THE NONTRIVIALITY OF THE FIRST RATIONAL HOMOLOGY GROUP OF SOME CONNECTED INVARIANT SUBSETS OF PERIODIC TRANSFORMATIONS

AMIR ASSADI AND DAN BURGHELEA

Abstract

This note was inspired by some results of P. A. Smith [S]. One proves that for any periodic map of a manifold M and any codimension two invariant submanifold P of M containing part of the stationary point set, connected invariant subsets of the complement of P must carry nontrivial one-dimensional rational cycles, provided that M satisfies some simple homological conditions (Theorem A). This fact has interesting consequences in transformation group theory.

0. Introduction. If $m \geqslant 2$ is a positive integer let $Z_{m}=\mathbf{Z}_{m}$ be the cyclic group of order m and if $m=\infty$ let Z_{m} resp. \mathbf{Z}_{m} be the infinite cyclic group, respectively, $S^{1}=\{z \in \mathbf{C}| | z \mid=1\}$. We also denote by $G_{m, n}, m, n=2,3,4, \ldots, \infty$, a semidirect product $\mathbf{Z}_{m} \ltimes{ }_{t} \mathbf{Z}_{n}$ for $t: \mathbf{Z}_{n} \rightarrow$ Aut \mathbf{Z}_{m}. Such a semidirect product has the inclusion $\mathbf{Z}_{m} \stackrel{i}{\rightarrow} G_{m, n}$, the projection $G_{m, n} \xrightarrow{\pi} \mathbf{Z}_{n}$ and the section $s: \mathbf{Z}_{n} \rightarrow G_{m, n}(\pi \circ s=\mathrm{id})$ as part of the data. Clearly if $n=\infty, G_{m, n}=\mathbf{Z}_{m} \times S^{1}$. The groups $G_{m, n}$ are regarded as compact Lie groups.

Given a compact Lie group $G, \mu: G \times M \rightarrow M$ a topological action, N an invariant submanifold, and $x \in M$, then the action $\mu: G \times(M, N) \rightarrow(M, N)$ is called locally smooth at x if there exists a smooth action $\tilde{\mu}: G \times V \rightarrow V$, an invariant submanifold $W \subset V$, and an invariant neighborhood \mathscr{U} of $x \in M$ together with an equivariant homeomorphism $\psi(\mathscr{Q}, \mathscr{Q} \cap N) \rightarrow(V, W)$. The main result of this note is the following:

Theorem A. Let $\mu: \mathbf{Z}_{m} \times M^{n} \rightarrow M^{n}$ be a smooth (topological) orientation preserving action, $P^{n-2} \subset M^{n}$ an invariant smooth (locally flat) closed oriented submanifold whose orientation is also invariant. Assume that $H_{1}(M)$ is torsion prime to $m, H_{2}(M ; \mathbf{Q})=0$, and
(i) $M^{\mathbf{Z}_{m}} \neq \varnothing^{2}$ and $P \cap M^{\mathbf{Z}_{m}} \neq \varnothing$ is a union of connected components of $M^{\mathbf{Z}_{m}}$,
(ii) if μ is a topological action then there exists $y \in P \cap M^{\mathbf{Z}_{m}}$ so that $\mu: \mathbf{Z}_{m} \times$ $(M, P) \rightarrow(M, P)$ is locally smooth at y.

[^0]Then
(a) for any connected invariant subset $X \subseteq M \backslash P, H_{1}(X ; Q) \rightarrow H_{1}(M \backslash P ; Q)$ and $H_{1}\left(X ; Z_{m}\right) \rightarrow H_{1}\left(M \backslash P ; Z_{m}\right)$ are nontrivial,
(b) $P \supset M^{\mathbf{Z}_{m}}$.

Theorem A is applied to transformation groups through
Corollary A'. Let M, μ, P be as in Proposition A and let $K^{r} \subset M^{n}$ be a nonempty connected invariant submanifold with $H_{1}\left(K^{r} ; k\right)=0$ for $k=\mathbf{Q}$ or \mathbf{Z}_{m}. Then $K^{r} \cap P$ $\neq 0$ and $\operatorname{dim}\left(K^{r} \cap P\right) \geqslant r-2$.

Corollary A^{\prime} implies Theorem B and is an important tool in the proof of Theorem C.

