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THE NORM OF A DERIVATION

JOSEPH G. STAMPFLI

In this paper, we determine the norm of the inner deriv-
ation C Γ : A->TA- AT acting on the Banach algebra SB(iϊ)
of all bounded linear operators on Hubert space. More precise-
ly, we show that 11 Eιτ |1 = inf {2| | T - λl \ |: λ complex}. If T is
normal, then 11 Qτ 11 can be specified in terms of the geometry
of the spectrum of T.

A derivation on a Banach algebra 21 is a linear transformation
£}: 21 -> 31 which satisfies £}(α&) - α£ϊ(δ) + O(α)& for all α, b e St. If
for a fixed α, Q : 6 —* α& — 6α, then O is called an inner derivation.
Sakai has shown that every derivation on a von Neumann algebra
[8] or on a simple C*-algebra [9] is inner. See also [3] and [4].

In [7], Rosenblum determined the spectrum of an inner derivation.
Our estimates on the norm of O Γ have some applications of general
operator theory as a by product. Kadison, Lance, and Ringrose [5]
have investigated the derivation £ιτ acting on a general C*-algebra,
when T is self adjoint. In §2, we study £ιτ acting on an irreducible
C*-algebra. There appears to be little common ground in the two
approaches. In the last section we consider the operator which sends
X-> AX - XB for A, B, X e aS(£Γ).

1* From now on, all operators are bounded and act on a Hubert
space. We shall denote the complex numbers by C.

DEFINITION. The maximal numerical range of T is the set

= {X:(Txn,xn)-»X where | K | | = 1 and \\Txn\\^\\T\\} .

When H is finite dimensional, W0(T) corresponds to the numerical
range produced by the maximal vectors (vectors x such t h a t \\x\\ = 1
and ||Γα>|| = || Γ | | ) .

LEMMA 1. / / | | Γ | | = | |&| | = 1 and \\ Tx\\2 ^ (1 - e), then

Proof. Note that 0 ^ \\(T*T-I)x\\2= \\ T*Tx\\-2\\ Ta;||2+IMI2 g
2(1 - || To;||2) ^ 2s.

LEMMA 2. The set W0(T) is nonempty, closed, convex, and con-
tained in the closure of the numerical range.
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Proof. Everything but convexity is obvious. Therefore, let
λ, μ e W0(T). Assume, without loss of generality, that || T\\ = 1.
Assume also t h a t \\χn\\ = \\yn\\ = 1, (Txn, αw)—>λ and (Tyn, yn)-+ μ.

Consider Tn = PnTPn1 where Pn is the projection on H of {xn, yn}.
Let Ύ] be a point on the line segment joining λ and μ. Then for
each n, it is possible, by the Toeplitz-HausdorfF Theorem, to choose
αn, βn such that (Tun, un) = (JΓ»MΛ, un)-+η and ||wΛ|| = 1, where un =
αw#% + βΛ2/Λ. Note that | (&Λ, τ/J | ^ # < 1 for n sufficiently large; that
is, the angle between xn and yn is bounded away from 0. (It is not
difficult to compute an explicit upper bound for lim sup | (xn, yn) | in
terms of λ and μ.) Thus, there exists a constant M such that | an \ S M
and \βn\ ^ M for large n, where \\anxn + i8»2/Λ|| = l By Lemma 1,
|| 7XJI = (T*Tun1 un) = \\un\\2 - 2Msn where ε n -^0, and thus it fol-
lows that | | 7 X J | - + 1 . Since (Tun,un)—>η this completes the proof
of convexity.

L E M M A 3 . Let μe W 0 ( T ) . Then | | Q Γ | | ^ 2 ( | | T\\2 - \μ\2)1'2 .

