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Abstract We investigate the varia-
tions in the shear stress and the first
and second normal stress differences
of suspensions formulated with
viscoelastic fluids as the suspending
medium. The test materials comprise
two different silicone oils for the
matrix fluids and glass spheres of
two different mean diameters span-
ning a range of volume fractions
between 5 and 25%. In agreement
with previous investigations, the
shear stress–shear rate functions of
the viscoelastic suspensions were
found to be of the same form as the
viscometric functions of their matrix
fluids, but progressively shifted
along the shear rate axis to lower
shear rates with increasing solid
fraction. The normal stress differ-
ences in all of the suspensions
examined can be conveniently rep-
resented as functions of the shear
stress in the fluid. When plotted in
this form, the first normal stress
difference, as measured with a cone
and plate rheometer, is positive in
magnitude but strongly decreases
with increasing solid fraction. The
contributions of the first and the
second normal stress differences are
separated by using normal force
measurements with parallel plate
fixtures in conjunction with the
cone-and-plate observations. In this
way it is possible for the first time to
quantify successfully the variations
in the second normal stress differ-

ence of viscoelastic suspensions for
solid fractions of up to 25 vol.%. In
contrast to measurements of the first
normal stress difference, the second
normal stress difference is negative
with a magnitude that increases with
increasing solid content. The chang-
es in the first and second normal
stress differences are also strongly
correlated to each other: The relative
increase in the second normal stress
difference is equal to the relative
decrease of the first normal stress
difference at the same solid fraction.
The variations of the first as well as
of the second normal stress differ-
ence are represented by power law
functions of the shear stress with an
unique power law exponent that is
independent of the solid fraction.
The well known edge effects that
arise in cone-and-plate as well as
parallel-plate rheometry and limit
the accessible measuring range in
highly viscoelastic materials to low
shear rates could be partially sup-
pressed by utilizing a custom-
designed guard-ring arrangement. A
procedure to correct the guard-ring
influence on torque and normal
force measurements is also
presented.
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Introduction

Due to their prevalence in commercial processing oper-
ations, there is a continuing interest in understanding the
viscometric properties of highly filled viscoelastic fluids.
The normal stress differences in suspensions based on
viscoelastic matrix fluids are often of similar magnitude
as the shear stress, even at low shear rates. The resulting
stress distributions arising in a complex flow such as
capillary due or extruder affect a number of important
processing criteria which are commonly grouped under
the broad heading of ’processability’. Relevant parame-
ters may include the recoverable shear, the magnitude of
the extrudate swell, and the critical conditions for onset
of flow instabilities. Further considerations are provided
in the recent review of Hornsby (1999).
The theoretical description of the normal stress

differences in concentrated suspensions formulated with
Newtonian suspending fluids is now fairly well under-
stood. The magnitude and sign of the normal stress
differences depends on the magnitude of the dimension-
less shear rate, or Peclet number, measuring the relative
importance of the imposed viscous shear stress and
Brownian motion. Theoretical scaling arguments and
Stokesian dynamics calculations show that in colloidal
dispersions the normal stress differences vary linearly
with the magnitude of the deformation rate at very small
dimensionless shear rates. At higher Peclet numbers the
normal stress behaviour becomes more complex with
shear thinning and the possibility of changes in sign at
high deformation rates (for further details see Brady and
Vicic 1995; Phan-Thien et al. 1999; Foss and Brady
2000). Careful viscometric measurements in a number of
different torsional flow configurations using suspensions
with viscous, but Newtonian, matrix fluids appear to
support the model predictions at high Peclet numbers
(Zarraga et al. 2000).
Much less is known theoretically or experimentally

about the normal stress differences in highly-filled
suspensions formulated with viscoelastic matrix fluids.
The first normal stress difference behaviour of suspen-
sions has been quantified for some materials such as
filled rubbers (Tanaka and White 1980); however
instabilities such as edge fracture typically limit the
range of deformation rates that can be examined. There
are a few publications indicating that the second normal
stress differences in viscoelastic suspensions may be
higher in magnitude than in the pure liquid and may
even overcome the magnitude of the first normal stress
difference (Tanaka and White 1980; Ohl and Gleissle
1992). In the most comprehensive investigation to date,
Aral and Kalyon (1997) examined a number of rheolo-
gical properties for viscoelastic suspensions formulated
using hollow spherical glass beads in a highly viscous
silicone oil over a broad range of volume fractions
(0.1 £ cv £ 0.6). For volume fractions above 30% the

first normal stress difference measured in steady tor-
sional shear flow was found to be negative with a
magnitude that increased with deformation rate and
volume fraction. At very large volume fractions
(cv > 0.4) additional complexities such as the failure
of time-temperature superposition and the presence of a
measurable yield stress were documented. Negative
normal stress differences (N1 ) N2) > 10 kPa have also
been measured in glass bead-silicone oil suspensions
from Gleissle (1996).
Microstructural modeling of such viscoelastic phe-

nomena are just beginning; however, Brownian dynam-
ics calculations using a linear viscoelastic (Maxwell)
matrix fluid appear to agree with some of the experi-
mental observations of Aral and Kalyon for small
imposed deformations (Schaink et al. 2000). However,
theoretical consideration of the effects of normal stress
differences generated in the matrix fluid at large imposed
shear strains have yet to be considered. It is to be hoped
that experimental measurements of general rheological
trends or scaling results for filled viscoelastic fluids
might be used to guide future theoretical considerations.
One common experimental observation is that the first

normal stress difference in a filled viscoelastic fluid is a
power-law function of the imposed shear stress such that
N1 � sn with a power-law exponent (n) that appears to
depend on the specific matrix fluid used in preparing the
suspension. Ohl and Gleissle (1992, 1993) obtained
values of n » 1.6 for glass spheres in viscoelastic silicone
oils using torsional flows in the cone-and-plate and
parallel-plate geometries. Markovic et al. (2000) used
measurements of the recoverable shear and the wall shear
stress in a capillary extrusion geometry to infer a value of
n » 1.3 for a number of ethylene-propylene-diene
(EPDM) rubbers and a wide range of different curing
formulations. Liang and Li (1999) used capillary rheo-
metry measurements in glass-bead filled LDPE compos-
ites and found n » 1 for volume fractions between 10 and
40 vol.%. Corresponding measurements of the second
normal stress difference are much scarcer due to the need
for special rheometric techniques (see, for example,
Petersen 1974; Lee et al. 1992). One of the principal
goals of this paper is to quantify the first and the second
normal stress differences of filled viscoelastic fluids and to
show that there are strong correlations between the
variations in N1 and N2 with both deformation rate and
volume fraction of filler. A new material constant is
introduced which combines information about both N1

and N2, and which is independent of the solid filler
fraction (Gleissle et al. 1998, 2000).