Theorem B (P. A. Smith). Suppose $G_{p . q}$ acts locally smoothly and effectively on the acyclic topological manifold M^{n} preserving the orientation. Let p, q be distinct primes or ∞, and $\operatorname{dim}\left(M^{\mathbf{Z}_{q}}\right)=n-2$. Then $\operatorname{dim} M^{G_{p .4}} \neq \varnothing$ and $\operatorname{dim} M^{G_{p .4}}=\left(\operatorname{dim} M^{\mathbf{Z}_{p}}\right)$ -2 .

Theorem B is due to P. A. Smith whose paper [\mathbf{S}] has inspired this note. Smith has stated it for $G_{p, q}=Z_{p q}$ and without any conclusion about the dimension $M^{G_{p .4}}$. Notice that if we drop the condition $\operatorname{dim}\left(M^{\mathbf{Z}_{p}}\right)=n-2$ the conclusion is false (see Kister [K2]). A systematic class of fixed point free $G_{p, q}$-actions has been constructed by Assadi [A].

A manifold M^{n+r} is called r-spheric if its universal cover has the homotopy type of S^{r}.

Theorem C. (1) Let M^{n+2} be a 2-spheric topological manifold and $\mu: \mathbf{Z}_{m} \times M^{n+2}$ $\rightarrow M^{n+2}$ be a locally smooth effective action with m prime or ∞. If $M^{\mathbf{Z}_{m}} \neq \varnothing$ then

$$
H_{*}\left(M^{\mathbf{Z}_{m}} ; Z_{m}\right)=H_{*}\left(S^{0} \times K\left(\pi_{1}(M), 1\right) ; Z_{m}\right)
$$

and $\operatorname{dim} M^{\mathbf{Z}_{m}}=n$; hence, if $m=\infty, \pi_{1}(M)$ is a Poincare duality group of formal dimension n.
(2) Let M^{n+2} be a 2-spheric topological manifold and $\mu: G_{m, r} \times M^{n+2} \rightarrow M^{n+2}$ an orientation preserving effective locally smooth action with $M^{\mathbf{Z}_{m}} \neq \varnothing$ and $M^{\mathbf{Z}_{r}} \neq \varnothing$. Then m and r are finite and $M^{\mathbf{Z}_{m}} \cap M^{\mathbf{Z}_{r}}$ is a nonempty manifold with all connected components of dimension n and $n-2$. If there are connected components of dimension n then $G_{m, r}=\mathbf{Z}_{m r}$. If all components have dimension n then $M^{\mathbf{Z}_{m}}=M^{\mathbf{Z}_{r}}=M^{G_{m, r}}$ and the action is semifree. If $m=r$ all components have dimension n.

The proof of Theorem A and Corollary A^{\prime} will be given in $\S 1$, and the proof of Theorems B and C in $\S 2$.
1.

Proof of Theorem A. It is easy to see that (a) implies (b) because any stationary point outside P forms a connected invariant subset with trivial homology. To prove (a) we observe that one can choose a closed tubular neighborhood of $P, \tilde{\pi}: \tilde{P} \rightarrow P$, $\tilde{P} \subset M$ so that for at least one $y \in P \cap M^{\mathbf{Z}_{m}}, \tilde{\pi}^{-1}(y)$ is invariant. If the action is smooth, a closed invariant tubular neighborhood is the right choice for \tilde{P}. If the action is not smooth, let $y \in P \cap M^{\mathbf{Z}_{m}}$ so that $\mu: \mathbf{Z}_{m} \times(M, P) \rightarrow(M, P)$ is locally
smooth at y. We choose an invariant tubular neighborhood with fibre discs for a small neighborhood of y in P. Eventually shrinking this neighborhood, we can extend this to a closed tubular neighborhood of P because, for locally flat P, this is possible by a theorem of Kirby [K1] which states the existence and uniqueness of the closed tubular neighborhood for closed locally flat embeddings in codimension 2. Let $E=\partial \tilde{P}$ and $\pi=\tilde{\pi} \mid \partial \tilde{P} ; \pi: E \rightarrow P$ being the restriction of $\tilde{\pi}$ to $\partial \tilde{P}=E$ is a bundle with fibre S^{1}. Let us denote by \tilde{E} the complement of $\operatorname{Int}(\tilde{P})$ in M so that $E=\tilde{E} \cap \tilde{P}$. The first step in our proof is to show that $H_{1}(M \backslash P)=H_{1}(\tilde{E} ; Z)$ is isomorphic to $Z \oplus G$ where G is a torsion group with $G \otimes Z_{m}=0$, and for any $z \in P$ the map $i_{z}: S^{1}=\pi^{-1}(z) \rightarrow E \rightarrow M \backslash P$ represents in the homology group $H_{1}(M \backslash P ; Z)$ an element of the form $(t, g) \in Z \oplus G$ with t prime to m.

