlet transform. (a) NSFB structure that imple-
ments the NSCT. (b) Idealized frequency partitioning obtained with the pro-
posed structure.

The paper is structured as follows. In Section II, we describe

the NSCT and its building blocks. We introduce a pyramid struc-

ture that ensures the multiscale feature of the NSCT and the di-

rectional filtering structure based on the DFB. The basic unit in

our construction is the nonsubsampled filter bank (NSFB) which

is discussed in Section II. In Section III, we study the issues as-

sociated with the NSFB design and implementation problems.

Applications of the NSCT in image denoising and enhancement

are discussed in Section IV. Concluding remarks are drawn in

Section V.

Notation: Throughout this paper, a two-dimensional

(2-D) filter is represented by its -transform where

. Evaluated on the unit sphere, a filter is denoted

by where . If

is a 2-D vector, then whereas if is a 2 2

matrix, then with the columns of

. In this paper we often deal with zero-phase 2-D filters.

On the unit sphere, such filters can be written as polynomials

in . We thus write for a

zero-phase filter in which and denote and ,

respectively.

Abbreviations: A number of abbreviations are used

throughout the paper.

NSCT: Nonsubsampled Contourlet Transform.

NSFB: Nonsubsampled Filter Bank.

NSDFB: Nonsubsampled Directional Filter Bank.

NSP: Nonsubsampled Pyramid.

NSWT: Nonsubsampled 2-D Wavelet Transform.

LAS: Local Adaptive Shrinkage.

II. NONSUBSAMPLED CONTOURLETS AND FILTER BANKS

A. Nonsubsampled Contourlet Transform

Fig. 1(a) displays an overview of the proposed NSCT. The

structure consists in a bank of filters that splits the 2-D fre-

quency plane in the subbands illustrated in Fig. 1(b). Our pro-

posed transform can thus be divided into two shift-invariant

parts: 1) a nonsubsampled pyramid structure that ensures the

multiscale property and 2) a nonsubsampled DFB structure that

gives directionality.

1) Nonsubsampled Pyramid (NSP): The multiscale property

of the NSCT is obtained from a shift-invariant filtering structure

that achieves a subband decomposition similar to that of the

Fig. 2. Proposed nonsubsampled pyramid is a 2-D multiresolution expansion
similar to the 1-D NSWT. (a) Three-stage pyramid decomposition. The lighter
gray regions denote the aliasing caused by upsampling. (b) Subbands on the 2-D
frequency plane.

Laplacian pyramid. This is achieved by using two-channel

nonsubsampled 2-D filter banks. Fig. 2 illustrates the proposed

nonsubsampled pyramid (NSP) decomposition with

stages. Such expansion is conceptually similar to the one–di-

mensional (1-D) NSWT computed with the à trous algorithm

[9] and has redundancy, where denotes the number

of decomposition stages. The ideal passband support of the

low-pass filter at the th stage is the region .

Accordingly, the ideal support of the equivalent high-pass

filter is the complement of the low-pass, i.e., the region

. The filters for

subsequent stages are obtained by upsampling the filters of

the first stage. This gives the multiscale property without the

need for additional filter design. The proposed structure is thus

different from the separable NSWT. In particular, one bandpass

image is produced at each stage resulting in redundancy.

By contrast, the NSWT produces three directional images at

each stage, resulting in redundancy.

The 2-D pyramid proposed in [19] pp. 21 is obtained with

a similar structure. Specifically, the NSFB of [19] is built from

low-pass filter . One then sets , and the

corresponding synthesis filters . A similar

decomposition can be obtained by removing the downsamplers

and upsamplers in the Laplacian pyramid and then upsampling

the filters accordingly. Those perfect reconstruction systems can

be seen as a particular case of our more general structure. The

advantage of our construction is that it is general and as a re-

sult, better filters can be obtained. In particular, in our design

and are low-pass and high-pass. Thus, they filter

certain parts of the noise spectrum in the processed pyramid

coefficients.