Proo/. Note that | | O Γ || = sup{|| TA-AT\\ : A e SB(JEΓ) and | |A| | = 1}.
Since ^ G ^ ( T 7 ) , there exist a;n e f ί such that ||α?Λ|| = 1, || Γίcn|| -> || T\\r

and (Γίcn, ίcj ->/i. Set Txn = anxn + /5%τ/%, where (xn, yn) = 0 and
||l/n | | = 1. Set Fw^% = xn, Vnyn = -yn and Vn = 0 on {a;n, τ/J. Then
|| ( T 7 n - F w 2 > n | | = 2 | ^ | ^ 2 ( | | Γ|| - \an\ψ2 - εn> where ε κ ->0. Since
an—>μ, this completes the proof.

THEOREM 1. | |£ i Γ | | = 2|| Γ|j if and only if Oe WQ(T).

Proof. It follows from the previous lemma that | | O Γ | | ^ 2|| T| |
if 0eW 0 (Γ) . Since | | D Γ | | ^ 2|| T| | for any T, sufficiency is proved.
We now assume | | D Γ | | = 2|| T\\, and hence there exist xn and An such
that | | .τn | | = | |An | | = l a n d | | 2 τ A 1 l - A f l Γ ) ί c n | H 2 | | Γ | | . Clearly, \\Anxn\\-^l,
I! ΓΛ J H I Γll, and || TAnxn\\-+\\ T\\. Moreover, since || TAn-AnT)xn\\~*
2|| Γ||, TAnxn - -A%Tα;% + εn where | | ε n | | — 0 . Let (Txn, xn)-^μ by
choosing subsequence if necessary, i.e., μe W0(T). Observe that

(TAnxn, Anxn) = ~(AnTxn, Anxn) + εn

= -(Txn, An*Anxn) = -(Txn, xn) + ε'Λ

where the last step follows from Lemma 1. Thus, lim^n (TAnxn9

Anxn) = -μ. Since both //and -μe W0(T), it follows that 0 e W0(T).

THEOREM 2. If0eW0(T), then \\T\\2 + | λ | 2 ^ \\T + λ| | 2 for all

λ e C . Conversely, if \\ T\\ ^ || Γ + λ | | for all λ e C , then Oe W0(T).
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Proof. If Oe W0(T), then there exist xn e H, \\xn\\ = 1, such t h a t

= \\TxH\\2 + aBe\(Txn, xn) + | λ | 2 - > || T\\2 + |λ | 2 . Con-

versely, let || T\\ ^ || T + λ| | for λ e C . Assume 0 ί ^ ( Γ ) . By rotat-
ing Γ, we may assume that Re W0(T) ^ r > 0. Let @ = {x e if: | | α | | = 1
and Re (To;, a?) ̂  τ/2}. Let 37 = sup {|| Tx\\ : x e ©}. Then η < || Γ| |.
Let μ = min{r/2, (|| T\\ - rj)β). Consider (T - μ). If xe&, then
\\(T- μ)x\\ ^ ||Γa?|| + μ <η + μ < \\T\\. Let Tx - (α + iδ)a? + 2/
where a?e@, p | | = 1, and (a?, 1/) = 0. Then | | ( T - ^)x| |2 = (a - μf +
ί> 2 +| |7/ | | 2 - | |Tα; | | 2 + ( ^ 2 - 2 α ^ ) < | | 7 7 | | 2 s i n c e α > / / > 0 . Thus, \\T-μ\\<
\\T\\, contrary to hypothesis.

COROLLARY. {Pythagorean relation for operator). Let T be a
bounded linear operator. Then there exists a unique z0 e C, such that
II T- z01|2 + |λ | 2 ^ II ( T - z0) + λ||2 for allXeC. Moreover, 0eW0(T-X)
if and only if X — zQ.

Proof. Obviously, there exists a zQeC such that \\T — zo\\ <,
II (T - z0) + λII for all XeC. The rest of the corollary follows easily
from Theorem 2.