Assuming the first step proved, the proof of Theorem $\mathbf{A}(\mathrm{a})$, for $m=\infty$, goes as follows: Let $\mu_{x}: S^{1} \rightarrow M \backslash P$ be the restriction of the action μ to $S^{1} \times x$ where $x \in M \backslash P$. Since any connected invariant subset of $M \backslash P$, say X, contains $\mu_{x_{0}}\left(S^{1}\right)$ for $x_{0} \in X$, it suffices to show that for each $x, \mu_{x}: S^{1} \rightarrow M \backslash P$ induces a nontrivial homomorphism $\left(\mu_{x}\right)^{*}: H_{1}\left(S^{1} ; Q\right) \rightarrow H_{1}(M \backslash P ; Q)$. Because $M \backslash P$ is connected it suffices to verify this for one x since if $x^{\prime}, x^{\prime \prime} \in M \backslash P, \mu_{x^{\prime}}$ is homotopic to $\mu_{x^{\prime \prime}}$. Now choose $x \in \pi^{-1}(y)$ where $y \in P \cap M^{S^{1}}$ is a point where $\tilde{\pi}^{-1}(y)$ is S^{1}-invariant; μ_{x} : $S^{1} \rightarrow \mu_{x}\left(S^{1}\right)=\pi^{-1}(y)$ is a finite cover. Therefore the image of the generator $u \in H_{1}\left(S^{1} ; Z\right)$ in $H_{1}(M \backslash P ; Z)$ is ($\left.k t, k g\right)$ with $k \neq 0$. This proves our statement for $m=\infty$.

If $m \neq \infty$ the proof requires supplementary considerations. Let $\mu: \mathbf{Z}_{m} \times M \rightarrow M$ be our action and let $\sigma: M \rightarrow M$ the homeomorphism induced by the generator. Given an invariant subset $U \subset M$, a 1-dimensional singular simplex $l:[0,1] \rightarrow U$ is called special if $l(1)=\sigma(l(0))$. Each special simplex l defines a map $\mu^{\prime}: S^{1} \rightarrow U$ by taking

$$
\mu^{\prime}\left(e^{i \theta}\right)= \begin{cases}l\left(\frac{\theta m}{2 \pi}\right) & \text { if } 0 \leqslant \theta \leqslant \frac{2 \pi}{m} \\ \sigma \circ l\left(\frac{\theta m-2 \pi}{2 \pi}\right) & \text { if } \frac{2 \pi}{m} \leqslant \theta \leqslant \frac{4 \pi}{m} \\ \sigma^{m-1} \circ l\left(\frac{\theta m-2 \pi(m-1)}{2 \pi}\right) & \text { if } \frac{2 \pi}{m}(m-1) \leqslant \theta \leqslant 2 \pi\end{cases}
$$