Materials and methods

To investigate the shear and the normal stress behaviour of filled
materials with viscoelastic matrix fluids, two groups of model
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suspensions were formulated. The first series consists of a
silicone oil matrix with a zero-shear-viscosity g0 ¼ 103 Pa s
(AK106 Wacker Chemie) filled with sieved glass beads of
�xx¼ 4 lm average diameter. The second group was formulated
with a lower viscosity silicone oil with g0 ¼ 400 Pa s (DOW 3 Æ
105 Dow-Corning) and monodisperse glass spheres of �xx¼ 0.5 lm
diameter. The volume-fraction cv of the solid has been varied
between 0 � cv � 25%:
A torsional rheometer (Rheometric Scientific RMS 800) was

used to measure the three viscometric functions; i.e., the shear
stress s _ccð Þ, and the first and second normal stress differences N1 _ccð Þ
and N2 _ccð Þ. This rate-controlled instrument is equipped with a
rebalance torque and force transducer. A variety of cone-and-plate
as well as plate-and-plate fixtures have been used. The dimensions
of the different geometries are given in Table 1.

The shear stress functions (from CP and PP fixtures)

Agreement between the shear stress functions measured using
cone-and-plate (CP) fixtures and parallel-plate (PP) fixtures
(denoted henceforth sCP and sPP) was first tested. Here sPP is
the true steady state shear stress at the rim (r¼R) in a parallel
plate device. If MCP and MPP are the torques measured in the
CP- and PP-devices respectively then

sCP ¼ 3

2pR3
�MCP ð1Þ

sPP ¼ MPP

2pR3
3þ d lnMPP

d ln _cc

� �
: ð2Þ

For further details see for example Bird et al. (1987) or Powell
(1998).
The resulting shear stresses of the virgin silicone oil AK 106 and

a series of suspensions formulated using this fluid as the suspending
matrix fluid are plotted as a function of the shear rate in Fig. 1. The
data demonstrate that the measurements with CP- and PP
geometries give equivalent results as expected. Deviations between
CP- and PP results are within the magnitude of the plotting
symbols. This agreement is of fundamental importance for the
method used to separate N1 and N2 (with CP and PP measure-
ments) as described later.
It is commonly appreciated that viscoelastic liquids with large

normal stresses tend to exhibit flow instabilities in steady
torsional shear flow which limit the maximum shear rate
achievable (Hutton 1969; Gleissle 1974; Tanner and Keentok
1983). It is now generally accepted that these instabilities result
from the action of the second normal stress difference on defects
naturally arising at the free surface at the outer rim of a cone-
and-plate or parallel-and-plate fixture (Lee et al. 1992; Keentok
and Xue 1999). Similar edge fracture instabilities are also
observed in filled suspensions formulated using Newtonian
suspending fluids and also appear to correlate well with the
magnitude of the (negative) second normal stress difference
(Zarraga et al. 2000). To avoid these instabilities and to extend
the measuring range towards higher shear rates or shear stresses,
a special guard-ring assembly was constructed as shown in
Fig. 2. This fixture was based on the designs of Gleissle (1976,

1978) and removes the free surface from the edge of the fixture.
The modified geometry and increased gap between the stationary
and rotating surfaces shifts the critical condition for onset of
instability to higher deformation rates. Using this guard-ring the
measuring range could be extended by a factor of approximately
two or three.

Table 1 Dimensions of the cone-and-plate (CP) and parallel-plate (PP) rheometer fixtures used in this study

DOW 3 Æ 105

cv

CP
R/mm

a/� PP
R/mm

H/mm AK 106

cv

CP
R/mm

a/� PP
R/mm

H/mm

0 30 2.3 30 1.1 0 12.5 5.7 12.5 1.05
0.125 12.5 5.7 30 1.35 0.05 12.5 5.7 12.5 1.0
0.18 12.5 5.7 30 1.05 0.15 12.5 5.7 12.5 1.0
0.25 12.5 5.7 30 1.05 0.25 12.5 5.7 12.5 0.9

Fig. 1 Flow curves for the AK 106 matrix fluid and suspensions with
cv¼ 0.05, 0.15, 0.25 measured in cone-and-plate and parallel-plate
geometries

Fig. 2 Schematic drawing of the guard-ring assembly employed to
increase the range of shear rates attainable before onset of edge
fracture

63



Quantitative measurement of the shear stress using the guard-
ring assembly requires a rim-correction because of the additional
torque resulting from the fluid in the region between the shear gap
and the guard-ring. The correction factor can be obtained from
data obtained in a matching or overlap region (i.e., from
measurements of the torque at the same shear rate in geometries
with and without the guard-ring). The validity of this correction
factor can be independently checked with the normal stress
measurements as we discuss below.
The shear stress functions s _cc; cvð Þ of AK 106 and the corre-

sponding series of filled suspensions are shown in Fig. 3.
The data shown in Fig. 3 appear to be self-similar and simply

shifted parallel to each other along the shear-rate axis. By utilizing
the concept of the shear-stress-equivalent internal shear rate
(Gleissle and Baloch 1984) the viscometric functions of the
suspensions can be represented by one single master curve by
shifting the curves laterally along the rate axis by a factor Bs. This
shift is defined in Eq. (3) below and is best interpreted as a shear
rate amplification factor:

Bs cvð Þ ¼ _ccm
_ccsuspðcvÞ

 !�����
s

ð3Þ

The amplification is given by the ratio of the shear rate _ccm in the
viscous Newtonian matrix fluid to the shear rate _ccsusp developed in
the suspension at the same externally-imposed shear stress. The
factor Bs is a dimensionless shift factor scaling the average
increase of the true internal shear rate _ccint � Bs _ccsusp because of the
presence of rigid particles. The master curves resulting from
shifting of the experimentally measured shear stress functions for
both series of suspensions onto the representative viscometric
functions of the suspending matrix fluids are presented in Fig. 4.

