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ABSTRACT. We model spot prices in energy markets with exponential non-Gaussian
Ornstein-Uhlenbeck processes. We generalize the classical geometric Brownian motion
and Schwartz’ mean-reversion model by introducing Lévy processes as the driving noise
rather than Brownian motion. Instead of modelling the spot price dynamics as the solu-
tion of a stochastic differential equation with jumps, it is advantageous to model the price
process directly from a statistical point of view. Imposing the normal inverse Gaussian
distribution as the statistical model for the Lévy increments, we obtain a superior fit
compared to the Gaussian model when applied to spot price data from the oil and gas
markets. We also discuss the problem of pricing forwards and options and outline how to
find the market price of risk in an incomplete market.

1. INTRODUCTION

When modelling spot price dynamics in energy markets one must account for features
like seasonal variation, mean-reversion and large price fluctuations. A popular class of sto-
chastic models is the mean-reversion process introduced by Schwartz [13] for commodities.
Since this model assume normally distributed price fluctuations, it seems unsuitable for
modelling large changes in spot prices and generalizations are called for.

Most authors start out with the stochastic differential equation defining the Schwartz’
dynamics and introduce an additional jump noise term (see e.g. Clewlow and Strickland
[8], Eydeland and Wolyniec [10] and Pilipovi¢ [11]). The modelling philosophy seems to
be that the spot price reverts towards the mean with small price variations modelled by
a Brownian motion, while larger price jumps are modelled as a Lévy process. The noise
comes in multiplicatively, which makes fitting of the model as a cumbersome task (see
Clewlow and Strickland [8] for more on estimation of the jump noise).

We suggest to model (de-seasonalized) spot prices as the exponential of a non-Gaussian
Ornstein-Uhlenbeck process. This alternative route to defining a stochastic spot price
dynamics is advantageous when fitting the model to data. Our approach is adopted from
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Barndorfl-Nielsen [2], who models stock prices as the exponential of a Lévy process. In
stock markets, the log-returns of assets are frequently heavy tailed violating the normal
hypothesis implied by geometric Brownian motion. Barndorf[-Nielsen [2] proposes the
normal inverse Gaussian distribution as an alternative model for log-returns, which leads
to a class of geometric normal inverse Gaussian Lévy processes. The 4 parameters of
this distribution can be fitted to data by maximum likelihood estimation, a much simpler
procedure than estimating parameters in stochastic differential equation with jumps.

The large price fluctuations frequently observed in energy markets will lead to non-
normal deviations from the long-term mean towards which the prices revert. Following
the findings in stock markets, we suggest to model these deviations with the normal in-
verse Gaussian distribution. Our analysis for oil and natural gas shows that the normal
inverse Gaussian distribution is appropriate for modelling the residuals of the logarith-
mic spot prices. This leads to a dynamics of the spot price being the exponential of an
Ornstein-Uhlenbeck process driven by a normal inverse Gaussian Lévy noise, generalizing
significantly the results in Benth et al. [5].

Dependencies in the residuals are not accounted for in our model since Lévy processes
have independent increments. However, the analysis in this paper can be taken as the first
step towards a more complex class of stochastic volatility models described in Barndorff-
Nielsen and Shephard [3] (see also the forthcoming book of the same authors [4]). They
model separately the marginal distribution and the autocorrelation structure of the log-
returns with the exponential of a drifted Brownian motion, where the volatility is following
a non-Gaussian Ornstein-Uhlenbeck process with only positive jumps. The analogue in
energy markets could be the exponential of an Ornstein-Uhlenbeck process, where the
volatility of the residuals are following a non-Gaussian Ornstein-Uhlenbeck process. The
study of these models is outside the scope of the present paper.

We also discuss pricing of forwards and options when the underlying energy spot is mod-
elled with our suggested dynamics. Energy markets are usually considered as incomplete
since hedging in the spot is not realizable due to prohibitivly high storage and transaction
costs, for instance. Even more, introducing jumps in the models for spots leads to even
higher degree of incompleteness. To price derivatives written on energy spots, one needs
to take into account the risk preferences of the investors. Traditionally this is described
by a market price of risk charged for issuing the derivative. The market price of risk is
an additional parameter coming from the equivalent martingale measures. We shall derive
these measures using the Esscher transform, which will provide us with time-dependent
market prices of risk.

