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The Normal Modes of Nonlinear
n-Degree-of-Freedom Systems

A system of n masses, equal or not, interconnected by nonlinear

R. M. ROSENBERG

Professor of Engineering Mechanics,
University of California,
Berkeley, Calif.

‘symmelric” springs,

and having n degrees of freedom is examined. The concept of normal medes is
rigorousky defined and the problem of finding them is reduced to a geomelrical maximuni-

manimum problem in an n-space of known metric.

The solution. of the geomelrical

problem reduces the coupled equations of motion to 1 uncoupled equations whose notural

Sfrequencies can always be found by a single quadrature,

An infinite class of systems,

of which the linear system is a member, has been isolated for which the freguency ampli-

Inde can be found in closed form.

ln some earlier papers [1, 2, 3)! the “normal modes”
of certain nonlinear two-degree-of-freedom systems were dis-
cussed. These systems consisted of masses and springs, & re-
striction being that the forces with-which the springs resist being
deflected are odd functions of these deflections.

Evidently, these papers have dealt with a heretofore undefined
subject matter since the concept.of normal modes is generally de-
fined for linear systems only. In them, “normal solutions’” is
the term associated with a fundamental set of solutions, and it
is & well-known property of these, that a linear combination of
the normal solutions yields all solutions of the system.
Even if it should be possible to isolate, for nonlinear systems,
solutions which are equivalent to the normal vibrations of linear
systems, such solutions cannot be used to construct new solutions,
since the superpositien prineciple is ipse faclo inadmissible in
nonlinear systems.

The earlier method [2] consisted in identifying the search for
the eigenvectors with the solution of & maximum-minimum prob-
lem in two-space. Once the eigenvectors had been found in this
manner they could be utilized to transform the two-degree-of-
freedom problem into two separate problems, each in a single
degree of freedom. This appresdch suggested itself readily, and it
was relatively simple to exploit it, because the geometrical prob-
lem (which is the equivalent of the dynamiecal one) is one of
geometry in two dimensions, It is natural to inquire whether it
is even possible, and if 8o, whether it is useful to extend this theory
to n-dimensions. In fact, doubt as to the feasibility of this ex-
tension has formed the substance of & discussion of an earlier
paper [3).? It is the purpose of this paper to extend the
earlier results to systems having n-degrees of freedom.

Equations of Motion

Consider a system of n-masses (either equal to or different from
each other) interconnected by nenlinear springs, and the first

and last of the masses connected by nonlinear springs to fixed
points (or to infinitely large masses). The springs also may be
equal to or different from each other. The system has n degrees
of freedom and is illustrated in Fig. 1. The spring force of each
spring is an odd function of the spring deflection. Thus, if
a spring 8; is deflected by an amount v, it resists this deflec-
tion with a force S;(u;), and

S —w) = —8iuy)
There exists (by definition of admissible systems) an equilibrium
position of the system, and the displacement of the ith mass from
its equilibrium position is denoted by #;, so that the z;, (¢ =[1, 2,
. o 1) are the co-ordinates of the problem. Then, the equationa
of motion of the system are
r=1,2,...,n
’ ’ } (1)

mE; = Si{zic — ) — Sz — 2in), 2o = gy =0
o i =

In what follows, we shall only admit springs whose forces are
everywhere analytic in the deflections and, moreover, we shall
assume that these forces are represented with a satisfactory de-
gree of accuracy by finite Taylor expansions. In the technical
sense, these resirictions represent no limitations on the springs.
Under them, the equations of motion become

g

2

i=1,8,400

md; = g, {1 — @)

i) i=12..,n
= dis, j(T; — Ten)?, (2)
Ly = Ynhl = 0

F=1,8 00
Finally, it is conveniént to normalize the co-ordinates by means of
the transformations

bi=mi'fry, i=1,2,...,0 €)]
The equations of motion then take on their final form
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Since the system is conservative, the right-hand sides of the
equations of motion must be derivable from a potential function.
In fact, one finds readily

i=1,2...n

i=12..,10 (5)
n+1 i { e ( by _ E‘ )IH}
i=1,2,...5=1,8,... j+1\meat !

My = Mats = ® (6)

Evidently, U is symmetric with respect to the origin; in other
words, U remains unchanged if any one, or some, or all of the
£y are replaced by — £y provided that, at the same time, the
corresponding £; are replaced by —£;. This important property
is & direct consequence of the fact that all spring forces are odd
functions of the spring displacements.