2) Nonsubsampled Directional Filter Bank (NSDFB): The

directional filter bank of Bamberger and Smith [18] is con-

structed by combining critically-sampled two-channel fan filter

banks and resampling operations. The result is a tree-structured

filter bank that splits the 2-D frequency plane into directional

wedges. A shift-invariant directional expansion is obtained with

a nonsubsampled DFB (NSDFB). The NSDFB is constructed

by eliminating the downsamplers and upsamplers in the DFB

(see also [20]). This is done by switching off the downsam-

plers/upsamplers in each two-channel filter bank in the DFB tree

structure and upsampling the filters accordingly. This results

in a tree composed of two-channel NSFBs. Fig. 3 illustrates a
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Fig. 3. Four-channel nonsubsampled directional filter bank constructed with
two-channel fan filter banks. (a) Filtering structure. The equivalent filter in each
channel is given by U (z) = U (z)U (z ). (b) Corresponding frequency
decomposition.

Fig. 4. Need for upsampling in the NSCT. (a) With no upsampling, the high-
pass at higher scales will be filtered by the portion of the directional filter that
has “bad” response. (b) Upsampling ensures that filtering is done in the “good”
region.

four channel decomposition. Note that in the second level, the

upsampled fan filters , have checker-board fre-

quency support, and when combined with the filters in the first

level give the four directional frequency decomposition shown

in Fig. 3. The synthesis filter bank is obtained similarly. Just

like the critically sampled directional filter bank, all filter banks

in the nonsubsampled directional filter bank tree structure are

obtained from a single NSFB with fan filters [see Fig. 5(b)].

Moreover, each filter bank in the NSDFB tree has the same

computational complexity as that of the building-block NSFB.

3) Combining the Nonsubsampled Pyramid and Nonsub-

sampled Directional Filter Bank in the NSCT: The NSCT is

constructed by combining the NSP and the NSDFB as shown in

Fig. 1(a). In constructing the NSCT, care must be taken when ap-

plying the directional filters to the coarser scales of the pyramid.

Due to the tree-structure nature of the NSDFB, the directional re-

sponse at the lower and upper frequencies suffers from aliasing

which can be a problem in the upper stages of the pyramid

(see Fig. 8). This is illustrated in Fig. 4(a), where the passband

region of the directional filter is labeled as “Good” or “Bad.”

Thus, we see that for coarser scales, the high-pass channel in

effect is filtered with the bad portion of the directional filter

passband. This results in severe aliasing and in some observed

cases a considerable loss of directional resolution.

We remedy this by judiciously upsampling the NSDFB fil-

ters. Denote the th directional filter by . Then for higher

scales, we substitute for where is chosen

Fig. 5. Two-channel NSFBs used in the NSCT. The system is two times re-
dundant and the reconstruction is error free when the filters satisfy Bezout’s
identity. (a) Pyramid NSFB. (b) Fan NSFB.

to ensure that the good part of the response overlaps with the

pyramid passband. Fig. 4(b) illustrates a typical example. Note

that this modification preserves perfect reconstruction. In a typ-

ical five-scale decomposition, we upsample by the NSDFB

filters of the last two stages.

Filtering with the upsampled filters does not increase compu-

tational complexity. Specifically, for a given sampling matrix

and a 2-D filter , to obtain the output resulting from

filtering with , we use the convolution formula

(1)

This is the à trous filtering algorithm [9] (“à trous” is French

for “with holes”). Therefore, each filter in the NSDFB tree has

the same complexity as that of the building-block fan NSFB.

Likewise, each filtering stage of the NSP has the same com-

plexity as that incurred by the first stage. Thus, the complexity

of the NSCT is dictated by the complexity of the building-block

NSFBs. If each NSFB in both NSP and NSDFB requires op-

erations per output sample, then for an image of pixels the

NSCT requires about operations where denotes the

number of subbands. For instance, if , a typical decom-

position with four pyramid levels, 16 directions in the two finer

scales, and eight directions in the two coarser scales would re-

quire a total of 1536 operations per image pixel.

If the building block 2-channel NSFBs in the NSP and

NSDFB are invertible, then clearly the NSCT is invertible. It

also underlies a frame expansion (see Section II-C). The frame

elements are localized in space and oriented along a discrete set

of directions. The NSCT is flexible in that it allows any number

of directions in each scale. In particular, it can satisfy the

anisotropic scaling law—a key property in establishing the

expansion nonlinear approximation behavior [13], [14]. This

property is ensured by doubling the number of directions in the

NSDFB expansion at every other scale. The NSCT has redun-

dancy given by , where denotes the number of

levels in the NSDFB at the th scale.