Normal stress differences

One consequence of the homogenous shear rate generated in a
cone-and-plate-rheometer is the direct proportionality of the first
normal stress difference to the total axial force or thrust FCP,
exerted on the fixtures:

N1 ¼
2

pR2
� FCP ð4Þ

The more complex analysis required for the nonhomogeneous
shear flow in the parallel-plate device leads to a relationship
between the total axial force FPP and the difference between the
first and the second normal stress differences N1 ) N2 that can be
expressed in the form (Kotaka et al. 1959; Bird et al. 1987)

N1ð _ccRÞ 	 N2ð _ccRÞð Þ ¼ FPP
pR2
� �

� 2þ d ln FPP
d ln _ccR

n o
ð5Þ

where R is the radius of the plates, H is the plate separation and
_ccR � XR=H is the maximum or rim shear rate at the edge of the
fixture. For a second-order fluid or convected Maxwell model
with N1 	 N2 
 _cc2, Eq. (5) can be reduced to the simple form:

N1ð _ccRÞ 	 N2ð _ccRÞð Þ ¼ 4

pR2
� FPP ð6Þ

If the first normal stress difference N1 _ccð Þ is known from cone-and-
plate measurements then the second normal stress difference N2 _ccð Þ
can, in principle, be separated from parallel-plate measurements
of N1 	 N2ð Þ _cc. Combining Eqs. (4) and (6) one obtains:

Fig. 3 Shear stress functions of AK 106 matrix fluid and suspensions
with cv¼ 0.05, 0.15, 0.25 measured with and without the guard-ring

Fig. 4a, b Master curves of the shear stress as a function of shear rate
for filled suspensions over a range of volume fractions (0 £ cv £ 0.25)
formulated with two viscoelastic matrix fluids: a AK 106 silicone oil;
b DOW 3 Æ 105 silicone oil
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N2 _ccRð Þ ¼ FCP
pR2CP

	 FPP
pR2PP

2þ d ln FPP
d ln _ccR


 �
ð7Þ

This procedure can be difficult to carry out reliably in practice
since the second normal stress difference for polymer solutions is
typically small and the two terms are comparable in magnitude
(Meissner et al. 1989). However, if the second normal stress is
comparable in magnitude to the first normal stress difference
(regardless of sign), then such an analysis can be accurately
performed (Zarraga et al. 2000). This is the method we have
applied to separate N1 _ccð Þ and N2 _ccð Þ from the axial force
measurements in cone-and-plate- and parallel-plate measurements.
As we have discussed above, the experimentally accessible

window can be extended to higher shear rates using a guard-ring to
avoid edge fracture instabilities. However, there is consequently a
need to correct the values of shear stresses calculated from torque
measurements with the guard-ring. As a result of the geometry of
this assembly there should be almost no influence of the guard-ring
on the axial force. Normal force measurements confirm these
assumptions for both the CP- and the PP-fixtures as demonstrated
in Fig. 5, where the functions N1ð _ccÞ and N1 ) N2 computed
using Eqs. (4) and (5) are plotted as a function of the imposed
shear rate _cc.
However, if N1 and N1 ) N2 are compared at fixed values of the

shear stress, differences are found between measurements with and
without guard-ring as shown in Fig. 6.
As a result of the additional torque generated by the guard-ring

system the shear stress computed from the torque requires a rim-
correction procedure. This correction can be readily performed by

shifting the values of N1ðsÞ½ring� and N1ðsÞ 	 N2ðsÞð Þ½ring� horizontally
along the abscissa towards lower stresses. The appropriate value of
the rim-correction factor is obtained in the overlapping region. The
resulting correction factors coincide with the correction factors
obtained from Fig. 3 for the shear stress. This rim-correction
procedure leads to straight lines for log N1 and log N1 ) N2 as
functions of log s as has previously been observed by Tanaka and
White (1980) and Ohl and Gleissle (1993).
The transient evolution in the material functions can also be

followed using step changes in the deformation rate. Representative
plots showing the temporal evolution in the normal stress functions
are shown in Fig. 7 following inception of steady shear flow. The

results are typical of those expected for concentrated polymer
solutions with stress overshoots occurring at higher shear rates. In
contrast to the experiments of Aral and Kalyon (1997) we do not
observe changes in sign of the normal stress differences with time
when using the guard ring assembly. The contributions of the first
and the second normal stress differences to the total normal force in
the PP geometry can be separated using the average values of the
forces obtained in the steady-state region of these curves. Although
this procedure can also be applied to the transient force signals, the
resulting material functions are best interpreted as ‘apparent’
values of Nþ

1 ð _cc0; tÞ and Nþ
2 ð _cc0; tÞ since Eq. (7) was obtained

assuming a steady shearing deformation. Different values of the
elapsed time prior to reaching steady state are used for the
calculation of the average force values at different shear rates
because of the onset of edge fracture instabilities at high shear rates
after a certain time.