The transformations (3) have normalized the system so that,
in the transformed eo-ordinates, the kinetic energy is

o(£) = E £2

while, in the physical co-ordinates,

ki3

2T(z) = Y, miit

However, this transformation also admits o physical interpreta-
tion, The nontraneformed equations (2) are those of the physical
system of Fig. 1. However, the transformed equations of motion
may be regarded as those of a unit mass which moves in an
n-dimensional space under forces which are derivable from the
potential function U defined in (6); the £;are, then, an orthogonal
co-ordinate system in the n-space. Finally, it should be ob-
served that the system (4), or (5) and (6), reduces to the linear
problem when j = 1.

Normal Modes of Linear System

When dealing with the linear aystem, the normal modes, or the
eigenvectors, are usually determined after the eigenvalues are
found. In fact, oné usually substituies sinusoidal functions of
time

E{l) = byeoawd, 1=1,2,..,n (7)

into the equations of motion and finds in this manner a charac-
teristic function whose zeros are the eigenvalues. Then, the rth
eigenvector v,(w,) is found by attaching to each eigenvalue w, the
associated eigenvector 5. The b, are then the n~components of
v,. It is evident that, in the very first step, this method makes
use of a property which is unique to the linear problem; namely,
that the displacements are sinuseidal functions of time. Conse-
quently, this method can never lead to a generalization of the
concept of normal modes which comprises the nonlinear problem,
and which reduces to the familiar meaning of the eigenvector
when the problem reduces to the linear one.

Here, we wish to find a new way of defining normal modes of
the linear system which must be such that (a) the normal modes

of the linear system are uniquely and correctly defined by it and
(b) the definition must be capable of a simple extension to the
nonlinear system.

This definition begins with the observation easily deducible
from (7), that

=&+ T)

Ein(t) _ bin
Q) b

The first of these states that the normal solutions of the linear
system are all periodic of the same period, while the second states
that the ratio of the displacement of any one mass to that of any
other is identically equal to a conatant for all time. The first is
& property which must be retained in the nonlinear case while the
second may either be rétained in the form

i=12.,
EuﬂEU

e ®)

= iy

i=1,%..,0 :
eirfy, - E’ (; (9)

fin =

or, it is capable of the obvious generalization

o T A
&l""l(El)r ’ "

Ei=0

En = (10)
where the £:1; are single-valued functions of £,.

The second of (8) harbors a well-known property of normal
vibrations. Suppose there exists a time ¢ such that &{#) = Q.
Then, it must be true, in view of the second of (8), that &, &, . .
£, all vanish at the same instant. In other words, all masses of
the system of Fig. 1 pass through their equilibrium position at the
same instant if the system vibrates in normal modes. The two
properties of vibrations in normal modes, (¢) that all masses
vibrate at the same frequency and, (b) that they pass through
their equilibrium position &t the same time is, in fact, a deserip-
tion of normal vibrations. If these properties are to be retained
in the nonlinear system as generslized in (10), the boundary
conditions

En(0) =0, {=1,2 (11)

must be added to (10). If, however, (9) is to be retained, the
condition (11) is automatically satisfied.

One additional property of the normal modes of linear systems
must be exhibited before the array is sufficient for actually finding
the eigenvectors; this property is connected with the manner in
which the system is set into motion. Let us suppose that we start
the motion without initial velocity, so that the initial condifions
are

ot — 1

E0)=b; £40)=0, i=1,2..,n (12)

[We note here that the by are not arbitrary. In fact, with arbi-
trary values of b; the system would not vibrate in normal modes;
instead, energy exchange between the masses (or in the trans-
formed system Lissajoux figures of the unit mass) would result.
In fact, the b; are the £-components of an eigenvector; finding
these is the essential problem in the solution of the eigenvalue
problem. However, we assume here a priori the well-known fact
that initial conditions like (9), and resulting in normal vibrations
do exist. If it should be found in the generalization to nonlinear
systems that such initial conditions do not exist, we -shall say
that the nonlinear system is not capable of vibrating in normal
modes.]
It follows from an application of L'Hopital's rule that

£n(0) _ En(0) _ dUMEM i=1,2..4n
£(0) £(0) UL Ewi=10

or, at the time ¢ = 0,




o _d_fn
== 3UjL, (13)
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The meaning of this important property will be discussed o little
furtheron. All these properties of normal modes of linear systems
are easily interpreted in a geometrical manner.