REMARK. Given an operator Γ, we define the center (or center
of mass) of T to be the point z0 specified in the corollary, and designate
it by cτ. Given an operator, how does one determine cΓ? In general,
there is no simple answer. However, if T is normal (or hyponormal)
then cτ is the center of the smallest circle containing the spectrum.
(See Corollary 1 of Theorem 4.) In any event, cτ e closure W{T) as
can be seen by a variation of the proof of Theorem 2. However, cτ

need not be contained in the convex hull of o(T). There are nilpotents
of order 3 which bear out this remark. A further example is provided

by the Volterra operator v(v: f{x) -> \*f(t)dt for /eL 2 [0, i Λ

THEOREM 3. Let \\S - T\\ ^ δ. Then

\cs - cτ\ ^ (δ + [δ2 + 8δ\\S - cs\\γη/2 .

In particular, the map T—+cτ is continuous in the uniform operator
topology.

Proof. We first assume that cs = 0. Then,

+ WT-cAΐ
+ \\S - cτ\\2 - 2δ\\S - cτ\\ + δ2
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Solving for cτ in the last expression on the right, we find that | cτ | <^
(δ + [δ2 + 8δ||S||]1/2)/2. To handle the case when cs Φ 0, we merely
translate both T and S by csl.

LEMMA 4. W0{T) n W0(T + α) = 0 , /or any a e C, a Φ 0.

Proof. Let μ e TF0(T)Π WoίTΉ- OL). By an argument similar to
one in Theorem 2, we see that || T| |2 + |λ | 2 + 2Reλμ ^ || T + λ||2 for
λ e C , and | | Γ + ^ | | 2 + |λ | 2 + 2ReXμ S II T + α: + λ||2 for λ e C . Let-
ting λ = a in the first inequality, we obtain || Γ||2 + | α | 2 + 2 R e α μ ^
| | T + α : | | 2 . Letting λ = — a in the second inequality, we obtain
|| T + α | | 2 + | α | 2 - 2 R e α μ ^ || T| | 2. Combining these yields | α | 2 ̂  0,
which completes the proof.

Unlike the usual numerical range, W0(T) is extremely unstable
under translation, as can be seen from Lemma 4. Indeed, under an
ε perturbation, it may jump from a disk to a point (consider the
bilateral shift). It is this property which makes it useful for our
purposes.

The maximal range W0(T) does not satisfy the power inequality
(as does the numerical range). More explicitly, | WΌ(Tn)\ ^ | W0(T)\*
for n = 1, 2, . It is quite easy to construct counter examples using^
finite dimensional weighted shifts.

THEOREM 4. Let £ιτ be a derivation on 33(ϋΓ). Then, | | D Γ | | =
sup {|| T A - AT\\:Ae®(H) and \\A\\ = 1} = inΐλeC2\\T - X\\.

Proof. Since \\TA~ AT\\ = 11 ( ^ — \)A - A(T- λ) | | ^2\\T-X\\
\\A\\, it follows that | | O Γ | | g inf, e C 2| | T - λ| |. On the other hand,
|| T — X\\ is large for λ large, so inf || T - λ| | must be taken on at
some point, say z0. But || T — zo\\ ^ \\(T — z0) + λ| | for all λ e C im-
plies that 0 e W0(T- zQ). Hence, | | O Γ | | = | |O ( Γ_ S 0, | | = 2|| T - z,\\\ which
completes the proof.

REMARK. Rosenblum [7] proved that σ(QΓ) = σ(T) — σ(T) =
{(λ — μ) : λ, μ e σ(T)}. There seems to be no simple relation between

0 1the norm and the spectral radius of O Γ . For example, if T = 0 0
then σ(£ιτ) = {0} but | | D Γ | | = 1. (In fact, Q Γ is nilpotent of order 3,
while T is obviously nilpotent of order 2.)

DEFINITION. Let K be a compact set in the complex plane. Then
the radius of K is the radius of the smallest disk containing K.
Caution: There is no obvious relation between the radius of a set and
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its diameter.

COROLLARY 1. Let T be a normal (hyponormal) operator. Then
| | O Γ | | = s u p { | | Γ A - AT\\:Ae$8(H) and | |A| | = 1} = 2ΛΓ, where Rτ

is the radius of the spectrum of T.