which represents the integral cycle $\Sigma l=l+\sigma l+\cdots+\sigma^{m-1} l$. If $l, l^{\prime}:[0,1] \rightarrow U$ are two special simplices let $\gamma:[0,1] \rightarrow U$ be a singular 1 -dimensional simplex with $\gamma(0)=l(0), \gamma(1)=l^{\prime}(0)$. The 1 -dimensional singular chain $\Delta=\gamma+l^{\prime}-\sigma \gamma-l$ is obviously a cycle and $\Sigma l=\Sigma l^{\prime}-\Delta-\sigma \Delta-\cdots-\sigma^{m-1} \Delta$. In the sequel, let U be $M \backslash P$. As a second step of our proof we will show that: if σ_{*} is the isomorphism of $H_{1}(M \backslash P ; Z)=Z \oplus G$, resp. of $H_{1}\left(M \backslash P ; Z_{m}\right)=Z_{m}$ induced by σ, then $\sigma_{*}(s, g)$ $=(s, \theta(s, g))$ where $s \in Z, g, \theta(s, g) \in G$, resp. $\sigma_{*}(s)=s, s \in Z_{m}$. Assuming this second step proved, it suffices to show that for some special 1 -simplex l, the integral homology class of $[\Sigma l]$ resp. the homology class $\bmod m,[\Sigma l]_{m}$ is of the form $\left(t^{\prime}, g^{\prime}\right) \in Z \oplus G$ with t^{\prime} prime to m resp. $\mathbf{t}^{\prime} \in Z_{m}$ where $\mathbf{t}^{\prime} \neq 0$. Then we can conclude that for any other special simplex $l^{\prime}, \quad\left[\Sigma l^{\prime}\right]=[\Sigma l]+[\Delta]+\sigma_{*}[\Delta]$ $+\cdots+\sigma_{*}^{m-1}[\Delta]=\left(t^{\prime}+m r, g^{\prime \prime}\right) \in Z \oplus G$ where $[\Delta]=\left(r, g^{\prime \prime}\right)$ resp. $\left[\Sigma l^{\prime}\right]_{m}=$ $[\Sigma l]_{m}=\mathbf{t}^{\prime}$. Hence any integral homology class $\left[\Sigma l^{\prime}\right]$ is of infinite order and nontrivial
resp. any mod m homology class $\left[\Sigma l^{\prime}\right]=\mathbf{t}^{\prime}$ is hence nontrivial. Now let us take l to be a special cycle lying on $\pi^{-1}(y), y \in P \cap M^{\mathbf{Z}_{m}}$ where $\tilde{\pi}^{-1}(y)$ is invariant. We can choose l so that $[\Sigma l]=c\left[\pi^{-1}(y)\right]$ where $0<c<m$ and c divides m. Hence $[\Sigma l]=$ $\left[c t, g^{\prime}\right]$ with $c t \neq 0 \bmod m$; thus $[\Sigma l]_{m} \neq 0$ which verifies the claim of Theorem $\mathrm{A}(\mathrm{a})$.

To prove Step 1, consider the exact sequence
$(*) \quad \rightarrow H_{2}(\tilde{E} ; k) \xrightarrow{i_{2}} H_{2}(M ; k) \xrightarrow{j_{2}} H_{2}(M, \tilde{E} ; k) \rightarrow H_{1}(\tilde{E} ; k) \xrightarrow{i_{1}} H_{1}(M ; k) \rightarrow \cdots$
associated with the pair (M, \tilde{E}) and observe that because $H_{2}(M ; Q)=0$ and

$$
H_{i}(M, \tilde{E} ; k)=H_{i}(\tilde{P}, E ; k)= \begin{cases}0 & \text { if } i=0,1 \\ k & \text { if } i=2\end{cases}
$$

j_{2} is zero. Hence (*) shortens to

$$
0 \rightarrow k \rightarrow H_{1}(\tilde{E} ; k) \rightarrow H_{1}(M ; k) \quad \text { and } \quad H_{2}(\tilde{E} ; k) \xrightarrow{i_{2}} H_{2}(M ; k) \rightarrow 0 .
$$

By hypotheses $H_{1}(M ; Z)$ is torsion prime to m and for $k=Z_{m}, H_{1}\left(\tilde{E} ; Z_{m}\right)=Z_{m}$. This implies $H_{1}(\tilde{E} ; Z)=Z \oplus G$ with G a torsion group so that $G \otimes Z_{m}=0$.

The Mayer-Vietoris sequence applied to $M=\tilde{E} \cup \tilde{P}, E=\tilde{E} \cap \tilde{P}$ gives the exact sequence

$$
\begin{align*}
& \rightarrow H_{2}(\tilde{E} ; k) \oplus H_{2}(\tilde{P} ; k) \xrightarrow{i_{2} \oplus \pi_{2}} H_{2}(M ; k) \xrightarrow{\delta} H_{1}(E ; k) \tag{**}\\
& \stackrel{i \oplus \pi_{1}}{\rightarrow} H_{1}(\tilde{E} ; k) \oplus H_{1}(\tilde{P} ; k) \rightarrow H_{1}(M ; k) .
\end{align*}
$$

Because i_{2} is surjective, so is $i_{2} \oplus \pi_{2}$, hence δ is zero. Thus (**) shortens to

$$
0 \rightarrow H_{1}(E ; k) \xrightarrow{i \oplus \pi_{1}} H_{1}(\tilde{E} ; k) \oplus H_{1}(\tilde{P} ; k) \rightarrow H_{1}(M ; k) .
$$