Fig. 5 Normal stress differences N ðCP Þ
1 and N1 	 N2ð Þ ðPPÞ measured as

a function of imposed shear rate with, and without, the guard-ring
assembly

Fig. 6a, b Normal stress differences N1ðsÞ and ðN1ðsÞ 	 N2ðsÞÞ
measured with, and without, guard-ring showing the shift in the
material functions resulting from the extra torque associated with the
fluid between the guard-ring and the rheometer fixture
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Results and discussion

The normal stress differences of the pure matrix fluids
as functions of the shear stress

The normal stress-shear stress functions N1(s) of the
silicone oil DOW 3 Æ 105 and N1(s) and N2 sð Þj j of AK
106 result in straight lines in a double-logarithmic plot as
indicated in Fig. 8. The second normal stress difference
for the more viscoelastic AK 106 oil was found to be
negative at all deformation rates with a magnitude of
approximately 0.1 Æ N1 (when compared at the same
value of the applied stress). It was not possible to
measure reliably the function N2(s) for the less viscous
silicone oil due to its small magnitude.
The data in Fig. 8 suggests that the functions N1(s)

and N2 sð Þj j can be represented by power law functions
of the form:

N1 ¼ aN1;m � sn1 ð8Þ

N2j j ¼ aN2;m � sn2 ð9Þ

Equation (8) agrees with results published by Tanaka
and White (1980), Ohl (1991), and Ohl and Gleissle
(1993). The data in Fig. 8 suggest that the power law
exponent n1 is independent of the type of silicone oil
and that the power law exponent n2 for the second
normal stress difference appears to be similar in
magnitude to n1. Numerical values of these power
law exponents n1 and n2 for the pure matrix fluids
are given together with the results of the filled
suspensions below.

First normal stress difference as a function
of the solid fraction

The first normal stress-shear stress functions N1 s; cvð Þ
shown in Figs. 9 and 10 for the silicone oils DOW
3 Æ 105 and AK 106 and for the corresponding glass-bead
suspensions exhibit the behaviour expected from previ-
ous investigations. The magnitude of the first normal
stress differences N1 (cv) decreases with increasing solid
fraction cv when compared at constant values of the
imposed shear stress s. In other words, the normal stress
difference may increase with filler volume fraction but
not as fast as the shear stress does.
The data reveals that a set of parallel straight lines are

found in plots of log N1 ) log s regardless of the solid
volume-fraction cv. Hence the evolution in the normal
stress functionN1 (s) can bewritten compactly in the form

N1ðcv; sÞ ¼ aN1ðcvÞ � sn1 n1 6¼ f cvð Þ ð10Þ

and the data are represented by power laws with a power
law exponent n1 that is independent of the solid volume
fraction cv. These observations are in agreement with
previously published results of Tanaka and White
(1980), Ohl (1991), and Ohl and Gleissle (1993).
The expressions in Eqs. (8) and (10) at a fixed value

of the imposed shear stress can thus be expressed in
terms of a first normal stress shift factor defined by

N1 cv ¼ 0ð Þ
N1 cvð Þ

����
s

� BN1 cvð Þ sj ¼ aN1;m
aN1ðcvÞ

: ð11Þ

The ratios BN1
(cv) defined by Eq. (11) give the factor by

which the normal stress function N1 s; cv ¼ 0ð Þ of the

Fig. 7 Transient evolution of
the first normal stress difference
Nþ
1 ðt; _ccÞ in the cone-and-plate
geometry and the apparent
normal stress difference
ðN1 	 N2Þþ computed from the
thrust measured in the parallel-
plate geometry (cf. Eq. 6) at
different applied shear rates
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pure matrix fluid is shifted downwards on a double
logarithmic plot with increasing cv. The numerical value
of the shift factor is independent of the imposed shear
stress and consequently the first normal stress functions
of all the viscoelastic suspensions N1 s; cvð Þ can be written
in the compact reduced form

N1 cv; sð Þ ¼ aN1;m
BN1 cvð Þ � s

n1 : ð12Þ

The influence of the suspended rigid particles on the
viscometric function N1 sð Þ is quantified by a single scalar
number BN1 cvð Þ that is independent of the shear stress
(and the shear rate) and only a function of the volume
fraction of filler.

Second normal stress difference as a function
of the solid fraction

Combining the thrust measurements in the cone-and-
plate and parallel plate geometries, we are also able to
systematically evaluate the second normal stress differ-
ence N2 for the filled suspensions. The second normal
stress is found to be negative (as for the pure viscoelastic
fluids) in all our measurements and hence in double
logarithmic plots we plot the magnitude of N2.
Measurements for the two series of filled suspensions

are shown in Figs. 11 and 12. Although the shapes of the
curves are similar to those of the first normal stress
difference, the magnitude of N2 is found to grow with
increasing solid volume fraction. The viscometric func-
tions for each volume fraction form parallel straight
lines in double logarithmic plots of log N2j j vs log s. The

Fig. 8a, b First normal stress differences N1ðsÞ of the polymeric
solvents used as suspending fluids: a DOW 3 Æ 105; b AK 106. The
second normal stress difference N2ðsÞj j for the AK 106 matrix fluid is
also shown in b but could not be reliably measured for the less viscous
fluid

Fig. 9 Variation in the first normal stress difference N1ðsÞ of glass-
bead filled suspensions formulated using the DOW 3 Æ 105 matrix fluid

Fig. 10 The first normal stress differences N1ðsÞ of glass-bead filled
suspensions formulated using the AK 106 matrix fluid
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variation in the second normal stress difference can
therefore also be described by a power law function with
a single exponent n2 that is applicable to all concentra-
tions examined:

N2j j ¼ aN2 cvð Þ � sn2 n2 6¼ f cvð Þ ð13Þ

The magnitude of the shift along the ordinate axis can
again be written in terms of a shift factor BN2 cvð Þ that is
independent of the shear stress and varies with increas-
ing solid fraction as

N2 cv ¼ 0ð Þ
N2 cvð Þ

����
s

� BN2 cvð Þ : ð14Þ

Consequently the viscometric functions of the second
normal stress difference N2ðs; cvÞ at different shear
stresses and solid volume fractions can be written in a
reduced form as found for the first normal stress
difference:

N2j j ¼ aN2;m
BN2 cvð Þ � s

n2 ð15Þ

where aN2;m is the second normal stress coefficient of the
pure matrix fluid, which may not be directly measurable
(as is the case for the less viscous of the two matrix fluids
considered in this study).