Consider the {n + 1)-dimensional space whose orthogonsl co-
ordinates are £, £, .. ., &, U. When the system is released at

the time ¢ = {, it cceupies a position of maximum potential
U = —'Uo (14)
because it is released without initial veloeity. But U/ = — U,

defines an n~limensional equipotential surface or, more precisely,
it defines the projection of the equipotential surface U7 = — U,
on the (&, &, . . ., £)-space. In fact, (14) defines & domain in
the n-space surrounding the origin, and all solutions must lie in
this domain (for, if they did not, the potential would have to
exceed its maximum value — U/y). 'We shall, therefore, call it the
“bounding surface.”

Now, in virtue of the second of (8), the normal modes satisfy
the relations

20 8 _ &) _
O O O

The first of these, i.e., & = cofi, robs the n-space of one dimen-
sion (because one of the co-ordinates is expressible in terms of
another). In faect, it defines an (» — 1)-dimensional hyperspnce
which intersects the &if-plane on the line £ = e:f. In this hy-
perspace, thé equation £ = ¢f; defines sn {(n — 2)-dimensiona}
hyperspace which intersects the £1£-plane on the line & = k.
A continuation of this argument finally defines a straight line
passing through the origin of the n-space and intersecting at
least twice the bounding surface within which the solutions must
lie. The component of this straight line along the {,-sxis, say, is
bk, We may picture the normal vibration as a periodic (and
in the linear problem a simple harmonic) motion of the unit mass
traveling along this line between the points where that line
pierces the surface defined by UV = — Uy, The projections of that
motion on the £-axes, (2 = 1, 2, ..., n) are the normal vibrations
of the ayatem.,

We are now in a poeition to discuss the meaning of (13). At
the time ¢ = 0, the point moving along the straight line defined
previously, and termed a ‘‘modal relation” [2], lies on the bound-
ing surface, or in the domain defined by (14). At the same in-
stunt, the relations (13) apply. But, sinee from (13)

ki
> =

i=1,2,...

PR

al = dE (15)

It is evident that (13) are merely the well-known expressions for
the conditions that the modal line intersects the bounding surface
defihed by U = — U, orthogonally.

We have now collected the properties, necessary to define a
normal mode of the linear system having = degrees of freedom.

Deflnitlon. A normal mode of the linear system
. o |
?,r,.=a;‘_-, i=1,2..,n (16)

where U ig given by (6) with § = 1, it iz a straight line in the (&,
&, .. ., £.)-space defined by the (n — 1) equations

& = ek (17}

which are satisfied for all ¢ by periodic solutions £,(8) = £(2 + T)
of (16) in the closed domain U = — U, of the (&4, . . ., £,)-space,
which passes through the origin of that space and which intersects
the bounding surface defined by U/ = — Uy orthogonally.

1=23..,n

An Example. As an example of the foregoing definition, consider
the three-dimensional linear problem, and let

"= Tz=1% T3=2
E=§ =9 &L=F

The equations of motion of the physical system are

mE = —mx — afx — y)
meff = ez — ) — afly — 2)
meE = afy — ) — a2

The transformed equations are

fo 0 2N B8, . T

't \m'2)  m N\ '
_aa(_é__;u)_ s (_ﬂ_ +_f_)
et ot me' ma? \m't T )

IS S T (O O
1’ +m3x/, (’n!—x/, = mg:/,) ‘H%al s (?nel./|)

We may also write the system as

_oUu . U . U
TeEr T et YT R

where the potential function is defined as

U _ [+1} E 7 az
T T \m) T 2 ml‘/' '/’
__L
/:

o f 7 LN
T T2 e - e T 2 \mi

It is evident that

U=-U
defines an ellipsoid in the (£, 4, {)-space which is symmetric with
respect to the origin.
Let the normal solutions be
LR (ORI
By " OHD e
- ¢,.¢ Are constan
n=c §=crk

The first of these defines o plane in the (£, 4, {)-gpace which con-
tains the {-axis, and which intersects the (£, n)-plane on the line

= ¢y£. The second defines another plane which contains the
y-axis, and which intersects the (&, {)-plane on the line { =
cré. The intersection of these two planes is the line (OP), as
shown in Fig. 2, and that line is the modal relation. Moreover,

{pPLANE




that line intersects the ellipsoid U = —U at two points P and
P’ and, at these points, the modal line is normal to the surface of
the ellipsoid.