T - λ 11 = spectral radius (T - λ) clearly inf. 6 c 11 T-

Let 0 ̂  A ^ 1, 0 ̂  B g 1. Then \\AB - BA\\ =

Let A and J5 be self adjoint. The last corollary bounds the norm
of the imaginary part of AB. In general, AB will not be self adjoint.
However, the spectrum of AB is real and positive (see [10]). The
obvious estimate 11 Re AB || <̂  11A11 ||Z?|| can not be improved without
additional restrictions. However, one can ask for a lower bound for
ReAB.

PROPOSITION 1. Let 0 ^ A ^ / and 0 S B ^ /. Then Re AB ^
-1/8. More generally, ReAB ^ k,k2 - (K, - kL)(K2 - k2)/8 for 0 ^

0 ^k2^ B ^ K2.

Proof.
Λί [ 1 JXγ.

Since

COROLLARY 2.

2\\ImAB\\ϊa 1/2.

Proof. Let AB = α.τ + Xy, where (x, y) — 0 and ||a?|| = \\y\\ = 1.
Let (Ai/, y) = Ύ. Then, |λ | 2 <: α:τ since A ^ 0; and [λ|2 ̂  (1 - a)(l - 7)
since / — A i> 0. Combining these yields |λ | 2 ^ α(l — a). Let ίte =
βx + ̂  where (a;, v) = 0. By a similar argument, \η\2 ̂  /S(l — /S).
Since (Alta, x) = α/5 + τβ>(v, y), it follows that

Re (ABx, x) ̂  aβ - [aβ(l - a)(l - β)]1'2

and a standard argument shows that the last term has a minimum
of -1/8 for 0 <; α ^ 1, 0 ^ /3 ̂  1; which proves the first part of the
proposition. The rest is obvious.

It is not hard to see that these estimates are sharp. For example,
if

1

0

0

0
and B =

1/4

1/3/4

1/3/4

3/4

then Re {ABx, x) = —1/8 for suitable chosen x.

2. Theorem 4 also holds for derivations on certain C*-algebras.
A C *-algebra is a concretely given algebra of operators (on a Hubert
space H) which is uniformly closed and contains adjoints, as well as
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an identity. A C*-algebra 21 is irreducible if the commutant of 21
contains only the scalars.

THEOREM 5. Let 21 be an irreducible C*-algebra on H. Let
Te^(H). Then

| | O Γ | 3 I | | = s u p { | | TA - AT\\ :Ae% a n d \\A\\ = 1} = i n f 2 | | T - λ | | .
λeC

Proof. In the proof of Theorem 3, we used the fact that
contains an operator V such that Vx = x, Vy = —y and \\V\\ = 1 for
any x, y e H where (&, T/) = 0. This was really the only special feature
of the algebra 33(iϊ) which we needed. However, if 21 is an irreducible
C*-algebra, then by the Kadison density theorem [2], there exists a
unitary operator U e 21 such that Ux = x and Uy = — y whenever
(x, y) = 0. The rest of the proof carries over with only trivial modi-
fications which we shall omit.

COROLLARY. Let 2ϊα be an irreducible C*-algebra on the Hilbert
space Ha for a in the index set K. Let 21 = J?α@2ία on H =
where \\A\\ = supα||<Aα|| for Ae%. Let ΓeS5(£Γ), and assume
2ί->21. 77mι, | | a r | | = sup{||ΓA - AT\\ : A G 2 I α^d
inf {2|| T- Z\\ : Ze 3(21)}, ^ feβrβ 3(21) ts ίfeβ center of 21.

Proo/. Since £ιτ : 2ί —> 21 it follows that Γ = ί © T α where
Tae^8(Ha). For each α: choose Xa such that | | Q Γ J | = 2|| T - λα | | .
Then, \\£ιτ\\ = suvAe%\\TA - AT\\ = supΛe% s u p j | TaAa - AaTa\\ =
s u p β | | Ω r J | - s u p α 2 | | Γ - λ α | | = 2 | | Γ - Z o | | where ^ o = 2 α 0 λ J α .
Since it is obvious that | |£} Γ | | ^ 2|| Γ - Z | | , for ZeS(%) the proof is
complete.