Reduced normal stress functions
N1*(s, cv) and N2*(s, cv)

In Figs. 13 and 14 the first and second normal stress
differences N1 sð Þ and N2 sð Þj j for a suspension based on

Fig. 11 The second normal stress difference N2ðsÞ of glass-bead filled
suspensions formulated using the DOW 3 Æ 105 matrix fluid

Fig. 12 The second normal stress difference N2ðsÞ of glass-bead filled
suspensions formulated using the AK 106 matrix fluid

Fig. 13 Comparison of the first and second normal stress differences
of glass bead suspensions based on DOW 3 Æ 105 silicone oil
(cv¼ 0.18) as a function of the imposed shear stress s

Fig. 14 Comparison of the first and second normal stress differences
of glass bead suspensions based on AK 106 silicone oil (cv¼ 0.05) as a
function of the imposed shear stress s
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Fig. 15 Master curves of the
reduced normal stress differ-
ences N �

1 ðsÞ and N �
2 ðsÞ for

DOW 3 Æ 105 silicone oil and
the associated suspensions

Fig. 16 Master curves of the
reduced normal stress differ-
ences N �

1 ðsÞ and N �
2 ðsÞ for

AK 106 silicone oil and the
associated suspensions

Table 2 Measured power law
exponents n1 and n2 of the
normal stress functions N1 sð Þ
(i=1, 2) for glass-bead filled
suspensions using DOW 3 Æ 105

and AK 106 silicone oils as the
viscoelastic suspending fluids

DOW 3 Æ 105 AK 106

cv 0.0 0.125 0.15 0.25 0.0 0.125 0.15 0.25
n1 1.56 1.61 1.64 1.70 1.66 1.70 1.58 1.70
n2 – 1.75 1.73 1.76 1.54 1.65 1.74 1.67

�nn1 1.63 ± 0.06 1.66 ± 0.06
�nn2 1.75 ± 0.015 1.65 ± 0.08
�nn1;2 1.68 ± 0.008 1.66 ± 0.07
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DOW 3 Æ 105 (cv¼ 0.18) and on AK 106 (cv¼ 0.05) are
plotted as functions of the imposed shear stress. Once
again the data are all found to be co-linear and hence we
can conclude that the power law exponent in Eqs. (8),
(9), (10), (12), (13) and (15) are equal to each other:

n1 ¼ n2 ¼ n ð16Þ
In these viscoelastic filled suspensions the ratio of the
second normal stress difference to the first normal stress

difference (denoted henceforth as W�) is thus indepen-
dent of the shear stress (and shear rate) and is only a
function of the volume fraction of filler:

N2 cv; sð Þj j
N1 cv; sð Þ ¼ W� cvð Þ ð17Þ

This normal stress ratio increases with increasing solid
fraction from W�ð0Þ » 0.1 up to W�ð0:25Þ » 0.7 for the
series of suspensions formulated using the less viscous

Fig. 17 Variation in the first
and second normal stress dif-
ferences N1ðs; cvÞ and N2ðs; cvÞ
two viscoelastic suspensions
formulated using DOW 3 Æ 105

silicone oil at two different
volume fractions

Fig. 18 The normal stress
product N1ðsÞ � N2ðsÞj j ¼ GðsÞ
of glass-bead filled suspensions
in DOW 3 Æ 105 silicone oil
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suspending fluid and up to 0.5 for the more viscous
system.
To summarize our experimental observations so far,

we have shown that, at a given value of the volume
fraction, the functions N1 sð Þ and N2 sð Þj j are power law
functions with a common power law exponent n. The
first normal stress difference N1 is a decreasing function
and N2j j is an increasing function with increasing solid
fraction. Using the definitions of the first normal stress
shift factor BN1 cvð Þ from Eq. (11) and the second normal
stress shift factor BN2 cvð Þ from Eq. (14), master curves
for the normal stress-shear stress functions can be found
using the following relationships:

N �
1 sð Þ ¼ N1 s; cvð Þ � BN1 cvð Þ ð18Þ

N�
2 sð Þ

�� �� ¼ N2 s; cvð Þj j � BN2 cvð Þ ð19Þ
When the reduced normal stress differences N�

1 and N �
2

�� ��
are plotted vs the shear stress s the data take the form
shown in Figs. 15 and 16. These master curves also
represent the normal stress functions of the pure matrix
liquid since BN1ðcv ¼ 0Þ ¼ BN2ðcv ¼ 0Þ ¼ 1:

Although there is some scatter in the data (espe-
cially at low shear stresses for the AK106 based
suspensions), the slope of the reduced functions N�

1 sð Þ
and N�

2 sð Þ
�� �� are found to be equal to each other.

Numerical values for the power law exponents are
reported in Table 2.

Normal stress inter-relationship

In Fig. 17 the first and second normal stress differences
N1 and N2j j of two suspensions with varying volume
fraction of particles (cv¼ 0.125 and cv¼ 0.25) and a
common matrix fluid (Dow 3 Æ 105) are plotted vs the
shear stress s. As noted previously N1 sð Þ decreases with
increasing cv whereas N2j j increases with cv. Close
inspection of the data in Fig. 17 shows that, when
plotted in double logarithmic coordinates, the relative
decrease of N1 sð Þ for the two volume fractions consid-
ered is nearly equal to the relative increase of N2 sð Þj j for
the same solid fraction. This correlation can be formu-
lated in the following way:

Fig. 19 The normal stress
product N1ðsÞ � N2ðsÞj j ¼ GðsÞ
of glass-bead filled suspensions
in AK 106 silicone oil