Based on our spot dynamics we can derive explicit forward prices as a function of the
characteristics of the Lévy process defining the dynamics. Moreover, given the Lévy process
we discuss how one can find the market price of risk by fitting theoretical prices to today’s
observed forward curve. In many cases this can be done perfectly, but in most natural
situations one would search for an approximation of the observed forward curve. Options
on spots can not be calculated explicitly. However, we know the characteristic function of
the logarithmic spot prices given the Lévy process and the market price of risk. This is the
necessary input for a numerical approach for pricing based on the fast Fourier transform.



SPOT PRICE MODELLING WITH JUMPS 3

The paper is organized as follows: We start with defining the spot price dynamics
in Section 2, following up with a data analysis of oil and gas spot prices in Section 3.
In Section 4 we derive the price of forward contracts and discuss the problem of option
pricing. The market price of risk is calculated via an Esscher transform, and we provide a
recipe for fitting it to today’s forward curve. We conclude our analysis in Section 5.

2. A STOCHASTIC SPOT PRICE MODEL WITH LEVY NOISE

Let (Q,}—, {Ft}te[07T],P) be a complete filtered probability space which satisfies the

usual hypotheses and T < oo. Introduce a Lévy process L; with Lévy-Kintchine represen-
tation

(2.1) Li=vt+0oB;+ / zN((0,t],dz) + / zN((0,t],dz) ,
l2]<1 2121

where B; is a standard Brownian motion, v a constant, ¢ > 0 a constant, and N a

homogeneous Poisson random measure with compensator dt {(dz). The o-finite measure

{(dz) on the Borel sets of R is called the Lévy measure, and satisfies the conditions £({0}) =

0 and fp min(1, 2%){(dz) < co. Alternatively, the Lévy-Kintchine formula can be written

as ]E[exp(i/\l)t)] = exp <t¢(A)) , with i = /=1 and () being the cumulant function

A2 :
V() =il — 702 + / eM 1 — iIA21 |1 £(dz) .
R
Assume 5} is the spot price at time ¢, which we model as the stochastic process
(2.2) Sy = A(t)e™ |

where A(t) is the seasonality (a non-random function of time). The non-Gaussian Ornstein-
Uhlenbeck process X; has dynamics

(23) dXt = a(m — Xt) dit + st 5

and initial state Xy = z. The speed of mean-reversion is given by a > 0, while m is a
positive constant indicating a long-term mean of the process. We easily see from the It
Formula for semimartingales that

a

¢
(2.4) X; = ze” " + @(1 — e_”‘t) + / e~ (t=5) dL, .
0

In particular, when L; = vt + o B; the process S; reduces to the classical mean-reversion
model of Schwartz [13]. Choosing @ = 0 in (2.3), we obtain X; = L; and the spot dynamics
becomes the exponential of a Lévy process, generalizing the classical geometric Brownian
motion model. Hence, our geometric spot price model (2.2) generalizes geometric Brownian
motion and Schwartz’ mean-reversion dynamics. We remark in passing that stating the
dynamics of the spot price directly in exponential form rather than as the solution of a
stochastic differential equation is advantageous when fitting to data.

We shall pay particular attention to the normal inverse Gaussian Lévy process (from
here on called the NIG Lévy process). This process was first introduced in a financial
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context by Barndorfl-Nielsen [2], and is a flexible and successful model for financial log-
returns (see the forthcoming book by Barndorff-Nielsen and Shephard [4]). A process L; is
called NIG Lévy process if L; is distributed according to the normal inverse Gaussian (NIG)
distribution. The NIG distribution is a 4 parameter family of distributions belonging to the
class of generalized hyperbolic distributions. The density function of the NIG distribution
is explicitly given as

€ 2 2
_exp<5 4 Bl )[xl(aw/é + (z — p)?) .
02 + (& — p)?

Here, u € R is the location of the density, 3 € R is the skewness parameter, a > |3| mea-
sures the heaviness of the tails and finally, § > 0 is the scale parameter. The function K
is the modified Bessel function of the second kind and order 1 (see e.g. Abramowitz
and Stegun [1]). The NIG distribution arises as a mean-variance mixture model. If
Y]e? ~ N(u+po?% 0%), and 0? ~ IG(§,+/a? — 3?), with ZG denoting the inverse Gaussian
distribution, then Y is NIG dlstrlbuted with parameters (i, «, 3,8). Since the density is
known exphc1tly, one can do maximum likelihood estimation of the parameters to fit a NIG
random variable to data. The Bessel function K; is rather cumbersome to calculate nu-
merically, and sophisticated optimization methods must be implemented in order to solve
the estimation problem in practice. However, using the Ox-language (see [9]) this task
becomes straightforward. The density of NIG is a predefined function in 0x, and moreover,
the language provides a powerful routine for optimization.