Since in the diagram below the horizontal line is the abelianization of the homotopy exact sequence of the bundle $S_{y} \stackrel{i_{y}}{\rightarrow} E \rightarrow P$

$$
\begin{aligned}
& H_{1}\left(S_{y}^{1} ; k\right) \xrightarrow{\left(i_{y}\right)_{1}} H_{1}(E ; k) \xrightarrow{\pi_{1}} H_{1}(P ; k) \rightarrow 0 \\
& \quad \uparrow \simeq \\
& H_{2}\left(\tilde{\pi}^{-1}(y), \pi^{-1}(y) ; k\right) \\
& \quad \downarrow \simeq \\
& H_{2}(\tilde{P}, E, k)
\end{aligned}
$$

and δ^{E} is injective, $\left(i_{y}\right)_{1}$ has to be injective. δ^{E} is injective because in the commutative diagram below $\Delta^{\tilde{E}}$ is injective and w is an isomorphism:

$$
\begin{array}{ccc}
H_{2}(M, \tilde{E} ; k) & \stackrel{\delta^{\tilde{E}}}{\rightarrow} & H_{1}(\tilde{E} ; k) \\
w \uparrow \simeq & & \uparrow \\
H_{2}(\tilde{P}, E ; k) & \xrightarrow{\delta^{E}} & H_{1}(E ; k)
\end{array}
$$

Consequently we have the exact sequence

$$
0 \rightarrow H_{1}\left(S_{y}^{1} ; k\right) \rightarrow H_{1}(E ; k) \rightarrow H_{1}(P ; k) \rightarrow 0 .
$$

Since for $k=Z_{m}, i_{1} \oplus \pi_{1}$ is an isomorphism, the composition $H_{1}\left(S_{y}^{1} ; Z_{m}\right) \rightarrow$ $H_{1}\left(E ; Z_{m}\right) \rightarrow H_{1}\left(\tilde{E} ; Z_{m}\right)$ is an isomorphism, hence $t \equiv 1 \bmod m$ and the first step is proved.

To prove Step 2 we observe that by Step 1 the component Z of $H_{1}(\tilde{E} ; Z)=$ $H_{1}(M \backslash P ; Z)$ comes from $H_{2}(M, \tilde{E} ; Z)=H_{2}(M, M \backslash P ; Z)$ which is invariant under the action of \mathbf{Z}_{m} since $H_{2}(M, \tilde{E} ; Z) \cong H_{2}\left(\tilde{\pi}^{-1}(y), \pi^{-1}(y) ; Z\right)$ and the action preserves the orientations of M and P; so that it is trivial on $H_{2}\left(\tilde{\pi}^{-1}(y), \pi^{-1}(y) ; Z\right)$.

Proof of Corollary A'. If $K^{r} \cap P=\varnothing$ or $\operatorname{dim} K^{r} \cap P<n-2$, then $K \backslash K \cap P$ will be connected and provides an example of an invariant set with

$$
H_{1}(K \backslash K \cap P: Q)=0,
$$

which is impossible by Proposition A.
The following example (due to R. Stong) shows that condition (i) of Theorem A cannot be weakened to $P^{\mathbf{Z}_{m}} \neq \varnothing$.

Example. Consider $M^{n}=S^{2 j+1}$ with \mathbf{Z}_{m} action $\rho\left(z_{0}, z_{1}, \ldots, z_{j}\right)=$ $\left(z_{0}, z_{1}, e 2 \pi i z_{2} / m, \ldots, e 2 \pi i z_{j} / m\right)$ and let $P^{n-2}=S^{2 j-1}=\left\{z \mid z_{0}=0\right\}$, where $n=$ $2 j+1$ and $j \geqslant 2$. Clearly M and P are connected, $H_{2}(M, Q)=H_{1}(M, Z)=0$, $P^{\mathbf{Z}_{m}} \neq \varnothing$ and $M^{\mathbf{Z}_{m}} \not \subset P$. Also every subset of $S^{1}=\left\{z \mid z_{i}=0\right.$ for $\left.i>0\right\}$ is invariant and need not have a nontrivial image in $H_{1}\left(M-P ; \mathbf{Z}_{m}\right)$. In fact, there are invariant circles which are homologically trivial.
2.

Proof of Theorem B. Let $P=M^{Z_{q}}$ and $K=M^{Z_{p}}$, and take $\mu: Z_{q} \times M \rightarrow M$ to be the induced action by a subgroup isomorphic to Z_{q}. Then K is invariant under the Z_{q}-action and $K-M^{G_{p . q}} \subset M-P$. By Smith theory $\bar{H}_{*}\left(K ; Z_{p}\right)=0=\bar{H}_{*}\left(P ; Z_{q}\right)$. Thus K and P are both connected. If $p=\infty$, then $\bar{H}_{*}(K ; Q)=0$ and the conclusion follows from Corollary A^{\prime}. If $p<\infty$ and $\operatorname{dim} M^{G_{p . q}}<\operatorname{dim} M^{Z_{p}}-2$ (in particular if $\left.M^{G_{p .4}}=\varnothing\right)$, then $H_{1}\left(K-M^{G_{p . q}}\right)$ will be p-divisible. The linking number of any 1-cycle of $M-P$ with P is well defined since $H_{1}(M)=H_{2}(M)=0$.