B. Nonsubsampled Filter Banks

At the core of the proposed NSCT structure is the 2-D two-

channel NSFB. Shown in Fig. 5 are the NSFBs needed to con-

struct the NSCT. In this paper, we focus exclusively on the FIR

case simply because it is easier to implement in multiple dimen-

sions. For a general FIR two-channel NSFB, perfect reconstruc-
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tion is achieved provided the filters satisfy the Bezout identity,

as follows:

(2)

The Bezout relation in (2) puts no constraint on the frequency

response of the filters involved. Therefore, to obtain good solu-

tions, one has to impose additional conditions on the filters.

C. Frame Analysis of the NSCT

The NSFB can be interpreted in terms of analysis/synthesis

operators of frame systems. A family of vectors con-

stitute a frame for a Hilbert space if there exist two positive

constants such that for each we have

(3)

In the event that , the frame is said to be tight. The frame

bounds are the tightest positive constants satisfying (3).

Consider the NSFB of Fig. 5(a). The family

is a frame for if and only if there exist constants

such that [21]

(4)

Thus, the frame bounds of an NSFB can be computed by

(5)

where , and denote the essential infimum and es-

sential supremum respectively. From (4), we see that the frame

is tight whenever is almost everywhere constant. For FIR

filters, this means that .

Such condition can only be met with linear phase FIR filters if

and are either trivial delays or combination of two

delays (for a formal proof, see [22, pp. 337–338] or [23]).

Because the NSFB is redundant, an infinite number of in-

verses exist. Among them, the pseudoinverse is optimal in the

least-square sense [1]. Given a frame of analysis filters, the syn-

thesis filters corresponding to the frame pseudoinverse are given

by for [21]. In this case, the syn-

thesis filters form the dual frame with lower and upper frame

bounds given by and respectively. When the analysis

filters are FIR, then unless the frame is tight, the synthesis filters

of the pseudoinverse will be IIR.

From the above discussion, we gather two important points:

1) linear phase filters and tight frames are mutually exclusive

and 2) the pseudoinverse is desirable, but is IIR if the frame is

not tight. Consequently, an FIR NSFB system with linear phase

filters and with synthesis filters corresponding to the pseudoin-

verse is not possible. However, we can approximate the pseu-

doinverse with FIR filters. For a given number of filter taps, the

closer the frame is to being tight, the better an FIR approxima-

tion of the pseudoinverse can be [24]. Thus, in the designs of

TABLE I
FRAME BOUNDS EVOLVING WITH SCALE FOR THE PYRAMID

FILTERS GIVEN IN EXAMPLE 1 IN SECTION III

the filters we seek linear phase filters that underly a frame that

is as close to a tight one as possible.

In a general FIR perfect reconstruction NSFB system, both

analysis and synthesis filters form a frame. If we denote the anal-

ysis and synthesis frame bounds by and respec-

tively, the frames will be close to tight provided [24]

We always assume that the filters are normalized so that we

have . In case the pseudoinverse is used, then we

also have . The following result shows the NSCT

is a frame operator for whenever the constituent NSFBs

each forms a frame.

Proposition 1: In the NSCT, if the pyramid filter bank con-

stitute a frame with frame bounds and , and the fan filters

constitute a frame with frame bounds and , then the NSCT

is a frame with bounds and , satisfying

Proof: See Appendix A:

Remark 1: When both the pyramid and fan filter banks form

tight frames with bound 1, then , and

from the above proposition, the NSCT is also a tight frame with

bound 1.

The above estimates on and can be accurate in some

cases, especially when the frame is close to a tight one and the

number of levels is small (e.g., ). In general, however,

they are not accurate estimates. Their purpose is more of giving

an interval for the frame bounds rather than the actual values.

Table I shows estimates for different number of scales. The ac-

tual frame bound is computed from (4)–(5), whereas the esti-

mates are the ones given according to Proposition 1.

III. FILTER DESIGN AND IMPLEMENTATION

The filter-design problem of the NSCT comprises the two

basic NSFBs displayed in Fig. 5. The goal is to design the filters

imposing the Bezout identity (i.e., perfect reconstruction) and

enforcing other properties such as sharp frequency response,

easy implementation, regularity of the frame elements, and

tightness of the corresponding frames. It is also desirable that

the filters are linear-phase.

