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Introduction. The nonuniform motion of a subsonic dislocation has been analyzed
previously [1, 2]. Here we treat the transient motion of a screw supersonic dislocation
with particular attention to the wave-front analysis and the detailed treatment of the
singularities involved. Although dislocations may not actually move at supersonic speeds,
the solution for a dislocation may be used in other problems involving cracks, slip or
separation, as in [3, 4, etc.]. The analysis presented here may also bear on the treatment
of problems involving moving singularities in general [5, 6].

Consider a screw dislocation parallel to the y-axis with the discontinuity in the
displacement component u, across z = 0 being denoted by Au. The dislocation is at rest
in an infinite space until time ¢t =0 when it begins to move according to x = I(t)(or
t = n(x), equivalently). It may be easily seen that the problem is equivalent to the one in
the halfspace occupying the region z > 0 (Fig. 1) with the nonzero displacement compon-
ent satisfying the equation

ox? ' 0z or?
and the boundary conditions at z =0
u,(x, 0, t) = $AuH(x), t<0,
u,(x, 0, t) = $AuH(x — I(t)), t=0,

where b denotes the shear-wave slowness and H the Heaviside step function.
The solution to the above problem is equivalent to the superposition of the following
two problems satisfying the equation of motion and the boundary condition:

Problem I:  uy(x, 0, ) = 3AuH(x) for all ¢;
Problem II: uy(x, 0, t) = 3[AuH(x — I(t)) — AuH(x)] for ¢t > 0,

the solution to the static problem I being known [2]. The subscript y in u, will be deleted
subsequently for the sake of simplicity. Also the functions I(t) or n(x) are assumed to be
monotonically increasing or decreasing, respectively.

The solution to problem II has been obtained in [2] by means of Laplace transforms
and inversion by the Cagniard-de Hoop technique. Solving for the strain of interest
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0u/0z, it was derived in [1] (Eq. (32)) that
Au = (£ = n(E))x — EPH(t — n(&) — rb)
B e () e

M, 0 1= (e = n@PH( ~ (@) - b
7l A )

ou
% (x,z,t)=

where r2 = (x — &)? + 2%

Since no assumption about the velocity of the dislocation was made in the derivation
of the above equation, this expression holds both for subsonic and supersonic motion.
However, the nature of the solution is very different in the two cases because of the
different behavior of the argument f(£) = t — (&) — rb of the step function which defines
the limits of integration and the different limiting behavior of the integrals. This behavior
is analyzed in what follows, after the treatment of the constant-velocity case; this is
presented first in order to illustrate the basic differences between the subsonic and
supersonic motion.

1. Dislocation starting from rest and moving with constant velocity. By direct formu-
lation of the problem as a constant-velocity one, the solution may be obtained by a
procedure similar to that in [2], with the delta function due to the fact that in the
supersonic case a pole is included in the inversion contour:

ou
% (x, z 1)
—-Xx
N i fort <rb
_ AQu 2.2 2
Tw) o, P (t’ - r’bz)] a - 5’5 2 22— r2b)
— + ro s fort > rb
X2 4 22 — 2(tz r2b2 =
Vit rob a - — —4
ro
@)

+%~/b2 —aZ8(t — ax F /b* — a? z) (—for z > 0; +for z < 0)

where r* = x? + z2. The argument of the delta function corresponds to the shock-wave
front which consists of the envelope of the wavelets that were excited by the dislocation
on its way (Fig. 1). It is worth noting that behind the wave-front the stress field at a point
receives contributions from two source points and that an interference mechanism results
in the vanishing of the disturbances for the case of the constant-velocity motion. This
does not occur, however, if the dislocation is moving with variable velocity, as in the case
discussed next.

2. Wave-front analysis for a nonuniformly moving dislocation. In order to study the
wave-front behavior of the solution (1), we have to look closer at the behavior of the
integral, and first at the form of the function f(£)=1t— n(¢)— rb which defines
the intervals of the integration. For the constant-velocity case, f (&) is plotted in Fig. 2(a)
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and 2(b) for supersonic and subsonic motion, respectively. For subsonic motion
the lower limit of integration is always zero, while for supersonic motion the interval of
the integration may not contain the origin and f(¢) exhibits a maximum in the range of
integration. For a particular combination of ¢, x, z, the range of integration vanishes and
it may be easily seen that this particular combination corresponds to the wave-front
t=ox + (b* — a?)"z.

While for a constant-velocity motion the curve f(¢) = t — a& — rb has one maximum,
for a general motion (&) the function f(¢) may exhibit more than one maximum. If '(¢)
increases monotonically then f(¢) will have only one maximum and the behavior of f(£)
is similar to the constant-velocity motion, although the wave-fronts are no longer
straight lines (Fig. 3a). If n*(£) is a decreasing function in some intervals, then f (&) will
also have a minimum for some ¢, x, z (Fig. 3b) while for suitable (¢, x, z), f(£) can also
have more than one maximum (Fig. 3c). The appearance of cusps in the wave-fronts has
been discussed by Freund [5] in the analysis of wave-front behavior by a different
approach.