Note that the corollary is not true if we relax our conditions on
21. For example, let 21 consist of operator valued 2 x 2 matrices on

of the form
A 0
0 A where Ae^8(H). Let T = 0 I

1 0
Then,

£V.2I-*2I. Indeed, £lτ = Qo, so clearly, ||£ιτ\\ = 0. But, inf {|| T- Z\\:
Ze 3(21)} = 1. Of course, the conclusion of the corollary would remain
valid if we took the infimum over the commutant of 2ί in this example.

REMARK. Kadison, Lance and Ringrose have proved a variant of
Theorem 4. Given a derivation O,A on a general C*~algebra, where
A is self adjoint, and A e 21 they show there exists a A' e 2I~, the weak
closure of 21, such that D^ = O^, and \\Ώ,A, \\ = 2|| A'||. (Actually, they
prove more; namely that | |Q^|Q2I| | = 2|QA'|| where Q is any central
projection of 2t~.) It is not difficult to modify their result to make it
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look more like Theorem 4. Clearly, A — A' e 2Γ the commutant of 21.
Thus, 11 £LA 11 = inf {2| | A - B | | : B e 21'}. This implies our result for irre-
ducible C*-algebras (but only for A self adjoint, of course).

3* In this section, we will study an operator from 23(iϊ) to
which is not a derivation, but is related to £ιτ of §1. Let A, B e
Set ZΛB{X) = AX-XB for Xe<8{H). Clearly, £ 4 5 is abounded
linear operator on 33(iϊ). Before estimating its norm we will need
some additional information about Wo( )

LEMMA 5. Let Re PΓ0(A) ^ α. 27&ew, #ii>eπ ε > 0, there exists a
δ > 0 swcΛ £Λα£ Re ΐ^0(A + λ) < a + s /or |λ | < δ.

Proof. Assume, without loss of generality, that | |A| | = 1. Let
τ = sup {|| Aα; [| : ||a;|| = 1 and Re {Ax, x) ^ a + ε}. It is clear that
| |A + λ| | ^ 1 - |λ | . However, for ye H when \\y\\ = 1 and Re {Ay, y)^
a + ε, we see that \\{A + X)y\\2 ^ τ2 + 2|λ| + |λ|2. Thus, for |λ | <
(1 - τ2)/4, it follows that Re WQ(A + λ) < α + e.

DEFINITION. The set valued mapping λ —-> M(X) from the complex
plane to subsets of the complex plane is upper semi continuous at
λ0 if lim^;odist [Λf(λ), M{X0)] = 0, or equivalently, the set {M(λ0) + ε}z)
M(λ) for λ sufficiently small. When the mapping is locally bounded;
upper semi continuity is equivalent to the map having a closed graph.

THEOREM 6. The mapping X —> WQ{A + λ) is upper semi con-
tinuous.

Proof. Since W0{A + λ0) is convex for fixed λ0, we may box it
with a finite number of support lines. By the previous lemma,
W0{A + λ) will be contained in the box for λ close to λ0.

DEFINITION. We define the normalized maximal numerical range
WN{A) of the operator A to be the set W0{A/\\ A\\) for A Φ 0. Although
this definition may seem artificial, it is the relevant concept for studying
the norm of %AB.

COROLLARY. If | |A + λ | | ^ 0 for any λ, then the map X —•>
+ λ) is upper semi continuous.