Two-channel 1-D NSFBs that underly tight frames are de-

signed in [21]. However, the design methodology of [21] is not

easy to extend to 2-D designs since it relies on spectral factoriza-

tion which is hard in 2-D. If we relax the tightness constraint,
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Fig. 6. Lifting structure for the NSFB designed with the mapping approach.
The 1-D prototype is factored with the Euclidean algorithm. The 2-D filters are
obtained by replacing x 7! f(z).

then the design becomes more flexible. In addition, as we al-

luded to earlier, non-tight filters can be linear phase.

An effective and simple way to design 2-D filters is the map-

ping approach first proposed by McClellan [25] in the context

of digital filters and then used by several authors [23], [26]–[28]

in the context of filter banks. In such an approach, the 2-D fil-

ters are obtained from 1-D ones. In the context of NSFBs, a set

of perfect reconstruction 2-D filters is obtained in the following

way.

Step 1) Construct a set of 1-D polynomials

that satisfies the

Bezout identity.

Step 2) Given a 2-D FIR filter , then

are 2-D

filters satisfying the Bezout identity.

Thus, one has to design the set of 1-D filters and the mapping

function so that the ideal responses are well approximated

with a small number of filter coefficients. In the mapping

approach, one can control the frequency and phase responses

through the mapping function. Moreover, if the mapping

function is zero-phase, then and it follows

that the mapped filters are also zero-phase. In this case, on

the unit sphere, the mapping function is a 2-D polynomial in

. We thus denote it by , where it is

implicit that .

A. Implementation Through Lifting

Filters designed with the mapping approach can be effi-

ciently factored into a ladder [29] or lifting [30] structure that

simplifies computations. To see this, assume without loss of

generality that the degree of the high-pass prototype poly-

nomial is smaller than that of . Suppose

also that there are synthesis filters and

such that the Bezout identity is satisfied. In this case it follows

that . The Euclidean algorithm then

enables us to factor the filters in the following way [29], [30]:

(6)

As a result, we can obtain a 2-D factorization by replacing

with . This factorization characterizes every 2-D NSFB

derived from 1-D through the mapping method. Fig. 6 illustrates

the ladder structure with one stage.

In general, the lifting implementation at least halves the

number of multiplications and additions of the direct form [30].

This can be shown by following the same reasoning as in the

critically-sampled case discussed in [30]. The complexity can

be reduced further if the lifting steps in the 1-D prototype are

monomials and the mapping filter has the form

(7)

for suitable , , and integers . Note that if

is a 1-D filter, then the 2-D filter for integers and

has the same complexity as that of . Therefore, filters of

the form in (7) have the same complexity as that of separable fil-

ters (i.e., filters of the form ) which amounts

to two 1-D filtering operations. Notice that if is as in (7),

then for an arbitrary sampling matrix , also has the form

in (17). Consequently, all NSFBs in the NSDFB tree structure

can be implemented with 1-D operations whenever the building

block fan NSFB can be implemented with 1-D filtering opera-

tions. The same reasoning applies to the NSFBs of the NSP.

B. Pyramid Filter Design

In the pyramid case, we impose line zeros at and

. Notice that an th order line zero at ,

for example, amounts to a factor in the low-pass

filter. Such zeros are useful to obtain good approximation of the

ideal frequency response of Fig. 5, in addition to imposing reg-

ularity of the scaling function. We point out that for the approx-

imation of smooth images, point zeros at

would suffice [31]. However, our experience shows that point

zeros alone do not guarantee a “reasonable” frequency response

of the pyramid filters. The following proposition characterizes

the mapping function that generates zeros in the resulting 2-D

filters.

Proposition 2: Let be a polynomial with roots

where each has multiplicity . Suppose we want a

mapping function such that

(8)

where is a bivariate polynomial. Then

has the form in (8) if and only if

takes the form

(9)

for some root , where is a bivariate

polynomial, and are such that and

.

Proof: See Appendix B:

The above result holds in general, even for point zeros (as op-

posed to line zeros as in Proposition 2). We will explore this

extensively in the designs that follow.