Table 3 The dimensionless
normal stress shift factors BN1 ,
BN2 , and their product for each
series of viscoelastic suspen-
sions

DOW 3 Æ 105 AK 106

cv BN1 BN2 BN1 Æ BN2 cv BN1 BN2 BN1 Æ BN2

0.0 1 1 1 0.0 1 1 1
0.125 1.71 0.62 1.06 0.05 1.23 0.78 0.96
0.18 2.12 0.47 1.02 0.15 1.85 0.61 1.13
0.25 3.19 0.29 0.93 0.25 2.88 0.52 1.5
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where the superscripts i and j denote experimental data
sets with two different concentrations of particles.
Comparing the shifts of N1 and N2j j it should be

taken into account that it is not the shift factors
BN1 and BN2 themselves that are shown, but the relative
change of the normal stress differences if the volume
concentration is changed from cv¼ 0.125 to cv¼ 0.25.
Two single test series are compared so that the
maximum deviation of ±8% from equality which
can be seen in the diagram is better than might be
anticipated considering the complexity of the normal
stress separation method.
Rearranging the experimental correlation given by

Eq. (20) leads to the following very simple general inter-
relationship between the two normal stress differences
N1 and N2j j at two different concentrations:

N1 c½i�v
� 


� N2 c½i�v
� 
��� ��� ¼ N1 c½j�v

� 

� N2 c½j�v

� 
��� ��� ð21Þ

To validate this relationship, the product N1 � N2j jð Þ was
plotted vs the shear stress for both series of filled
viscoelastic suspensions. A remarkably simple correla-
tion between the normal stress differences N1 and N2j j is
thus found which can be expressed compactly in the form

N1 s; cvð Þ � N2 s; cvð Þj j ¼ GðsÞ: ð22Þ
i.e., the product of the first normal stress difference N1

and the magnitude of the second normal stress difference
N2j j, considered at constant shear stress, is constant and
independent of the solid concentration of particles
within the entire shear rate range investigated. The
resulting product, denoted G(s), is a single function,
rising with increasing shear stress s for all solid fractions
investigated and for both groups of suspensions (which
are based on two different silicone oils and glass spheres
of different mean diameter (see Figs. 18 and 19).
Using Eqs. (11), (14), and (21) it is possible to

rearrange Eq. (22) in terms of the shift factors for the
first and the second normal stress differences. Since these
shift factors are themselves independent of the imposed
stress, this relationship becomes

BN1ðcvÞ � BN2ðcvÞ ¼ 1 : ð23Þ
Numerical values of this product are given in Table 3.
The result expressed by Eq. (23) is independent of the
solid fraction cv and holds even for the pure matrix
liquid. This implies that the function G(s) depends only
on the properties of the matrix and is independent of
the properties of the rigid particles used in our
experiments.
As we have mentioned above it was not possible to

measure directly the second normal stress difference for

the less viscoelastic silicone oil (Dow 3 Æ 105). However,
with the help of Eqs. (21) and (23) it is now possible, for
the first time, to evaluate the magnitude of the second
normal stress difference of the base (unfilled) liquid from
the corresponding measurements with the (more
viscoelastic) filled suspensions. Taking i as the matrix
fluid and j as a data series for which both N1ðsÞ and
jN2ðsÞj have been measured then Eq. (21) gives

N2ðs; cv ¼ 0Þ ffi
N1 s; c½j�v
� 


N1ðs; cv ¼ 0Þ

0
@

1
A N2 s; c½j�v

� 
��� ��� : ð24Þ

Using Eqs. (8), (9), and (16) the shear-stress-dependent
product G(s) can also be re-expressed in terms of the
parameters characterizing the power law response of the
first and second normal stress of the unfilled matrix
fluid:

G sð Þ ¼ aN1;m � aN2;m � s2n ð25Þ

These relationships permit the evaluation of both the
first and the second normal stress difference with respect
to the shear stress and solid volume fraction, knowing
simply N1 sð Þ for the pure matrix fluid, the shift factor
BN1 cvð Þ, and a single reference value of the function G(s)
at a reference stress sref. For convenience, we pick a
reference stress of sref¼ 1 kPa¼ 1000 Pa and denote this
value as G0 � Gðsref ¼ 1 kPaÞ. It is important to recog-
nize that only one single measurement of the second
normal stress difference at any solid concentration (even
at cv¼ 0) is then sufficient to obtain the complete
functional response of N2 s; cvð Þ, at least in the power law
regime investigated in the present study. Numerical
values of the experimentally determined factors are
provided in Table 4. For completeness we also summa-
rize the complete set of equations below:

Pure matrix liquid:

N1 sð Þ ¼ aN1;m � sn ð8Þ

N2 sð Þ ¼ aN2;m � sn ¼ ðG0=s2nrefÞ
aN1;m

� sn ð26Þ

Suspension:

N1 s; cvð Þ ¼ aN1 cvð Þ � sn ¼ aN1;m
BN1 cvð Þ � s

n ð12Þ

N2 s; cvð Þ ¼ aN2 cvð Þ � sn ¼ BN1 cvð ÞðG0=s2nrefÞ
aN1;m

� sn ð27Þ

with

G0 � N1 sref ; cv
� �

� N2 sref ; cv
� ��� ��� �

sref¼1kPa ð22Þ

Using these simple equations and the data for aN1
and G0

from Table 4 plus the shift factors BN1 cvð Þ from Table 3,
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the complete set of normal stress functions can be
calculated. The calculations are presented in Figs. 20
and 21. Considering the significant experimental prob-
lems associated with normal stress measurements, very
good agreement is obtained between the calculations
(lines) and the measurements (symbols).
In Table 5 the resulting normal stress ratios