The model of the motion in hand is that of the unit mass
traveling along the modal line in simple harmonic motion be-
tween the points P and P’ where the modal line intersects the
surface of the ellipsoid. At the extremities, the velocity vanishes,
and the co-ordinates of the peint P are the initial displacement
components.

Generalization of Normal Modes

In a purely verbal manner we shall say that the nonlinear gys-
tem in Fig. 1 vibrates in normal maodes when all masses execute
periodic motions of the same periad, when all of them pass through
the equilibrium position at the same insiant, and when, at any time
t, the position of all the masses is uniquely defined by the position
of any one of them. In view of these properties and of the pre-
ceding section, we give for normal modes, in general, the follow-
ing:

Defintion. The mth normal mode of the system
ou
2k,
where U is given by (6) is a line {curved or straight) in the

(£, &, . . ., £.)-space which is defined by the {n — 1) single-
valied functions

k= En(d), {19)

which are satisfied for all £ by the periodic solutions £,(t) = Efi
<+ T) of (18) in the closed domain U = — Uy of the (£, &, .. ., §,)-
space and which satisfies the boundary conditions that:

¥ = i=1,2..,n (18)

1=%23..,n

(@) All £,(0) = 0, or the line passes through the origin of the
(El: EEJ BT E:-)‘SDEC&

{b) The line intersects the bounding surfsice defined by U =
— Uy orthogonally.

An illustration corresponding to that of Fig. 2 but applied to
the nonlinear system of three degrees of freedom is shown in Fig.
3. It should be observed that, in the linear case, the bounding
surface is an ellipsoid while, in the nonlinear case it is an ovaleid
which is, in general, not an ellipseid.

While only one modal relation is referred to in the definitions
and only one has been illustrated in Figs. 2 and 3, it is known that,
in the lineéar ¢ase at least, 23 many such modal lines exist as there
are degrees of freedom. For instance, in the example of the three-
degree-of-freedom system shown in Fig. 2, three modal lines exist
and they are, in fact, the principal axes of the ellipsoid.

The Decoupled Equations

For the present, we leave open the question as to whether, or
how, the modal lines can be found, Supposing simply that they

{

are known, they can be used in an obvious way to reduce the
n-degree-of-freedom system of n-equations, each in a single degree
of freedom. For instance, the rth equation of motion is

o oty
Er = a_",:r- (Eﬁlr Er: Eﬂ'l) (20)

in accordance with (5). In (20), the expression on the right-hand
side denotes the fact that, in general, the derivative U /&,
depends on the thres varviables £, &, £+ If the equations
{19) in one of the modes are kngwn, one knows in particular the
functions

Er*l = Erﬂ(fl)
& = &)
E = Ea(h)

Introducing them into (20) gives

5 . all ;
B4 B = 2L {E(&), L&), Euld)) (21)
where primes dencte differentiation with respect. to &, and dets
differentiation with respect to time £. It follows that (21) is an
equation in the single dependent wvariable &. If theré are n
modesr = 1, 2, . . ,, n, the system has now been reduced to n
equations, each in the variable £

A simplifieation of (21) can be achieved if we choose r = 1
(which we are free to de). In that ease, (17) s
" a7
& = P (&, &)

Inowledge of the equations defining the modal relation includes
the equation

(22)

& = 5(&) (23)
Then, (19) becomes simply
2 oU
&= 6—51 (&, BLE)) (24)

which is, obviously, an equation in £, only. If there are n modes,
there are n equations (23) and, introducing each in turn into (22),
there are n equations of the form (24), all in &.

The application of this procedure to the linear three-degree-of-
freedom system may be instructive. - The first equation of metion

is
-E-_ _ ay E _ az E _ n
T 't \mt m
and the equations of the modal relations are supposed known.

But this implies knowledge of the thres constants ¢;, in

r=1,23

71 = crr:‘fr

Intruducing this relation into the first equation of motion yields
the three eguations

55 /e
£= - {1_52[1"(”_11) qEr]}Es r=12%23
Ty (15} My

From these, the three natural frequencies, or eigenvalues, can now
be found without difficulty.