Suppose the prototype filters each has

zeros at . Then, in order to produce a suitable zero-phase

mapping function for the pyramid NSFB we consider the class

of maximally-flat filters given by the polynomials [32, p. 171]

(10)
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TABLE II
MAXIMALLY FLAT MAPPING POLYNOMIALS USED IN THE

DESIGN OF THE NONSUBSAMPLED FAN FILTER BANK

where controls the degree of flatness at and con-

trols the degree flatness at . Following Proposition 2, we

can construct a family of mapping functions as

(11)

so that zero moments at and are guaranteed.

Note that, except for the constant , has the form of

(7) and hence can be implemented with 1-D filtering operations

only.

C. Fan Filter Design

To design the fan filters idealized in Fig. 5(b), we use the

same methodology as in the pyramid case. The distinction oc-

curs in the mapping function. The fan-shaped response can be

obtained from a diamond-shaped response by simple modula-

tion in one of the frequency variables. This modulation pre-

serves the perfect reconstruction property. A useful family of

mapping functions for the diamond-shaped response is obtained

by imposing flatness around and in

addition to point zeros at . If the mapping function is

zero-phase, this amounts to imposing flatness in a polynomial

at and , and zeros at

. To obtain the fan mapping function, we

simply replace with , which corresponds to a shift by

on the variable. If we use prototype 1-D filters with zeros at

, then similar to the pyramid case, we set

(12)

where the polynomials give the class of max-

imally-flat half-band filters with diamond support. A

closed-form expression for is given in [33].

Table II displays the first six mapping functions

for the resulting maximally-flat fan filter bank.

D. Design Examples

The design through mapping is based on a set of 1-D polyno-

mials that satisfies the Bezout identity, i.e.,

The design can be simplified if

we impose the restriction that and

. One advantage of this choice is that

the frequency response of the filters can be controlled by the

low-pass branch—the high-pass will automatically have the

complementary response. Another advantage is that, under an

additional condition, the frame bounds of the analysis and syn-

thesis frames are the same and can be computed from the 1-D

prototypes. To see this, suppose that is the mapping function

and that with denoting the

range of the mapping function . Then using (5), we have

(13)

(14)

A similar argument shows that

(15)

Example 1 (Pyramid Filters Very Close to Tight Ones): In

order to get filters that are almost tight, we design the prototypes

and to be very close to each other. If we let

and , then the

following filters can be checked to satisfy the Bezout identity:

The above filters are obtained from a ladder structure where the

ladder steps are given by , . To obtain the proto-

type, we choose the constants and such that each

filter has a zero at and, in addition, that

. We obtain

The lifting factorization of the prototype filters is given by

(16)

with

Notice that this implementation has four multiplies/sample,

whereas the direct form has seven multiplies/sample.

In this example we set

, where is given in (11) so that each

of the filters has a fourth-order zero at and at

. Since the ladder steps are monomials, the NSFB

can be implemented with 1-D filtering operations. The frame

bounds are computed using (13)–(15)
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Fig. 7. Magnitude response of the filters designed in Example 1 with maxi-
mally-flat filters. The nonsubsampled pyramid filter bank underlies almost tight
analysis and synthesis frames.

Fig. 8. Fan filters designed with prototype filters of Example 1 and the fan
mapping function of Table II.

Thus, we have and the frame is almost tight.

The support size of is 13 13 whereas has support

size 19 19. Fig. 7 shows the response of the resulting filters.

Example 2 (Maximally-Flat Fan Filters): Using the pro-

totype 1-D filters of Example 1, we choose

in Table II with . We then replace in (16) with

to obtain and . Fig. 8 shows the

magnitude response of the filters. The support size of is

21 21, whereas the support size of is 31 31.

E. Regularity of the NSCT Basis Functions

The regularity of the NSCT basis functions can be controlled

by the NSP low-pass filters. Denoting by the scaling

low-pass filter used in the pyramid (we write instead

of for convenience), we have the associated scaling

function

where convergence is in the weak sense. In our proposed design

the filter can be factored as

(17)

Notice that the remainder filter is not separable. There-

fore, one cannot separate the regularity estimation as two 1-D

problems. Nonetheless, a similar argument can be developed

and an estimate of the 2-D regularity of the scaling filter is

obtained.