W�ðcvÞ ¼ N2j j=N1 for DOW 3 Æ 105 and AK 106 and
their corresponding suspensions are given. This ratio
increases monotonically with increasing solid fraction
from values of O (10)1) which are characteristic unfilled
viscoelastic melts to values greater than 0.5 at high
volume fraction.
It is possible to predict the normal stress behaviour

of viscoelastic suspensions with only three parameters:
aN1ðcvÞ (or equivalently aN1;m and the shift factor
BN1ðcvÞ, the constant slope n, and the reference value
of the normal stress product G0. The values of the
slope n for the normal stress shear stress power law
functions result in n¼ 1.68 for DOW 3 Æ 105 and

n¼ 1.66 for AK 106. These values are very close to
each other and within the range of experimental error.
Tanaka and White (1980) give a value of n¼ 1.67 for
Polystyrene, Ohl and Gleissle (1993) measured n¼ 1.65
for silicone oils and n¼ 1.63 for polyisobutene. For all
of these materials n is in the small range of
1.63 £ n £ 1.68 and hence seems to be independent of
the matrix material. Taking this value as a universal
exponent the present experiments suggest that there are
only two parameters remaining (i.e., aN1ðcvÞ and G0)
which have to be determined. The normal stress
product G0 characterizes the matrix liquid, and the
factor aN1ðcvÞ (or equivalently the normal stress shift
factor BN1ðcvÞ) depends only on the properties of the
filler material. It should be noted that smaller values of
n have been reported for other filled materials (Liang
and Li 1999; Markovic et al. 2000); however, these
values have typically been inferred from indirect
measurements in non-viscometric flows, rather than
measured directly in torsional rheometers.

Table 4 Parameters describing the viscometric functions of filled viscoelastic suspensions. The parameters include the power-law coef-
ficients for the matrix fluids aNi ;m � aNi ðcv ¼ 0Þ (for i=1, 2), the exponent n and the normal stress factor G0 ¼ Gðsref Þ at a reference value
of the imposed stress (here taken to be sref=1 kPa)

DOW 3 Æ 105 AK 106

aN1;m aN2;m n G0 aN1;m aN2;m n G0

Pa(1)n) Pa(1)n) – kPa2 Pa(1)n) Pa(1)n) – kPa2

3.5 Æ 10)3 2 Æ 10)4 1.68 7.93 2.3 Æ 10)3 2.2 Æ 10)4 1.66 4.59

Fig. 20 Comparison of the
experimentally measured
(symbols) and predicted (lines)
values of the first and second
normal stress differences
N1ðs; cvÞ and N2ðs; cvÞ for DOW
3 Æ 105 silicone oil suspensions
as a function of the shear stress
and volume fraction
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Conclusions

In this work we have systematically measured the
variation in the normal stress differences for highly filled
suspensions formulated with viscoelastic matrix liquids.
We have demonstrated in these experiments that simple
inter-relations between the viscometric functions appear
to exist for filled viscoelastic suspensions. Measurements
of the first normal stress difference N1ðs; cvÞ are in good
agreement with earlier investigations. To our knowledge,
the measurements of the changes in the second normal
stress difference N2ðs; cvÞ with respect to imposed shear
stress and increasing solid volume fraction represent the
first such data. The measurements indicate that, for the
viscoelastic silicone oil matrix fluids used in the present
studies,N2 is negative for all samples tested whereasN1 is
positive. By contrast, recent measurements at high Peclet
numbers in viscous Newtonian solvents have shown that
both of the normal stress differences were negative with

N2j j > N1j j (Zarraga et al. 2000). Measurements by Aral
and Kalyon (1997) also indicated that, after a long
transient, the steady state first normal stress difference
was negative for a silicone oil filled with glass beads. The
matrix fluid used by the latter authors was significantly
less viscous than the matrix fluids utilized in the present
study and presumably is thus also less viscoelastic. In
addition Aral and Kalyon report that the normal stresses
could only be measured reliably for volume fractions in
excess of 30%.
In agreement with previous publications using

viscoelastic suspending fluids at moderate volume
fractions (cv £ 0.25) we find that the first normal stress
difference is positive but decreases with increasing solid
content (when compared at constant shear stresses).
The picture that is thus emerging suggests that the first
normal stress difference is comprised of two (additive)
terms; one positive term arising from the matrix fluid
(with magnitude depending on the molecular weight of
the polymeric material forming the solvent) and a
second, negative, term with magnitude varying with the
volume fraction of solid suspended. The magnitude of
the normal stresses in a suspension at high Peclet
number are expected to scale with the viscosity of the
suspension and the imposed shear rate (Brady and
Vicic 1995), and can thus be represented as a function
of the imposed shear stress. Furthermore, over the
range of shear stresses applied in the present investi-
gation, the normal stress/shear stress functions can be
approximated by simple power law equations with a
common exponent that is independent of the solid
fraction and hence characterizes both the matrix liquid

Table 5 The normal stress difference ratio W�ðcvÞ ¼ jN2j=N1 as a
function of the volume fraction of filler for suspensions based on
two silicone oils (DOW 3 Æ 105, and AK 106) of differing viscosities

DOW 3 Æ 106 AK 106

cv |N2| N1 cv |N2| N1

0.0 0.06 0.0 0.1
0.125 0.17 0.05 0.15
0.18 0.29 0.15 0.29
0.25 0.69 0.25 0.52

Fig. 21 Comparison of the
experimentally measured
(symbols) and predicted (lines)
values of the first and second
normal stress differences
N1ðs; cvÞandN2ðs; cvÞ forAK106
silicone oil suspensions as a
function of the shear stress and
volume fraction
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and the filled suspension. This suggests the following
simple functional form for the first normal stress
difference:

N1ðs; cvÞ � N1;matrix þ N1;susp � a1msn 1	 gðcvÞ½ � ð28Þ

where the shift factor we have determined experimen-
tally is thus BN1 � ½1	 gðcvÞ�	1. The sign of the first
normal stress difference thus depends on the magnitude
of the normal stresses in the unfilled polymeric solvent
and on the volume fraction of filler.
The data presented in this study show that the

magnitude of the second normal stress difference
monotonically increases with rising solid fraction. Ad-
ditionally it was found that, when compared at constant
shear stress, the relative decrease of N1 with cv is equal to
the relative increase of N2j j. To be consistent with these
observations, we should thus expect for the range of
volume fractions and stresses considered that:

N2ðs; cvÞ ¼ N2;m þ N2;susp � 	 a2msn

1	 gðcvÞ½ � ð29Þ

With these functional forms, the product of the normal
stress differences N1 s; cvð Þ � N2 s; cvð Þj j ¼ GðsÞ is only a
function of the external shear stress imposed on the
system; i.e., it is independent of the volume fraction of
particles added to the fluid, and is equal to the product
of the normal stress differences at cv¼ 0. These predicted
forms for the normal stress differences are consistent
with experimental observations made to date in visco-
elastic suspensions but have yet to be verified by
microstructural theory.