Let us consider the instance in which the range of integration tends to zero, i.e., &,
& - &, (Fig. 4). If f(£) has a maximum in [, &,], this will always happen for t, and &,
that satisfy:

FE) =t —nlE) — Vx = f*)z +2?b =0, (3)
d
72t —n(e) —VE=EF ) =0 “
The wave-front equation can be derived by elimination of &, between (3) and (4). (The
curve f(&,) obviously should correspond to the wave-front since it separates regions of

zero and nonzero range of integration.) Eq. (3) and (4) can also be obtained if the
wave-front is seen as the envelope of the wavelets with equation

(x — I(t)? + 22 =%(t — o
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(a) Supersonic b>a
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Eaeh of the two integrals appearing in the general equation for the stress can be
stadied asymptotically as we approach the wave-front in a systematic way. Since we are
near the wave-front we can expand in ¢t — ¢t,. On the other hand, since in the limit the
range of the integral becomes small, we can expand the intergrand in ¢ — &, . The result is

ft = n(Q) — rb? = (') — b*)E - &)

+2(t, — '7(5*))2(‘ —t)+ (- t*)z -2t - t*)ﬂl(é*)(ﬁ - &)
+ higher-order terms in (¢ — &, , t — t,).
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The roots of this expression give &,, &, in the asymptotic limit, so we write it as

—('I'(C*)z - bz)(é ) (T é)
Thus to leading order the term in (1) that gives rise to the J-function, i.e. the second term,
can be written

%22_6_ fgl (te — ﬂ(é*))zH(t —t,)d¢ 5)
2m 0tiy [y — x) + 2P — 'GPV E = o) — &)
where the step function H(t — ¢,) indicates that the integral vanishes for ¢ < t, (outside
the wave-front). To leading order in (¢ — t,), (5) obviously gives

Ad(t —t,)

where

- éﬁ (t, — (¢
A_coh:lc. A (N "X)2+22]z[b2 n'( z]mf V- éo )& — &)
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f(€)=t-7(&)-rb ]

FiG. 4.

The integral has the value 7 and we find that

A= & . g2 (tx — n(C,))?

R (R i G (P

We study now the behavior of the solution near a minimum of f(¢) tangent to the £-axis,
ie. as &, &, — &* in Fig. 3(b). To study qualitatively the behavior of the solution near
such a minimum we look at the behavior of the integral

jH(é £*) + &(t))
JE=—) +¢

This is not an approximation to our integrands but it simulates the behavior of the
integrands near the roots of the argument of the step function. For ¢ < 0, (6) gives:

jg:—\/—a df + fb dé
a [(é - é*)z + 8]1/2 {*+\/—c[(§ - é*)z + 8]112

_ g% _ E¥)2
+ ln(b S Uk 40 i 1), )
[—¢ —¢
since the interval (£* — \/ — E*¥ 4+ \/ — ¢) obviously does not belong to the range of

integration in this case. On the other hand, for ¢ > 0 we have

J 2 7 sinh"‘é—é*
T e 7

=1n(”:/f*+ /‘b‘f*)ﬂl)_m(“;;X (a_f*)2+1) ®)

de. (6)

E 3
—a
= cosh™ 1 —é—‘: + cosh™

J —¢ F

b

a
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and it may be noticed that both (7) and (8) are equal to
b=+ /b8 +e
In 2
B —a+./(E*—a) +e¢
for ¢ <0 and >0 respectively, so that the second integral in (1) is a continuous function

as we approach the wave-front and therefore the time derivative cannot contain singular-
ities of the delta-function type.

3. Solution away from the wave-front. The solution to the general motion of a
supersonic dislocation is given by Eq. (1). However, in the second integral differentiation
with respect to ¢ inside the integral is not permissible, since then the integral will obviously
diverge. With proper manipulations and integration by parts—which we show below—it
can be brought to a suitable form for differentiating inside.

Consider the range of integration [¢,, &,] between two consecutive real roots &, and
&y of t — (&) — ((x — &€)* + z2)"2b = 0. Then we may write:

9 fz (t — n(&))de
at g, (e — () — r*p?]2

_9 f’(t —n(&)* JE- cl)(éz =7 de
Wl A S - - 06 )

jéz (t— f))z (= 51)(52 ¢) ( 1 cos-1 ﬂ)
& V(e =n(&)? — r*b? ]

= ot

_o[ » [E-GNG-0 |
ot r* N (t—-n@)y —rib |,
o f-ad (t-n@) [€-&)E-¢)
+a o G T e ©)
where (£ — &,)(¢,— &) = (6 — «)?. We may remark, in the last integral of (9), that
€-¢E—¢)
(t = n())* — r’b?
is regular and
ico_lf—az -1 $-6 08—
ot B JE-&)E-¢) 2 o B

so that the singularity is now integrable and differention with respect to t may be
performed inside the integral. It is also useful to observe that

Tofer At s

The stress on the slip plane z = 0 is frequently of interest. An alternate way of taking the
limit as z— 0 in (1) would be to use the solution for z =0 obtained in [2] (Eq. (25))
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where the constant-velocity solution added and subtracted is now for supersonic motion
as in (2). We have for the strain of interest

5_“( _ —Auj (t—n(é))H(t—n(é |x — ¢|bME
. VE=n@)? = (x = &) (x = &)
Auf ((t — n(x)) — ( )(é—x))H(t—n(X) ' (x)(¢ — x) = [£ - x]|b)
2n V= n(x) = n(x)¢ = %))’ = (x = &)*b* (x — &)

JBu 1 \/(t+n(xx—'7(x)) — B H(t — |x|b — n(x) + xn'(x))

2nt — n(x) x
+%\/17?W 3(t — n(x))

This concludes our analysis of the main features of the general supersonic motion of a
screw dislocation. The methodology used here may prove useful for the treatment of the
edge dislocation and other moving singularities.
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