Proposition 3: Let be a scaling filter as in (17) with

the corresponding scaling function . Let

Then

Proof: See Appendix C:

As an example, consider the prototype filter in Example 1 and

the mapping . The

resulting filter has second-order zeros at and at

. It can be verified that and

so that the regularity exponent2 is at least

for and for . Thus the

corresponding scaling functions and wavelets are at least con-

tinuous. We point out that better estimates are possible applying

similar 1-D techniques. For instance, one could prove a result

similar to Lemma 7.1.2 in [32, p. 217], as a consequence of

Proposition 3.

Fig. 9 shows the basis functions of the NSCT obtained with

the filters designed via mapping. As the picture shows, the func-

tions have a good degree of regularity.

IV. APPLICATIONS

A. Image Denoising

In order to illustrate the potential of the NSCT designed using

the techniques previously discussed, we study additive white

Gaussian noise (AWGN) removal from images by means of

thresholding estimators.

1) Comparison to Other Transforms: To highlight the per-

formance of the NSCT relative to other transforms, we perform

hard threshold on the subband coefficients of the various trans-

forms. We choose the threshold

for each subband. This has been termed -sigma thresholding

in [34]. We set for the finest scale and for the

remaining ones. We use five scales of decomposition for both

2The regularity exponent of a scaling function �(t) is the largest number �
such that �(!) decays as fast as 1=(1 + j! j + j! j) .
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Fig. 9. Basis functions of the nonsubsampled contourlet transform. (a) Basis functions of the second stage of the pyramid. (b) Basis functions of third (top eight)
and fourth (bottom eight) stages of the pyramid.

TABLE III
DENOISING PERFORMANCE OF THE NSCT. THE LEFT-MOST COLUMNS ARE HARD THRESHOLDING AND THE RIGHT-MOST ONES SOFT ESTIMATORS. FOR HARD

THRESHOLDING, THE NSCT CONSISTENTLY OUTPERFORMS CURVELETS AND THE NSWT. THE NSCT-LAS PERFORMS ON A PAR WITH THE MORE

SOPHISTICATED ESTIMATOR BLS-GSM [8] AND IS SUPERIOR TO THE BIVSHRINK ESTIMATOR OF [7]

NSCT, contourlet transform (CT), and NSWT. For the NSCT

and CT we use 4, 8, 8, 16, 16 directions in the scales from

coarser to finer, respectively.

Table III (left columns) shows the PSNR results for various

transforms and noise intensities. The results show the NSCT is

consistently superior to curvelets and NSWT in PSNR measure.

For the “Barbara” image the NSCT yields improvements in ex-

cess of 1.90 dB in PSNR over the NSWT. The NSCT also is su-

perior to the CT as the results show. Fig. 10 displays the recon-

structed images using the the NSWT, curvelets and NSCT. As

the figure shows, both the NSCT and the curvelet transform of-

fers a better recovery of edge information relative to the NSWT.

But improvements can be seen in the NSCT, particularly around

the eye.
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Fig. 10. Image denoising with the NSCT and hard thresholding. The noisy
intensity is 20. (a) Original Lena image. (b) Denoised with the NSWT,
PSNR = 31:40 dB. (c) Denoised with the curvelet transform and hard thresh-
olding,PSNR = 31:52 dB. (d) Denoised with the NSCT,PSNR = 32:03 dB.

2) Comparison To Other Denoising Methods: We perform

soft thresholding (shrinkage) independently in each subband.

Following [6], we choose the threshold

where denotes the variance of the -th coefficient at

the -th directional subband of the -th scale, and is the

noise variance at scale and direction . It is shown in [6] that

shrinkage estimation with , and assuming

generalized Gaussian distributed yields a risk within 5% of the

optimal Bayes risk. As studied in [35], contourlet coefficients

are well modelled by generalized Gaussian distributions. The

signal variances are estimated locally using the neighboring

coefficients contained in a square window within each subband

and a maximum likelihood estimator. The noise variance in

each subband is inferred using a Monte Carlo technique where

the variances are computed for a few normalized noise images

and then averaged to stabilize the results. We refer to this

method as local adaptive shrinkage (LAS). Effectively, our

LAS method is a simplified version of the denoising method

proposed in [36] that works in the NSCT or NSWT domain. In

the LAS estimator we use four scales for both the NSCT and

NSWT. For the NSCT we use 3, 3, 4, 4 directions in the scales

from coarser to finer, respectively.