THEOREM 7. Let A, B Φ 0. Then \\%AB\\ = sup {\\AX - XB\\ :
Xe®{H) and | |X | | = 1} = | |Λ| | + | | S | | if and only if WN{A)f)
WN{-B)Φ 0 .
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Proof. The proof is very similar to that of Theorem 1, and so we
will only sketch a portion. Let Xe WN(A)f]WN(-B). There exist
/, geHsuch that | |/ | | - | |^ | | = 1 and (Af, f) = X\\A\\ + ε and (Bg, g) =
-X\\B\\ + ε. Since (Af,f)/\\A\\ = -(Bg, g)l\\B\\ + ε' it is possible to
define an operator U of norm 1 + ε" which sends g to f and —Bg/\\B\\
to A//||A||. The rest of the proof is virtually unchanged.

Given two operators A and B, there exists a λ0 such that

λeC
{||A - λ| | + \\B - λ||} = \\A - λo | | + | |S - λ

Unfortunately, λ0 is no longer unique as simple examples demonstrate.
However, the following lemma gives a criteria for deciding which λo's
are minimal.

LEMMA 6. Assume that neither A nor B is a scalar multiple
of the identity. Then i n f ; . e C { | | A - λ | | + \\B - λ | | } = | | A - λ o | | +
IIB - λo | | if and only if WN{A - λo)Π WN(~(B - λ0)) Φ 0.

Proof. Assume WN(A - λ0) Π WN(~(B - λ0)) Φ 0. Then \\ZAB\\ =
l|£u-;io>.<*-*o>ll = l l ^ ~ λ o l l + H 5 - λ o | | . But, since \\AX - XB\\ =
\\(A-X)X-X(B-X)\\ ^ | | A - λ | | + | | B - λ | | , it is clear that | | £ ^ | | ^
inf^ecίll^- ~~ ̂ 11 + Il-B — ̂ 11} which proves the necessity.

For the sufficiency, we may assume without loss of generality
that λ0 = 0. Thus, for any pre-assigned λ, ε > 0, there exist x, y e H
of unit norm, such that ||(A + X)x\\ + \\{B + X)y\\ ̂  | |A| | + | |J5|| - ε.
After some algebra, we find that Re λ [(Ax, x)/\\A\\ + (By, y)/\\B\\] ^
K(\X\2 + ε) where K is a constant, independent of λ and ε.

Assume that WN(A)f]WN(~B)Φ0. Then, dist [WN(A), WN(-B)] =
δ > 0 and by continuity, dist [WN(A + λ), WN(-(B + λ))] > δ/2, for
small λ. Thus, by convexity and continuity, any choice of x, y which
satisfies the above conditions, must satisfy the inequality \(Ax, x)/\\A\\ +
(By, y)l\\B\\ ^ δ/4 for X small. But then we are lead to the inequality
|λ|<5/4 ^ K(\X\2 + ε) for a suitable choice of arg λ and small |λ|, which
is impossible. Thus, λ0 was not minimal, which completes the proof.

THEOREM 8. Let AfBe^(H). Then, \\XAB\\ = sup{||AB - XJ5| |:
Xe^(H) and \\X\\ - 1} = inf,e C{||A - λ| | + ||J? - λ||}.

Proof. Clearly, | | 3 : ^ | | ^ inf {|| A- X\\ + | | £ - λ | | } . If A or B is
equal to al, the rest of the proof is trivial. (Just take λ = a and
check.) L e t i n f ; e C { | | A - λ| | + ||JB - λ||} - | | A - λ o | | + | | J5-λ o | | . Then
it follows from Lemma 6 and Theorem 7 that | | 2 ^ | | = ||ϊ^_;0,β_;0 | | =
\\A — λo | | + \\B — λo||, which completes the proof.
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COROLLARY 1. Let Ae$8(H), where \\A\\ = land W0(A) = {\z\^l}.
Then, for any Be®(H), \\XAB\\ = 1+ \\B\\.

COROLLARY 2. Let 21 be an irreducible C*-algebra. Set XAB(X) =
AX - XB for A,B,Xe%. Then, \\%AB\\ = sup {|| AX - XB\\ : Xe 21
and \\X\\ = 1} = inf,e C{||A - λ| | + \\B - λ||}.