It should be noticed that knowledge of the eigenvectors has
been assumed without any indication as to how they can be found.
We shall now discuss the question of finding the eigenvectors with-
out prior knowledge of the eigenvalues.



Determination of the Eigenvectors

The dypamical probleni in hand is to find the normal solutions
of the system

o
o’

Any solution of this system (including the normal solutions) is
of the form

£ = =12 ...,n (25)

Ei = Ei(”}

Elimination of time between these functions and regarding & (for
instance) as the independent varisble, transforma (28) into

& = &), (27)

These functions constitute the frajeciory of the system in the
(&, & .. . £)space. In a physical sense, they represent the
trajectory of the unit mass of the aystem (4), or (5) and {6).
It ja well known [4] that this trajectory is the geodesic in an
n-dimensional space whose metric is

o= T (28)

i=23..,n

n

SE) D

i=1,2,...

dot = (Ug + Uléy &, . . dE;® (28)
Consequently, the differential equations of this geodesic are the
Euler equations of the variational problem

j: (Us + U2 (1 +
10 7

l./,
E,."*‘) df; = stationary

i=2,8,...
(29)
These Euler equations are
Ao + U} {Ee’-’ (1 +> E;") -3, E;'E.-'Ei"}
i EE=
+ (1 + Z E.‘m) { 2 EJ’EI
Z,-: ok Z ae,
(1 ES ; E,’*) as‘} =0 (30)

L7=23..,n

While every solution of (30) represenis a trajectory of the dy-
namical system in the (&, &, . . ., £,)epace, not all are modal
lines. The modal lines are those solutions of (28) which satisfy
the boundary conditions listed in the definition of normal modes.
Since (30) is & system of (n — 1) second-order equations, it gives
rise to 2(n — 1) constants of integration. But the trajectory is
defined by the (n — 1) equations (27), and the satisfaction of the
required boundary conditions {one being the value at the origin,
the other the value of the slope on the bounding surface) re-
quires the determination of 2(n — 1) constants. Therefore, it is
possible, in principle at least, to solve the problem. Neverthe-
less, the system {30) is such a complicated system of highly non-
linear différential equations that the prospect of finding the gen-
eral solution may be confidently regarded as hopeless.

Straight Modal Relations

Lot us assume that, for certain forms of U, the modal relations
are straight lines. If they are, the second derivatives £, (§ =
2,8, ..., 1) vanish. Then, since

tid
142,40,
7

these straight modal relations must satisfy the system of equations

& ag +§zxa .

(1 +Zs,'ﬂ>—; 67 =238 ...n (31)
FHL -

Writing (31) in terms of differentials (instead of derivatives) and
adding (U /2&,)dE,2 to both sides of the.equation, it is found that

dh _ dh _ 4k (32)
all /o4 al7/ot, ol /ok,
[Actually, proceeding in the manner indicated yields (32} with
db
dlU bk

absent. However, £ is not intrinsically a preferred co-ordinate;
it has assumed a special position only because we have assigned
to it the role of the independent variable. Thus it is clear that
the first term in (32) may be added to the set. Oné can also ob-
tain this result in & formal manner by consideriog all £ to depend
on a parametsr &; snd by treating the varistional problem

fm (Ts + U ( 2

174
E;*’) de = stationary
gl 2, ...

where primes denote differentiation with respect to a@.] Bub
(32) is similar to (13}, the only difference being that (13) was
valid only at { = O while (32) applies at every value of 2. There-
fore {32) implies that the modal line under discussion is normal to
all equipotential surfaces

U=-H2-U

This leads to the following:
Theorsm. Every straight line in the (£, &, . . ., £,)-space which
interseets all equipotential surfaces orthogonally is & modal line,
Conversely, every modal line which is straight intersects all
equipotential surfaces orthogonally,

Homogeneous Systems

Among the gystems illustrated in Fig. 1 whose equations of
motion are given by (4), we select the class whose eguations
of motion are

- (f AN
£ Mg /z o 1/2 mi‘h

: - i=12...1n
_ Gt ( i “’%) np = Mt = »p (38}
niih

m' .
k = odd integer

This class is called the homogeneous system of degree & because
the right-hand sides are homogeneous functions in the £; of degree
k. We shall show that, for this class, the modal relations are
straight.