If Ly is NIG distributed with parameters (u,a, 3,d), then the Lévy measure of L; is
given by

(2.5) f(wip,0,3,0) =

(2.6) ldz) = a|—5|eﬁzfxl(oz|z|) dz

Furthermore, the cumulant function is given as

(2.7) ¢(A):ixﬂ+5(\/7 Vol = (B+i)) )

The explicit knowledge of  is useful in connection with option pricing.

3. DATA ANALYSIS AND FITTING OF SPOT PRICE MODELS

We analyse two series of daily spot prices from the energy markets. The first series
consists of 1898 daily (working days only) spot prices of Brent oil ranging from 24 Septem-
ber 1992 until 17 February 2000. The time series is plotted in Fig. 1. The second series
depicted in Fig. 2 shows a collection of 731 daily SAP' prices ranging from 1 January 2000
until 31 December 2001.

To find the (non-stochastic) annual seasonality of the energy spot prices, we used a first
order Fourier expansion,

A(t) = ¢ + ¢ cos (%’r(t - 03)> .

ISAP is short-hand for the System Average Price
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FIGURE 1. Time series plot of the daily Brent oil spot prices
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FIGURE 2. Time series plot of the daily SAP prices

The level ¢;, amplitude ¢; and time shift ¢z were all estimated by the method of least
squares®. The frequency of price quotes was n = 365 for SAP, while we used an average
number of trading days n = 252 for Brent oil. The analysis gave the parameters ¢; = 19.14,
¢y = 3.23 and ¢3 = 10.57 for the SAP data. The oil data, on the other hand, had no

significant seasonal pattern, and for this data set we use A(t) = 1 from now on.

3.1. Geometric Brownian motion. Our data analysis started out with an investigation
of the normal hypothesis for the log-returns from the two series, where we use Brent oil
and de-seasonalized SAP spot prices. The estimates for the means and standard deviations
(sdv) of the log-returns are exhibited in Table 1. We have calculated the Kolmogorov-
Smirnov statistics and the corresponding significance level, which allowed us to reject the
normal hypothesis for the log-returns for both energies at the level 1%. The parameters
of the NIG distributions were fitted to the log-return data using maximum likelihood
estimation, and the results are presented in Table 2.

2We used the function nlinfit in Matlab for this purpose.
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TABLE 1. Estimated parameters of the normal distribution for the log-

returns of the energies

mean std

Brent oil 0.00017 0.021
SAP 0.00145 0.138

TABLE 2. Estimated parameters of the NIG distribution for the log-returns

of the energies

o~ o~

i @ R
Brent oil 0.00102 48.8 —1.96 0.021
SAP ~0.00690 5.80  0.43 0.112
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FIGURE 3. Empirical and fitted densities for Brent oil spot log-returns. The
empirical density is plotted using a Gaussian kernel smoother and is the

broken line.

Figures 3 and 4 show plots of the empirical densities together with the fitted normal and
NIG distributions. We display the densities on a logarithmic scale too, in order to empha-
size the tail behaviour. It is evident that the normal distributions are not very good models
for the log-returns. The tails are falling off like parabolas, while the empirical densities
show almost linear tails on a logarithmic scale. The NIG distributions are catching the
observed heavy tails reasonably well. We also see that the normal distributions assign far
too little probability in the center compared with the empirical densities. This is corrected
in the fitted NIG distributions, although they seem to overestimate a bit. Interestingly,
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FIGURE 4. Empirical and fitted densities for the de-seasonalized SAP gas
spot log-returns. The empirical density is plotted using a Gaussian kernel
smoother and is the broken line.

TABLE 3. Mean reversion parameters

m a R?
Brent oil 2.75 0.004 0.99
SAP —0.030 0.108 0.77

the empirical findings for stock log-returns are similar to what we observe in our analysis
(see e.g. [2] and [4]).