If we choose $\tilde{\pi}: \tilde{P} \rightarrow P$ and $y \in P$ as in the proof of Theorem A , it is easily seen that one can find special l-cycles in $\tilde{\pi}^{-1}(y)-\{y\} \subset M-P$ whose linking number with P is one. However, if a special 1-cycle lies on $K \backslash M^{G_{p . q}}$, its linking number with P must vanish, being p-divisible. This contradiction establishes Theorem B.

Proof of Theorem C. Let $\tilde{M} \xrightarrow{f} M$ be the universal covering of M. Since $M^{\mathbf{Z}_{m}} \neq \varnothing$, the action μ can be lifted to an action $\tilde{\mu}: \mathbf{Z}_{m} \times \tilde{M} \rightarrow \tilde{M}$ with $f^{-1}\left(M^{\mathbf{Z}_{m}}\right)$ $=\tilde{M}^{\mathbf{Z}_{m}}$; hence $\tilde{M} \mathbf{Z}_{m} \xrightarrow{f} M^{\mathbf{Z}_{m}}$ is a principal covering with group $\pi_{1}(M)=\pi$. If m is a prime or ∞, by Smith theory $\tilde{H}_{*}\left(M^{\mathbf{Z}_{m}} ; Z_{m}\right)=H_{*}\left(S^{k} ; Z_{m}\right)$ where $k=0$ or 2 ; if $k=2$ Smith theory equally implies that $H_{*}\left(\tilde{M}^{\mathbf{Z}} ; Z_{m}\right) \rightarrow H\left(M ; Z_{m}\right)$ is an isomorphism [B, Chapter III] which implies (comparing the spectral sequences associated with the fibrations $\tilde{M} \rightarrow M \rightarrow K(\pi, 1)$ and $\tilde{M}^{\mathbf{Z}_{m}} \rightarrow M^{\mathbf{Z}_{m}} \rightarrow K(\pi, 1)$) that M and $M^{\mathbf{Z}_{m}}$ have the same homology with coefficients in Z_{m}; this is impossible, hence $k=0$ and $f^{-1}\left(M^{\mathbf{Z}_{m}}\right)$ consists of two connected components \tilde{P}_{1} and \tilde{P}_{2} each of them with trivial
homology $\bmod m$ and being the total space of principal coverings with group π. By spectral sequence arguments applied to the fibrations $\tilde{P}_{i} \rightarrow K(\pi, 1)$ we have $H_{*}\left(P_{i} ; Z_{m}\right)=H_{*}\left(K(\pi, 1) ; Z_{m}\right)$. We also claim that $\operatorname{dim} P_{i}=n$ because the composition $P_{i} \rightarrow M \rightarrow K(\pi, 1)$ induces an isomorphism for homology with coefficients in Z_{m} which combined with the Gysin sequence of the fibration $\tilde{M} \rightarrow M \rightarrow K(\pi, 1)$ implies $H_{n}\left(K(\pi, 1) ; Z_{m}\right)=H_{n}\left(P_{i} ; Z_{m}\right)=Z_{m}$. This proves Theorem $\mathrm{C}(1)$.

Before we start the proof of (2) we notice that $\tilde{M} \backslash \tilde{P}_{i}$ satisfies $H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)=0$ and $H_{2}\left(\tilde{M} \backslash \tilde{P}_{i} ; Q\right)=0$ for m prime and finite. To see this, one considers the exact sequence of the pair ($\left.\tilde{M}, \tilde{M} \backslash \tilde{P}_{i}\right)$,

$$
\begin{aligned}
& \rightarrow H_{3}\left(\tilde{M}, \tilde{M} \backslash \tilde{P_{i}} ; Z_{m}\right) \rightarrow H_{2}\left(\tilde{M} \backslash \tilde{P_{i}} ; Z_{m}\right) \rightarrow H_{2}\left(\tilde{M} ; Z_{m}\right) \\
& \quad \xrightarrow{\psi} H_{2}\left(\tilde{M}, \tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right) \rightarrow H_{1}\left(\tilde{M} \backslash P_{i} ; Z_{m}\right) \rightarrow 0
\end{aligned}
$$