The system {33) has considerable interest, both from the
mathematical and from the physical point of view. Its mathe-
matical interest resides in the fact that it represents a broad
generalization of the linear problem sinee the linear system is one
of its members. Moreover, as we shall show later, in homogene-
ous systems, the eigenvalues as functions of the amplitudes
can be found in terme of tabulated functions and without the
approximations that must usually be made in the treatment of
nonlinear problema.

Physieally, the homogeneous system is such that the springs



resist being deflected with a force that is proportional to the kth
power of the deflection. Thus the system is of interest wherever
springs are used which have this property.

For our purposes, it is more convenient to write (33) in the
form

2u
&’

E i & £ \rtt
k41 \m'e - e , M= May =@

We now make use of the following property of surfaces in
Euclidian n-space?: Consider a smooth surface in this space.
Then, the straight line between the origin (of that space) and
that point on the surface which is nearest to, or farthest from, the
origin intersects the surface orthogonally.

We consider the equipotential surfaces

e s s
0>—Hz-U,

:‘::.'=

t=512..,n

U=

const

and we seek those paints on each of them whose distance from the
origin is stationary. If the locus of these points is a straight line,
its equation will not contain the distance of these points from the
origin. Therefore the procedure is to write the equations of the
equipotential surfaces in generalized polar co-ordinates and, then,
to apply the condition which singles out those points on the sur-
faces whose distance from the origin is stationary. A necessary
condition for the existence of straight modal relations is that the
modules of the position vectors of these stationary points do not
appear in the equations of the locus of these points. If the equa-
tions of the locus have real zeros, the conditions which are, both,
necessary and sufficient for the existence of straight modal rela-
tions are fulfilled.
Let the generalized polar co- ordnmtes be

& = rfi(gh 8-‘) s e ony "‘1)1 (34)

They are sueh that, when » = 1 and the &; take on all possible
values between 0 < 8; € 2w, all points on a hypersphere of radius
1 in the n-space are defined. If these co-ordinates are introduced
into the equations of the equipotential surfaces

i=12...,n

ntl .
Gk i A
v ; k41 (m;_;‘/* m‘.‘/z) =HLU
one finds
n41 .
ik fimt fi \¥h
-0 = rktt {_122 E+1 (Tﬂ.‘—lih - mi,/’) =H (35)

or, more generally
Ulr, by, 0y .. ., 8,1) = R(r)O(Oy, B, .. 0.—) = H (36)
Now, the locus of the stationary points in question is defined by
dr =
which implies
au

= =0 i=

- 1,2.

vt —1

In view of {36), the last equation is equivalent to

*This is not the n-space whose metri¢ iz given in (26).
space under consideration here has the metric

The n-

n
dot = 3 df:?
i

=0, i=12,..,n—-1 (37)

EA

and, thus, the condition which is neeessary for the existence of
straight modal relations is satisfied since O is a funetion of the
angles 8; only. Whether the relations (37) have real roots f;,
(r = 1,2,...) cannot be answered without further caleulation
becsuse the f; have not been expressed explicitly as functions of
the angles. We shall examine this question further for the ease of
the nonlinear three-degree-of-freedom system.

Homogeneous System With Three Degrees of Freedom
Consider a homogeneous system like that of Fig. 1 but having
only three degrees of freedom, and let

e =

Elﬂfs
g: 62 =

L=,
H=H

Qox = Oz, Gar = O3 Ak = M4

E=¢ 0=

"The equation of the equipotential strface ia

@ (E f.-+:+ e _E_ _’V_HI
E+1 'z E41\m'r m'

as 7 r \+t o ¢ \n
L S I = 7
+ k+1 (mgl/’ 'm;'/‘) + 41 \m
For simplicity (although this restrietion is not necessary) we
assume that all masses are equal. Introdueing the nomenclature
k41
Bwm?® =H,

the foregoing equation simplifies to

S (E =y

K+
k—]—lE 1+L

+

(=Pt P =H (38)

k +~ 1
We now introducs polar co-ordinates
E =

w = rsin @ sin f

r cos ¢ sin &

¢ = rcosf

into (38) and set the derivatives DU/ /¢ and U /28 equal to
Zero.
This results in the following pair of equations in ¢ and cot 8:

a, tos® ¢ sin ¢ + a(eos ¢ — sin )¥{cos -+ sin @)
= az(gin ¢ ~cot 8% cos ¢

a cos¥* o + mfcos ¢ — sin @)1
= g; — ai(sin ¢ — cot BY{sin ¢ + 1/cot §)