To see whether we could improve the fit in the center, we estimated generalized hyper-
bolic distributions. However, the fitting of the center of the distributions did not become
significantly better comparing to the NIG.

3.2. Mean-reversion model. Let us turn our attention to the mean-reversion model
with @ > 0. The estimation will go in two steps. First we use linear regression in order
to estimate the long-term mean and speed of mean-reversion. Then we investigate the
distributional properties of the residuals by fitting the normal and the NIG distributions.
Admittedly, one should derive a maximum likelihood estimator for the regression of the
latter model. However, it is out of the scope of the present paper to develop such software.
In Table 3 we give the estimated parameters of the mean-reversion models. The esti-
mated speed of mean-reversion for Brent oil is significant at 1% level, while the long-term
mean is only significant at 10% level. For SAP both estimated parameters are statisti-
cally significant at 1% level. We note that gas has a relatively strong mean-reversion (big
value of @), while m is close to zero (since we work with de-seasionalized data, this is not
surprising). From the values of R?* we conclude that the regression line fits data well.
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TABLE 4. Estimated parameters of the normal distribution for the residuals

mean std

Brent oil —0.000008 0.021
SAP —0.000000 0.133

TABLE 5. Estimated parameters of the NIG distribution for the residuals

o~ o~

i@ 3%
Brent oil 0.00091 47.1 -2.11 0.020
SAP ~0.01284 7.91  0.73 0.139
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FIGURE 5. Empirical and fitted densities for Brent oil spot residuals. The
empirical density is plotted using a Gaussian kernel smoother and is the

broken line.

For the residuals we run the same analysis as for the log-returns and the obtained results
are exhibited in Table 4 and Table 5. The normal hypothesis is also rejected at the level

1%.
We have plotted the empirical densities of the residuals together with the fitted normal

and NIG distributions for Brent oil and SAP in Figs. 5 and 6, resp. We reach the same
conclusions as for the log-returns of the energies.

4. ARBITRAGE-FREE PRICING OF DERIVATIVES

We include some considerations on pricing of derivatives based on the spot price model

(2.2).
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FIGURE 6. Empirical and fitted densities for the de-seasonalized SAP gas
spot residuals. The empirical density is plotted using a Gaussian kernel
smoother and is the broken line.

Commodity markets are typical examples of so-called incomplete markets. Trading in a
commodity, natural gas say, imposes big transaction and storage costs. Some commodities
can not even be stored, like electricity (except possibly indirectly in hydro reservoirs, for
instance). These restrictions break down the standard hedging approach used to derive
the unique arbitrage-free price for a derivative. As in incomplete financial markets, a
continuum of arbitrage-free prices exists, one for each equivalent martingale measure. By
definition, an equivalent martingale measure ) is a probability measure equivalent to P
and such that all continuously tradeable assets are martingales after discounting. Since
typically only the bank account can be traded continuously in the market for a commodity,
all equivalent probability measures ) will also be martingale measures. We also consider
spot price models with Lévy processes as the driving noise instead of Brownian motion.
This adds up the degree of incompleteness of the market.

We shall in this paper derive equivalent measures through the Esscher transform. The
usual technique in commodity (and interest-rate markets) to single out one measure @,
is to parameterize the class of ()’s and fit the theoretically derived forward curves to the
empirical ones.

First, let us impose an exponential integrability condition on the Lévy measure ensuring
existence of moments of the spot process. The valuation of forwards and option contracts
usually requires the existence of at least the first moment of the underlying.

Condition (L): There exists a constant £ > 0 such that the Lévy measure satisfies the

integrability condition

/ ek l(dz) < oo .
1
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The constant k& determines the order of the moments that is finite for the spot price process
(2.2). This follows from the next Lemma:

Lemma 4.1. If g : [0,t] = R is a bounded and measurable function and Condition (L)
holds for k := sup,gpo 1 |9(s)|, then

E e (| o(s) )| =e (| b)) )

where G(X) = p(—iX).

Proof. First, let us prove that [, [e** —1—Xz1p,;{(dz) < oo for all [A| < k: It is sufficient
to consider only A > 0. It follows from the definition of the Lévy measure and Condition

(L) that
00 1
/R|e)‘z —1 =Xzl |l(dz) = / e — 1] £(dz) + / e — 1 — 2| ((d2)
1 -1
-1
+ / e — 1] 4(dz)

o0

00 -1

< / e U(dz) + K\ / 220(dz) + / 14(dz)
1 |z|<1 —00

<C,

where (' is a constant only dependent on £ and not on A. From this it follows that since
lg(s)| <k for all s € [0,1] the integral fg #(g(s)) ds is well-defined.