which, after applying the isomorphism $H_{3}\left(\tilde{M}, \tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)=H_{1}\left(\tilde{P}_{i} ; Z_{m}\right)$ and Smith theory, $H_{1}\left(\tilde{P}_{i} ; Z_{m}\right)=0$ becomes

$$
0 \rightarrow H_{2}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right) \rightarrow Z_{m} \xrightarrow{\psi} Z_{m} \rightarrow H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right) \rightarrow 0 .
$$

If m is prime (and finite) ψ is not zero, hence it is an isomorphism. To see this, assume $\psi=0$; hence $Z_{m}=H_{2}\left(\tilde{M}, \tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right) \rightarrow H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)$ is an isomorphism. If $\tilde{\tilde{P}}_{i}$ is a closed invariant tubular neighborhood of \tilde{P}_{i} and $\pi: \hat{P}_{i}=\partial \tilde{\tilde{P}}_{i} \rightarrow \tilde{P}_{i}$ the equivariant map which is a bundle with fibre $S_{x}^{1}=\pi^{-1}(x), x \in \tilde{P}_{i}$, then $H_{1}\left(S_{x}^{1} ; Z_{m}\right)$ $\rightarrow H_{1}\left(\hat{P}_{i} ; Z_{m}\right) \rightarrow H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)$ is an isomorphism for each x and it is exactly the isomorphism $H_{2}\left(\tilde{M} ; \tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right) \rightarrow H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)$. But since \tilde{P}_{i} consists of fixed points, S_{x}^{1} is a cycle of type Σl for a special simplex l, therefore its homology class $\bmod m$ is the same as that of any other cycle Σl^{\prime} with l^{\prime} special (as in the proof of Theorem A). If we choose l^{\prime} to be the degenerate special simplex which lies in \tilde{P}_{2} if $i=1$ or \tilde{P}_{1} if $i=2$, clearly the homology class $(\bmod m)\left[\Sigma l^{\prime}\right]$ is zero which is in contradiction with our assumption that $H_{2}\left(\tilde{M}, \tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)=Z_{m} \rightarrow H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)$ is an isomorphism. Consequently ψ is an isomorphism and therefore $H_{1}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)$ $=0$ and $H_{2}\left(\tilde{M} \backslash \tilde{P}_{i} ; Z_{m}\right)=0$.