To benchmark the performance of the NSCT-LAS scheme,

we have used two of the best denoising methods in the lit-

erature: 1) bivariate shrinkage with local variance estimation

(BivShrink) [7]; 2) Bayes least squares with a Gaussian

scale-mixture model (BLS-GSM) proposed in [8]. Table III

(right columns) shows the results obtained.3 The NSCT cou-

pled with the LAS estimator (NSCT-LAS) produced very

satisfactory results. In particular, among the methods studied,

the NSCT-LAS yields the best results for the “Barbara” image,

being surpassed by the BLS-GSM method for the other images.

Despite its slight loss in performance relative to BLS-GSM,

we believe the NSCT has potential for better results. This

is because by comparison, the BLS-GSM is a considerably

richer and more sophisticated estimation method than our

simple local thresholding estimator. However, studying more

complex denoising methods in the NSCT domain is beyond

the scope of the present paper. Fig. 11 displays the denoised

images with both BLS-GLM and NSCT-LAS methods. As the

pictures show, the NSCT offers a slightly better reconstruction.

In particular, the tablecloth texture is better recovered in the

NSCT-LAS scheme.

We briefly mention that in denoising applications, one can

reduce the redundancy of the NSCT by using critically sam-

pled directional filter banks over the nonsubsampled pyramid.

This results in a transform with redundancy which is

considerably faster. There is however a loss in performance as

Table IV shows. Nonetheless, in some applications, the small

performance loss might be a good price to pay given the reduced

redundancy of this alternative construction.

B. Image Enhancement

Existing image-enhancement methods amplify noise when

they amplify weak edges since they cannot distinguish noise

from weak edges. In the frequency domain, both weak edges and

noise produce low-magnitude coefficients. Since weak edges are

geometric structures and noise is not, we can use the NSCT to

distinguish them.

The NSCT is shift-invariant so that each pixel of the transform

subbands corresponds to that of the original image in the same

spatial location. Therefore, we gather the geometrical informa-

tion pixel by pixel from the NSCT coefficients. We observe that

there are three classes of pixels: strong edges, weak edges, and

noise. First, the strong edges correspond to those pixels with

large magnitude coefficients in all subbands. Second, the weak

edges correspond to those pixels with large magnitude coeffi-

cients in some directional subbands but small magnitude co-

efficients in other directional subbands within the same scale.

Finally, the noise corresponds to those pixels with small magni-

tude coefficients in all subbands. Based on this observation, we

can classify pixels into three categories by analyzing the dis-

tribution of their coefficients in different subbands. One simple

way is to compute the mean (denoted by mean) and the max-

imum (denoted by max) magnitude of the coefficients for each

pixel across directional subbands, and then classify it by

(18)

where is a parameter ranging from 1 to 5, and is the noise

standard deviation of the subbands at a specific pyramidal level.

3The PSNR values of the BivShrink method were obtained from the tables in
[7]. In [7], the authors do not use the “Peppers” image as a test image, hence we
do not have a BivShrink column for “Peppers.”
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Fig. 11. Comparison between the NSCT-LAS and BLS-GSM denoising methods. The noise intensity is 20. (a) Original Barbara image. (b) Denoised with the
BLS-GSM method of [8], PSNR = 30:28 dB. (c) Denoised with NSCT-LAS, PSNR = 30:60 dB.

TABLE IV
RELATIVE LOSS IN PSNR PERFORMANCE (DB) WHEN USING THE CRITICALLY

SAMPLED DFB INSTEAD OF THE NSDFB IN THE NSCT-LAS METHOD

We first estimate the noise variance of the input image with the

robust median operator [36] and then compute the noise vari-

ance of each subband [34].

The goal of image enhancement is to amplify weak edges and

to suppress noise. To this end, we modify the NSCT coefficients

according to the category of each pixel by a nonlinear mapping

function (similar to [37])

(19)

where the input is the original coefficient, and is the

amplifying gain. This function keeps the coefficients of strong

edges, amplifies the coefficients of weak edges, and zeros the

noise coefficients.

We summarize our enhancement method using the NSCT in

the following algorithm.

1) Compute the NSCT of the input image for levels.

2) Estimate the noise standard deviation of the input image.