The viscometric functions for the normal stress
differences of filled viscoelastic suspensions is thus
predictable with only three parameters:

1. aN1 cvð Þ; the front factor of the power law equation
describing the variation in N1 s; cvð Þ at the required
volume fraction

2. The power law exponent n itself
3. The normal stress difference product G0 ¼ N1ðs; cvÞ�

N2ðs; cvÞj j at a reference stress; e.g. at sref¼ 1 kPa
An appreciable advantage of these simple correlations
from the perspective of polymer processing operations is
the possibility to calculate approximately N2ðs; cvÞ by
measuring only N1ðs; cvÞ and knowing the normal stress
product. If the latter quantity is unknown, the data in
Table 5 can be utilized to provide an estimate for the
ratio W�ðcvÞ. It should be emphasized that these simple
correlations hold for viscoelastic filled materials in the
range of very high Peclet numbers in which the
microstructural deformation is governed only by hydro-
dynamic forces. These simple power-law relationships
and shift factors may be used to interpolate and predict
the expected form of the material functions for other
values of the volume fraction 0 £ cv £ 0.5. They may
also be useful in guiding constitutive modeling of the
rheology of filled suspensions.
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eter für zähe viskoelastische Flüssig-
keiten bei hohen Schergeschwindigke-
iten, Untersuchungen des Fliessverhal-
tens von hochmolekularem Silikonöl

und Polyisobutylen. Diss. Universitaet
Karlsruhe (TH), Karlsruhe

Gleissle W (1996) Transient and steady
state shear and normal stresses in
concentrated suspensions. Proceedings
of the 12th International Congress on
Rheology, Quebec City, Canada, pp
538–539

Gleissle W, Baloch MK (1984) Reduced
flow functions of suspensions based
on Newtonian- and non-Newtonian
liquids. Proceedings of the IXth
International Congress on Rheology,
Acapulco, Mexico, vol 2, pp 549–
556

Hornsby PR (1999) Rheology, compound-
ing and processing of filled thermo-
plastics. Adv Polym Sci 139:155–217

Hutton SF (1969) Fracture and secondary
flow of elastic liquids. Rheol Acta
8:54–59

75



Keentok M, Xue SC (1999) Edge fracture
in cone-plate and parallel plate flows.
Rheol Acta 38(4):321–348

Kotaka T, Kurata M, Tamura M (1959)
Normal stress effect in polymer solu-
tions. J Appl Phys 30:1705–1712

Lee CS, Tripp BC, Magda JJ (1992) Does
N1 or N2 control the onset of edge
fracture. Rheol Acta 31:306–398

Liang JZ, Li RKY (1999) Rheological
properties of glass bead-filled low-den-
sity polyethylene composite melts in
capillary extrusion. J Appl Polym Sci
73(8):1451–1456

Markovic MG, Choudhury NR, Dimopo-
ulos M, Matisons JG, Dutta NK,
Bhattacharya AK. (2000) Rheological
behavior of highly filled ethylene prop-
ylene diene rubber compounds. Polym
Eng Sci 40(5):1065–1073

Meissner J, Garbella RW, Hostettler J
(1989) Measuring normal stress differ-
ences in polymer melt shear flow.
J Rheol 33:843–864

Ohl N (1991) Die Beschreibung des Fliess-
verhaltens von Suspensionen viskoelas-
tischer Flüssigkeiten bis zu hohen
Volumenkonzentrationen. Diss.
Universität Karlsruhe (TH), Karlsruhe

Ohl N, Gleissle W (1992) The second
normal stress difference for pure and
highly filled viscoelastic fluids. Rheol
Acta 31:294–306

Ohl N, Gleissle W (1993) The characteriza-
tion of steady-state shear and normal
stress functions of highly concentrated
suspensions formulated with viscoelas-
tic liquids. J Rheol 37(2):381–406

Petersen FJ (1974) Zur Bestimmung der
Normalspannungsfunktionen von
Hochpolymeren mittels der Platte-
Abstands-Anordnung. Diss. RWTH-
Aachen, Aachen

Phan-Thien N, Fan XJ, Khoo BC (1999) A
new constitutive model for monodi-
spersed suspensions of spheres at high
concentrations. Rheol Acta 38(4):297–
304

Powell RL (1998) In: Collyer AA, Clegg
PW (eds) Rheological measurements.
Chapman & Hall, London

Schaink HM, Slot JM, Jongschaap RJJ,
Mellema J (2000) The rheology of
systems containing rigid spheres sus-
pended in both viscous and viscoelastic
media, studied by Stokesian dynamics
simulations. J Rheol 44(3):473–498

Tanaka H, White JL (1980) Experimental
investigations of shear and elongation-
al flow properties of polystyrene melts
reinforced with calcium carbonate,
titanium dioxide, and carbon black.
Polym Eng Sci 20:949–956

Tanner RI, Keentok M (1983) Shear frac-
ture in cone-plate rheometry. J Rheol
27:47–57

Zarraga IE, Hill DA, Leighton DT (2000)
The characterization of the total stress
of concentrated suspensions of noncol-
loidal spheres in Newtonian fluids.
J Rheol 44(2):185–220

76