Evidently, they are sufficient to determine the required angles.
It is instructive {o reduce these equations to the linear case
and equal springs. In that case, the foregoing equations become

cost ¢ — 8in? p = —cos @ cot @
2eosgp = (1/cot 8) — cot @

This pair of equations has the following roots:

@ o 54° 45", 0 = 60°

6 = 135°

6 = g0°

1 mode:
2 mode: ¢ =0,
3 mode: ¢ = 305° 15/,

The eigenvectors corresponding to these roots are shown in Fig, 4.



MODE |

MODE 2
Fig. 4

The roots of the transcendentsl equation yield the following well-
known results [5] (as is evident from Fig. 4):

1 mode: 5 = 22 ¢ =§
2 mode: 9 =0, = -§
3 mode: n = —2"%, ¢ =¢

In the nonlinear homogeneous case, the solution of the trans-
cendental equations will yield the values of the constants ¢ in

n = c'irE: {= cfrsl (41)

and the largest value of 7 is equal to the number of modes. In
genersl, one may expect as many sets of constants as there are
degrees of freedom (i.e., here three), but the existence of super-
sbundant modes [3] is not exeluded. In all that follows, it will
be assumed that the transcendental equations (40) have been
solved, and that the constants in (41) are known.

r=1,2 ...

The Eigenvalues

1If the Grst of (41) is substituted in the first equation of motion,
one finds [2] (in view of the assumption that the three masses
are equal)

E= —lm +afl —e¥B r=1,2... (42)

If the eigenvalues are denoted by w,, (r = 1, 2, . . .}, (42) is in-
tegrated over one period under the initial conditions £0) = y,
£00) = 0, and use is made of the nomenclature w*/a; = 1,
a1/a: = @, it has been shown [3] that

1 1\
P(k+1+5)

»? =
P(—l )
E4+1

Before discussing this equation, it should be remarked that our
entire discussion of the homogeneous system remains valid for
noninteger, positive values of & if provisions are made for the odd
character of the spring forces. This can he done, for instance, by
replacing terms of the sort £* in the equations of motion by
E|£]*—1 and terms like (£, — £+ in the potential funetions by
| — &f#*1. The reason for the extended validity of our dis-
cussion is that, with these provisions, the equipotential surfaces
remain symmetric with respect to the origin.

Equation (43) has been discussed heretofore [3]; it is the equa-
tion of the frequency-amplitude relations of free normal vibra-
tions, called by Klotter [6] the backbones. A number of familiar

k 1
1r er o + (1 — oy lxt—t

(43)

o0<k<1 1< k<3

573

Kk<a

Fig. 5

properties stand out. For instance, in the linear problem, (k = 1),
the frequency of free vibrations is independent of the amplitude,
while, in the nonlinear case, the frequency of free vibrations does
depend on the amplitude.

When the spring is hard* (k > 1), the amplitude increases with
the frequency; when the spring is soft! (0 < % < 1), the amplitude
decreases when the frequency increases. These and other proper-
ties of the backbone curves, essily deducible from (43), are
illustrated in Fig. 5.

Maximum-Minimum Properties

It iz well known [7] that the eigenvalues of linear problems
possess maximum-minimum properties. Moreover, it has been
shown [2] that the modal relations of the (linear or nonlinear)
two-degree-of-freedom problem also have such properties. We
would like now to show that this property also holds for n degrees
of freedom.

To do this, we focus attention on the geodesics in the gpace
whose metric is

n

2

i=l, 2.,

dot = (Uo + U) dta

Clearly, all are eolutions of the dynamical problem. Suppose we
seck the geodesics between the origin of this n-space and a point
which is movable on the bounding surface U = — Uy, This
movable-end-point problem produces not only the Euler equa-
tions (30) (and thus solutions to the dynamieal problem), but
algo transversality conditions. But these transversality condi-
tions state [8] that the geodesics must intersect the bounding sur-
face orthogonally. Therefors they are the modal relations.

In other words, the modal relations are the shortest and the
longest of the lines of minimum length (geodesics) in the n-space
between any point on the bounding surface and the origin, where
the space is defined by the metric (28).
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4In hard springs, the spring stiffness (i.e., the slope of the spring
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