3) For each level of the pyramid:

a) Estimate the noise variance.

b) At each pixel location, compute the mean and the

maximum magnitude of the corresponding coeffi-

cients in all directional subbands at this level, and

classify each pixel according to (18) into “strong

edges,” “weak edges,” or noise.

c) For each directional subband, use the nonlinear map-

ping function given in (19) to modify the NSCT coef-

ficients according to the classification.

4) Reconstruct the enhanced image from the modified NSCT

coefficients.

TABLE V
DV AND BV COMPARISONS FOR ENHANCEMENT METHODS

We compare the enhancement results by the proposed algo-

rithm with those by the NSWT. In the experiments, we choose

and . To evaluate the enhancement performance

objectively, the detailed variance (DV) and background vari-

ance (BV) were proposed in [38]. The DV and BV values repre-

sent the variance of foreground and background pixels, respec-

tively. A good enhancement methods should increase the DV of

the original image but not the BV. We use the BV and DV to

compare the enhancement performance of the NSWT and the

NSCT in Table V. Fig. 12 shows the results obtained for the

“Barbara” image. We observe that our proposed algorithm of-

fers better results in enhancing the weak edges in the textures.

V. CONCLUSION

We have developed a fully shift-invariant version of the con-

tourlet transform, the NSCT. The design of the NSCT is re-

duced to the design of a nonsubsampled pyramid filter bank

and a nonsubsampled fan filter bank. We exploit this new less

stringent filter-design problem using a mapping approach, thus

dispensing with the need for 2-D factorization. We also devel-

oped a lifting/ladder structure for the 2-D NSFB. This structure,

when coupled with the filters designed via mapping, provides a

very efficient implementation that under some additional condi-

tions can be reduced to 1-D filtering operations. Applications

of our proposed transform in image denoising and enhance-

ment were studied. In denoising, we studied the performance

of the NSCT when coupled with a hard thresholding estimator

and a local adaptive shrinkage. For hard thresholding, our re-

sults indicate that the NSCT provides better performance than

competing transform such as the NSWT and curvelets. Con-

currently, our local adaptive shrinkage results are competitive

to other denoising methods. In particular, our results show that
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Fig. 12. Image enhancement with the NSCT. (a) Original zoomed “Barbara” image. (b) Enhanced by the NSWT. (c) Enhanced by the NSCT.

a fairly simple estimator in the NSCT domain yields compa-

rable performance to state-of-the-art denoising methods that are

more sophisticated and complex. In image enhancement, the

results obtained with the NSCT are superior to those of the

NSWT both visually and with respect to objective measure-

ments. A MATLAB toolbox that implements the NSCT can be

downloaded from MATLAB Central (http://www.mathworks.

com/matlabcentral/).

APPENDIX

A. Proof of Proposition 1

Consider the pyramid shown in Fig. 2(a). If , then we

have that . Now, suppose we have

levels and assume . Then if we further

split into and , noting that , we have

Thus, by induction, we conclude that

for any . A similar argument shows that in the NSDFB

with stages, one has that so that

The bound for is proved similarly, by just reversing the

inequalities.

B. Proof of Proposition 2

We prove the claim for the case in which the zeros of

are distinct. The proof for the case of repeated roots

can be handled similarly.

Denote

(20)

Then, sufficiency follows by direct substitution of (9) in (20).

We prove necessity by induction. Suppose

for some

polynomial . Note that for all

if and only if for some zero of

for all . So, it follows:

(21)

which implies that with

a polynomial. Suppose

where . By successively applying the chain rule for

differentiation, we get

Because and the s are distinct, we have

and then

(22)

(23)



3100 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

where (23) follows by successively integrating (22). Com-

bining (23) with (21) we obtain that

. By induction, we conclude that

If for some poly-

nomial , then a similar argument shows that

where is a zero of . Thus, . There-

fore

and so

and (9) is established with and .

C. Proof of Proposition 3

The proof follows the same lines as for the 1-D case (see [32,

pp. 216]). Using the identity

we have

Because is continuously differentiable at , the same

also holds for . Now write in polar coordinates

where . Since is continuously differ-

entiable, for each is a continuously differentiable

function of . Since , from the mean value theorem

we have that for , and

where .

This gives

where we have used the inequality . Now choose

so that . We then obtain, for

so that for each

Now, putting it all together, we obtain

which completes the proof.
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