The Lemma now follows from the independent increment property and the Lévy-Kintchine
representation of the Lévy process.

0

Assume 0 : [0,T] — R is a measurable and bounded function. Consider the stochastic
process

(4.1) 70 = exp (/Ote(s) dL, — /thb(@(s)) ds) ,

where ¢()\) is the moment generating function of L;, e.g. ¢(\) = ¥»(—i)). The process Z!
is well-defined for ¢ € [0, 77 if Condition (L) holds for & := sup,¢po 71/0()|. Introduce the

probability measure Q? defined by the Esscher transform:

Q'(A)=E[1.427] ,
where 14 is the indicator function. This measure is obviously equivalent to P, and thus an
equivalent martingale measure. Denote the expectation using the probability QY by Eq [].
Note that by using time-varying §’s we have a more flexible class of martingale measures
when fitting to the observed forward curve. The market price of risk is parameterized by
6. We remark in passing that in Benth et al. [5] the market price of risk was derived

by a Girsanov shift on the Brownian motion part of a Lévy process. If we model by, for
instance, the pure-jump Lévy process defined by the normal inverse Gaussian distribution,
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the market price of risk will be undefined in the setting of [5]. The approach here is much
more general and natural.

Let f be a real-valued measurable function with at most linear growth. Then the arbi-
trage theory tells us that the fair price P, at time ¢ of an option on the spot paying f(S57)
at maturity 7' is (see e.g. Bjork [6])

(4.2) Py = o709 [f(S1) | A

for an equivalent martingale measure (). We have used the notation Eg [-] for the expec-
tation under ). Choosing the equivalent martingale measure @’ the following Lemma
provides a sufficient condition for the existence of a price dynamics F;:

Lemma 4.2. Suppose Condition (L) holds for k := 1+4supgo 17 |0(s)|, then Eq [| f(ST)[] <

0.

Proof. First of all, we see that Z% is well-defined from the assumption in the Lemma. From
the equivalence of Q% and P, we find

B [1/(S)I| = E[I/(S7)|Z7]
and by linear growth of f it follows that E {exp fo )+ e=2(T=5) dL,)| must be finite for
the Lemma to hold. This is ensured by the assumptlon. a

From now on we suppose that Condition (L) holds for k := 1 + sup,¢o 77 /0(s)| for all
f’s in question.

4.1. Forward contracts. The arbitrage-free price of a forward contract at time ¢ with
delivery at time T > ¢ is defined to be the adapted process F’(¢,T) such that

0=e"TE [Sy — F'(1,T) | F] .
Thus,
(4.3) FO(t,T) = By [Sr| F]
We derive an explicit formula for the forward price:

Theorem 4.3. The price at time t of a forward contract with delivery at time T > 1 will
be

a4y #0.7)= A exp ([ {61006) + ) oot} s (Af;))exp o

Proof. First, observe that X;e=*(T=%) = X — ftT e=(T=5) d[,. Hence,

T
FO,T)=Fy [Sr | Fi] = ANT)Ey [exp <Xte_“(T_t) + / e~ uT=s) dL5> |.7:t}
¢

o <AS(;))exp A(T—1)) N [exp <[Te_a(T—S) dLS) \E} ‘
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We continue to calculate the conditional expectation: from Bayes’ Formula we get

([ 0L |7
- [exp ( [ ! e~ T=9) q[,, 2—? | }}]
= exp <_ /tT B(0(s)) d5> E [eXp (/tT O(s) 4 e~*(T=2) dL5> | ft}
= exp (- /t ' $(0(s)) d5> E [exp ( /t ' 0(s) + e (T=*) dLS>]

= exp (f {6(0(s) +e7*T)) — 3(0(s)) } ds) :

This proves the theorem. a

Eq

We now briefly outline how one can use the today’s observed forward curve to find the
price of risk f chosen by the market. Let F(T;),s = 1,...,N, be N prices of forward
contracts with delivery time 7} resp., where 0 < T} < Ty < -+ < Tx. The theoretical
forward prices are given by letting ¢ = 0 in Thm. 4.3. Hence, for the forward contract with
delivery at time T; we have

P01 = amyesp ([ o000+ s ()

1=1,...,N. We can now find the 6 which minimizes the distance between the theoretical
and observed prices in some appropriate norm, that is,

() i= arg min | F*(0,T) = F(T)|

where we minimize over measurable functions 6 being uniformly bounded by a constant.
For some specifications we can obtain an exact match between theoretical and observed
prices (see e.g. [5]).