To prove (2) let $\mu_{\varepsilon}, \varepsilon=m$ or r, be the restriction of the action of μ to \mathbf{Z}_{ε}. Since μ_{ε} has fixed points, let $\tilde{\mu}_{\varepsilon}$ be liftings of μ_{ε} to the actions $\tilde{\mu}_{\varepsilon}: \mathbf{Z}_{\varepsilon} \rightarrow \tilde{M} \rightarrow \tilde{M}$ with $f^{-1}\left(M^{\mathbf{Z}_{\varepsilon}}\right)=\tilde{M}^{\mathbf{Z}_{\varepsilon}}$. Notice that $\tilde{M} \mathbf{Z}_{m}$ is invariant for $\tilde{\mu}_{r}$ because $M^{\mathbf{Z}_{m}}$ is invariant for μ_{r}. If $G_{m, r}=\mathbf{Z}_{m} \ltimes{ }_{t} \mathbf{Z}_{r}$, then $\tilde{M}^{\mathbf{Z}_{r}}$ is invariant for $\tilde{\mu}_{m}$. Assume $m=\infty$ and let \tilde{P}_{1} and \tilde{P}_{2} resp. \tilde{R}_{1} and \tilde{R}_{2} be the connected components of $\tilde{M}^{\mathbf{Z}_{m}}$ resp. $\tilde{M}^{\mathbf{Z}}$. By Smith theory we know that \tilde{P}_{i} have trivial homology for any coefficients; we also know that \tilde{P}_{i} is invariant to $\tilde{\mu}_{r}$ and the $\left(\tilde{R}_{1} \cup \tilde{R}_{2}\right) \cap \tilde{P}_{i}=\tilde{P}_{i}^{\mathbf{Z}_{n}}$. Since $H_{*}\left(\tilde{P}_{i}^{\mathbf{Z}_{n}} ; Z_{n}\right)=$ $H_{*}\left(M ; Z_{n}\right), \tilde{P}_{i}^{\mathbf{Z}_{m}}$ is nonempty so \tilde{P}_{i} intersects at least one of the components \tilde{R}_{1} or \tilde{R}_{2}, say \tilde{R}_{1}. Moreover if $\tilde{R}_{1} \cap \tilde{P}_{i} \neq \tilde{P}_{i}, \tilde{R}_{1} \cap \tilde{P}_{i}$ has to be of dimension at most $n-2$. Since $\tilde{R}_{1} \cap \tilde{P}_{i} \rightarrow \tilde{R}_{1} \cap \tilde{P}_{i}$ is a principal covering with group π, one concludes that $H_{n}\left(K(\pi, 1) ; Z_{n}\right)=0$. But as we have seen in the proof of (1) this is not possible, hence $\tilde{R}_{1} \cap \tilde{P}_{i}=\tilde{P}_{i}$. Since $\tilde{R}_{1} \supset \tilde{P}_{i}$, and both are closed connected submanifolds of dimension n, we have $R_{1}=P_{i}$, which shows that $\tilde{M}^{\mathbf{Z}_{m}}=\tilde{M}^{\mathbf{Z}_{n}}$. Of course this is not possible because this will imply that $G_{m, r}$ acts without fixed points on the fibre S_{x}^{1} of the boundary of a tubular neighborhood of $M^{G_{m, r} .}$. If $r=\infty$ then $G_{m, r}=\mathbf{Z}_{m} \times S^{1}$
which is a group of the type $G_{\infty, m}$ previously considered. Now assume m and r are finite. We apply Corollary A^{\prime} to $\tilde{M} \backslash \tilde{R}_{i}$ equipped with the action $\mu_{r}(\tilde{M} \backslash \tilde{R}$ as M and \tilde{R}_{j} as $P, j=2$ if $i=1$ and $j=1$ if $i=2$ and \tilde{P}_{j} as R); we conclude that $\tilde{P}_{i} \cap \tilde{R}_{j} \neq \varnothing$, and the dimension of each connected component is $\geqslant n-2$. Since $\tilde{P}_{i}^{\mathbf{Z}}=\tilde{P}_{i} \cap\left(\tilde{R}_{1} \cup \tilde{R}_{2}\right)$, then either $\tilde{R}_{j}=\tilde{P}_{i}$ or $\operatorname{dim}\left(\tilde{P}_{i} \cap \tilde{R}_{j}\right) \leqslant n-2$; hence the dimension of each component of $\tilde{P}_{i} \cap \tilde{R}_{j}$ is either n or $n-2$. In the first case $\tilde{R}_{j}=\tilde{P}_{i}$ which implies that $G_{m, r}$ acts freely on S^{1} which is possible only if $G_{m, r}$ is a cyclic group, hence $G_{m, r}=Z_{m r}$. The same conclusion holds if $M^{\mathbf{Z}_{m}}=M^{\mathbf{Z}_{n}}$. If $m=r, M^{\mathbf{Z}_{m}} \cap M^{\mathbf{Z}_{r}}$ cannot have components of dimension $n-2$ because if they have, then $\tilde{M}^{\mathbf{Z}_{m}} \cap \tilde{M}^{\mathbf{Z}_{r}}$ has components whose homology with Z_{m} coefficients is trivial by Smith theory and consequently, $H_{n}\left(K(\pi, 1) ; Z_{m}\right)=0$; clearly this is not the case because of (1).

References

[A] A. Assadi, Finite group actions on simply-connected manifolds and CW-complexes, Mem. Amer. Math. Soc. No. 257 (1982).
[B] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
[K1] R. Kirby, Codimension two locally flat embeddings have normal bundles, Topology of Manifolds (J. Cantrell and C. H. Edwards, eds.), Markham, Chicago, Ill., 1970.
[K2] J. M. Kister, Differential periodic actions on E^{∞} without fixed points, Amer. J. Math 85 (1963), 316-319.
[S] P. A. Smith, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415.

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Department of Mathematics, Ohio State University, Columbus, Ohio 43210

[^0]: Received by the editors July 20, 1982.
 1980 Mathematics Subject Classification. Primary 57S10, 57S15, 57S17.
 ${ }^{1}$ Both authors were supported by NSF grants. The authors are grateful to R. Schultz and R. Stong for helpful suggestions.
 ${ }^{2}$ For an action $\mu: G \times M \rightarrow M$ one denotes by M^{G} the fixed point set of μ.