Proof. Simply use the Kadison density theorem, as in the proof
of Theorem 5.

We will now present another proof of Theorem 8 which bypasses
Lemma 6 and is interesting in its own right. The author would like
to thank W. Gust in, who contributed a substantial portion of the
proof including the following version of the next theorem:

THEOREM (Kakutani [6]). Let λ—>M(X) be a upper semi con-
tinuous set valued "mapping of the n-cube into the n-cube, where M{X)
is a closed convex set for each λ. If the map leaves each point in
the boundary fixed, then its image covers the n-cube.

Although this theorem is not stated explicitly in [6], it is easily
obtainable from the results found there.

Another proof of Theorem 8. One half the proof of Theorem 8
is trivial. For the other half, it is sufficient to show that WN(A + λ) Π
WΆ(-(B + λ)) Φ 0 , for some λ e C We again assume that neither
A nor B is equal to al. We begin by defining a map φ of the open
unit disc {|s| < 1} onto the complex plane. Any reasonable, argument
preserving, continuous map, such as φ(reiθ) = r ( l — r)~1eiθ, will do.
Let M{\) = [WN(A + λ) - WN{-{B + λ))]/2. We now define Φ(λ) = λ
for |λ | = 1 and Φ{\) = M(φ(X)) for |λ | < 1. The WN(-)'s are closed
and convex, and thus, Φ(λ) is a closed, convex set for each λ. The
map Φ is upper semi continuous for points inside the disc by the
corollary to Theorem 6.

It is easy to see that for θ fixed, WN(A + rei0) -+eίθ as r —• oo.
Observe that W0(A + reiθ)a closure W(A + reiθ). This fact makes our
map Φ upper semi continuous on the boundary. By the Kakutani
fixed point theorem Oeikf(λo) = [WN{A + λ0) - WN{-(B + λo))]/2 for
some λ0. But then WN(A + λo)n WN(-(B + λ0)) Φ 0 , which is all we
needed to prove, in light of Theorem 7.

QUESTIONS. IS Theorem 4 true for an operator T on a Banach
space? Is Theorem 5 true for an arbitrary C*-algebra (with the in-
fimum taken over the commutant)? We may generalize the definition
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of W0(T) in the following way. For T an operator on a Hubert space,
set Wδ(T) = closure {(Tx, x): \\x\\ = 1 and \\Tx\\ ^ d}. Clearly, Wδ(T)

is a closed subset of the closure of the usual numerical range, and
W0(T) = Γlί<ιmι Wδ(T). By a slight modification of a theorem of
Dekker [1], it is not hard to see that Wδ(T) is connected. It would
be interesting to know if Wδ(T) is convex. It is, if T is normal, or
if the underlying Hubert space is two-dimensional.

Added in proof: It is easy to see from the Kaplansky Density
Theorem that, given an inner derivation D,Γ on the C*-algebra 21, one
might as well consider OΓ acting on 2ί~, the weak closure of 21, if
one wishes to evaluate | |£ϊ Γ | | Thus our second question has recently
been answered by P. Gajendragadkar in her thesis (Indiana University,
1970). More precisely, she shows that if 21 is a W* algebra on a
separable Hubert space, and £lτ is an inner derivation on 21 where
Te2ϊ, then

| | Q Γ | | = 2 inf {|| T - Z\\: Z in the center of 21} .

If T £ 21 then there is an example due to C. A. McCarthy, which shows
that 11 £}Γ 11 maybe be smaller than

2 inf {|| T - B ||; B e 21', the commutant of 21} ,

where 2ί is a C* or W* algebra according to choice, and T can even
be taken to be self adjoint. Finally, Proposition 1 appears in a paper
by G. Strang in the Monthly, Jan. 1962.

The author would like to express his appreciation to W. B. Arveson,
C. Davis, W. Gustin, G. Minty and J. P. Williams for many stimulat-
ing discussions. In particular, the latter conjectured Theorem 4 dur-
ing one of these conversations.
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