4.2. Options. The arbitrage-free price of an option with payoff f(S7) at maturity 7" is
given in (4.2). To find the price at t = 0, we need to calculate

Po=e""TEy [f(A(T)e*XT)] .

Assume that the market price of risk is specified (for instance by fitting it to the observed
forward curve as described in the Subsection above). In order to find the price of the option
we need to calculate the expectation. The problem we are facing however, is that we do
not know explicitly the distribution of X7 under the probability ()4, except for some very
special cases. What we know, however, is its characteristic function:
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Corollary 4.4. For A € R it holds Eg [exp(:AX7)] = exp (V(XN)), where

\Il(A):z’A(e‘“TlnSo—l—%(l eT) /¢ e=(T=2) ie(s))ds—/oT¢(—¢9(s))ds

Proof. The result follows from Sato [12, Lemma 17.1, p.106] or by a direct calculation using
the Lévy-Kintchine formula and the independent increment property for the Lévy process

L. O

Knowing the characteristic function © of the Lévy process paves the way for a Fourier
approach for pricing options on the spot. We refer to Carr and Madan [7] for a complete
description of the fast Fourier transform technique for calculating option prices when the
characteristic function of the log-price is known. We end this Section with an example
where the characteristic function is calculated when L; is a NIG Lévy process.

4.3. Example: The NIG model. First, let us investigate Condition (L) when the Lévy
process L; is of NIG-type.

Lemma4.5. If L; is a Lévy process where Ly is NIG distributed with parameters (p, o, 3,9),
then Condition (L) is fullfilled for every k < a — (3.

Proof. Inserting the Lévy measure in (2.6) of a NIG Lévy process, we must prove that

o0 5 o0 [/’
/ e U(dz) = a_/ ek;r_ﬁIM dz ,
1 m o’ Z

is finite. Appealing to formula 9.6.23 in

[1]
/1 W(dz):%rr /\/—/ “dz dt

which is finite as long as k& < o — 3. Hence the Lemma follows. O

we can rewrite the integral as

From (2.7) we find the moment generating function ¢(A) = »(—iA) of a NIG distributed
random variable with parameters (y, «, 3,6) to be

o) = pA + (VT = F =P = (A 5P), D+B<a.

The forward price with delivery at time 7' becomes
g, \ exp(-a(T-1)
FO,T) = MT)exp (B0 - —G<T—f>) 7“
(1.7) = ATy exp (1 =T (5

X exp< / {\/a —(0(s)+ B)* — \/a2 — (0(s) + e~(T=2) +/8)2} ds) :

for every 6 such that sup ¢ 770(s) + eT=%) 1 3| < a.
If we are interested in calculating option prices for a given market price of risk 8 we easily
derive the characteristic function of X7 with respect to the probability @’ from (2.7) and
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Cor. 4.4 as
m 7 T
T(N) = m(e—aT In S+ —(1 — e_“T)> +iIA= (1 —eT) +/ d(s)ds ,
a a 0

with

0(5) = 8 (VAT = (T H ORI =yt = (3 (0(s) + e 7))

for 0 such that sup,co |8+ 0(s)| < o

5. CONCLUSIONS

We have suggested an exponential non-Gaussian Ornstein-Uhlenbeck model for the spot
price of energies. This model is simple to fit to price data compared with alternative models
stated as solutions of stochastic differential equations. Motivated by Barndorff-Nielsen [2],
we propose to use the normal inverse Gaussian distribution for modelling the residuals in
the Ornstein-Uhlenebeck process. The analysis of Brent oil and SAP spot prices shows a
clear rejection of the normal hypothesis, while the normal inverse Gaussian distribution
fits the data reasonably well and provides a more accurate picture of the actual spot price
dynamics.

We have derived explicit forward prices and discussed how to find the market price of
risk. As the basic ingredient in an efficient valuation of option prices on spots, we have
calculated the characteristic function for the logarithmic spot price.
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